Bibliography

[1] E. Barrabés, J. M. Cors, C. Pinyol, and J. Soler. Hip-hop solutions of the $2n$-body problem. Celestial Mech. Dynam. Astronom., 95(1-4):55--66, 2006.

[2] V. Barutello and S. Terracini. Action minimizing orbits in the $n$-body problem with simple choreography constraint. Nonlinearity 17: (6), 2015-2039, 2004.

[3] K.-C. Chen. Binary Decompositions for Planar N-Body Problems and Symmetric Periodic Solutions. Arch. Ration. Mech. Anal. 170: 247–276, 2003.

[4] A. Chenciner and J. Fejoz. Unchained polygons and the $n$-body problem. Regular and chaotic dynamics, 14, (1): 64--115, 2009.

[5] A. Chenciner, J. Féjoz J. and R. Montgomery, (2005), Rotating Eights I: the three $\Gamma_{i}$ families. Nonlinearity 18 1407-1424.

[6] A. Chenciner, J. Gerver, R. Montgomery, C. Simó, Simple Choreographic Motions of N bodies. A preliminary study, in Geometry, Mechanics, and Dynamics, 60th birthday of J.E. Marsden. P. Newton, P. Holmes, A. Weinstein, ed., Springer-Verlag, 2002.

[7] A. Chenciner and R. Montgomery.A remarkable periodic solution of the three-body problem in the case of equal masses. Ann. of Math. 152, (2), 881--901, 2000.

[8] I. Davies, A. Truman, and D. Williams. Classical periodic solutions of the equal-mass $2n$-body problem, $2n$-ion problem and the $n$-electron atom problem. Physics Letters A., 99(1):15--18, 1983.

[9] E. Doedel, E. Freire , J. Galán, F. Muñoz-Almaraz, A. Vanderbauwhede. Stability and bifurcations of the figure-8 solution of the three-body problem. Phys Rev Lett. 88 (2002) 241101.

[10] E. Doedel, E. Freire , J. Galán, F. Muñoz-Almaraz, A. Vanderbauwhede. Continuation of periodic orbits in conservative and Hamiltonian systems. Physica D: Nonlinear Phenomena 181 (2003) 1-38

[11] D. Ferrario. Symmetry groups and non-planar collisionless action-minimizing solutions of the three-body problem in three-dimensional space. Arch. Ration. Mech. Anal. 179: (3), 389--412, 2006.

[12] D. Ferrario and A. Portaluri. On the dihedral $n$-body problem. Nonlinearity 21: (6), 1307--1321, 2008.

[13] D. Ferrario and S. Terracini. On the existence of collisionless equivariant minimizers for the classical $n$-body problem. Invent. Math. 155:(2), 305--362, 2004.

[14] C. García-Azpeitia, J. Ize. Global bifurcation of polygonal relative equilibria \qquad for masses, vortices and dNLS oscillators. J. Differential Equations 251 (2011) 3202--3227.

[15] C. García-Azpeitia, J. Ize. Global bifurcation of planar and spatial periodic solutions from the polygonal relative equilibria for the $n$-body problem. J. Differential Equations 254 (2013) 2033--2075.

[16] J. Ize and A. Vignoli. Equivariant degree theory. De Gruyter Series in Nonlinear Analysis and Applications 8. Walter de Gruyter, Berlin, 2003.

[17] T. Kapela, P. Zgliczynski. An existence of simple choreographies for N-body problem -- a computer assisted proof. Nonlinearity 16 (2003) 1899-1918

[18] T. Kapela, C. Simó. Computer assisted proofs for nonsymmetric planar choreographies and for stability of the Eight. Nonlinearity (2007), 20, 1241-1255.

[19] T. Kapela, C. Simó. Rigorous KAM results around arbitrary periodic orbits for Hamiltonian Systems, Preprint.

[20] H. Kielhöfer.\ A bifurcation theorem for Potential Operators. \textit{Journal of Functional Analysis} \textbf{77}, 1--8, 1988.

[21] C. Marchal. The family P12 of the three-body problem. The simplest family of periodic orbits with twelve symmetries per period. Celestial Mechanics and Dynamical Astronomy 78 (2000) 279--298

[22] C. Marchal. How the method of minimization of action avoids singularities. Celestial Mech. Dynam. Astronom. 83 (2002) 325--353.

[23] K. Meyer and D. Schmidt. Librations of central configurations and braided saturn rings. Celestial Mech. Dynam. Astronom. 55(3):289--303, 1993.

[24] R. Moeckel. Linear stability of relative equilibria with a dominant mass. J. of Dynamics and Differential Equations, 6:37--51, 1994.

[25] C. Moore. Braids in Classical Gravity. Physical Review Letters 70 (1993) 3675--3679.

[26] J. Montaldi, K. Steckles. Classification of symmetry groups for planar n-body choreographies. Forum of Mathematics, Sigma. 1 (2013).

[27] G. E. Roberts. Linear stability in the $1+n$-gon relative equilibrium. In J. Delgado, editor, Hamiltonian systems and celestial mechanics. HAMSYS-98. Proceedings of the 3rd international symposium, World Sci. Monogr. Ser. Math. 6, pages 303--330. World Scientific, 2000.

[28] S. Terracini and A. Venturelli. Symmetric trajectories for the $2n$-body problem with equal masses. Arch. Rat. Mech. Anal. , 184(3):465--493, 2007.

[29] R.J Vanderbei and E. Kolemen. Linear stability of ring systems. The astronomical journal 133: 656--664, 2007.