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Motivation
Nonlinear dynamics shape the world around us,
from the harmonious movements of celestial bod-
ies, via the swirling motions in fluid flows, to
the complicated biochemistry in the living cell.
Mathematically these beautiful phenomena are
modeled by nonlinear dynamical systems, mainly
in the form of ordinary differential equations
(ODEs), partial differential equations (PDEs) and
delay differential equations (DDEs). The presence
of nonlinearities severely complicates the mathe-
matical analysis of these dynamical systems, and
the difficulties are even greater for PDEs and DDEs,
which are naturally defined on infinite-dimensional
function spaces. With the availability of powerful
computers and sophisticated software, numerical
simulations have quickly become the primary tool
to study the models. However, while the pace of
progress increases, one may ask: just how reliable
are our computations? Even for finite-dimensional
ODEs, this question naturally arises if the system
under study is chaotic, as small differences in
initial conditions (such as those due to rounding
errors in numerical computations) yield wildly
diverging outcomes. These issues have motivated
the development of the field of rigorous numerics
in dynamics.

Rigorous numerics draws inspiration from the
ideas in scientific computing, numerical analysis,
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and approximation theory. In a nutshell, rigor-
ous computations are mathematical theorems
formulated in such a way that the assumptions
can be rigorously verified on a computer. This
requires an a priori setup that allows analysis
and numerics to go hand in hand: the choice of
function spaces, the choice of the basis functions
and Galerkin projections, the analytic estimates,
and the computational parameters must all work
together to bound the errors due to approximation,
rounding, and truncation sufficiently tightly for
the verification proof to go through. The goal is
to provide a mathematically rigorous statement
about the validity of a concrete numerical simu-
lation (i.e., not in some asymptotic sense where,
for example, the grid size tends to zero) as inter-
preted as an approximate solution of the original
problem. This complements the field of scientific
computing, where the goal is to achieve highly
reliable results for very complicated problems. In
rigorous computing one is after absolutely reliable
results for somewhat less complicated (but still
hard) problems.

Outside dynamics, computer-assisted proofs
have been used to settle famous open problems.
Two prominent examples are the four-color the-
orem [1] and Kepler’s densest sphere packing
problem [2]. In dynamical systems, an early suc-
cess is the demonstration of the universality of
the Feigenbaum constant [3]. More recently, rig-
orous numerics were used to prove the existence
of the strange attractor in the Lorenz system,
which seemed, for decades, tentatively intuitive
from computer simulations [4]. This settled the
fourteenth problem in Smale’s list of problems for
the twenty-first century (the only other problem
from the list that has been solved is the Poincaré
conjecture).
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Computers have long played a pivotal role in
the study of dynamical systems. Starting from
the very first glimpses of the Mandelbrot set,
computer simulations have provided a way to delve
deeply into the complex behavior of nonlinear
dynamics. Nevertheless, the field of dynamical
systems is not dominated by computers. Quite the
opposite—the theory of dynamical systems is a
thriving area of mathematics, as exemplified by
several recent Fields Medals. While the strength
of analytic results in dynamical systems lies in
characterizing generic behavior, i.e., outlining what
one should typically expect “on average” in classes
of systems, it is very difficult to check that any
specific system is sufficiently “unexceptional” to be
described by these general results. It is precisely
this weakness of the general analytic theory that
is the strength of computer-assisted approaches.
This is of importance, since in applications one
is usually interested in the behavior of a specific
system. Moreover, while mathematical analysis is
strong on general “existence” theorems for families
of problems, information about the shape of the
solutions (e.g., the patterns they describe) can
usually be obtained only with the help of computer
calculations (rigorous or not). While in applications
one needs to be sure that a solution exists, it is
usually essential to know what the solution looks
like as well.

From a mathematical point of view, the advan-
tage of rigorously validated computations over
simulations is that the outcomes can be used as
components in the “building” of mathematics. This
is often expressed in the form of forcing theorems:
if one finds a certain type of solution, then this
implies, by analytic theory, many other properties
of the dynamical system. The most famous result
of this type is “period-3 implies chaos” for interval
maps [5]. Other such examples leading to chaos are
given by the existence of a Shilnikov bifurcation
[6] or the existence of a single braided periodic
orbit [7]. Mathematics in general is riddled with
such statements, where the assumptions in the
theorems are in practice impossible to check for
any specific system, at least by hand. It is in
overcoming this obstacle that computer-assisted
proofs are at their best.

Strategy
Let us sketch the strategy for finding a solution
in a nonlinear dynamical system via a computer-
assisted proof. We are looking for a “dynamically
invariant object,” which we denote abstractly by x
and which may be an equilibrium, a periodic or
connecting orbit, or more generally an invariant
manifold. Having identified a formulation for such
a problem of the form f (x) = 0 that is suitable
for the analysis to follow, our starting point is a
numerically obtained approximation, xapprox, of a
zero of f , i.e., f (xapprox) ⇡ 0. Next, we exploit a

common strategy in mathematical analysis, namely,
we turn the problem f (x) = 0 into an equivalent
fixed point problem. Instead of trying to solve
f (x) = 0, we consider a map T whose fixed points
are the zeros of f . The choice of the map T is not
straightforward, but often an approximate Newton
scheme of the form T(x) = x�Af(x) is suitable,
where the linear operatorA is some cleverly chosen
approximation of the inverse ofDf(x). The inverse
of the Jacobian itself is usually too complicated to
use directly.

We then set out to prove that T is a contraction
on a neighborhood of xapprox. Although this may
seem a rather trivial reformulation, the essen-
tial advantage is that instead of trying to prove
equalities in the formulation f (x) = 0, contractiv-
ity involves inequalities only. This provides the
flexibility (“room to play with”) that is so typical
of many arguments in analysis. In particular, in
the context of computer-assisted proofs, inequal-
ities allow the control of errors from a variety
of sources: rounding of floating point numbers,
finite-dimensional truncation (discretization of
a continuous problem), “modeling” error (e.g.,
using a Taylor polynomial for modeling a nonlin-
earity rather than the Taylor series), as well as
uncertainties in parameter values.

In this approach to computer-assisted proofs it
is not the computer which does all the work. On
the contrary: the hard work, by pencil and paper,
is to reduce the problem to checking finitely many
inequalities. This involves the analytic study of the
defect T(xapprox)� xapprox as well as the derivative
of T near xapprox. The proof then proceeds by
a Newton-Kantorovich type argument to find a
small ball B around xapprox on which the map T is
contracting.

The first central difficulty lies in analytically
quantifying “how nonlinear” the map is. In that
sense, the hurdle is essentially the same as for
purely analytic techniques, where one also needs
to control nonlinear and/or off-diagonal terms
by (functional analytic) estimates. The second
fundamental issue mirrors the situation in nu-
merical analysis and scientific computing, namely,
estimating the “cut-off error” caused by pro-
jecting the infinite-dimensional problem onto a
finite-dimensional computational space (the error
induced by truncating the continuous problem to
a discrete one). Roughly, one needs to choose a
well-adapted basis and/or a good preconditioner
to obtain good estimates.

We note that all the obtained bounds need to be
explicit and sufficiently sharp to be able to check,
in the final step of the proof, that the inequalities
guaranteeing contractivity of T hold. In principle
the inequalities could be checked by hand, but
in practice they involve too many terms to make
that feasible. Moreover, the expressions for the in-
equalities involve the set of floating point numbers
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xapprox, since the ball B is centered at a numerically
determined point. This is a crucial difference from
conventional analytic results, where the ball is
typically centered around some relatively simple,
asymptotic limit case that is amenable to “regular”
analysis.

� � � �� � � � ��

Figure 1. Top: Stationary coexistence of
hexagons (spots) and rolls (stripes) of (2)(2)(2).
Bottom: A double gyroid solution of (3)(3)(3) for
parameter values µ = 0.1µ = 0.1µ = 0.1 and � = 2.1� = 2.1� = 2.1. Images
courtesy of Jan Bouwe van den Berg.

Additionally, in the computer-assisted context,
the definition of the linear operator A, which is a
constituent of the map T , involves the numerical
Jacobian of the truncated problem at xapprox, which
is another source of floating point numbers in the
inequalities to be checked. Having done the hard
work in the analysis of reducing the problem to
finitely many explicit inequalities, one therefore
resorts to interval arithmetic computer calculations
for this final step of the proof.

The above outline shows that the arguments
are “quasi-analytic”: the majority of the analysis
is done by hand, followed by a final check of
a finite list of inequalities through a computer
calculation. This means that we can easily deal with
parameters in the problem. Indeed, parameters
play an important role in virtually all nonlinear
dynamical systems that appear in applications.
Therefore, rigorous parameter continuation is
a vital tool in most applications, and this is
incorporated in the computer-assisted approach
in a relatively straightforward manner [8], [9].
Finally, we remark that contractivity implies not
just existence and uniqueness but also robustness

with respect to small variations in parameters. In
a dynamical systems context this can be made
precise in terms of hyperbolicity or transversality
of the solution. Such a robustness (“no fluke”)
property, which is usually required to derive
forcing results, is automatic from the contractivity
of the operator T .

Applications
Techniques for computer-assisted proofs in dy-
namics are rapidly developing, and some of them,
at least when applied to systems of ODEs, are be-
coming “routine” and are implemented in software
packages such as CAPD [10]. Using such software
or the ideas mentioned in the previous section, one
can obtain computer-assisted proofs of existence
of bounded solutions such as equilibria, periodic
orbits, and connecting orbits. Bifurcation points,
stable and unstable manifolds of equilibria and pe-
riodic orbits, and existence of chaos in the form of
symbolic dynamics can also be studied rigorously
for finite-dimensional nonlinear dynamical sys-
tems. More recently, infinite-dimensional nonlinear
problems have been studied via computer-assisted
proofs. Equilibria of PDEs [11], [12], [13], periodic
orbits of PDEs [14], [15], solutions of boundary
value problems [16], and traveling waves [17] have
all been proved with the techniques of rigorous
numerics. Rather than presenting an extensive list
of results in the field, we choose to briefly present
three sample results, and we refer to [18], [19], [20]
for a more thorough discussion of applications to
finite- and infinite-dimensional problems.

a) An old conjecture in delay equations. In
1955, E. M. Wright considered the equation

(1) y 0(t) = �↵y(t � 1)[1+ y(t)], ↵ > 0,
because of its role in the distribution of prime
numbers [21]. A conjecture (stated by Jones in
1962 [22]) asserts that (1) has a unique slowly
oscillating periodic solution (SOPS) for all ↵ > ⇡/2,
i.e., a periodic solution that oscillates around 0,
spending more than one unit of time (per period)
on either side of 0. With the help of Fourier series,
a rigorous parameter continuation of the SOPS was
performed in [23] using the ideas of the previous
section, yielding substantial progress toward the
proof of the conjecture.

b) Coexistence of patterns in a PDE model. The
ideas of rigorous numerics were applied in [24] to
prove existence of standing waves between rolls
and hexagonal patterns of the two-dimensional
pattern formation PDE model

(2)
@tu = �(1+—)2u+ µu� �|ru|2 � u3,

u = u(x, t) 2 R, x 2 R2, t � 0,

for small parameter values µ,� 2 R (see top of
Figure 1). Using the weakly nonlinear analysis of
[25] proving coexistence of the patterns reduces
to proving existence of heteroclinic solutions
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in a system of second-order nonlinear ODEs.
After reformulating the problem as a projected
boundary value problem (BVP) with boundaries
in the stable/unstable manifolds, the techniques
of the previous section were used to compute
the local manifolds and to solve the BVP using
Chebyshev series.

c) Steady states of the Ohta-Kawasaki prob-

lem. The Ohta-Kawasaki equation

(3) @tu = �—(��2—u+ u� u3)� (u� µ)
models the evolution of di-block copolymers [26],
[27]. Depending on the value of the parameters µ
and �, which represent a measure of the ratio of the
mixture of the polymers and the incompatibility of
the polymer types, respectively, there is a multitude
of stationary states with a truly three-dimensional
geometry. These have been studied using the
rigorous numerical techniques described above
(see [28]), and we depict one rigorously verified
equilibrium pattern, called a double gyroid, in
Figure 1 on the bottom.

Future Goals
The past decade has seen enormous advances in the
development of rigorously verified computing with
the most significant results for finite-dimensional
systems. While encouraging first steps for infinite-
dimensional systems are starting to appear, many
interesting future directions remain to be explored.
For instance, developing rigorous computational
tools to study global dynamics of PDEs, finding
bounded invariant sets for state-dependent delay
equations, and demonstrating chaos in infinite-
dimensional continuous dynamical systems are
some of the main challenges in the field. Aiming to
understand global properties of dynamical systems,
combining rigorous numerics with topological
methods such as Morse theory, is the subject of
active research. Important contributions in that
direction are currently being developed based on
Morse-Conley theory [29].

Finally, it is a nontrivial problem to make sure
that all steps in the process (including the code)
are correct. As the code for the computer-assisted
proofs is getting more and more complicated, the
possibilities for human error while developing the
necessary analytic estimates and while implement-
ing the algorithms are increasing. From that point
of view, mathematics in the era of computers calls
for the development of automatic proof assistants;
see e.g., [30].
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[11] Piotr Zgliczyński and Konstantin Mischaikow,
Rigorous numerics for partial differential equations:
The Kuramoto-Sivashinsky equation, Found. Comput.
Math., 1(3):255–288, 2001.

[12] Myoungnyoun Kim, Mitsuhiro T. Nakao, Yoshi-
taka Watanabe, and Takaaki Nishida, A numerical
verification method of bifurcating solutions for 3-
dimensional Rayleigh-Bénard problems, Numer. Math.,
111(3):389–406, 2009.

[13] Marcio Gameiro and Jean-Philippe Lessard, Ana-
lytic estimates and rigorous continuation for equilibria
of higher-dimensional PDEs, J. Differential Equations,
249(9):2237–2268, 2010.

[14] Gianni Arioli and Hans Koch, Integration of dissipa-
tive partial differential equations: A case study, SIAM
J. Appl. Dyn. Syst., 9(3):1119–1133, 2010.
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