Bibliography
[1] E. Barrabés, J. M. Cors, C. Pinyol, and J. Soler. Hip-hop
solutions of the $2n$-body problem. Celestial Mech.
Dynam. Astronom., 95(1-4):55--66, 2006.
[2] V. Barutello and S. Terracini. Action minimizing orbits in
the $n$-body problem with simple choreography constraint.
Nonlinearity 17: (6), 2015-2039, 2004.
[3] K.-C. Chen. Binary Decompositions for Planar N-Body Problems
and Symmetric Periodic Solutions. Arch. Ration. Mech. Anal.
170: 247–276, 2003.
[4] A. Chenciner and J. Fejoz. Unchained polygons and the $n$-body
problem. Regular and chaotic dynamics, 14, (1): 64--115, 2009.
[5] A. Chenciner, J. Féjoz J. and R. Montgomery, (2005),
Rotating Eights I: the three $\Gamma_{i}$ families.
Nonlinearity 18 1407-1424.
[6] A. Chenciner, J. Gerver, R. Montgomery, C. Simó, Simple
Choreographic Motions of N bodies. A preliminary study, in
Geometry, Mechanics, and Dynamics, 60th birthday of J.E. Marsden. P.
Newton, P. Holmes, A. Weinstein, ed., Springer-Verlag, 2002.
[7] A. Chenciner and R. Montgomery.A remarkable periodic solution
of the three-body problem in the case of equal masses. Ann. of
Math. 152, (2), 881--901, 2000.
[8] I. Davies, A. Truman, and D. Williams. Classical periodic
solutions of the equal-mass $2n$-body problem, $2n$-ion
problem
and the $n$-electron atom problem. Physics Letters A.,
99(1):15--18, 1983.
[9] E. Doedel, E. Freire , J. Galán, F. Muñoz-Almaraz, A.
Vanderbauwhede. Stability and bifurcations of the figure-8
solution of the three-body problem. Phys Rev Lett. 88 (2002)
241101.
[10] E. Doedel, E. Freire , J. Galán, F. Muñoz-Almaraz, A.
Vanderbauwhede. Continuation of periodic orbits in conservative
and Hamiltonian systems. Physica D: Nonlinear Phenomena 181
(2003) 1-38
[11] D. Ferrario. Symmetry groups and non-planar collisionless
action-minimizing solutions of the three-body problem in
three-dimensional space. Arch. Ration. Mech. Anal. 179: (3),
389--412, 2006.
[12] D. Ferrario and A. Portaluri. On the dihedral $n$-body
problem. Nonlinearity 21: (6), 1307--1321, 2008.
[13] D. Ferrario and S. Terracini. On the existence of
collisionless equivariant minimizers for the classical $n$-body
problem. Invent. Math. 155:(2), 305--362, 2004.
[14] C. García-Azpeitia, J. Ize. Global bifurcation of polygonal
relative equilibria \qquad for masses, vortices and dNLS
oscillators. J. Differential Equations 251 (2011) 3202--3227.
[15] C. García-Azpeitia, J. Ize. Global bifurcation of planar
and spatial periodic solutions from the polygonal relative
equilibria for the $n$-body problem. J. Differential
Equations 254 (2013) 2033--2075.
[16] J. Ize and A. Vignoli. Equivariant degree theory. De
Gruyter Series in Nonlinear Analysis and Applications 8. Walter de
Gruyter, Berlin, 2003.
[17] T. Kapela, P. Zgliczynski. An existence of simple
choreographies for N-body problem -- a computer assisted proof.
Nonlinearity 16 (2003) 1899-1918
[18] T. Kapela, C. Simó. Computer assisted proofs for
nonsymmetric planar choreographies and for stability of the Eight.
Nonlinearity (2007), 20, 1241-1255.
[19] T. Kapela, C. Simó. Rigorous KAM results around arbitrary
periodic orbits for Hamiltonian Systems, Preprint.
[20] H. Kielhöfer.\ A bifurcation theorem for Potential
Operators. \textit{Journal of Functional Analysis}
\textbf{77}, 1--8, 1988.
[21] C. Marchal. The family P12 of the three-body problem. The
simplest family of periodic orbits with twelve symmetries per
period. Celestial Mechanics and Dynamical Astronomy 78 (2000)
279--298
[22] C. Marchal. How the method of minimization of action avoids
singularities. Celestial Mech. Dynam. Astronom. 83 (2002)
325--353.
[23] K. Meyer and D. Schmidt. Librations of central
configurations and braided saturn rings. Celestial Mech.
Dynam. Astronom. 55(3):289--303, 1993.
[24] R. Moeckel. Linear stability of relative equilibria with a
dominant mass. J. of Dynamics and Differential Equations,
6:37--51, 1994.
[25] C. Moore. Braids in Classical Gravity. Physical Review
Letters 70 (1993) 3675--3679.
[26] J. Montaldi, K. Steckles. Classification of symmetry groups
for planar n-body choreographies. Forum of Mathematics, Sigma.
1 (2013).
[27] G. E. Roberts. Linear stability in the $1+n$-gon
relative equilibrium. In J. Delgado, editor, Hamiltonian
systems and celestial mechanics. HAMSYS-98. Proceedings of the 3rd
international symposium, World Sci. Monogr. Ser. Math. 6, pages
303--330. World Scientific, 2000.
[28] S. Terracini and A. Venturelli. Symmetric trajectories for
the $2n$-body problem with equal masses. Arch. Rat.
Mech. Anal. , 184(3):465--493, 2007.
[29] R.J Vanderbei and E. Kolemen. Linear stability of ring
systems. The astronomical journal 133: 656--664, 2007.