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Continuation of solutions and studying delay differential
equations via rigorous numerics

Jean-Philippe Lessard

Abstract. In the present work, we demonstrate how rigorous numerics helps

studying the dynamics of delay equations. We present a rigorous continuation

method for solutions of finite and infinite dimensional parameter dependent
problems, which is applied to compute branches of periodic solutions of a

delayed Van der Pol equation and of Wright’s equation.

1. Introduction, Motivation and Examples

The main purpose of this paper is to demonstrate the use of rigorous numerics
to study the dynamics of delay differential equations (DDEs). The main motivat-
ing example we consider is Wright’s equation, essentially because it is one of the
simplest looking delay equation and it is arguably the most studied equation in
the broad field of DDEs. Moreover, it has been the subject of active research for
more than 60 years and has been studied by many different mathematicians (e.g.
see [1, 2, 3, 4, 5]). As will be seen later, the dynamics of this equation naturally
leads to studying branches of periodic solutions. This is why a large part of the
paper is dedicated to the presentation of a rigorous continuation method for solu-
tions of finite and infinite dimensional parameter dependent problems. This part
is independent from delay equations. In this section we focus on Wright’s equa-
tion to introduce some concepts and ideas. Nevertheless, the method introduced is
quite general and applies to a large class of DDEs and other infinite dimensional
problems. Note however that the present work is not meant to provide a general
introduction to the field of DDEs. The reader who is looking for a general intro-
duction of DDEs will find very useful the book of Hale and Verduyn Lunel [6], the
book of Diekmann, van Gils, Verduyn Lunel and Walther [7], and the recent survey
paper of Walther [8].

To start the discussion, we begin by presenting a quote from R. Nussbaum
taken from [9].
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An intriguing feature of the global study of nonlinear functional
differential equations (FDEs) is that progress in understanding
even the simplest-looking FDEs has been slow and has involved
a combination of careful analysis of the equation and heavy ma-
chinery from functional analysis and algebraic topology. A par-
tial list of tools which have been employed includes fixed point
theory and the fixed point index, global bifurcation theorems, a
global Hopf bifurcation theorem, the Fuller index, ideas related to
the Conley index, and equivariant degree theory. Nevertheless,
even for the so-called Wright’s equation,

(1.1) y′(t) = −αy(t− 1)[1 + y(t)], α ∈ R
which has been an object of serious study for more than forty-five
years, many questions remain open.

Roger Nussbaum,
2002.

This comment is still true nowadays and is perhaps not surprising, as a large
class of FDEs naturally give rise to infinite dimensional nonlinear dynamical sys-
tems. To understand this, let us consider an initial value problem associated to
Wright’s equation (1.1). More precisely, at a given time t0 ≥ 0, what kind of initial
data guarantees the existence of a unique solution y(t) for all t > t0? Since y′(t0) is
determined by y(t0) and y(t0 − 1), knowing the value of y(t) for all t > t0 requires
knowing the value of y(t) on the time interval [t0−1, t0]. In other words, the initial
condition is a function y0 : [t0 − 1, t0] → R. Shifting time to 0, the initial data is
given by y0 : [−1, 0] → R. Denote the space of continuous real-valued functions
defined on [−1, 0] by

C
def
= C([−1, 0],R) = {v : [−1, 0]→ R : v is continuous} .

Given y0 ∈ C, the initial value problem

y′(t) = −αy(t− 1)[1 + y(t)], t ≥ 0

y(t) = y0(t), ∀ t ∈ [−1, 0]

has a unique solution (e.g. see Theorem 2.3 of Chapter 2 in [6]), and this naturally
leads to an infinite dimensional nonlinear dynamical system. Therefore a state space
for the solutions of (1.1) is the infinite dimensional function space C. This is the
reason why Wright’s equation falls into the class of functional differential equations.
In Figure 1, find a cartoon phase portrait of Wright’s equation visualized in the
function space C. Denote by yt ∈ C the solution at time t. As time evolves, the
solution yt of the initial value problem gain more and more regularity, somehow in
a similar way that solutions of parabolic partial differential equations (PDEs) gain
regularity. However, while the regularizing effect in parabolic PDEs is instantaneous
in time (think for instance of the heat equation), the regularizing process in delay
equations is much slower. In fact, this is a discrete regularizing process. As time
evolves, the solution y(t, ϕ) of the initial value problem with initial data ϕ ∈ C
gains more and more regularity: assuming that the solution y(·, ϕ) ∈ C([−1, 1],R),
then for t ∈ (0, 1], y′(t) = −αy(t − 1)[1 + y(t)], and so y(·, ϕ) ∈ C1((0, 1],R).
Similarly, y(·, ϕ) ∈ C2((1, 2],R), and more generally y(·, ϕ) ∈ Ck((k − 1, k],R).
This is why we call this a “discrete” regularizing process. At infinity, the solution
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Figure 1. A cartoon phase portrait of Wright’s equation in the
function space C = C([−1, 0],R). A point yt ∈ C in the phase
portrait is a function.

of the initial value problem is C∞. As a consequence, this means that bounded
solutions of Wright’s equations are extremely regular. In fact more is true, and
periodic solutions of analytic delay equations are analytic as is shown in [10]. This
a priori knowledge about the regularity of the bounded (periodic) solutions is a
crucial ingredient in the development of the rigorous computational continuation
method.

The infinite dimensional nature of the problem comes directly from the presence
of the delay in the equation. Suppose for the moment that the delay is absent from
the equation, that is consider the scalar ordinary differential equation (ODE)

(1.2) y′(t) = −αy(t)[1 + y(t)].

Then, the phase portrait of (1.2) is simple and is portrayed in Figure 2. In particu-
lar, we get that the equilibrium solution 0 is asymptotically stable for all parameter
values α > 0.

�1 0

Figure 2. The phase portrait of (1.2) for any α > 0.

Adding a delay severely complicates the behaviour of the solutions of the equa-
tion. In fact, we see below that the effect of the delay in Wright’s equation leads
to a loss of stability of the zero equilibrium solution for all α > π/2. This prop-
erty is similar in some sense to Turing instability [11], a phenomenon in which a
stable equilibrium solution of an ODE becomes unstable after a diffusion term is
added to the ODE. In other words, the steady state loses its stability after the fi-
nite dimensional ODE is transformed into an infinite dimensional reaction diffusion
PDE.

Let us discuss the history of Wright’s equation, following closely the presenta-
tion of [12].

At the beginning of the 1950s, the equation

y′(t) = −(log 2)y(t− 1)[1 + y(t)]
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was brought to the attention of the number theorist Wright (a former Ph.D. student
of Hardy at Oxford) because it arose in the application of probability methods to
the theory of distribution of prime numbers. In 1955, Wright considered the more
general equation (1.1) and studied the existence of bounded non trivial solutions for
different values of α > 0 [13]. In 1962, following the pioneer work of Wright, Jones
demonstrated in [14] that non trivial periodic solutions of (1.1) exist for α > π

2 ,
and using numerical simulations, he remarked in [15] that a given periodic solution
seemed to be globally attractive, that is seemed to attract all initial conditions. In
Figure 3 and Figure 4, we reproduced some of the numerical simulations of Jones
using the integrator for delay equations dde23 in MATLAB. The periodic form he
referred to is in fact a slowly oscillating periodic solution.
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Figure 3. Numerical integration of Wright’s equation (1.1) with
α = 2.4 with different initial conditions y0 defined on the interval
[−1, 0].
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Figure 4. Numerical integration of Wright’s equation (1.1) with
the initial condition y0(t) = −(t + 0.8)4 for different parameter
values of α.

Definition 1.1. A slowly oscillating periodic solution (SOPS) of (1.1) is a
periodic solution y(t) with the following property: there exist q > 1 and p > q + 1
such that, up to a time translation, y(t) > 0 on (0, q), y(t) < 0 on (q, p), and
y(t+ p) = y(t) for all t so that p is the minimal period of y(t).

A geometric interpretation of a SOPS is found in Figure 5.
After Jones observation in [15], the question of the uniqueness of SOPS in (1.1)

became popular and is still under investigation after more than 50 years. The next
conjecture is sometimes called Jones Conjecture.
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Figure 5. A slowly oscillating periodic solution.

Conjecture 1.1 (Jones, 1962). For every α > π
2 , (1.1) has a unique SOPS.

A result of Walther in [16] shows that if Jones Conjecture is true, then the
unique SOPS attracts a dense and open subset of the phase space. A result from
Chow and Mallet-Paret from [17] shows that there is a supercritical Hopf bifurca-
tion of SOPS from the trivial solution at α = π/2. This branch of SOPS which
bifurcates (forward in α) from 0 is denoted by F0. We refer to Figure 6 for a
geometric interpretation of bifurcation.

α

||y||
F0

π
2

Figure 6. A supercritical Hopf bifurcation of SOPS from 0 at α = π/2.

Regala then proved in his Ph.D. thesis [18] a result which implies that there
cannot be any secondary bifurcations from F0. Hence, F0 is a regular curve in the
(α, y) space. Later, Xie used asymptotic estimates for large α to prove that for
α > 5.67, Wright’s equation has a unique SOPS up to a time translation [19, 20].
Combining the strategy employed by Xie with a rigorous numerical integrator, the
recent work of Jaquette et al. [21] proves that Wright’s equation has a unique
SOPS for all parameter value α ∈ [1.9, 6.0]. In [12], it was demonstrated, using
the techniques that we introduce in the present paper, that the branch F0 does not
have a fold over the parameter range

(
π/2 + 7.3165× 10−4, 2.3

]
. The recent work

[22] shows that the branch F0 does not have any fold over the parameter range(
π/2, π/2 + 6.83× 10−3

]
. Considering the work that has been done in the last 50

years, Jones Conjecture is reformulated as follows.

Conjecture 1.2 (Jones Conjecture reformulated). There are no con-
nected components (isolas) of SOPS disjoint from F0 over the parameter range
(π2 , 1.9].

We refer to Figure 7 for a cartoon picture of a scenario which would violate
Jones Conjecture.
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Figure 7. A scenario which would violate Jones Conjecture: the
existence of an isola F1 of SOPS in the parameter range α ∈
(π2 , 1.9].

Remark 1.2. Another important long standing open problem, which was re-
cently settled combining the results of [22] and [23] using the tools of rigorous
computing, is Wright’s conjecture, which states that for all α ∈ (0, π/2] the global
attractor of Wright’s equation is given by the origin.

The study of Conjecture 1.2 naturally lead to study branches of periodic solu-
tions of DDEs. This is the main topic of these notes. More precisely, we introduce
a general continuation method to compute global branches of periodic solutions of
DDEs using Fourier series and the ideas from rigorous computing (e.g. see [24]).
Note that the study of periodic solutions in DDEs is rich [25, 26, 27, 28, 29, 30,
31, 32]. Rather than focussing only on continuation of periodic solutions in DDEs,
we present in Section 2 a more general approach to prove existence of branches of
solutions for operator equations F (x, λ) = 0 posed on Banach spaces. In Section ??,
we apply the general method to the context of periodic solutions of DDEs.

2. Rigorous Continuation of Solutions

Throughout this section, let (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) denote Banach spaces.
The vectors spaces X and Y are general and are either finite or infinite dimensional.

Let F : X×R→ Y a C1 mapping (see Definition 2.2), and consider the general
problem of looking for solutions of

(2.1) F (x, λ) = 0,

where λ ∈ R is a parameter. The unknown variable x could represent various
types of dynamical objects, e.g. a steady state of a PDE, a periodic solution of a
DDE, a connecting orbit of an ODE, a minimizer of an action functional, etc. It is
important to realize that the solution set

S def
= {(x, λ) ∈ X × R | F (x, λ) = 0} ⊂ X × R

may contain different types of bifurcations and may be complicated (e.g. see Fig-
ure 8).
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Figure 8. Global branches of steady states of a system of
reaction-diffusion PDEs introduced in [33] and studied with rigor-
ous numerics in [34].

There exists a vast literature on numerical continuation methods to compute
solutions of (2.1). Methods to compute periodic orbits [35, 36], connecting orbits
[37, 38, 39, 40] and more generally coherent structures [41] are by now standard,
and software packages like AUTO [42] and MATCONT [43] are accessible and
well documented. We refer to [44, 45] for more general references on continuation
methods. Next we briefly introduce two main algorithms to compute solutions of
(2.1), namely the parameter continuation and the pseudo-arclength continuation.
These methods fall into the class of predictor-corrector algorithms.

2.1. Predictor-Corrector Algorithms. In this section, we assume that the
Banach spaces are finite dimensional and given by X = Y = Rn (X = Y = Cn is
also an option), we consider a map F : Rn × R → Rn and we study numerically
the problem F (x, λ) = 0. At this point, considering X and Y finite dimensional is
natural, as any computer algorithm needs to be applied to a problem with a finite
resolution. The mapping F could be a finite-dimensional projection of an infinite
dimensional operator, e.g. a Galerkin approximation or a discretization scheme.
The first predictor-corrector algorithm we introduce is parameter continuation.

2.1.1. Parameter Continuation. This method involves a predictor and a cor-
rector step: given, within a prescribed tolerance, a solution x0 at parameter value
λ0, the predictor step produces an approximate solution x̂0 at nearby parameter
value λ1 = λ0 + ∆λ (for some ∆λ 6= 0), and the corrector step, takes x̂1 as its input
and produces with Newton’s method, once again within the prescribed tolerance,
a solution x1 at λ1.

The predictor is obtained by assuming that at the solution (x0, λ0), the jacobian
matrix DxF (x0, λ0) is invertible, which in turns implies by the implicit function
theorem that the solution curve is locally parametrized by λ. In this case, close to
(x0, λ0), we have

∂

∂λ
(F (x, λ) = 0)⇐⇒ DxF (x, λ)

dx

dλ
(λ)+

∂F

∂λ
(x, λ) = 0⇐⇒ dx

dλ
(λ) = −DxF (x, λ)−1 ∂F

∂λ
(x, λ).
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Figure 9. Parameter continuation.

At (x0, λ0), a tangent vector to the curve is ẋ0
def
= dx

dλ (λ0) and is obtained with the
formula

ẋ0 = −DxF (x0, λ0)−1 ∂F

∂λ
(x0, λ0).

Once the tangent vector ẋ0 is obtained, the predictor is defined by

x̂1 = x0 + ∆λẋ0.

Then, fixing λ1 = λ0 + ∆λ, we correct the predictor x̂1 using Newton’s method

x
(0)
1 = x̂1, x

(n+1)
1 = x

(n)
1 −

(
DxF (x

(n)
1 , λ1)

)−1

F (x
(n)
1 , λ1), n ≥ 0,

to obtain the solution x1 at λ1 within the prescribed tolerance. We repeat this
procedure iteratively to produce numerically a branch of solutions. We refer to
Figure 9 to visualize one step of the parameter continuation algorithm.

Sometimes it may be more natural to parametrize the branches of solutions
of (2.1) by arclength or pseudo-arclength, especially when the solution curve is
not locally parametrized by λ, for instance at points where the jacobian matrix is
singular. This is for instance what is happening when a saddle-node bifurcations
(folds) occur. An example of such phenomenon is given by F (x, λ) = x2−λ = 0 at
the point (x0, λ0) = (0, 0). Pseudo-arclength continuation, as opposed to parameter
continuation, allows continuing past folds.

2.1.2. Pseudo-Arclength Continuation. In the pseudo-arclength continuation
algorithm (e.g. see Keller [46]), the parameter value λ is no longer fixed and
instead is left as a variable. The unknown variable is now X = (x, λ). Consider the
problem F (X) = 0 with the map F : Rn+1 → Rn. As before, the process begins
with a solution X0 given within a prescribed tolerance. To produce a predictor, we
compute first a unit tangent vector to the curve at X0, that we denote Ẋ0, which
is computed using the formula

DXF (X0)Ẋ0 =

[
DxF (x̄0, λ̄0)

∂F

∂λ
(x0, λ0)

]
Ẋ0 = 0 ∈ Rn.

We now fix a pseudo-arclength parameter ∆s > 0, and set the predictor to be

X̂1
def
= X̄0 + ∆sẊ0 ∈ Rn+1.
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Once the predictor is fixed, we correct toward the set S on the hyperplane perpen-
dicular to the tangent vector Ẋ0 which contains the predictor X̂1. The equation of
this plan is given by

E(X)
def
= (X − X̂1) · Ẋ0 = 0.

Then, we apply Newton’s method to the new function

(2.2) X 7→
(
E(X)
F (X)

)
with the initial condition X̂1 to obtain a new solution X1 given again within a
prescribed tolerance. See Figure 10 for a geometric interpretation of one step of
the pseudo-arclength continuation algorithm. At each step of the algorithm, the
function defined in (2.2) changes since the plane E(X) = 0 changes. With this
method, it is possible to continue past folds. Repeating this procedure iteratively
produces a branch of solutions.

S
kxk

X1

X0

Ẋ0

�

�s

X̂1

Figure 10. Pseudo-arclength continuation.

Remark 2.1. The above mentioned algorithms do not cover the case of bifur-
cations of solutions e.g. symmetry-breaking pitchfork bifurcations, branch points,
Hopf bifurcations, etc. We refer for instance to the work [44] for numerical contin-
uation methods handling bifurcations.

Now that we have briefly introduced two classical algorithms to numerically
compute branches of solutions of the general problem (2.1), we present an approach
that combines the strength of the numerical continuation methods with the ideas
of rigorous computing (e.g. see [24]). Before introducing the rigorous continuation
method in Section 2.3, we need some background from calculus in general Banach
spaces.

2.2. Background of Calculus in Banach Spaces. The space of bounded
linear operators is defined by

B(X,Y )
def
=
{
E : X → Y | E is linear, ‖E‖B(X,Y ) <∞

}
,

where ‖ · ‖B(X,Y ) denotes the operator norm

‖E‖B(X,Y )
def
= sup
‖x‖X=1

‖Ex‖Y .
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Note that
(
B(X,Y ), ‖ · ‖B(X,Y )

)
is a Banach space.

Definition 2.2. A function F : X → Y is Fréchet differentiable at x0 ∈ X if
there exists a bounded linear operator E : X → Y satisfying

lim
‖h‖X→0

‖F (x0 + h)− F (x0)− Eh‖Y
‖h‖X

= 0.

The linear operator E is called the derivative of F at x0 and denoted by E =
DxF (x0). We say that F : X → Y is a C1 mapping if for every x ∈ X, F is
Fréchet differentiable at x.

Given a point x0 ∈ X and a radius r > 0, denote by Br(x0) ⊂ X the closed
ball of radius r centered at x0, that is

Br(x0)
def
= {x ∈ X | ‖x− x0‖X ≤ r} .

The proof of the following version of the Mean Value Theorem is found in [47].

Theorem 2.3 (Mean Value Theorem). Let x0 ∈ X and suppose that F : Br(x0) ⊂
X → Y is a C1 mapping. Let

K
def
= sup

x∈Br(x0)

‖DxF (x)‖B(X,Y ).

Then for any x, y ∈ Br(x0) we have that

‖F (x)− F (y)‖Y ≤ K‖x− y‖X .
While the following concept could be introduced more generally in the context

of metric spaces, we present it in the context of Banach spaces to best suit our
needs.

Definition 2.4. Suppose that Λ is a set of parameters. A function T : X×Λ→
X is a uniform contraction if there exists κ ∈ [0, 1) such that, for all x, y ∈ X and
λ ∈ Λ,

‖T (x, λ)− T (y, λ)‖X ≤ κ‖x− y‖X .
By the Contraction Mapping Theorem if T : X × Λ → X is a uniform con-

traction, then for every λ ∈ Λ there exists a unique x̃λ such that T (x̃λ, λ) = x̃λ.
Thus the function g : Λ→ X given by g(λ)

def
= x̃λ is well defined. As the following

theorem indicates this function inherits the same amount of differentiability than
T . The proof is found in [47].

Theorem 2.5 (Uniform Contraction Theorem). Assume that the set of
parameters Λ is a Banach space, and consider open sets U ⊂ X and V ⊂ Λ.
Assume that T : U × V → U is a uniform contraction with contraction constant κ.
Define g : V → U by T (g(λ), λ) = g(λ). If T ∈ Ck(U × V,X), then g ∈ Ck(V,X)
for any k ∈ {1, 2, . . . ,∞}.

2.3. The Rigorous Continuation Method. Now that we have introduced
some basic notions from calculus in Banach spaces, we are ready to present the gen-
eral rigorous continuation method. The idea of the proposed approach is to prove
the existence of true solution segments of F (x, λ) = 0 close to piecewise-linear
segments of approximations by applying the Uniform Contraction Theorem (The-
orem 2.5) over intervals of parameters. This approach has the advantage of being
quite general and is readily generalized to problems depending of several parameters
(e.g. see Remark 2.9). However, the rigorous error bounds quickly deteriorate as
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the width of the interval of parameters (on which the uniform contraction theorem
is applied) grows. This is due to the fact that piecewise-linear approximations are
coarse approximations of the solution branches of nonlinear problems. Expanding
the solutions using high order Taylor approximations in the parameter could for
instance increase significantly the error bounds (e.g. see [48, 49]), at the cost of
complicating the analysis. This being said, let us mention the existence of a grow-
ing literature on rigorous numerical methods to compute branches of parameterized
families of solutions [34, 50, 51, 52, 53].

Assume that numerical approximations of (2.1) have been obtained at two
different parameter values λ0 and λ1, namely there exists (x̄0, λ0) and (x̄1, λ1) such
that F (x̄0, λ0) ≈ 0 and F (x̄1, λ1) ≈ 0. In other words, (x̄0, λ0) and (x̄1, λ1) are
approximately in the solution set S (e.g. see Figure 11). The approximations are
computed first by considering a finite dimensional projection of F and then by
using one of the two predictor-correctors algorithms presented in Section 2.1. We
refer to Section 2.5.3 for an example in the context of periodic solutions of DDEs.
Define the set of predictors between the approximations (x̄0, λ0) and (x̄1, λ1) by

(2.3) {(x̄s, λs) | x̄s = (1− s)x̄0 + sx̄1 and λs = (1− s)λ0 + sλ1, s ∈ [0, 1]} .

�1�0

x̄1

x̄0

S
x̄s

kxk
r

Figure 11. The set of predictors {(x̄s, λs) | s ∈ [0, 1]}, approxi-
mating a segment of the solution set S. The radii polynomial
approach, when successful, provides a “tube” of with r > 0 (the
shaded region ) in X×R, where the true segment of solution curve
is guaranteed to exist.

Consider bounded linear operators A† ∈ B(X,Y ) and A ∈ B(Y,X), where A† is
an approximation of DxF (x̄0, λ0) and A is an approximate inverse of DxF (x̄0, λ0).
Assume that A is injective and that

(2.4) AF : X × R→ X.

The following theorem, often called the radii polynomial approach, is a pa-
rameter dependent Newton-Kantorovich theorem (e.g. see [54]) with a smoothing
approximate inverse.
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Theorem 2.6 (Radii Polynomial Approach). Assume that F ∈ Ck(X ×
R, Y ) with k ∈ {1, 2, . . . ,∞}, and let Y0, Z0, Z1, Z2 ≥ 0 satisfying

‖AF (x̄s, λs)‖X ≤ Y0, ∀ s ∈ [0, 1](2.5)

‖I −AA†‖B(X,X) ≤ Z0(2.6)

‖A[DxF (x̄0, λ0)−A†]‖B(X,X) ≤ Z1(2.7)

‖A[DxF (x̄s + b, λs)−DxF (x̄0, λ0)]‖B(X,X) ≤ Z2(r), ∀ b ∈ Br(0) and ∀ s ∈ [0, 1].

(2.8)

Define the radii polynomial

(2.9) p(r)
def
= Z2(r)r + (Z1 + Z0 − 1)r + Y0.

If there exists r0 > 0 such that

p(r0) < 0,

then there exists a Ck function

x̃ : [0, 1]→
⋃

s∈[0,1]

Br0(x̄s)

such that

F (x̃(s), λs) = 0, ∀ s ∈ [0, 1].

Furthermore, these are the only solutions in the tube
⋃
s∈[0,1]Br0(x̄s).

Proof. Recalling (2.4), define the operator T : X × [0, 1]→ X by

T (x, s) = x−AF (x, λs).

We begin by showing that for each s ∈ [0, 1], the operator T (·, s) is a contraction
mapping from Br0(x̄s) into itself. Now, given y ∈ Br0(x̄s) and applying the bounds
(2.5), (2.6), (2.7), and (2.8), we obtain

‖DxT (y, s)‖B(X,X) = ‖I −ADxF (y, λs)‖B(X,X)

≤ ‖I −AA†‖B(X,X) + ‖A[DxF (x̄0, λ0)−A†]‖B(X,X)

+ ‖A[DxF (y, λs)−DxF (x̄0, λ0)]‖B(X,X)

≤ Z0 + Z1 + Z2(r0).(2.10)

We now show that for each s ∈ [0, 1] the operator T (·, s) maps Br0(x̄s) into itself.
Let y ∈ Br0(x̄s) and apply the Mean Value Theorem (Theorem 2.3) to obtain

‖T (y, s)− x̄s‖X ≤ ‖T (y, s)− T (x̄s, s)‖X + ‖T (x̄s, s)− x̄s‖X
≤ sup
b∈Br0 (x̄s)

‖DxT (b, s)‖B(X,X)‖y − x̄s‖X + ‖AF (x̄s, λs)‖X

≤ (Z0 + Z1 + Z2(r0))r0 + Y0

where the last inequality follows from (2.10). Recalling (2.9) and using the assump-
tion that p(r0) < 0 implies that ‖T (y, s) − x̄s‖X < r0 for all s ∈ [0, 1], the desired
result.

Letting a, b ∈ Br0(x̄s), apply the Mean Value Theorem and (2.10) to obtain

‖T (a, s)− T (b, s)‖X ≤ sup
b∈Br0 (x̄s)

‖DxT (b, s)‖B(X,X)‖a− b‖X

≤ (Z0 + Z1 + Z2r0)‖a− b‖X .(2.11)
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Again, from the assumption that p(r0) < 0, it follows from Y0 ≥ 0 that

(2.12) κ
def
= Z0 + Z1 + Z2(r0) < 1− Y0

r0
≤ 1.

Define the operator

T̃ : Br0(0)× [0, 1]→ Br0(0)

(y, s) 7→ T̃ (y, s)
def
= T (y + x̄s, s)− x̄s.

Consider now x, y ∈ Br0(0) and s ∈ [0, 1]. Then, since x+ x̄s, y+ x̄s ∈ Br0(x̄s),
we use (2.11) and (2.12) to get

‖T̃ (x, s)− T̃ (y, s)‖X = ‖T (x+ x̄s, s)− T (y + x̄s, s)‖X
≤ κ‖x− y‖X .

Since κ < 1, we conclude that T̃ : Br0(0)× [0, 1]→ Br0(0) is a uniform contraction.
By the Uniform Contraction Theorem (Theorem 2.5), there exists g : [0, 1]→ Br0(0)
by

T̃ (g(s), s) = g(s).

Since F ∈ Ck(X × R, Y ), then T̃ ∈ Ck(Br0(0) × [0, 1], Br0(0)), and therefore g ∈
Ck([0, 1], Br0(0)). Let

x̃(s)
def
= g(s) + x̄s

so that for all s ∈ [0, 1]

T (x̃(s), s) = T (g(s) + x̄s, s) = T̃ (g(s), s) + x̄s = g(s) + x̄s = x̃(s).

Since T (x, s) = x−AF (x, λs), we get that

T (x̃(s), s) = x̃(s)−AF (x̃(s), λs) = x̃(s).

By assumption that A is injective,

F (x̃(s), λs) = 0, ∀ s ∈ [0, 1].

It follows from g ∈ Ck([0, 1], Br0(0)) that

x̃ : [0, 1]→
⋃

s∈[0,1]

Br0(x̄s)

is a Ck function. Furthermore, it follows from the contraction mapping theorem
that these are the only solutions in the tube

⋃
s∈[0,1]Br0(x̄s)× [λ0, λ1]. �

Theorem 2.6 provides a recipe to compute a local segment of solution curve and
to obtain a uniform rigorous error bound r along the set of predictors connecting
two numerical approximations x̄0 and x̄1. See Figure 11 for a representation of
the region (shaded) where the true segment of solution curve is guaranteed to
exist. Assume now that this argument has been repeated iteratively over the set
{x̄0, . . . , x̄j} of approximations at the parameter values {λ0, . . . , λj} respectively.
For each i = 0, . . . , j − 1, this yields the existence of a unique portion of smooth
solution curve Si in a small tube centered at the segment {(1 − s)x̄i + sx̄i+1 | s ∈
[0, 1]}. As the following results demonstrates, the set

S def
=

j−1⋃
i=0

Si

is a global smooth solution curve of F (x, λ) = 0.
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Lemma 2.7 (Globalizing the Ck solution branch). Assume that the radii
polynomial approach was successfully applied (via Theorem 2.6) to show the exis-
tence of two Ck segments S0 and S1 of solution curves parameterized by the pa-
rameter λ over the respective parameter intervals [λ0, λ1] and [λ1, λ2]. Assume that
the sets of predictors are defined by the three points x̄0, x̄1 and x̄2. Then the new
segment of solution curve S0 ∪ S1 is a Ck function of λ.

Proof. The continuity of S0 ∪ S1 follows from the fact that at the parameter
value λ = λ1, the solution segment S0 must connect continuously with the solution
segment S1 by the existence and uniqueness result guaranteed by the Contraction
Mapping Theorem. Let p0(r) the radii polynomial built with the predictors gener-
ated by x̄0 and x̄1, and defined by the bounds Y0, Z0, Z1 and Z2. Let r0 > 0 such
that p0(r0) < 0. By continuity of the radii polynomial p0, there exists δ0 > 0 and

there exist bounds Ỹ0(δ0) and Z̃2(r, δ0) such that

‖AF (x̄s, λs)‖X ≤ Ỹ0(δ0), ∀ s ∈ [−δ0, 1 + δ0]

‖A[DxF (x̄s + b, λs)−DxF (x̄0, λ0)]‖B(X,X) ≤ Z̃2(r, δ0), ∀ b ∈ Br(0), ∀ s ∈ [−δ0, 1 + δ0],

and such that

p̃0(r0)
def
= Z̃2(r0, δ0)r0 + (Z1 + Z0 − 1)r0 + Ỹ0(δ0) < 0.

Then, there exists of a Ck branch of solution curve parameterized by λ over the
range {(1− s)λ0 + sλ1 | s ∈ [−δ0, 1 + δ0], extending smoothly (in fact in a Ck way)
the segment S0 on both sides. Similarly, there exists δ1 such that the segment S1

is extended smoothly over the parameter range {(1− s)λ1 + sλ2 | s ∈ [−δ0, 1 + δ0].
This implies that there is a Ck overlap between S0 and S1. �

•
• •x̄0 x̄1

x̄2kxk

�

�2�1�0

S0 S1

Figure 12. Assume that S0 and S1 are computed with the radii
polynomial approach with predictors defined by three points x̄0,
x̄1 and x̄2 with x̄i ∈ C2m for some fixed dimension m. Then the
following situation is not possible: a piecewise smooth but not
globally smooth piece of solution curve.

Note that arguments using the continuity of the radii polynomials, as in the
proof of Lemma 2.7, are not new and have been used previously in the works
[34, 52, 53].
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Repeating iteratively the argument of Lemma 2.7 leads to the existence of a
smooth solution curve S of F = 0 near the piecewise linear curve of approximations,
as portrayed in Figure 13.

•
•

•

•

•• •

x̄0

x̄1

x̄2
x̄3

x̄4

x̄j�2

x̄j�1

x̄j•

kxk

S

�

�j�1�j�2 �j�4�3�2�1�0

Figure 13. Computing rigorously a global branch of solutions.

Remark 2.8 (Bifurcations). In the present work we do not discuss how to
handle some type bifurcations. Instead, we refer to the paper of Thomas Wanner
[55], where a rigorous computational method to prove existence of saddle-node
bifurcations and symmetry-breaking pitchfork bifurcations is presented.

Remark 2.9 (Number of Parameters and Multi-parameter Continua-
tion). In the present work, we focus on equations depending on a single parameter
λ ∈ R. However, the radii polynomial approach (as presented below in Theo-
rem 2.6) works also for problems depending on p > 1 parameters. In fact, the
method may be extended to prove existence of “solution manifolds” within solu-
tions sets of the form {(x,Λ) ∈ X × Rp | F (x,Λ) = 0}. The only difference is that
the bounds which need to be computed to apply the uniform contraction theorem
have to be obtained uniformly over a compact set of parameters in Rp instead of in
R. A more advanced approach based on a rigorous multi-parameter continuation
method, generalizing the concept of pseudo-arclength continuation, is introduced
in [53] to compute solutions manifolds and to handle higher dimensional folds.

Remark 2.10 (Parameter Continuation vs Pseudo-Arclength Contin-
uation). The method of Theorem 2.6 is based on parameter continuation: we
compute branches of solutions parametrized by the parameter λ. The method is
extended to pseudo-arclength continuation where solutions are parametrized by
pseudo-arclength (e.g. see [52, 34]).
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Remark 2.11 (Computing the bound Y0). To compute the Y0 bound sat-
isfying (2.5), denote

∆x̄
def
= x̄1 − x̄0 and ∆λ

def
= λ1 − λ0,

and consider the expansion

F (x̄s, λs) = F (x̄0, λ0) +

[
DxF (x̄0, λ0)

∂F

∂λ
(x̄0, λ0)

](
∆x̄

∆λ

)
s

+
1

2

(
∂2

∂s2
F (x̄s, λs)∣∣

s=0

)
s2 + h.o.t.

Denote

y1
def
=

[
DxF (x̄0, λ0)

∂F

∂λ
(x̄0, λ0)

](
∆x̄

∆λ

)
(2.13)

y2
def
=

1

2

(
∂2

∂s2
F (x̄s, λs)∣∣

s=0

)
.(2.14)

Hence,

‖AF (x̄s, λs)‖X ≤ ‖AF (x̄0, λ0)‖X + ‖Ay1‖X + ‖Ay2‖X + δ

where the extra term δ ≥ 0 is obtained using Taylor remainder’s theorem.

2.4. A Finite Dimensional Example. In this section, we apply the radii
polynomial approach (Theorem 2.6) to prove the existence of branches of solutions
of the problem (2.1) with F a mapping between finite dimensional Banach spaces.

The example we consider is the problem of computing branches of steady states
for the atmospheric circulation model introduced by Edward N. Lorenz in [56]

(2.15)


x′1 = −αx1 − x2

2 − x2
3 + αλ

x′2 = −x2 + x1x2 − βx1x3 + γ

x′3 = −x3 + βx1x2 + x1x3.

Let us fix α = 0.25, β = 4 and γ = 0.5, and leave λ as a parameter. At these
parameter values, equilibria of (2.15) are solutions of

(2.16) F (x, λ)
def
=

 − 1
4x1 − x2

2 − x2
3 + λ

4
−x2 + x1x2 − 4x1x3 + 1

2
−x3 + 4x1x2 + x1x3

 = 0.

In this case, the Banach spaces are X = Y = R3 endowed with the sup-norm

‖x‖ = max(|x1|, |x2|, |x3|).
At λ0 = 0.8 and λ1 = 0.85, we used Newton’s method to compute respectively

x̄0 =

−0.056551859183890
0.452495729654079
−0.096879200248534

 and x̄1 =

−0.043505480122129
0.466188932513298
−0.077744769808933

 .

We wish to use Theorem 2.6 to prove the existence of a segment of solutions in
the solution set S = {(x, λ) ∈ R4 | F (x, λ) = 0}. For s ∈ [0, 1], recall the set of
predictors (2.3) given by x̄s = (1− s)x̄0 + sx̄1 and let λs = (1− s)λ0 + sλ1. Denote
by

∆x̄
def
= x̄1 − x̄0 and ∆λ

def
= λ1 − λ0.
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Recalling the Y0 bound satisfying (2.5). Since the vector field is quadratic,
recalling (2.13) and (2.14), we get the following expansion

F (x̄s, λs) = F (x̄0, λ0) + y1s+ y2s
2,

where

y2 =

 −(∆x̄)2
2 − (∆x̄)2

3

(∆x̄)1(∆x̄)2 − 4(∆x̄)1(∆x̄)3

4(∆x̄)1(∆x̄)2 + (∆x̄)1(∆x̄)3

 .

The matrix A ≈ DF (x̄0, λ0)−1 is computed using MATLAB and is given by

A =

−1.031444307007117 0.883485538811585 0
−1.126473748855484 0.059891724595854 −0.193758400497068
−1.431216390563831 1.419669460728974 −0.904991459308157

 .

Using the definition of A, y1 and y2, we compute Y0 = 0.002488451115105. For
this finite dimensional example, we set A† = DF (x̄0, λ0), so that Z1 = 0 in (2.7).
Recalling (2.6), we set Z0 = ‖I − ADF (x̄0, λ0)‖∞. In this case, we computed
Z0 = 2.27 × 10−16. To facilitate the computation of Z2 satisfying (2.8), consider
c ∈ B1(0) ⊂ R3, that is ‖c‖∞ ≤ 1, and consider b ∈ Br(0) ⊂ R3, that is ‖b‖∞ ≤ r.
Then,

[DxF (x̄s + b, λs)−DxF (x̄0, λ0)]c =

 −2b2c2 − 2b3c3
b1c2 − 4b1c3 + b2c1 − 4b3c1
4b1c2 + b1c3 + 4b2c1 + b3c1


+ s

 −2c2(∆x̄)2 − 2c3(∆x̄)3

c1(∆x̄)2 − 4c1(∆x̄)3 + c2(∆x̄)1 − 4c3(∆x̄)1

4c1(∆x̄)2 + c1(∆x̄)3 + 4c2(∆x̄)1 + c3(∆x̄)1

 ,

and since |s| ≤ 1, we get the component-wise inequalities

|[DxF (x̄s + b, λs)−DxF (x̄0, λ0)]c| ≤

 4
10
10

 r+

 2|(∆x̄)2|+ 2|(∆x̄)3|
|(∆x̄)2|+ 4|(∆x̄)3|+ 5|(∆x̄)1|
4|(∆x̄)2|+ |(∆x̄)3|+ 5|(∆x̄)1|

 .

Hence, letting

Z
(1)
2

def
=

∥∥∥∥∥∥|A|
 4

10
10

∥∥∥∥∥∥
∞

and Z
(0)
2

def
=

∥∥∥∥∥∥|A|
 2|(∆x̄)2|+ 2|(∆x̄)3|
|(∆x̄)2|+ 4|(∆x̄)3|+ 5|(∆x̄)1|
4|(∆x̄)2|+ |(∆x̄)3|+ 5|(∆x̄)1|

∥∥∥∥∥∥
∞

we set

Z2(r) = Z
(1)
2 r + Z

(0)
2 .

Numerically, we obtain Z
(1)
2 = 28.971474762626638 and Z

(0)
2 = 0.440592442217924.

Recalling (2.9) and that Z1 = 0, the radii polynomial is given by

p(r) = Z2(r)r + (Z0 − 1)r + Y0

= Z
(1)
2 r2 + (Z

(0)
2 + Z0 − 1)r + Y0

= 28.971474762626638r2 − 0.559407557782076r + 0.002488451115105.

Note that

I def
= {r > 0 | p(r) < 0} ⊃ [0.006949765480451 , 0.012359143105166] .
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Choosing for instance r0 = 0.007 ∈ I, then by Theorem 2.6, there exists a C∞

function

x̃ : [0, 1]→
⋃

s∈[0,1]

Br0(x̄s)

such that F (x̃(s), λs) = 0 for all s ∈ [0, 1] with F given in (2.16), and these are the
only solutions in the set

⋃
s∈[0,1]Br0(x̄s)× [λ0, λ1].

Also, we applied the method on the intervals of parameters [λ1, λ2] and [λ2, λ3]
corresponding respectively to the segments {(1− s)x̄1 + sx̄2 | s ∈ [0, 1]} and {(1−
s)x̄2 + sx̄3 | s ∈ [0, 1]}, with λ2 = 0.89, λ3 = 0.925, and

x̄2 =

−0.032746172312211
0.476481288735590
−0.060432810317938

 and x̄3 =

−0.022963874112357
0.484866398590268
−0.043537846136356

 .

The MATLAB program script proof lorenz.m available at [76] performs
the above computations. It uses the interval arithmetic package INTLAB devel-
oped by Siegfried M. Rump [57].

λ
0.8248 0.8248 0.8249 0.8249 0.8250 0.825 0.8251 0.8251

x

-0.0504

-0.0503

-0.0502

-0.0501

-0.05

-0.0499

-0.0498

λ
0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

x

0

0.2

0.4

0.6

0.8

1

Figure 14. (Left) A branch of equilibria for the model (2.15)
computed using the pseudo-arclength continuation algorithm as
presented in Section 2.1.2. The segments in red, green and pur-
ple were rigorously computed with the radii polynomial approach.
The respective error bounds between the predictors and the actual
solution segments are r0 = 7× 10−3 (red), r0 = 4.2× 10−3 (green)
and r0 = 3.9 × 10−3 (purple). (Right) A zoom-in on the branch
where the proof was performed at λ = 0.825.

Remark 2.12 (Proofs at fixed parameter values). It is important to re-
call that the purpose of the present section is to introduce a method to com-
pute “branches” of solutions. If however we are interested in proving the ex-
istence of a solution at a fixed parameter value, then we get dramatically bet-
ter error bounds. Let us do this exercise for model (2.15) with the approxima-

tion x̄0. In this case, ∆x̄ = 0 ∈ R3, ∆λ = 0 and Z
(0)
2 = 0, the radii poly-

nomial is p(r) = 28.971474762626652r2 + (2.195852227948092 × 10−15 − 1)r +
2.449129914171945× 10−16, and

I def
= {r > 0 | p(r) < 0} ⊃

[
2.45× 10−16 , 0.034516710253563

]
.
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Y0

I

r

p(r)

Figure 15. The radii polynomial p(r) = Z
(1)
2 r2 + (Z

(0)
2 + Z0 −

1)r + Y0 associated to the numerical approximations x̄0 and x̄1 as
defined above.

Therefore, there exists a unique x̃0 ∈ B2.45×10−16(x̄0) such that F (x̃0, λ0) = 0. In
this case, the rigorous error bound is of the order of 10−16, as opposed to 10−3 for
the branch of solutions.

0 0.005 0.01 0.015 0.02 0.025 0.03

×10-3
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-1

0

I

r

p(r)

Figure 16. The radii polynomial p(r) = Z
(1)
2 r2 + (Z0 − 1)r + Y0

associated to the single numerical approximation x̄0.

We are now ready to present the main application of the rigorous continuation
method.

In this section, we show how the radii polynomial approach (Theorem 2.6) is
used to compute rigorously branches of periodic solutions of DDEs. Rather than
presenting the ideas for general classes of problems, we focus on presenting the ideas
for specific examples, namely for a delayed Van der Pol equation and for Wright’s
equation. For the delayed Van der Pol equation, we present in details in Section 2.5
all steps, bounds, necessary estimates, choices of function spaces and the explicit
coefficients of the radii polynomial, whereas in the case of Wright’s equation, we
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only briefly discuss some results in Section 2.6 and refer to [12] for more details.
Note that the ideas presented here should be applicable to systems of N delay
equations of the form
(2.17)

y(n)(t) = F
(
y(t), y(t− τ1), . . . , y(t− τd), . . . , y(n−1)(t− τ1), . . . , y(n−1)(t− τd)

)
,

where y : R→ RN and F : RN(nd+1) → RN is a multivariate polynomial.
As already mentioned in Section 1 studying rigorously solutions of DDEs is a

challenging problem, especially because they are naturally defined on infinite di-
mensional function spaces. On the other hand, as already mentioned in Section 1,
for continuous dynamical systems like (2.17), individual solutions which exist glob-
ally in time are more regular than the typical functions of the natural phase space.
That suggests that solving for the Fourier coefficients of the periodic solutions of
(2.17) in a Banach space of fast decaying sequences is a good strategy. In fact
periodic solutions of (2.17) are analytic since F is analytic (it is polynomial) [10].
We therefore apriori know that the Fourier coefficients of the periodic solutions
decay geometrically by the Paley-Wiener Theorem. Before presenting the rigorous
numerical method, we briefly describe different methods used to study periodic
solutions of (2.17), following closely the discussion in [58].

Fixed point theory, the fixed point index and global bifurcation theorems are
powerful tools to study the existence of solutions of infinite dimensional dynamical
systems. To give a few examples in the context of DDEs, the ejective fixed point
theorem of Browder [59] and the fixed point index are used to prove existence
of nontrivial periodic solutions [14, 60, 61], and the global bifurcation theorem of
Rabinowitz [62] are used to prove the existence and characterize the (non) compact-
ness of global branches of periodic solutions [63, 64]. This heavy machinery from
functional analysis provides powerful existence results about solutions of DDEs,
but its applicability may decrease if one asks more specific questions about the
solutions of a given equation. For example, it appears difficult in general to use
the ejective fixed point theorem to quantify the number of periodic solutions or
to use a global bifurcation theorem to conclude about existence of folds, or more
generally, of secondary bifurcations. The following Figure 17 taken from [32] shows
that global branches of periodic solutions of DDEs may be complicated, as various
bifurcations may occur on the branches. These remarks further motivate the need
for rigorous numerical methods for DDEs.

Remark 2.13. Let us mention the existence of other rigorous numerical meth-
ods to study periodic orbits of DDEs. First, the work [65] provides a method
to compute periodic solutions using a Newton-like operator and piecewise linear
approximations. Second the work [66] presents a rigorous numerical integrator
to prove existence of periodic orbits in the Mackey-Glass equation. Finally, let
us mention that the work [67] on the parameterization method could eventually
be combined with rigorous numerics to compute invariant manifolds attached to
equilibria and periodic orbits.

2.5. A Delayed Van der Pol Equation. In the 1920s, the Dutch electrical
engineer and physicist Van der Pol proposed his famous Van der Pol equations to
model oscillations of some electric circuits [68]. Since then, variants of the so-called
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JOHN ~%/[ALLET-I~ - ROGER D. ~USS:BAUM: Global continuation, etv. 63 

then x(t; ~, ~) is a solution of equation (1.1)~ with minimal  period p satisfying 

(2.1o) 

(2.~) 

and 

(2.1~) 

1 1 
Im-~l < p < Im §  89 if  m < o ,  

p > 2  if r e = O ,  

1 1 
m - ~  8 9  < p < -  m if m > 0 .  

The sets 2/,~ are pairwise disjoint. I /  m > 0  and ~ > ~,,, then equation (1.1);. has at 
least m + 1 distinct periodic solutions~ while i / m  < 0 and A < )~,  then it has at least 
Im[ periodic solutions. 

PROOF. - The first par t  of the theorem h~s already been proved. The bounds 
(2.10)~ (2.11)~ ~nd (2.12) on the minimal period p follow immediately from the 
formula p ~ ~t(A, ~)/Im~(A, ~) § 1I noted above, ~nd the fact t h s t  ~(A~ ~) > 2 for 
()., ~s)e 2/0. These bounds also imply tha t  the sets Z~ are pairwise disjoint: one 
can easily check thgt  the intervals of values p given in (2.10), (2.11), ~nd (2.12) for 
various integers m are pairwise disjoint. Finally,  the connectedness, nnboundedncss 
and disjointness of the 2/~, the bounds (2.7), (2.8), and (2.9) for (X, ~ ) e 2 /~ ,  and 
the ordering 

... < ~ ~< i_~< 0 < Ao< A~< )~< ... 

imply the last sentence in the s ta tement  of the theorem. [] 

Figure 6 depicts schematically the branches X~. 

li~lI 

Z1 

20 A 2~ 

Fig. 6. The global Hopf branches 2:,~. Figure 17. Global branches of periodic solutions of delay differ-
ential equations. The picture is taken directly from [32].

van der Pol oscillator have been proposed as mathematical models of various real-
world processes exhibiting limit cycles when the rate of change of the state variables
depend only on their current states. However, there are many processes where this
relation is also influenced by past values of the system in question. To model these
processes, one may want to consider the use of functional differential equations, see
[9, 69, 70].

In [71], Grafton establishes existence of periodic solutions to

ÿ(t)− εẏ(t)(1− y2(t)) + y(t− τ) = 0, ε, τ > 0,

a Van der Pol equation with a retarded position variable. His results are based on
his periodicity results developed in [72]. In [73], using slightly different notations,
Roger Nussbaum considered the more general class of equations

(2.18) ÿ(t)− εẏ(t)(1− y2(t)) + y(t− τ)− λy(t) = 0, ε, τ > 0, λ ∈ R,
and establishes existence of periodic solution of period greater than 2τ , given that
λ ∈ (−λ0, 1), where

λ0 = min

(
ε

τ
,

2

τ2

)
.

We refer to (2.18) as Nussbaum’s equation. The techniques that Nussbaum uses
are sophisticated fixed point arguments, however, as he remarks, he has to restrict
the size of |λ| to guarantee that the zeros of y are at least a distance τ apart (e.g.
see p. 287 of [73]). Moreover, he mentions that numerical simulations suggest the
existence of periodic solutions to (2.18) for a large range of λ < 0.

What we present now is an application of the rigorous continuation method
introduced in Section 2, and we establish existence results for periodic solutions to
(2.18) for parameter values outside of the range of parameters accessible with the
above results of Nussbaum. The first step is to recast periodic solutions of (2.18)
as solutions of F (x, λ) = 0.

2.5.1. Setting up the F (x, λ) = 0 problem. Assume that y(t) is a periodic solu-
tion of (2.18) of period p > 0. Then

(2.19) y(t) =

∞∑
k=−∞

ake
ikωt,
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where ω = 2π
p and the ak ∈ C are the complex Fourier coefficients. Given a

complex number z ∈ C, denote by conj(z) the complex conjugate of z. During
the rigorous continuation we verify a posteriori that the complex numbers satisfy
a−k = conj(ak), hence y is real valued. As the frequency ω of (2.19) is not known
a-priori, it is left as a variable. Formally, using (2.19)

ẏ(t) =

∞∑
k=−∞

akikωe
ikωt, ÿ(t) =

∞∑
k=−∞

−akk2ω2eikωt and y(t−τ) =

∞∑
k=−∞

ake
−ikωτeikωt.

Thus (2.18) becomes

(2.20)

∞∑
k=−∞

[
−k2ω2 − εikω − λ+ e−ikωτ

]
ake

ikωt

+ ε

∞∑
k1=−∞

ak1e
ik1ωt

∞∑
k2=−∞

ak2e
ik2ωt

∞∑
k3=−∞

ak3ik3ωe
ik3ωt = 0.

The Fourier coefficients in (2.19) are obtained by taking the inner product on
both sides of (2.20) with eikωt, yielding that for all k ∈ Z,

gk
def
=
[
−k2ω2 − εikω − λ+ e−ikωτ

]
ak + iεω

∑
k1+k2+k3=k

ak1ak2ak3k3 = 0.

Observing that

Sk
def
=

∑
k1+k2+k3=k

kj∈Z

ak1ak2ak3k3 =
∑

k1+k2+k3=k
kj∈Z

ak1ak2ak3(k−k1−k2) = k
∑

k1+k2+k3=k
kj∈Z

ak1ak2ak3−2Sk

we get that

Sk =
k

3

∑
k1+k2+k3=k

kj∈Z

ak1ak2ak3

and therefore

(2.21) gk = µkak +
iεkω

3
(a3)k,

where

µk = µk(ω, λ)
def
= −k2ω2−εikω−λ+e−ikωτ and (a3)k

def
=

∑
k1+k2+k3=k

kj∈Z

ak1ak2ak3 .

Denote a = (ak)k∈Z and x = (ω, a) the infinite dimensional vector of unknowns.
Denote g(x, λ) = (gk(x, λ))k∈Z. To eliminate any arbitrary time shift, we append
a phase condition given by

(2.22) η(x) =
∑
|k|<n

ak = 0,

for some n ∈ N, which ensures that y(0) ≈ 0. Combining (2.22) and (2.21), we let

(2.23) F (x, λ)
def
=

(
η(x)
g(x, λ)

)
.

Let us now introduce the Banach space in which we look for solutions of
F (x, λ) = 0 with F given in (2.23).
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Since periodic solutions of analytic delay differential equations are analytic (e.g.
see [10]), their Fourier coefficients decay geometrically. This motivates the choice
of Banach space in which we embed the Fourier coefficients. Given a weight ν > 1,
define the sequence space

(2.24) `1ν = {a = (ak)k∈Z | ‖a‖1,ν <∞} ,
where

(2.25) ‖a‖1,ν def
=
∑
k∈Z
|ak|ν|k|.

Define the Banach space

X
def
= C× `1ν

endowed with the norm

‖x‖X def
= max (|ω|, ‖a‖1,ν) .

Note that F does not map X into itself. This is because a differential operator
is in general unbounded on `1ν . To overcome this problem we look for an injective
linear “smoothing” operator A such that (2.4) holds, that AF (x, λ) ∈ X for all
x ∈ X and λ ∈ R. The choice of the approximate inverse A is presented in
Section 2.5.4. For now we take A as given and define the Newton-like operator by

(2.26) T (x, s) = x−AF (x, λs),

for s ∈ [0, 1]. Given s ∈ [0, 1], the injectivity of A implies that x is a solution of
F (x, λs) = 0 if and only if it is a fixed point of T (·, s). Moreover T (·, s) now maps
X back into itself.

2.5.2. Symmetry of the fixed points of T . We are interested in showing the
existence of a real periodic solution y given by (2.19) satisfying the symmetry
property

y(t+ p/2) = −y(t), ∀ t ∈ R.
In Fourier space, this means that the Fourier coefficients satisfy the relation

(2.27) a2j = 0, ∀ j ∈ Z.

To do this, we design the method so that fixed points of T are in the symmetry
space

(2.28) Xsym
def
= R× ˜̀1

ν ,

where

(2.29) ˜̀1
ν

def
=
{
a ∈ `1ν | a−k = conj(ak) ∀ k ∈ Z, and a2j = 0 ∀ j ∈ Z

}
.

Remark 2.14. The condition a−k = conj(ak) is imposed in the function space
`1ν because we want y to be a real periodic solution, that is conj(y(t)) = y(t).

Lemma 2.15. Assume that x̄s ∈ Xsym and consider the closed ball Br(x̄s) ⊂ X.
Define T as in (2.26) and assume that the approximate inverse A satisfies

(2.30) AF : Xsym × R→ Xsym.

Assume that for every s ∈ [0, 1], T (·, s) : Br(x̄s)→ Br(x̄s) is a contraction, and let
x̃s ∈ X the unique fixed point of T (·, s) in Br(x̄s) which exists by the Contraction
Mapping Theorem. Then, x̃s ∈ Xsym for all s ∈ [0, 1].
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Proof. By (2.30), T : Xsym× [0, 1]→ Xsym. Using that x̄s ∈ Xsym ∩Br(x̄s),
and that Xsym is a closed subset of X for every s ∈ [0, 1], we obtain that

x̃s = lim
n→∞

Tn(x̄s, s) ∈ Xsym. �

2.5.3. Computation of the numerical approximations. We are ready to compute
numerical approximations of F (x, λ) = 0 with F given in (2.23). Since the operator
F is defined on an infinite dimensional space, this requires considering a finite
dimensional projection. Given a = (ak)k∈Z ∈ `1ν and a projection dimension m ∈ N,
denote by a(m) = (ak)|k|<m ∈ C2m−1 a finite part of a of size 2m − 1. Moreover,

given x = (ω, a) ∈ X = C × `1ν , denote x(m) = (ω, a(m)) ∈ C2m. Consider a finite
dimensional projection F (m) : C2m × R→ C2m of (2.23) given by

(2.31) F (m)(x(m), λ) =

(
η(x(m))

g(m)(x(m), λ)

)
,

where g(m)(x(m), λ) ∈ C2m−1 corresponds to the finite part of g of size 2m−1, that
is g(m) = {(g(m))k}|k|<m. More explicitly, given |k| < m,

g
(m)
k (x(m), λ) = µk(ω, λ)ak +

iεkω

3

∑
k1+k2+k3=k

|ki|<m

ak1ak2ak3 .

We apply the parameter continuation method as introduced in Section 2.1.1 to the
finite dimensional problem F (m) : C2m ×R→ C2m. Assume that at the parameter
value λ = λ0, x̄0 = (ω̄0, ā0) ∈ C × C2m−1 is an approximate solution, that is
F (m)(x̄0, λ0) ≈ 0.

The next step is to introduce an approximate inverse operator A that satis-
fies (2.30) and the operator A†, required to apply the radii polynomial approach
(Theorem 2.6).

2.5.4. Definition of the operators A and A†. We now define an approximate
inverse A for DxF (x̄0, λ0) so that (2.4) holds and the operator A† which approx-
imates DxF (x̄0, λ0). Assume that x̄0 = (ω̄0, ā0) ∈ Xsym. The Fréchet derivative
DxF (x̄0, λ0) is visualized in block form as

DxF (x̄0, λ0) =

(
0 Daη(x̄0)

∂ωg(x̄0, λ0) Dag(x̄0, λ0)

)
,

since ∂ωF0(x̄0) = 0, and where
∂ωg(x̄0, λ0) : C→ `1ν ,

Daη(x̄0) : `1ν → C is a linear functional

Dag(x̄0, λ0) : `1ν → `1ν′ is a linear operator with ν′ < ν.

We first approximate DxF (x̄0, λ0) with the operator

A†
def
=

(
0 A†a,0

A†ω,1 A†a,1

)
,

which acts on b = (b0, b1) ∈ X = C× `1ν component-wise as
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(A†b)0 = A†a,0 · b1
def
= Da(m)η(x̄0) · b(m)

1

(A†b)1 = A†ω,1b0 +A†a,1b1 ∈ `1ν′ ,

where A†ω,1 = ∂ωg
(m)(x̄0, λ0) and A†a,1b1 ∈ `1ν′ is defined component-wise by(

A†a,1b1
)
k

=

{ (
Da(m)g(m)(x̄0, λ0)b

(m)
1

)
k
, |k| < m

µk(ω̄0, λ0)(b1)k, |k| ≥ m.
Let A(m) a finite dimensional approximate inverse of DxF

(m)(x̄0, λ0) which is
obtained numerically and which has the decomposition

A(m) =

(
A

(m)
ω,0 A

(m)
a,0

A
(m)
ω,1 A

(m)
a,1

)
∈ C2m×2m,

whereA
(m)
ω,0 ∈ C, A

(m)
a,0 ∈ C1×(2m−1), A

(m)
ω,1 ∈ C(2m−1)×1 andA

(m)
a,1 ∈ C(2m−1)×(2m−1).

Assume moreover that A(m) satisfies the following symmetry assumptions:

1. (A
(m)
a,0 )−j = conj

(
(A

(m)
a,0 )j

)
, j = −m+ 1, . . . ,m− 1,

2. (A
(m)
ω,1 )−k = conj

(
(A

(m)
ω,1 )k

)
, k = −m+ 1, . . . ,m− 1,

3. (A
(m)
a,1 )−k,−j = conj

(
(A

(m)
a,1 )k,j

)
, k, j = −m+ 1, . . . ,m− 1,(2.32)

4. (A
(m)
ω,1 )2k = 0, ∀ 2k ∈ {−m+ 1, . . . ,m− 1},

5. (A
(m)
a,1 )2k,2j+1 = 0, ∀ 2k, 2j + 1 ∈ {−m+ 1, . . . ,m− 1}.

Assumption 1 of (2.32) implies that (A
(m)
a,0 )0 ∈ R while assumption 2 implies that

(A
(m)
ω,1 )0 ∈ R. We define the approximate inverse A of the infinite dimensional

operator DxF (x̄0, λ0) by

A
def
=

(
Aω,0 Aa,0
Aω,1 Aa,1

)
,

where A acts on b = (b0, b1) ∈ X = C× `1ν component-wise as

(Ab)0 = A
(m)
ω,0 b0 +A

(m)
a,0 b

(m)
1

(Ab)1 = A
(m)
ω,1 b0 +Aa,1b1,

where A
(m)
ω,1 ∈ C(2m−1)×1 is understood to be an element of `1ν by padding the tail

with zeros, and Aa,1b1 ∈ `1ν is defined component-wise by

(Aa,1b1)k =


(
A

(m)
a,1 b

(m)
1

)
k
, |k| < m

1

µk(ω̄0, λ0)
(b1)k, |k| ≥ m.

Let us now verify that (2.4) holds.

Lemma 2.16. Let x ∈ X and λ ∈ R. Then AF (x, λ) ∈ X.

Proof. Consider x = (ω, a) ∈ X and let F (x, λ) = (η(x), g(x, λ)), with η(x)
given in (2.22) and g given component-wise in (2.21). For sake of simplicity of the
presentation, we denote F0 = η(x) and F1 = g(x, λ).
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We need to show that ‖(AF (x))1‖ν <∞. Since

(2.33) µk(ω, λ) = −k2ω2 − εikω − λ+ e−ikωτ ,

lim
k→±∞

|µk(ω, λ)|
|µk(ω̄0, λ0)| = lim

k→±∞
| − k2ω2 − εikω − λ+ e−ikωτ |
| − k2ω̄2

0 − εikω̄0 − λ0 + e−ikω̄0τ | =

(
ω

ω̄0

)2

<∞,

there exists C <∞ such that∣∣∣∣ µk(ω)

µk(ω̄0)

∣∣∣∣ , ∣∣∣∣ 1

µk(ω̄0)
· iεkω

3

∣∣∣∣ < C, for all |k| ≥ m.

Then,

‖(AF (x))1‖ν =
∑
k∈Z
|((AF (x))1)k| ν|k| =

∑
k∈Z

∣∣∣(A(m)
ω,1 F0 +Aa,1F1

)
k

∣∣∣ ν|k|
≤
∑
|k|<m

∣∣∣∣(A(m)
ω,1

)
k,1

∣∣∣∣ |F0|ν|k| +
∑
|k|<m

∣∣∣(A(m)
a,1 F

(m)
1

)
k

∣∣∣ ν|k|
+
∑
|k|≥m

∣∣∣∣ 1

µk(ω̄0, λ0)
(µk(ω, λ)ak +

iεkω

3
(a3)k)

∣∣∣∣ ν|k|
≤
∑
|k|<m

∣∣∣∣(A(m)
ω,1

)
k,1

∣∣∣∣ |F0|ν|k| +
∑
|k|<m

∣∣∣(A(m)
a,1 F

(m)
1

)
k

∣∣∣ ν|k|
+ C

∑
|k|≥m

|ak| ν|k| + C
∑
|k|≥m

∣∣(a3)k
∣∣ ν|k|

≤
∑
|k|<m

∣∣∣∣(A(m)
ω,1

)
k,1

∣∣∣∣ |F0|ν|k| +
∑
|k|<m

∣∣∣(A(m)
a,1 F

(m)
1

)
k

∣∣∣ ν|k|
+ C‖a‖1,ν + C(‖a‖1,ν)3 <∞,

where we used the fact that ‖a3‖1,ν ≤ (‖a‖1,ν)3, because `1ν is a Banach algebra. �

Let us now show that the operator A satisfies the symmetry assumption (2.30).

Lemma 2.17. Let x ∈ Xsym and λ ∈ R. Then AF (x, λ) ∈ Xsym.

Proof. Let x = (ω, a) ∈ Xsym = R × ˜̀1
ν , with ˜̀1

ν as defined in (2.29). This
implies that a−k = conj(ak) and a2k = 0 for all k ∈ Z. Again, denote F0 = η(x)
and F1 = g(x, λ).

We begin the proof by showing that the operator F preserves the symmetry
conditions, that is we show that F0 ∈ R, (F1)−k = conj((F1)k) and (F1)2k = 0.

Recalling the definition of the phase condition (2.22),

F0 =
∑
|k|≤n

ak = a−n+a−n+1+· · ·+an−1+an = conj(an)+conj(an−1)+· · ·+an−1+an ∈ R.
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Also, from (2.33), we see that µ−k(ω, λ) = conj (µk(ω, λ)). Then,

(F1)−k = µ−k(ω, λ)a−k −
iεkω

3

∑
k1+k2+k3=−k

ak1ak2ak3

= conj (µk(ω, λ)ak)− iεkω

3

∑
k1+k2+k3=k

a−k1a−k2a−k3

= conj (µk(ω, λ)ak) + conj

(
iεkω

3

) ∑
k1+k2+k3=k

conj(ak1)conj(ak2)conj(ak3)

= conj ((F1)k) .

Now,
(2.34)

(F1)2k = µ2k(ω, λ)a2k+
iε2kω

3
(a3)2k = µ2k(ω, λ)0+

iε2kω

3

∑
k1+k2+k3=2k

ak1ak2ak3 = 0,

since k1 + k2 + k3 = 2k implies that there exists i ∈ {1, 2, 3} such that ki is even.
The second part of the proof is to show that AF preserves the symmetry condi-

tions, that is (AF (x))0 ∈ R, ((AF (x))1)−k = conj (((AF (x))1)k) and ((AF (x))1)2k =
0.

Combining that A
(m)
ω,0 , F0 ∈ R, (F1)−k = conj ((F1)k) and assumption 1 of

(2.32),

(AF (x))0 = A
(m)
ω,0 F0 +A

(m)
a,0 F

(m)
1

= A
(m)
ω,0 F0 +

m−1∑
k=−m+1

(A
(m)
a,0 )k(F1)k

= A
(m)
ω,0 F0 +

−1∑
k=−m+1

(A
(m)
a,0 )k(F1)k + (A

(m)
a,0 )0(F1)0 +

m−1∑
k=1

(A
(m)
a,0 )k(F1)k

= A
(m)
ω,0 F0 + (A

(m)
a,0 )1,0(F1)0 +

m−1∑
k=1

(
conj

(
(A

(m)
a,0 )k(F1)k

)
+ (A

(m)
a,0 )k(F1)k

)
∈ R.

By assumptions 2 and 3 of (2.32), for |k| < m,

((AF (x))1)−k =
(
A

(m)
ω,1 F0 +Aa,1F1

)
−k

=
(
A

(m)
ω,1

)
−k
F0 +

(
A

(m)
a,1 F

(m)
1

)
−k

=
(
A

(m)
ω,1

)
−k
F0 +

m−1∑
j=−m+1

(A
(m)
a,1 )−k,j(F1)j

=
(
A

(m)
ω,1

)
−k
F0 +

m−1∑
j=−m+1

(A
(m)
a,1 )−k,−j(F1)−j

= conj
((
A

(m)
ω,1

)
k
F0

)
+

m∑
j=−m

(A
(m)
a,1 )k,j(F1)j

= conj (((AF (x))1)k) ,
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and for |k| ≥ m,

((AF (x))1)−k =
(
A

(m)
ω,1 F0 +Aa,1F1

)
−k

= (Aa,1F1)−k =
1

µ−k(ω̄0, λ0)
(F1)−k = conj (((AF (x))1)k) .

That shows that ((AF (x))1)−k = conj (((AF (x))1)k) for all k. It remains to show
that ((AF (x))1)2k = 0.

By assumptions 4 and 5 in (2.32), and using (2.34), we get that for |k| < m,

((AF (x))1)2k =
(
A

(m)
ω,1 F0 +Aa,1F1

)
2k

=
(
A

(m)
ω,1

)
2k
F0 +

(
A

(m)
a,1 F

(m)
1

)
2k

=

m−1∑
j=−m+1

(A
(m)
a,1 )2k,j(F1)j =

m−1∑
j=−m+1

j odd

(A
(m)
a,1 )2k,j(F1)j = 0,

and for |k| ≥ m,

((AF (x))1)2k =
1

µ2k(ω̄0, λ0)
(F1)2k = 0. �

Having defined A satisfying (2.30) we use the radii polynomial approach to
compute a branch of solutions of F (x, λ) = 0 near the set of predictors x̄s =
(1− s)x̄0 + sx̄1, for s ∈ [0, 1]. Deriving explicit bounds for the coefficients Y0, Z0,
Z1 and Z2 requires a few elementary functional analytic facts.

2.5.5. Basic functional analytic background.

Lemma 2.18. The function space `1ν defined in (2.24) is a Banach algebra under
discrete convolution. More precisely,

(
`1ν , ‖ · ‖1,ν

)
is a Banach space with the norm

defined in (2.25), and for any a, b ∈ `1ν , a ∗ b = {(a ∗ b)k}k∈Z defined by

(2.35) (a ∗ b)k def
=

∑
k1+k2=k

ak1bk2

satisfy a ∗ b ∈ `1ν and ‖a ∗ b‖1,ν ≤ ‖a‖1,ν‖b‖1,ν .

Proof. We omit the proof that `1ν is a Banach space. Let a, b ∈ `1ν , that is
‖a‖1,ν , ‖b‖1,ν <∞. Consider a ∗ b defined component-wise by (2.35). Then,

‖a ∗ b‖1,ν =
∑
k∈Z
|(a ∗ b)k|ν|k| =

∑
k∈Z

∣∣∣∣∣∣∣∣
∑

k1+k2=k

k1,k2∈Z

ak1bk2

∣∣∣∣∣∣∣∣ ν
|k|

≤
∑
k∈Z

∑
k1+k2=k

k1,k2∈Z

|ak1 ||bk2 |ν|k| ≤
∑
k∈Z

∑
k1+k2=k

k1,k2∈Z

|ak1 |ν|k1||bk2 |ν|k2|

≤
(∑
k1∈Z
|ak1 |ν|k1|

)(∑
k2∈Z
|bk2 |ν|k2|

)
= ‖a‖1,ν‖b‖1,ν .

That shows that `1ν is a Banach algebra. �

Recall the classical fact that the dual space of `11 is the space `∞. Similarly if
ν > 1 then the dual of `1ν is a weighted “ell-infinity” space which we define now. For
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a bi-infinite sequence of complex numbers c = {ck}k∈Z, the ν-weighted supremum
norm is defined by

(2.36) ‖c‖∞,ν−1
def
= sup

k∈Z

|ck|
ν|k|

.

Let

(2.37) `∞ν =
{
c = {ck}k∈Z | ck ∈ C ∀ k ∈ Z, and ‖c‖∞,ν−1 <∞

}
.

Lemma 2.19. Suppose that a ∈ `1ν and c ∈ `∞ν . Then∣∣∣∣∣∑
k∈Z

ckak

∣∣∣∣∣ ≤∑
k∈Z
|ck||ak| ≤ ‖c‖∞ν ‖a‖ν .

The following result provides a useful and explicit bound on the norm of an
“eventually diagonal” linear operator on `1ν . The proof is omitted.

Corollary 2.1. Let M(m) be an (2m − 1) × (2m − 1) matrix with complex
valued entries, {δk}|k|≥m a bi-infinite sequence of complex numbers and δm > 0 a
real number such that

|δk| ≤ δm, for all |k| ≥ m.
Given a = (ak)k∈Z ∈ `1ν , denote by a(m) = (a−m+1, . . . , a−1, a0, a1, . . . , am−1) ∈
C2m−1. Define the map M : `1ν → `1ν by

[M(a)]k =

{
[M(m)a(m)]k, |k| < m

δkak, |k| ≥ m.
Then M is a bounded linear operator and

‖M‖B(`1ν ,`
1
ν) ≤ max(K, δm),

where

(2.38) K
def
= max
|n|<m

1

ν|n|
∑
|k|<m

|Mk,n|ν|k|.

The next result provides useful component-wise bounds for convolution prod-
ucts involving unknown elements in the unit ball in `1ν .

Lemma 2.20. Given ν ≥ 1, k ∈ Z and a ∈ `1ν , the function lka : `1ν → C defined
by

lka(h)
def
= (a ∗ h)k =

∑
k1+k2=k

ak1hk2

with h ∈ `1ν , is a bounded linear functional, and

(2.39) ‖lka‖ = sup
‖h‖1,ν≤1

∣∣lka(h)
∣∣ ≤ sup

j∈Z

|ak−j |
ν|j|

<∞.

Fix a truncation mode to be m. Given h ∈ `1ν , set

h(m) def
= (. . . , 0, 0, h−m+1, . . . , hm−1, 0, 0, . . .) ∈ `1ν

h(I) def
= h− h(m) ∈ `1ν .
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Corollary 2.2. Let N ∈ N and let ᾱ = (. . . , 0, 0, ᾱ−N , . . . , ᾱN , 0, 0, . . .) ∈ `1ν .

Suppose that |k| < m and define l̂kᾱ ∈ (`1ν)∗ by

l̂kᾱ(h)
def
= (ᾱ ∗ h(I))k =

∑
k1+k2=k

ᾱk1h
(I)
k2
.

Then, for all h ∈ `1ν such that ‖h‖1,ν ≤ 1,

(2.40)
∣∣∣l̂kᾱ(h)

∣∣∣ ≤ Ψk(ᾱ)
def
= max

(
max

k−N≤j≤−m
|ᾱk−j |
ν|j|

, max
m≤j≤k+N

|ᾱk−j |
ν|j|

)
.

2.5.6. Radii polynomial to compute periodic solutions of Nussbaum’s equation.
We have now derived all necessary tools to apply the radii polynomial approach
(Theorem 2.6). Assume that x̄0 and x̄1 are two numerical approximation.

The Y0 bound. We begin the computation of the coefficients of the radii
polynomial with Y0 with the help of Remark 2.11. Denote

∆x̄
def
= x̄1 − x̄0 and ∆λ

def
= λ1 − λ0,

and, using the mean value theorem, consider the expansion

F (x̄s, λs) = F (x̄0, λ0)+

(
DxF (x̄0, λ0)

∂F

∂λ
(x̄0, λ0)

)(
∆x̄

∆λ

)
s+

1

2

(
∂2

∂s2
F (x̄s, λs)∣∣

s=σ

)
s2,

for some σ ∈ [0, 1]. As in (2.13), denote

y1
def
=

(
DxF (x̄0, λ0)

∂F

∂λ
(x̄0, λ0)

)(
∆x̄

∆λ

)
and y2

def
=

1

2

(
∂2

∂s2
F (x̄s, λs)∣∣

s=σ

)
.

Each quantity F (x̄0, λ0), y1 and y2 is a finite sum which is evaluated using interval
arithmetics. Let w0, w1 and w2 such that

‖AF (x̄0, λ0)‖X ≤ w0

‖Ay1‖X ≤ w1

‖Ay2‖X ≤ w2.

Hence, set Y0 such that

(2.41) Y0
def
= w0 + w1 + w2

so that ‖AF (x̄s, λs)‖X ≤ Y0 for all s ∈ [0, 1].
The Z0 bound. Let B

def
= I −AA†, which we express as

B =

(
Bω,0 Ba,0
Bω,1 Ba,1

)
.

Since B
def
= I −AA†, then [(Bc)1]k = 0 for |k| ≥ m and c ∈ X. Define

Z
(0)
0

def
= |Bω,0|+

(
max
|k|<m

|(Ba,0)k|
ν|k|

)
(2.42)

Z
(0)
1

def
=

∑
|k|<m

|(Bω,1)k|ν|k| + max
|n|<m

1

ν|n|
∑
|k|<m

|(Ba,1)k,n|ν|k|.(2.43)

Now, recalling (2.36) and Lemma 2.19, we have that for any c = (c0, c1) ∈ B1(0) ⊂
X,

|(Bc)0| =
∣∣∣∣∣Bω,0c0 +

∑
k∈Z

(Ba,0)k(c1)k

∣∣∣∣∣ ≤ |Bω,0|+ ‖Ba,0‖∞,ν−1 = Z
(0)
0 .
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Recalling Corollary 2.1 and (2.38), we get that

‖(Bc)1‖1,ν = ‖Bω,1c0 +Ba,1c1‖1,ν ≤ ‖Bω,1‖1,ν + ‖Ba,1‖B(`1ν ,`
1
ν) ≤ Z(0)

1 .

Finally, setting

(2.44) Z0
def
= max

(
Z

(0)
0 , Z

(0)
1

)
we get that

‖I −AA†‖B(X,X) = sup
c∈B1(0)

‖Bc‖X = sup
c∈B1(0)

max (|(Bc)0|, ‖(Bc)1‖1,ν) ≤ Z0.

The Z1 bound. Recall from (2.7) that Z1 is a bound satisfying

‖A[DxF (x̄0, λ0)−A†]‖B(X,X) ≤ Z1

Let c = (c0, c1) ∈ B1(0) and set

z
def
= (DxF (x̄0, λ0)−A†)c.

Denote z = (z0, z1). Then, if n < m, we get that z0 = 0 because the phase condition
(2.22) depends only on the Fourier coefficients (ak)|k|≤n. Given k ∈ Z,

((DxF (x̄0, λ0)c)1)k = µk(ω̄0, λ0)(c1)k+
∂µk
∂ω

(ω̄0, λ0)c0(ā0)k+
1

3
iεk(ā3

0)kc0+iεkω̄0(ā2
0c1)k.

Therefore, since (ā0)k = 0 for all |k| ≥ m,

(z1)k =

iεk(ā2
0c

(I)
1 )kω̄0, |k| < m

1

3
iεk(ā3

0)kc0 + iεkω̄0(ā2
0c1)k, |k| ≥ m

From Corollary 2.2, for all |k| < m

(2.45) |(z1)k| ≤ ζk def
= ε|k|ω̄0Ψk(ā2

0).

Denote ζ
def
= (ζk)|k|<m ∈ C2m−1. Hence, for j = 0,∣∣(A[DxF (x̄0, λ0)−A†]c

)
0

∣∣ = |(Az)0| = |Aa,0z1| ≤ Z(1)
0

def
= |A(m)

a,0 |ζ,
while for j = 1,∥∥(A[DxF (x̄0, λ0)−A†]c

)
1

∥∥
1,ν

= ‖(Az)1‖1,ν = ‖Aa,1z1‖1,ν

≤ Z(1)
1

def
=

m−1∑
k=−m+1

(
|A(m)
a,1 |ζ

)
k
ν|k| +

ε

3

3m−3∑
|k|=m

∣∣∣∣ k

µk(ω̄0, λ0)
(ā3

0)k

∣∣∣∣ ν|k| + εω̄0

mω̄2
0 − (|λ0|+1)

m

(‖ā‖1,ν)2,

using that ‖ā2
0c1‖1,ν ≤ (‖ā0‖1,ν)2 and using that∣∣∣∣ iεkω̄0

µk(ω̄0, λ0)

∣∣∣∣ =
1

|k|
εω̄0

|−ω̄2
0 − εiω̄0/k − λ0/k2 + e−ikω̄0τ/k2| ≤

εω̄0

m
(
ω̄2

0 − (|λ0|+1)
m2

) .
Finally, setting

(2.46) Z1
def
= max

(
Z

(1)
0 , Z

(1)
1

)
‖A[DxF (x̄0, λ0)−A†]‖B(X,X) = sup

c∈B1(0)

max (|(Az)0|, ‖(Az)1‖1,ν) ≤ max
(
Z

(1)
0 , Z

(1)
1

)
= Z1.

The Z2 bound. Recall from (2.8) that the bound Z2 satisfies

‖A[DxF (x̄s + b, λs)−DxF (x̄0, λ0)]‖B(X,X) ≤ Z2(r), for all b ∈ Br(0), s ∈ [0, 1].
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Remark 2.21. Z2 can be computed using a bound on the second derivative on
F (e.g. see Section 3.3.4 in the paper [74]). However, here we choose to compute
Z2 applying the mean-value theorem component-wise.

Given c = (c1, c2) ∈ B1(0) ⊂ X and for a fixed k ∈ Z, denote hk(φ) =
Dxgk(x̄φs + τb, λφs). For each k ∈ Z, there exists t = t(k) ∈ [0, 1] such that

h′k(t) = hk(1)− hk(0)

= (Dxgk(x̄s + b, λs)−Dxgk(x̄0, λ0)) c

= (−2k2(s∆ω + b0)c0 − k2c0τ
2(s∆ω + b0)e−ik(st∆ω+tb0+ω̄0)τ )(st∆a + tb1 + ā0)k

+ (−2k2(st∆ω + tb0 + ω̄0)c0 − iεkc0 − ikc0τe−ik(st∆ω+tb0+ω̄0)τ )(s∆a + b1)k

+ (−2k2(st∆ω + tb0 + ω̄0)(s∆ω + b0)− iεk(s∆ω + b0)− s∆λ − ik(s∆ω + b0)τe−ik(st∆ω+tb0+ω̄0)τ )(c1)k

+ iεkc0
(
(st∆a + tb1 + ā0)2(s∆a + b1)

)
k

+ iεk(s∆ω + b0)
(
(st∆a + tb1 + ā0)2c1

)
k

+ (2i)εk(st∆ω + tb0 + ω̄0) ((st∆a + tb1 + ā0)c1(s∆a + b1))k .

Then, using that |b0| ≤ r and letting u1
def
= 1

r b1 ∈ B1(0)

|h′k(t)| ≤ (2k2(|∆ω|+ r) + k2τ2(|∆ω|+ r))(|∆a|+ |u1|r + |ā0|)k
+ (2k2(|∆ω|+ r + ω̄0) + ε|k|+ |k|τ)(|∆a|+ |u1|r)k
+ (2k2(|∆ω|+ r + ω̄0)(|∆ω|+ r) + ε|k|(|∆ω|+ r) + |∆λ|+ |k|(|∆ω|+ r)τ)|(c1)k|
+ ε|k|

(
(|∆a|+ |u1|r + |ā0|)2(|∆a|+ |u1|r)

)
k

+ ε|k|(|∆ω|+ r)
(
(|∆a|+ |u1|r + |ā0|)2|c1|

)
k

+ 2ε|k|(|∆ω|+ r + ω̄0) ((|∆a|+ |u1|r + |ā0|)|c1|(|∆a|+ |u1|r))k
= (z2)

(4)
k r3 + (z2)

(3)
k r2 + (z2)

(2)
k r + (z2)

(1)
k ,

where

(z2)
(1)
k = k2

(
2|∆ω|+ τ2|∆ω|

)
(|∆a|+ |ā0|)k +

(
2k2(|∆ω|+ ω̄0) + |k|(ε+ τ)

)
|(∆a)k|

+
(
2k2(|∆ω|+ ω̄0)|∆ω|+ ε|k||∆ω|+ |∆λ|+ τ |k||∆ω|

)
|(c1)k|+ ε|k|

(
(|∆a|+ |ā0|)2(|∆a|)

)
k
|

+ ε|k||∆ω||
(
(|∆a|+ |ā0|)2c1

)
k
|+ 2ε|k|(|∆ω|+ ω̄0) ((|∆a|+ |ā0|)|∆a||c1|)k

(z2)
(2)
k = 6ε|k||∆ω||(∆ac1u1)k|+ 4ε|k||∆ω||(ā0c1u1)k|+ 4ε|k|ω̄0|(∆ac1u1)k|+ 2ε|k|ω̄0|(ā0c1u1)k|

+ τ |k||(u1)k|+ 4k2|∆ω||(c1)k|+ 2|(c1)k|k2ω̄0 + (ε+ τ)|k||(c1)k|+ ε|k||(u1)k|+ 4k2|∆ω||(u1)k|
+ k2τ2(|ā0|+ |∆a|)k + 2k2ω̄0|(u1)k|+ 4k2|(∆a)k|+ k2τ2|∆ω||(u1)k|+ 3ε|k||(u1∆2

a)k|
+ ε|k||(u1ā

2
0)k|+ 3ε|k||(c1∆2

a)k|+ ε|k||(c1ā2
0)k|+ 2k2|ā0|+ 4ε|k||(∆aā0u1)k|+ 4ε|k||(∆aā0c1)k|

(z2)
(3)
k = k2τ2|(u1)k|+ 4k2|(u1)k|+ 2k2|(c1)k|+ 3ε|k||(∆au

2
1)k|+ 2ε|k||(ā0u

2
1)k|+ 3ε|k||∆ω||(c1u2

1)k|
+ 6ε|k||(∆ac1u1)k|+ 4ε|k||(ā0c1u1)k|+ 2ε|k|ω̄0|(c1u2

1)k|
(z2)

(4)
k = ε|k|

(
3|(c1u2

1)k|+ |(u3
1)k|

)
.
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Let us define the operators Ãa,0, B̃a,0, Ãa,1 and B̃a,1 by

Ãa,0 =
{
|k||(A(m)

a,0 )k|
}
|k|<m

B̃a,0 =
{
k2|(A(m)

a,0 )k|
}
|k|<m

Ãa,1 = {|j||(Aa,1)k,j |}k,j∈Z B̃a,1 =
{
j2|(Aa,1)k,j |

}
k,j∈Z .

Given j = 0, 1, denote ‖ · ‖j to be | · | if j = 0 and ‖ · ‖1,ν if j = 1. Moreover,
given j = 0, 1, denote ‖ · ‖B(j,j) to be ‖ · ‖∞,ν−1 if j = 0 and ‖ · ‖B(`1ν ,`

1
ν) if j = 1.

Then, for j = 0, 1,

‖Aa,jz(1)
2 ‖j ≤ Z

(1,j)
2

def
=
(
2 + τ2

)
|∆ω|‖B̃a,j(|∆a|+ |ā0|)‖j + 2(|∆ω|+ ω̄0)‖B̃a,j |∆a|‖j + (ε+ τ)‖Ãa,j |∆a|‖j

+ 2(|∆ω|+ ω̄0)|∆ω|‖B̃a,j‖B(j,j) + (ε+ τ)|∆ω|‖Ãa,j‖B(j,j) + |∆λ|‖Aa,j‖B(j,j)

+ ε‖Ãa,j‖B(j,j)‖|∆a|+ |ā0|‖21,ν‖∆a‖1,ν + ε|∆ω|‖Ãa,j‖B(j,j)‖|∆a|+ |ā0|‖21,ν
+ 2ε(|∆ω|+ ω̄0)‖Ãa,j‖B(j,j)‖|∆a|+ |ā0|‖1,ν‖∆a‖1,ν

‖Aa,jz(2)
2 ‖j ≤ Z

(2,j)
2

def
= 6ε|∆ω|‖Ãa,j‖B(j,j)‖∆a‖1,ν + 4ε|∆ω|‖Ãa,j‖B(j,j)‖ā0‖1,ν + 4εω̄0‖Ãa,j‖B(j,j)‖∆a‖1,ν

+ 2εω̄0‖Ãa,j‖B(j,j)‖ā0‖1,ν + τ‖Ãa,j‖B(j,j) + 4|∆ω|‖B̃a,j‖B(j,j) + 2ω̄0‖B̃a,j‖B(j,j)

+ (ε+ τ)‖Ãa,j‖B(j,j) + ε‖Ãa,j‖B(j,j) + 4|∆ω|‖B̃a,j‖B(j,j) + τ2‖B̃a,j‖B(j,j)‖|∆a|+ |ā0|‖1,ν
+ 2ω̄0‖B̃a,j‖B(j,j) + 4‖B̃a,j‖B(j,j)|‖∆a‖1,ν + τ2|∆ω|‖B̃a,j‖B(j,j) + 6ε‖Ãa,j‖B(j,j)‖∆a‖21,ν
+ 2ε‖Ãa,j‖B(j,j)‖ā0‖21,ν + 2‖B̃a,j‖B(j,j)‖ā0‖1,ν + 4ε‖Ãa,j‖B(j,j)‖∆a‖1,ν‖ā0‖1,ν

‖Aa,jz(3)
2 ‖j ≤ Z

(3,j)
2

def
= τ2‖B̃a,j‖B(j,j) + 4‖B̃a,j‖B(j,j) + 2‖B̃a,j‖B(j,j) + 3ε‖Ãa,j‖B(j,j)‖∆a‖1,ν + 2ε‖Ãa,j‖B(j,j)‖ā0‖1,ν

+ 3ε|∆ω|‖Ãa,j‖B(j,j) + 6ε‖Ãa,j‖B(j,j)‖∆a‖1,ν + 4ε‖Ãa,j‖B(j,j)‖ā0‖1,ν + 2εω̄0‖Ãa,j‖B(j,j)

‖Aa,jz(4)
2 ‖j ≤ Z

(4,j)
2

def
= 4ε‖Ãa,j‖B(j,j).

For i = 1, 2, 3, 4, set

Z
(j)
2 = max

(
Z

(j,0)
2 , Z

(j,1)
2

)
so that we define

(2.47) Z2(r)
def
= Z

(4)
2 r3 + Z

(3)
2 r2 + Z

(2)
2 r + Z

(1)
2 .

From this, we conclude that

|Aa,0 (Dxg(x̄s + b, λs)−Dxg(x̄0, λ0)) c| ≤ Z2(r)

‖Aa,1 (Dxg(x̄s + b, λs)−Dxg(x̄0, λ0)) c‖1,ν ≤ Z2(r),

and therefore

‖A[DxF (x̄s + b, λs)−DxF (x̄0, λ0)]c‖X =

∥∥∥∥(Aω,0 Aa,0
Aω,1 Aa,1

)(
0

(Dxg(x̄s + b, λs)−Dxg(x̄0, λ0)) c

)∥∥∥∥
X

= max
(
|Aa,0 (Dxg(x̄s + b, λs)−Dxg(x̄0, λ0)) c| ,
‖Aa,1 (Dxg(x̄s + b, λs)−Dxg(x̄0, λ0)) c‖1,ν

)
≤ Z2(r).
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Combining (2.41), (2.44), (2.46) and (2.47), the radii polynomial is defined by

(2.48) p(r)
def
= Z

(4)
2 r4 + Z

(3)
2 r3 + Z

(2)
2 r2 +

(
Z

(1)
2 + Z1 + Z0 − 1

)
r + Y0.

2.5.7. Proof of existence of periodic solutions for Nussbaum’s equation. Using
the radii polynomial approach we could prove the following two theorems.

Theorem 2.22. Fix τ = 2 and ε = 0.15. Then there is a branch of periodic
solution of Nussbaum’s equation (2.18) parameterized by the parameter λ. Given a
periodic solution y(t) on the branch, letting p its period, y(t) satisfies the symmetry
property

(2.49) y(t+ p/2) = −y(t), for all t ∈ R.

The continuous range of parameter for which the proof of existence is performed is
λ ∈ [−3.8521, 0.65]. The global branch is a C∞ function of the parameter λ. The
continuous range of periods of the periodic solutions over the branch contains the
interval p ∈ [3.7, 21.5].

Proof. The MATLAB program script proof1.m available at [76] computes
the coefficients of the radii polynomial p(r) given by (2.48), and as a parameter
continuation is performed, the code adapts the step size ∆λ and applies successfully
the radii polynomial approach (Theorem 2.6) to show the existence of a global C∞

branch of periodic solutions. Throughout the whole continuation, the number of
Fourier coefficients used for the proof is fixed to be m = 110. Along the branch,
we make sure that x̄s ∈ Xsym and that the approximate inverse A satisfies the
condition (2.30), that is AF : Xsym × R → Xsym. By Lemma 2.15, at a given
parameter value λ, the solution x̃ = (ω̃, ã) ∈ Xsym. Hence, ω̃ ∈ R (yielding the
period p̃ = 2π

ω̃ ∈ R) and the Fourier coefficients ã = (ãk)k∈Z satisfy that ã2k = 0
for all k ∈ Z. Consider the periodic solution ỹ(t) associated to (ω̃, ã)

ỹ(t) =
∑
k∈Z
k odd

ãke
ik 2π

p̃ t.

Hence,

ỹ(t+ p̃/2) =
∑
k∈Z
k odd

ãke
ik 2π

p̃ (t+p̃/2) =
∑
k∈Z
k odd

ãk(−1)keik
2π
p̃ t = −

∑
k∈Z
k odd

ãke
ik 2π

p̃ t = −ỹ(t).

The global branch of periodic solution is a C∞ function of λ by Lemma 2.7. �

Theorem 2.23. Fix τ = 5 and ε = 0.25. Then there is a branch of periodic
solution of Nussbaum’s equation (2.18) parameterized by the parameter λ. Given a
periodic solution y(t) on the branch, letting p its period, y(t) satisfies the symmetry
property (2.49).The continuous range of parameter for which the proof of existence
is performed is λ ∈ [−4.8234,−0.476]. The global branch is a C∞ function of the
parameter λ. The continuous range of periods of the periodic solutions over the
branch contains the interval p ∈ [3.15942, 5.253625].

Proof. The proof is similar as the proof of Theorem 2.22. In this case,
the number of Fourier coefficients used to perform the proof is m = 20. The
proof is computer-assisted and terminates by executing the MATLAB program
script proof2.m available at [76]. �
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Figure 18. (Left) As proven in Theorem 2.22, a branch of pe-
riodic solutions of Nussbaum’s equation (2.18) parameterized by
the parameter λ. (Right) The graph of the most right periodic
solution on the branch plotted over its period.
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Figure 19. (Left) Continuous range of periods of the periodic
solutions as a function of λ along the branch of Theorem 2.22.
(Right) The adaptive value of ∆λ as the parameter λ varies along
the branch of Theorem 2.22.

In [75], similar results were obtained for Nussbaum’s equation (2.18). The
differences are that in [75], proofs were performed in a weighted `∞ space (as
opposed to a weighted `1 here), and the proofs were obtained at discrete parameter
values of λ.

2.6. Wright’s Equation. As mentioned in Section 1, Jones Conjecture re-
formulated as in Conjecture 1.2 requires studying a global continuous branch of
periodic solutions of Wright’s equation (1.1). Studying periodic solutions of (1.1)
boils down in this case to study the zeros of the map g = (gk)k∈Z given by

gk
def
=
(
ikω + αe−ikω

)
ak + α

∑
k1+k2=k

e−ik1ωak1ak2 .

In this case the parameter is set to be λ = α. Using the radii polynomial approach,
a rigorous continuation method was used in [12] to study rigorously the behaviour
of the solutions on the branch F0. The proofs were performed in a different Banach
space, that is a weighted `∞ space. This means that the estimates are different than
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Figure 20. (Left) As proven in Theorem 2.23, a branch of sym-
metric periodic solutions of Nussbaum’s equation (2.18) param-
eterized by the parameter λ. (Right) The graph of a periodic
solution on the branch over the interval [0, p] with p its period.
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Figure 21. (Left) Continuous range of periods of the periodic
solutions as a function of λ along the branch of Theorem 2.23.
(Right) The adaptive value of ∆λ as the parameter λ varies along
the branch of Theorem 2.23.

the one presented above in the weighted `1 space. Recall from Section 1 the notation
F0, which denotes the branch of periodic solutions of Wright’s equation (1.1) which
bifurcates out of a supercritical Hopf bifurcation from the trivial solution at α =
π/2. Using a rigorous continuation method, as the one introduced in details for
Nussbaum’s equation in Section 2.5, here is the main result of [12].

Theorem 2.24. Let ε = 7.3165 × 10−4. Then F0 is a branch parameterized
by λ over the range α ∈

[
π
2 + ε, 2.3

]
, and so F0 does not have any fold over α ∈[

π
2 + ε, 2.3

]
.
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