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1 Introduction

The nature of the interface between two fluids has been the subject of extensive investigations for over
two centuries. In the early years of the 1800s, Young, Laplace, and Gauss considered the interface
between two fluids to be represented as a surface of zero thickness endowed with physical properties
such as surface tension. These investigations, which were based on static and mechanical equilibrium
arguments, assumed that physical quantities such as density were, in general, discontinuous across the
interface. Physical process such as capillarity occurring in the interface were represented by boundary
conditions imposed there (e.g. Young’s equation for the equilibrium contact angle or the Young-
Laplace equation relating the jump in pressure across the interface to the product of surface tension
and curvature). Later, Poisson (1831), Maxwell (1876), and Gibbs (1876) recognized that the interface
actually represented a rapid but smooth transition of physical quantities between the bulk fluid values.
Gibbs introduced the notion of dividing surface (a surface of discontinuity) and surface excess quanti-
ties in order to develop the equilibrium thermodynamics of interfaces. The idea that the interface has
non-zero thickness (i.e. it is diffusive) was developed in detail by Lord Rayleigh (1892) and by van der
Waals (1893), who proposed gradient theories for the interface based on thermodynamic principles. In
particular, van der Waals developed a theory of the interface based on his equation of state and used
it to predict the thickness of the interface, which he showed became infinite as the critical temperature
is approached. Korteweg (1901) built on these ideas and proposed a constitutive law for the capillary
stress tensor in terms of the density and its spatial gradients. Specifically, he proposed to study a
compressible fluid model in which the “elastic” or “equilibrium” portion of the Cauchy stress tensor
T is given by

T =
(
−p+ α4ρ+ β|∇ρ|2

)
I + δ∇ρ⊗∇ρ+ γ∇⊗∇ρ, (1.1)

which can be written in components

(T )ij = −pδij + υij ,

with δij being the Kronecker symbol and

υij =
(
α4ρ+ β|∇ρ|2

)
δij +

(
δ
∂ρ

∂xi

∂ρ

∂xj
+ γ

∂2ρ

∂xi∂xj

)
,

where ρ = ρ (x, t) is the density of the fluid at the point x and time t, ∇ρ and 4ρ are, respectively,
the gradient and Laplacian of ρ with respect to x (space), p, α, β, δ, and γ are material functions of
ρ and temperature θ, and (a⊗ b)ij = aibj is the dyadic product of a and b. To include viscous effects
into the dynamics of the fluid, Korteweg added to the right-hand side of (1.1) the classical form of the
Cauchy and Poisson, i.e., λ (trD) I + 2µD, where

D (u) =
1

2

(
∇u + (∇u)

t
)
, here with (∇u)ij :=

∂uj
∂xi

,

is the usual stress tensor of hydrodynamics, u = (u1, u2, u3)
T

being the velocity, and where λ and µ,
are the usual viscosity coefficients which may depend on ρ and θ.

Korteweg’s form (1.1) is a special example of an elastic material of grade N in which, in order
to model more complex spatial interaction effects in a material, the constitutive quantities (here T ),
are allowed to depend not only on the first gradient of the deformation, but also on all gradients of
the deformation that are less than or equal to the integer N . However, these high-grade models are,
in general, incompatible with the usual continuum theory of thermodynamics. Korteweg model (1.1)
is incompatible with conventional thermodynamics unless all the nonclassical coefficients, α, β, δ, and

1



γ vanish identically. In order to remedy this difficulty, Dunn and Serrin [5] proposed the concept of
interstitial working.

Some special cases of Korteweg models arise in quantum mechanics. The motivation for this work is
about fluids tough, specially in liquid-vapour mixture with phase changes. The theories of Korteweg’s
type heve been used intensively to analyse the structure of liquid-vapour phase transition under both
static [1] and dynamic [14] conditions. As mentioned, Korteweg model allow phase “boundaries” of
nonzero thickness that are often called diffuse interfaces, by contrast by the sharp interfaces in the
Laplace-Young’s theory. In the late 1990’s there was a renewal in the interest for diffusive interfaces
also for numeric purposes (see [2]).

In the present work, we study the one-dimensional isothermal compressible fluid model of Korteweg
type. We consider the special case when the viscosity and capillary coefficients are constants.

In chapter 2 we make a review of the generalization made by Humpherys [10] on the work by
Kawashima [13]. In Chapter 3 we study the dissipative structure of our model in the sense of the
aforementioned extension. It is worth to note that such study is the first time that is made, or at least
reported, since in the literature there are no articles in the subject. We think the generalization made
by Humpherys is of relevance, even though the mathematical community has not put much attention
on his work, and the present work is a clear example of its applicability.

Chapter 4 deals with the well-posedness of the model in consideration. We note that such study
has already been done by Hatorri and Li for the two- and high dimensional case (see [8, 9]), and the
proofs presented there are based on the ones presented by the authors in [8], but are independent and
adapted to the one-dimensional case. Although the study is made in Eulerian coordinates, contrary
to the dissipative structure that is done in Lagrangian, the solution obtained, being classical, is also a
solution for the Lagrangian formulation.

Finally, in Chapter 5 we present some results of the linear decay rates of solutions for the linearized
system around constant states (Maxwellian). The results presented there exploit the genuinely coupling
of the system (which is equivalent to the dissipative structure). The genuine coupling condition, roughly
speaking, means that can not exists hyperbolic directions whereby traveling wave solutions type can
not be dissipated by the viscous terms.

2 Admissibility of Viscous-Dispersive Systems

Kawasima’s theory ([13]) considers the second-order constant coefficient system

vt = Lv := −Avx +Bvxx, x ∈ R, t > 0, v ∈ Rm, (2.1)

where A and B are symmetric matrices with B positive semi-definite. Taking the Fourier transform,
the evolution of (2.1) reduces to solving the eigenvalue problem(

λ+ iξA+ ξ2B
)
v̂ = 0. (2.2)

We have the theorem:

Theorem 2.1 (Shizuta-Kawashima [13]). The following statements are equivalent:

(i) L is strictly dissipative, that is, <e (λ(ξ)) < 0 for all ξ 6= 0.

(ii) L is genuinely coupled, that is, no eigenvalue of A is in N (B).

(iii) There exists a skew-Hermitian matrix K such that [K,A] +B > 0.

Here N (B) = {v ∈ Rm : Bv = 0} and [K,A] := KA−AK.
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The last theorem was generalized by Humpherys [10] by considering the general linear system

vt = Lv := −
n∑
k=0

Dk∂
k
xv, x ∈ R, t > 0, v ∈ Rm, (2.3)

where each m×m matrix Dk in constant. Likewise, by taking the Fourier transform, the evolution of
(2.3) reduces to the eigenvalue problem

λv̂ +

n∑
k=0

(iξ)
k
Dkv̂ = 0. (2.4)

Simplifying by separating the odd- and even- terms in (2.4), we get

(λ+ iξA(ξ) +B(ξ)) v̂ = 0, (2.5)

where
A(ξ) :=

∑
k odd

Dk (iξ)
k−1

and B(ξ) :=
∑
k even

(−1)k/2Dkξ
k. (2.6)

The matrix A(ξ) and B(ξ) are referred as the generalized flux and the generalized viscosity, respectively.
Then we have the following definitions

Definition 2.2

(i) L is called strictly dissipative if for each ξ 6= 0, we have that <e (λ(ξ)) < 0.

(ii) L is said to be genuinely coupled if no eigenvalue of A(ξ) is in N (B(ξ)), for all ξ 6= 0.

The main result in [10] is that for symmetric systems, the properties of strict dissipativity, genuine cou-
pling of definition 2.2 , and the existence of a skew-symmetric compensating matrix K are equivalent.
The following assumptions are made:

(H1) A(ξ) is symmetric and of constant multiplicity in ξ.

(H2) B(ξ) ≥ 0 (symmetric and positive semi-definite).

Next, we state the main result without proof and after that we make some important remarks.

Theorem 2.3 Given (H1) and (H2) above, the following statements are equivalent:

(i) L is strictly dissipative.

(ii) L is genuinely coupled.

(iii) There exists a real-analytic skew-Hermitian matrix-values K(ξ) such that [K(ξ), A(ξ)]+B(ξ) > 0
for all ξ 6= 0.

Remarks:

1. The compensation matrix K is of the form

K(ξ) =
∑
i6=j

πij (B(ξ))

µi − µj
=
∑
i 6=j

πiB(ξ)πj
µi − µj

, (2.7)

that is the Drazin inverse or reduced resolvent of the commutator operator, where {µj}rj=1 denote

the distinct eigenvalues of A(ξ) with corresponding eigenprojections {πj}rj=1

2. Theorem 2.3 can be extended in the next setting: First we have the following definition
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Definition 2.4 L is called symmetrizable in the sense of Humpherys [10] if there exists a sym-
metric, real-analytic matrix-valued A0(ξ) > 0 such that both A0(ξ)A(ξ) and A0(ξ)B(ξ) are sym-
metric, and A0(ξ)B(ξ) ≥ 0. We say that A0(ξ) is a symmetrizer of L.

We notice that this notion of symmetrizability differs from the Friedrichs’ one [7]. The last is a
symmetrization term-wise. Actually our model in not symmetrizable in the sense of Friedrich,
but it is in the sense of Humpherys (see [10]).
With this more general notion of symmetrizability, we can extend easily Theorem 2.3 to the
following:

Theorem 2.5 (Symmetrizable version).If A0(ξ) is a symmetrizer of L, then the following
statements are equivalent:

(i) L is strictly dissipative.

(ii) L is genuinely coupled.

(iii) There exists a real-analytic skew-Hermitian matrix-valued K(ξ) such that [K(ξ), A0(ξ)A(ξ)]+
A0(ξ)B(ξ) > 0 for all ξ 6= 0.

It is the last generalization of the standard definition of symmetrizability the one that we adopt here.

3 Genuine coupling of the one-dimensional Korteweg model

3.1 The Korteweg model

Models of Korteweg-type are obtained from an extended version of nonequilibrium thermodynamics,
in which it is assumed that the energy of the fluid not only depends on standard variables but on the
gradient of the density ([4]). In terms of the free energy, this principle takes the form of the generalized
Gibbs relation

dF = −SdT + gdρ+ φ · dw,

where F denotes the free energy per unit volume, S the entropy per unit volume, T the temperature, g
the chemical potential and, in the additional term, w stands for ∇ρ. The potential φ is often assumed,
and it will be in our case, to be of the form

φ = Kw,

where K is called the capillarity coefficient, which may depend on ρ and T . In this case, F can be
decomposed into a standard part and an additional term due to gradient of density,

F (ρ, T,∇ρ) = F0 (ρ, T ) = +
1

2
K (ρ, T ) |∇ρ|2,

and similar decompositions hold for S and g. Then, we define the Korteweg tensor as

K := (ρ divφ) I − φTw.

Neglecting dissipation phenomena, the conservation of mass, momentum and energy read

∂tρ+ div (ρu) = 0,

∂t (ρu) + div (ρu⊗ u) +∇p̃ = divK,

∂t

(
E +

1

2
ρ|u|2

)
+ div

((
E +

1

2
ρ|u|2 + p̃

)
u

)
= div (Ku + W ) ,
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where p̃ = ρg−F is the (extended) pressure, E = F + TS is the internal energy per unit volume, and

W :=
(
∂tρ+ uT · ∇ρ

)
φT = − (ρ div u)φT ,

is the interstitial work that was first introduced by Dunn and Serrin [5]. This additional term ensures
that the entropy S satisfies the conservation law

∂tS + div (Su) = 0.

(This is obtained by formal computation, assuming smooth solutions). As we mentioned, we assume
that φ = Kw. Then we can write

g = g0 +
1

2
K ′ρ|∇ρ|2,

where g0 is independent of ∇ρ.

We are interested in studying the isothermal Korteweg model with viscosity, in one-dimensional
space. Let us write the system we are going to deal with throughout the rest of the work. Noting that

p̃ = p+
1

2

(
ρK ′ρ −K

)
|∇ρ|2, p = ρg0 − F0,

our system can be written as

∂tρ+ ∂x (ρu) = 0,

∂t (ρu) + ∂x
(
ρu2 + p− ρKρxx + 1

2Kρ
2
x − 1

2ρK
′
ρρ

2
x − µux

)
= 0.

(3.1)

3.2 Fluid dynamics in Lagrangian variables

Let us consider the conservation law of mass

ρt + (ρu)x = 0 (3.2)

which makes no appeal to any approximation. It expresses that the differential form α := ρdx− ρudt
is closed an therefore exact (the domain needs to be simply connected). We thus introduce a function
(x, t) −→ y, defined to within a constant by α = dy (that is, y is the function whose derivative is
the 1− form α). We have dx = udt + τdy, where τ = ρ−1 is the specific volume. Given another
conservation law ∂tui + ∂xqi = 0, which can be written d (qidt− uidx) = 0, we have

d ((qi − uiu) dt− uiτdy) = d ((qi − uiu) dt− uiτ (ρdx− ρudt))

= d ((qi − uiu) dt− uidx+ uiudt)

= d (qidt− uidx) = 0.

That is
∂t (uiτ) + ∂y (qi − uiu) = 0. (3.3)

The system written in the variables (y, t) is thus formed of conservation laws.
Let us look at some examples. In the absence of viscosity, we have the momentum conservation
equation

∂t (ρu) +
(
ρu2 + p (ρ, e)

)
x

= 0.

Then, taking u2 = ρu and q2 = ρu2 + p(ρ, e) in (3.3), we obtain

∂tu+ ∂yP (τ, e) = 0, (3.4)
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where P (τ, e) := p(τ−1, e). Similarly, for the energy conservation equation

∂tE + ((E + p)u)x = 0,

where E = 1
2ρv

2 + ρe, taking u3 = E and q3 = (u3 + p) v in (3.3), we obtain:

∂t

(
1

2
u2 + e

)
+ ∂y (P (τ, e)u) = 0. (3.5)

The conservation of mass gives nothing new since it was already used to construct the change of
variables (actually one gets the trivial equation 1t + 0y = 0). To complete the system of equations for
the unknowns (τ, u, e) we have to include a trivial conservation law. For example, if we take u4 ≡ 1 y
q ≡ 0, we get

∂tτ = ∂yu. (3.6)

Remark: Since we are defining y to be such that dy = α = ρdx− ρudt, we have

dy

dx
= ρ.

Thus giving any function v = v(x, t), by the chain rule

vx = vy
dy

dx
= vyρ = vyτ

−1,

we obtain
vy = τvx.

3.3 Viscous-capillary model in Lagrangian variables

Now, let us write our model, using the material of the previous section, in lagrangian coordinates.

The system in question is the conservation law of mass (3.2) together with the balance of momentum
equation

(ρu)t +

(
ρu2 + p− ρKρxx +

1

2
Kρ2

x −
1

2
ρK ′ρρ

2
x − µux

)
x

= 0, (3.7)

where K ′ρ is the derivative of K with respect to ρ. In this case ui = ρv and qi = ρv2 + p − ρKρxx +
1
2Kρ

2
x − 1

2ρK
′ρ2
x − µvx, so that we obtain

ut + ∂y

(
p− ρKρxx +

1

2
Kρ2

x −
1

2
ρK ′ρ2

x − µux
)

= 0.

As we can see, the last expression contains derivatives with respect to x. To write the expression with
derivatives with respect to y only, we make use of the remark of the previous section. First, since
τρx = ρy, we have

ρx =
1

τ

(
1

τ

)
y

= − τy
τ3
.

Then

ρxx = −1

τ
∂y

( τy
τ3

)
= −1

τ

(
τyy
τ3
−

3τ2
y

τ4

)
.

Also we have
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K ′ρ = K ′τ
dτ

dρ
= K ′τ

(
1

ρ

)
ρ

= −K
′
τ

ρ2
= −τ2K ′τ ,

so that

−ρKρxx +
1

2
Kρ2

x −
1

2
ρK ′ρ2

x = K

(
τyy
τ5
−

3τ2
y

τ6

)
+

1

2
K
τ2
y

τ6
+

1

2
τK ′τ

τ2
y

τ6

=
K

τ5
τyy −

5

2
K
τ2
y

τ6
+

1

2
K ′τ

τ2
y

τ5

= kτyy +
1

2
k′τ (τy)

2
,

where k(τ) = K(1/τ)
(
1/τ5

)
. Thus, together with the conservation law (3.6), we obtain the next

system of equations:

∂tτ − ∂yu = 0, (3.8a)

∂tu+ ∂yp = −∂y
(
k∂2

yτ +
1

2
k′τ (∂yτ)

2 − µ

τ
uy

)
. (3.8b)

Since we are considering the isothermal case, we have that p is a function of ρ only, that is

p = p(ρ) = p(τ),

and assume that p′(τ) < 0, where the derivative is taken with respect to τ , for all τ . Then, we get

∂yp =
dp

dτ
τy.

In addition,

∂y
(
k∂2

yτ
)

= k′τ∂yτ∂
2
yτ + k∂3

yτ,

∂y

(
1

2
k′τ (∂yτ)

2

)
=

1

2
k′′τ (∂yτ)

3
+ k′τ∂yτ∂

2
yτ,

∂y

(µ
τ
uy

)
=
∂yµ

τ
∂yu+

µ

τ
∂2
yu−

µ∂yτ

τ2
∂yu.

Then the system (3.8) can be written as

∂tτ − ∂yu = 0, (3.9a)

∂tu+ p′(τ)∂yτ = −
(
k∂3

yτ −
µ

τ
∂2
yu+ 2k′τ∂yτ∂

2
yτ +

1

2
k′′τ (∂yτ)

3
(3.9b)

−
{
∂yµ

τ
∂yu−

µ∂yτ

τ2
∂yu

})
.

If we define U =

(
τ
u

)
, we can write the above system in the form of (2.3)

Ut = −D1Uy −D2Uyy −D3Uyyy −G (U,Uy, Uyy) (3.10)

where

D1 =

(
0 −1

p′(τ) 0

)
, D2 =

(
0 0
0 −µτ

)
, D3 =

(
0 0
k 0

)
,

and

G (U,Uy, Uyy) =

(
0

2k′τ∂yτ∂
2
yτ + 1

2k
′′
τ (∂yτ)

3 −
{
∂yµ
τ ∂yu− µ∂yτ

τ2 ∂yu
})

.
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3.4 Genuine coupling of the Korteweg model

In order to define about the property of genuine coupling for our system of interest, let us consider a
constant equilibrium state Ū = (τ̄ , ū) for the specific volume and velocity field. If Ū + U is a solution
of (3.10), we can rewrite the system as

Ut +D1(Ū)Uy +D2(Ū)Uyy +D3(Ū)Uyyy = N (U,Uy, Uyy, Uyyy) , (3.11)

where N contains the non-linear terms. Let us consider the linear part of (3.11), that is, the linear
system

Ut +D1(Ū)Uy +D2(Ū)Uyy +D3(Ū)Uyyy = 0. (3.12)

Then, according to (2.6), we have

B (ξ) = −ξ2D2(Ū) = ξ2

(
0 0
0 µ̄

τ̄

)
,

and

A (ξ) = D1(Ū)− ξ2D3(Ū) =

(
0 −1

p′(τ̄) 0

)
− ξ2

(
0 0
k̄ 0

)
=

(
0 −1

p′(τ̄)− ξ2k̄ 0

)
,

where µ̄ = µ(ū) and k̄ = k(τ̄).
Since A(ξ) is not symmetric, we would like to symmetrize the system, that is, to find a sym-

metric matrix, real analytic A0 (ξ) > 0 such that A0 (ξ)A (ξ) and A0 (ξ)B (ξ) are symmetric, and
A0 (ξ)B (ξ) ≥ 0. Let us take

A0 (ξ) =

(
ξ2k̄ − p′(τ̄) 0

0 1

)
,

which is symmetric, real analytic and A0 (ξ) > 0. Also, we have

Â (ξ) = A0 (ξ)A (ξ) =

(
0 p′(τ̄)− ξ2k̄

p′(τ̄)− ξ2k̄ 0

)
,

and

B̂ (ξ) = A0 (ξ)B (ξ) = ξ2

(
0 0
0 µ̄

τ̄

)
,

with A0 (ξ)A (ξ) and A0 (ξ)B (ξ) symmetric and A0 (ξ)B (ξ) ≥ 0.

Let us see that the system in question satisfies the property of genuinely coupling. To see that, we
have to verify that no eigenvector of Â (ξ) is in the null space of B̂ (ξ). By the form of Â, it is easy to
see that its eigenvalues are

λ1,2 = ±β

where β(ξ) = ξ2k̄+ q(τ̄) and q̄ = −p′(τ̄), with eigenvector v1 = (1,−1)
T

and v2 = (1, 1)
T

, respectively.
Then

B̂ (ξ) v1 = ξ2

(
0
− µ̄τ̄

)
6= 0, B̂ (ξ) v2 = ξ2

(
0
µ̄
τ̄

)
6= 0,

which means that the system us genuinely coupled.

In what follows we are going to compute the compensation matrix. First, let us observe that

(1, 0)
T

=
1

2
(1,−1)

T
+

1

2
(1, 1)

T
,

(0, 1)
T

= −1

2
(1,−1)

T
+

1

2
(1, 1)

T
,
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so that the matrix representation of the projection π1 (ξ) y π2 (ξ) under the subspaces generated by
v1 and v1 are

π1 (ξ) =
1

2

(
1 −1
−1 1

)
, and π2 (ξ) =

1

2

(
1 1
1 1

)
,

respectively. Then, after making the computations, we get

π1B̂π2

λ1 − λ2
(ξ) =

ξ2µ̄

8β(ξ)τ̄

(
−1 −1
1 1

)
,

π2B̂π1

λ2 − λ1
(ξ) =

ξ2µ̄

8β(ξ)τ̄

(
1 −1
1 −1

)
.

Then according to (2.7),

K (ξ) =
π1B̂π2

λ1 − λ2
(ξ) +

π2B̂π1

λ2 − λ1
(ξ) =

ξ2µ̄

4β(ξ)τ̄

(
0 −1
1 0

)
. (3.13)

Clearly, K (ξ) skew-Hermitian, and[
K (ξ) , Â (ξ)

]
= K (ξ) Â (ξ)− Â (ξ)K (ξ)

=
ξ2µ̄

4β(ξ)τ̄

(
0 −1
1 0

)(
0 −β(ξ)

−β(ξ) 0

)
− ξ2µ̄

4β(ξ)τ̄

(
0 −β(ξ)

−β(ξ) 0

)(
0 −1
1 0

)
=
ξ2µ̄

4τ̄

(
1 0
0 −1

)
− ξ2µ̄

4τ̄

(
−1 0
0 1

)
=
ξ2µ̄

2τ̄

(
1 0
0 −1

)
,

so that [
K (ξ) , Â (ξ)

]
+ B̂ (ξ) =

ξ2µ̄

2τ̄

(
1 0
0 −1

)
+
ξ2µ̄

τ̄

(
0 0
0 1

)
=
ξ2µ̄

2τ̄

[(
1 0
0 −1

)
+

(
0 0
0 2

)]
=
ξ2µ̄

2τ̄

(
1 0
0 1

)
,

which is a definite positive matrix. Thus the matrix K (ξ) is the required compensating matrix. It is
worth to note that the matrix K (ξ) is compensating function in the sense of Humpherys.

4 Well-Posedness of the one-dimensional model for material
of Korteweg Type

In this section we are going to show the short-time existence of solution to our model. All the treatment
is going to be done for the model in Eulerian coordinates. Since the solution obtained is classical, by
a comment in [15], it is also a solution for the model in Lagrangian coordinates.
Let us recast the model as

ρt + (ρu)x = 0,

(ρu)t +
(
ρu2
)
x

=
{
−p− ν

2ρ
2
x + νρρxx + 4

3µux
}
x
,

(4.1)
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where we have taken K = ν and µ equal to a constant (4/3)µ in (3.1), which can be written in
quasilinear form

L (w)w ≡
{

(∂t + u∂x) ρ+ ρux = 0,
(∂t + u∂x)u+ p′ (ρ) ρ−1∂xρ− ν4∂xρ− 4

3µρ
−14u = 0.

(4.2)

We consider the Cauchy problem for (4.2) with initial condition

(ρ, u) (x, 0) = (ρ0, u0) (x). (4.3)

For this purpose, let us first consider the linearized version for the perturbation (ρ̃, ũ) at a given
solution (ρ, u) of problem (4.2) and (4.3), that is, (∂t + u∂x) ρ̃+ ρũx = f̃1,

(∂t + u∂x) ũ+ p′ (ρ) ρ−1ρ̃x − νρ̃xxx − 4
3µρ

−1ũxx = f̃2.

(4.4)

The reason why we study this problem is going to become clear in Section §4.3.

4.1 Linearized problem and a priori energy estimates

Let us consider the Cauchy problem of (4.4) with initial data:

ρ̃ (x, 0) = ρ̃0 (x) , ũ (x, 0) = ũ0 (x) . (4.5)

Equation (4.4) can be written in matrix form:

L̃ (w) w̃ ≡
(
L̃1 (w) w̃

L̃2 (w) w̃

)
≡ ∂tw̃ +A1∂xw̃ + (T1 + T2) w̃ = f̃ , (4.6)

where A1 is the coefficient matrix of the first-order space derivative terms and T1 + T2 is an operator
involving derivatives of order two or higher:

A1 =

(
u ρ

p′ (ρ) ρ−1 u

)
, (4.7)

T1w̃ = −ν
(

0
4ρ̃x

)
, T2w̃ = −µρ−1

(
0

4
3 ũxx

)
. (4.8)

Let 〈·, ·〉 denote the L2 inner product in x ∈ R. Denote ‖ · ‖ ≡ ‖ · ‖0, the corresponding norm, and
‖ · ‖k, the kth order Sobolev norm.

Let β0 be a constant such that the variables w = (ρ, u) in the coefficients of (4.4) that satisfy

sup
x,t

ρ−1 + |ρt|+
∑
|j|≤2

|Dj
xw|

 ≤ β0.

Let C0 denote the constant that depends only upon β0. Then we have the following zero-order energy
estimate.

Theorem 4.1 The smooth solution w̃ ∈ C∞0 ([0, T ]× R) of (4.4) and (4.5) satisfies the estimate

∂t
(
‖w̃‖2 + ‖ρ̃x‖2

)
+ ‖ũx‖2 ≤ C0

(
‖w̃‖2 + ‖ρ̃x‖2 + ‖f̃‖2 + ‖f̃1‖21

)
(4.9)
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and

‖w̃‖2[0,T ] ≤ C0(T )

(
‖w̃0‖2 + ‖ρ̃0‖21 +

∫ T

0

(
‖f̃(t)‖2 + ‖f̃1(t)‖21

)
dt

)
. (4.10)

Here the norm ‖w̃‖2[0,T ] is defined as follows:

‖w̃‖2[0,T ] = sup
0≤t≤T

(
‖w̃(t)‖2 + ‖ρ̃x(t)‖2

)
+

∫ T

0

‖ũx(t)‖2dt. (4.11)

Proof. Let us define the diagonal matrix

A0 =

(
1 0
0 ρ

)
.

Taking the L2 inner product of (4.6) with the vector A0w̃ = (ρ̃, ρũ), we obtain

〈∂tw̃, A0w̃〉+ 〈(T1 + T2) w̃, A0w̃〉 = −〈A1∂xw̃, A0w̃〉+ 〈f̃ , A0w̃〉
≤ ‖f̃‖‖A0w̃‖ − 〈A1∂xw̃, A0w̃〉

≤ C0

(
‖f̃‖+ ‖w̃‖+ ‖ρ̃x‖

)
‖w̃‖

≤ C0

(
‖w̃‖2 + ‖ρ̃x‖2 + ‖f̃‖2

)
,

(4.12)

where we have used that

〈A1∂xw̃, A0w̃〉 = 〈
(
uρ̃x + ρũx, p

′(ρ)ρ−1ρ̃x + uũx
)
, (ρ̃, ρũ)〉

=

∫
R
{uρ̃xρ̃+ ρρ̃ũx + p′(ρ)ũρ̃x + uρũxũ} dx

=

∫
R

{
1

2
u∂x (ρ̃)

2 − ũ∂x (ρρ̃) + p′(ρ)ũρ̃x +
1

2
uρ∂x (ũ)

2

}
dx

≤ −1

2

∫
R
uxρ̃

2dx+ C0‖ũ‖‖ρ̃x‖ −
1

2

∫
R
∂x (uρ) ũ2dx

≤ C0‖ũ‖‖ρ̃x‖+ C0‖w̃‖2.

Now, since

1

2
∂t‖
√
A0w̃‖2 =

1

2
∂t

∫
R

(
ρ̃2 + ρũ2

)
dx =

∫
R

(
ρ̃tρ̃+ ρũtũ+ ũ2ρt

)
dx = 〈∂tw̃, A0w̃〉+

∫
R
ũ2ρtdx,

we have

〈∂tw̃, A0w̃〉 ≥
1

2
∂t‖
√
A0w̃‖2 − C0‖w̃‖2. (4.13)

From the first equation in (4.4),
ρũx = − (∂t + u∂x) ρ̃+ f̃1,
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and by standard integration by parts we obtain

〈T1w̃, A0w̃〉 = 〈(0,−ν4ρ̃x) , (ρ̃, ρũ)

= −ν
∫
R

(4ρ̃x) (ρũ) dx

= ν

∫
R

(4ρ̃) (ρũ)x dx

= 〈ν4ρ̃, ρũx + ρxũ〉
= 〈ν4ρ̃,− (∂t + u∂x) ρ̃+ f̃1 + ρxũ〉

= ν〈ρ̃x, ∂tρ̃x〉 − ν
∫
R
ρ̃xxuρ̃xdx+ ν

∫
R
ρ̃xxf̃1dx+ ν

∫
R
ρ̃xxρxũdx

= ν

(
1

2
∂t‖ρ̃x‖2 +

1

2

∫
R
u∂x (ρ̃x)

2
dx−

∫
R
ρ̃x∂xf̃1dx− ν

∫
R
ρ̃x∂x(ρxu)dx

)
= ν

(
1

2
∂t‖ρ̃x‖2 +

1

2

∫
R
u∂x (ρ̃x)

2
dx−

∫
R
ρ̃x∂xf̃1dx− ν

∫
R
ρ̃x(ρxxũ+ ρxũx)dx

)
≥ ν

2
∂t‖ρ̃x‖2 − C0

(
‖ρ̃x‖2 + ‖ρ̃x‖‖ũ‖+ ‖ρ̃x‖‖ũx‖+ ‖f̃1‖1‖ρ̃x‖

)
≥ ν

2
∂t‖ρ̃x‖2 − C0

(
‖ρ̃x‖2 + ‖w̃‖2 + ‖f̃1‖21

)
− ε‖ũx‖2,

(4.14)

where we used
〈νρ̃xx,−∂tρ̃〉 = ν〈ρ̃x, ∂tρ̃x〉 =

ν

2
∂t‖ρ̃x‖2.

For the term involving T2 we have

〈T2w̃, A0w̃〉 = 〈
(

0,−4

3
µρ−1ũxx

)
, (ρ̃, ρũ)〉

= −4

3

∫
R
µũxxũxdx =

4

3
µ

∫
R
ũ2
xdx

=
4

3
µ‖ũx‖2 ≥ µ‖ũx‖2.

(4.15)

Then, combining (4.12)-(4.15) and noticing that ‖A0w̃‖ ∼ ‖w̃‖ we obtain the estimate (4.9).
From (4.9), using the Gronwall’s lemma, we obtain

‖w̃(t)‖2 + ‖ρ̃x(t)‖2 ≤ eC0t
(
‖w̃0‖2 + ‖ρ̃0‖2

)
+

∫ t

0

eC0(t−s)
(
‖f̃(s)‖2 + ‖f̃1(s)‖21

)
ds. (4.16)

Replacing the term ‖w̃‖2 + ‖ρ̃x‖2 on the right of (4.9), we get

∂t
(
‖w̃‖2 + ‖ρ̃x‖2

)
+ ‖ũx‖2 ≤ C0

(
eC0t

(
‖w̃0‖2 + ‖ρ̃0x‖2

)
+ eC0t

∫ t

0

e−C0s
(
‖f̃(s)‖2 + ‖f̃1(s)‖21

)
ds

)
+ C0

(
‖f̃(t)‖2 + ‖f̃1(t)‖21

)
≤ C0

(
eC0t

(
‖w̃0‖2 + ‖ρ̃0x‖2

)
+ eC0t

∫ T

0

(
‖f̃(s)‖2 + ‖f̃1(s)‖21

)
ds

)
+ C0

(
‖f̃(t)‖2 + ‖f̃1(t)‖21

)
.
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Finally, integrating the last expression from 0 to t1, we obtain∫ t1

0

∂t
(
‖w̃‖2 + ‖ρ̃x‖2

)
dt+

∫ t1

0

‖ũx(t)‖2dt ≤
(∫ t1

0

C0e
C0tdt

)(
‖w̃0‖2 + ‖ρ̃0x‖2

)
+ C0

∫ t1

0

(
‖f̃(t)‖2 + ‖f̃1(t)‖21

)
dt

+

(∫ t1

0

eC0tdt

)∫ T

0

(
‖f̃(s)‖2 + ‖f̃1(s)‖21

)
ds,

yielding (4.10).�

Now we derive high-order estimates. We denote

‖w̃‖2k,[0,T ] ≡
∑
j≤k

‖Dj
xw̃‖2[0,T ].

Let βk be a constant such that the variable w = (ρ, u) in the coefficients of (4.6) satisfies

sup
t,x

ρ−1 + |ρt|+
∑
j≤2

|Dk
xw|

+ ‖w‖2k,[0,T ] ≤ βk. (4.17)

Let Ck denote the constant that depends only upon βk. Then we have the following kth order energy
estimate.

Theorem 4.2 For any integer k ≥ 4, the smooth solution w̃ ∈ C∞0 ([0, T ]× R) of (4.4) and (4.5)
satisfies the estimates

∂t
(
‖w̃‖2k + ‖ρ̃‖2k+1

)
+ ‖ũ‖2k+1

≤ Ck
(
‖w̃‖2k + ‖ρ̃‖2k+1 + ‖f̃1‖k+1 + ‖f̃‖2k

)
,

(4.18)

and

‖w̃‖2k,[0,T ] ≤ Ck(T )

(
‖w̃0‖2k + ‖ρ̃0‖2k+1 +

∫ T

0

(
‖f̃(t)‖2k + ‖f̃1(t)‖2k+1

)
dt

)
. (4.19)

Proof. Let ∇k denote the derivative of order k with respect to x. Then, applying ∇j to (4.6), we
have

L̃ (w̃)∇jw̃ = ∇j f̃ −
[
∇j , L̃

]
w̃. (4.20)

Taking the inner product of (4.20) with A0∇jw̃, we obtain

〈∂t∇jw̃, A0∇jw̃〉+ 〈(T1 + T2)∇jw̃, A0∇jw̃〉 = −〈A1∇jw̃, A0∇jw̃〉+ 〈∇j f̃ , A0∇jw̃〉
+ 〈[∇j , L̃]w̃, A0∇jw̃〉.

Now, we observe that

〈A1∇jw̃, A0∇jw̃〉 = 〈
(
u∂x∇j ρ̃+ ρ∂x∇j ũ, p′ρ−1∂x∇j ρ̃+ u∂x∇j ũ

)
,
(
∇j ρ̃, ρ∇j ũ

)
〉,

where we have

〈ρ∂x∇j ũ,∇j ρ̃〉 =

∫
R
ρ
(
∂x∇j ũ

)
∇j ρ̃dx

= −
∫
R

(
∇j ũ

)
∂x
(
ρ∇j ρ̃

)
dx

≤ C̃‖ρ̃‖j+1‖ũ‖j ,
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and

〈u∂x∇j ũ, ρ∇j ũ〉 =

∫
R
uρ
(
∂x∇j ũ

)
∇j ũdx

=
1

2

∫
R
uρ∂x

(
∇j ũ

)2
dx

= −1

2

∫
R

(
∇j ũ

)2
∂x (uρ) dx

≤ C‖ũ‖2j .

Then we can write

−〈A1∇jw̃, A0∇jw̃〉+ 〈∇j f̃ , A0∇jw̃〉+ 〈[∇j , L̃]w̃, A0∇jw̃〉

≤ Cj
(
‖w̃‖2j + ‖ρ̃‖2j+1 + ‖f̃‖2j + |〈A0∇jw̃, [∇j , L̃]w̃〉|

)
. (4.21)

And using a reasoning similar to the one used to obtain (4.13), we can write

〈∂t∇jw̃, A0∇jw̃〉 ≥
1

2
∂t‖
√
A0∇jw̃‖2 − Cj‖w̃‖2j .

Moreover,

〈T2∇jw̃, A0∇jw̃〉 = 〈(0,−4

3
µρ−14∇j ũ), (∇j ρ̃, ρ∇j ũ〉

= −4

3
µ

∫
R

(
4∇j ũ

)
∇j ũdx

=
4

3
µ

∫
R

(
∇j ũx

)2
dx

=
4

3
µ‖∇j+1ũ‖2.

Then, using the above two expressions and (4.21) we obtain

∂t‖∇jw̃‖2 + ‖∇j+1ũ‖2 + 〈A0∇jw̃, T1∇w̃〉

≤ Cj
(
‖w̃‖2j + ‖ρ̃‖2j+1 + ‖f̃‖2j + |〈A0∇jw̃, [∇j , L̃]w̃〉|

)
.

(4.22)

Before we proceed, we note that up to here in the proof we have used only the first term in left-hand
side of (4.17). Now, let us consider the term

〈A0∇jw̃, T1∇jw̃〉 = 〈(∇j ρ̃, ρ∇j ũ), (0,−ν4∇j+1ρ̃〉

= −ν
∫
R

(
4∇j+1ρ̃

)
ρ∇j ũdx

= ν

∫
R

(
4∇j ρ̃

) (
ρ∇j ũx + ρx∇j ũ

)
dx

= ν〈4∇j ρ̃, ρ∇j ũx〉+ ν〈4∇j ρ̃, ρx∇j ũ〉.

From the first equation in (4.6), we have

ρ∇j ũx = − (∂t + u∂x)∇j ρ̃−∇j f̃1 − [∇j , L̃1(w)]w̃,

and if we make the computation, we can see that

[∇j , L̃1(w)]w̃ = {· · · }1 + {· · · }2 ,
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where {· · · }1 and {· · · }2 contain terms of the form

αj
(
∇j−iu

) (
∇i+1ρ̃

)
,

αj
(
∇j−iρ

) (
∇i+1ũ

)
,

respectively, for 0 ≤ i ≤ j − 1 and some αj ’s constants. Then we have

ν〈4∇j ρ̃, ρ∇j ũx〉 = ν〈4∇j ρ̃,− (∂t + u∂x)∇j ρ̃−∇j f̃1 − ({· · · }1 + {· · · }2)〉

≥ −ν〈4∇j ρ̃,∇j∂tρ̃〉 −
ν

2

∫
R
u∂x

(
∇j+1ρ̃

)2
dx− Cj‖∇j+1ρ̃‖‖f̃1‖j+1 − Cj‖∇j+1ρ̃‖‖∇j+1ũ‖

≥ −ν〈4∇j ρ̃,∇j∂tρ̃〉+
ν

2

∫
R
∂xu

(
∇j+1ρ̃

)2
dx− Cj‖∇j+1ρ̃‖‖f̃1‖j+1 − Cj‖∇j+1ρ̃‖‖∇j+1ũ‖

≥ −ν〈4∇j ρ̃,∇j∂tρ̃〉 − Cj‖∇j+1ρ̃‖2 − Cj‖∇j+1ρ̃‖‖f̃1‖j+1 − Cj‖∇j+1ρ̃‖‖∇j+1ũ‖.

In the above computations we used the second term in the left-hand side of (4.17). Also we have

ν〈4∇j ρ̃, ρx∇j ũ〉 = ν

∫
R

(
4∇j ρ̃

)
ρx∇j ũdx

= −ν
∫
R

(
∇j+1ρ̃

)
∂x
(
ρx∇j ũ

)
dx

≤ Cj‖∇j+1ρ̃‖‖∇j+1ũ‖.

Then we can write

〈A0∇jw̃, T1∇jw̃〉 ≥
ν

2
∂t‖∇j+1ρ̃‖2 − ε‖∇j+1ũ‖2

− Cj
(
‖∇j+1ρ̃‖2 + ‖f̃1‖2j+1

)
,

(4.23)

where we have used that

ν〈4∇j ρ̃,∇ρ̃t〉 = ν

∫
R

(
4∇j ρ̃

) (
∇j ρ̃t

)
dx = −ν

∫
R

(
∇j+1ρ̃

) (
∇j+1ρ̃t

)
dx

= −ν
2
∂t

∫
R

(
∇j+1ρ̃

)2
dx

= −ν
2
∂t‖∇j+1ρ̃‖2.

Now, we discuss the terms involving the commutator [∇j , L̃]. By the form of [∇j , L̃1(w)]w̃ we have

〈∇j ρ̃, [∇j , L̃1(w)]w̃〉 ≤ Cj‖w̃‖2j ,

and for the second coordinate of the commutator we obtain

[∇j , L̃2(w̃)] = {· · · }a + {· · · }b + {· · · }c ,

where {· · · }a, {· · · }b, and {· · · }c contain terms of the form

βj
(
∇j−iu

) (
∇i+1ũ

)
,

βj
(
∇j−i

(
p′(ρ)ρ−1

)) (
∇i+1ρ̃

)
, and

βj
(
∇j−iρ−1

) (
∇i+2ũ

)
,

respectively, for 0 ≤ i ≤ j − 1, and some βj ’s constants. Then we can write

〈ρ∇j ũ, [∇j , L̃2(w)]w̃〉 ≤ Cj
(
‖w̃‖2j + ‖∇j+1ρ̃‖2

)
+ ε‖∇j+1ũ‖2.
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Thus, with the last two estimates, we obtain

|〈A0∇jw̃, [∇j , L̃(w)]w̃〉| ≤ Cj
(
‖w̃‖2j + ‖∇j+1ρ̃‖2

)
+ ε‖∇j+1ũ‖2. (4.24)

Combining (4.22)-(4.24) and taking j = k, we obtain

∂t
(
‖w̃‖2k + ‖ρ̃‖2k+1

)
+ ‖ũ‖2k+1

≤ Ck
(
‖w̃‖2k + ‖ρ̃‖2k+1 + ‖f̃1‖k+1 + ‖f̃‖2k

)
,

which is (4.18). Applying Gronwall’s lemma to last expression, as we did to obtain (4.10), we obtain
(4.19). �

4.2 Existence of solutions for the linearized problem

By the energy estimate (4.19) we need only to prove the existence of the solution for the problem
(4.4)-(4.5) for f̃ ∈ C∞0 ([0, T ]× R) and w̃ = 0. Let the sequence of smooth functions {(f̃)i} converge
to f̃ . Then, by (4.19), the solution sequence {w̃i} converges to the desired function. The homogeneous
initial condition is due to the linearity of the operator L̃.

Remark: It is well known that C∞0
(
[0, T ];Hk (R)

)
is dense in L2

(
[0, T ];Hk (R)

)
(see Theo-

rem 2.1 in [11], Chapter 1)). Also, since the space C∞0 (R) is dense in Hk (R), and we can think
the elements of C∞0 ([0, T ]× R) as elements of C∞0

(
[0, T ];Hk (R)

)
, then we can approximate func-

tions g ∈ C∞0
(
[0, T ];Hk (R)

)
by functions in C∞0 ([0, T ]× R). Thus, we conclude that any function

f ∈ L2
(
[0, T ];Hk (R)

)
, can be approximated by functions h ∈ C∞0 ([0, T ]× R).

In the sequel, we use the dual method to prove the existence of the following problem in [0, T ]:

Lw̃ ≡ ∂tw̃ +A1∂xw̃ + (T1 + T2) w̃ = f̃ , (4.25)

w̃(x, 0) = 0, (4.26)

where A1 and the operator T1, T2 are defined in (4.7) and (4.8), respectively. The adjoint operator L∗

for (4.25) is defined by
〈Lw̃, φ̃〉 = 〈w̃, L∗φ̃〉,

where the above equality has to be understood in the sense of the pairing of L2
(
[0, T ];H−k (R)

)
and

L2
(
0, T ;Hk (R)

)
. Then to prove the existence of weak solutions w̃ ∈ L2

(
[0, T ];Hk (R)

)
for (4.25) and

(4.26), we need to establish the energy estimates of negative order for the operator L∗. We first derive
the classical energy estimates for

L∗φ̃ = −∂tφ̃−A∗1∂xφ̃+ (T ∗1 + T ∗2 ) φ̃ = g̃, (4.27)

φ̃(x, T ) = 0. (4.28)

Theorem 4.3 The solutions of (4.27) and (4.28) satisfy the following estimate:

‖φ̃(t)‖2 + ‖∂xφ̃2(t)‖2 ≤ C
∫ T

0

‖g̃(τ)‖2dτ. (4.29)

Proof. The operator L∗ can be explicitly written as follows:
− (∂t + ∂xu) φ̃1 − ∂x

(
p′(ρ)ρ−1φ̃2

)
+ ν4∂xφ̃2 = g̃1,

− (∂t + ∂xu) φ̃2 − ∂x
(
ρφ̃1

)
− 4

3∂xx

(
ρ−1φ̃2

)
= g̃2.

(4.30)
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Taking the inner product of the second equation in (4.30) with φ̃2, we have〈
−∂tφ̃2, φ̃2

〉
− 4

3
µ
〈
∂xx

(
ρ−1φ̃2

)
, φ̃2

〉
=
〈
∂x

(
ρφ̃1 + uφ̃2

)
+ g̃2, φ̃2

〉
.

We integrate by parts the second therm in the left-hand side of the last expression to obtain

−
〈
∂xx

(
ρ−1φ̃2

)
, φ̃2

〉
= −

∫
R
∂xx

(
ρ−1φ̃2

)
φ̃2dx

=

∫
R
∂x

(
ρ−1φ̃2

)
∂xφ̃2dx

=

∫
R
∂x
(
ρ−1

)
φ̃2∂xφ̃2dx+

∫
R
ρ−1∂xφ̃2∂xφ̃2dx

= ‖ρ−1/2φ̃x‖2 +
1

2

∫
R
∂x
(
−ρ−1

)
∂x

(
φ̃2

)2

dx

= ‖ρ−1/2φ̃x‖2 +
1

2

∫
R

(
∂xxρ

−1
)
φ̃2

2dx

≥ ‖ρ−1/2φ̃x‖2 − C‖φ̃2‖2.

Also 〈
−∂tφ̃2, φ̃2

〉
= −

∫
R

(
∂tφ̃2

)
φ̃2dx = −1

2
∂t

∫
R
φ̃2

2dx = −1

2
∂t‖φ̃2‖2.

We can estimate the terms in the right-hand side as

〈∂x(uφ̃2), φ̃2〉 =

∫
R
∂x(uφ̃2)φ̃2dx

= −
∫
R
uφ̃2∂xφ̃2dx

= −1

2

∫
R
u∂x

(
φ̃2

2

)
dx

=
1

2

∫
R

(∂xu) φ̃2
2dx

≤ C‖φ̃2‖2,

and

〈∂x(ρφ̃1), φ̃2〉 =

∫
R
φ̃2∂x

(
ρφ̃1

)
dx

= −
∫
R
ρ3/2φ̃1ρ

−1/2∂xφ̃2dx

≤ C‖φ̃1‖2 +
1

3
µ‖ρ−1/2∂xφ̃2‖2.

Here we have used the inequality

‖a‖‖b‖ ≤ ε‖a‖2 +
1

ε
‖b‖2, (4.31)

for ε > 0. Thus we get the following estimate

−1

2
∂t‖φ̃2‖2 + µ‖ρ−1∂xφ̃2‖2 ≤ C

(
‖φ̃‖2 + ‖g̃2‖2

)
. (4.32)

Now, we take the inner product of the second equation in (4.30) with −∂xxφ̃2 to obtain〈
∂tφ̃2, ∂xxφ̃2

〉
+

4

3
µ
〈
∂xx

(
ρ−1φ̃2

)
, ∂xxφ̃2

〉
+ 〈∂x

(
ρφ̃1

)
, ∂xxφ̃2〉 =

〈
∂x(uφ̃2) + g̃2,−∂xxφ̃2

〉
.
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And for the second term in the left-hand side, we have the estimate

〈∂xx
(
ρ−1φ̃2

)
, ∂xxφ̃2〉 =

∫
R
∂xx

(
ρ−1φ̃2

)
∂xxφ̃2dx

=

∫
R

{
φ̃2∂xxρ

−1 + 2
(
∂xρ
−1
) (
∂xφ̃2

)
+ ρ−1∂xxφ̃2

}
∂xxφ̃2dx

= ‖ρ−1/2∂xxφ̃2‖2 +

∫
R
∂x
(
ρ−1

)
∂x

(
∂xφ̃2

)2

dx+

∫
R
ρ1/2φ̃2ρ

−1/2
(
∂xxφ̃2

)
∂xx

(
ρ−1

)
dx

≥ ‖ρ−1/24φ̃2‖2 −
∫
R

(
∂xxρ

−1
) (
∂xφ̃2

)2

dx− C‖φ̃2‖2 − ε‖ρ−1/2∂xxφ̃2‖

≥ (1− ε) ‖ρ−1/24φ̃2‖2 − C
(
‖φ̃2‖2 + ‖∂xφ̃2‖

)
,

where, again, we have used (4.31). Also, we have

〈∂tφ̃2, ∂xxφ̃2〉 =

∫
R

(
∂tφ̃2

)
∂xxφ̃2dx

= −
∫
R

(
∂t∂xφ̃2

)
∂xφ̃2dx

= −1

2
∂t

∫
R

(
∂xφ̃2

)2

dx

= −1

2
∂t‖∂xφ̃2‖2,

and
〈∂x(ρφ̃1),4φ̃2〉 = −〈ρφ̃1,4(∂xφ̃2)〉.

Using an argument similar to the one we used in obtaining (4.32), we get〈
g̃2,−∂xxφ̃2

〉
≤ C

(
‖φ̃‖2 + ‖∂xφ̃2‖2 + ‖g̃2‖2

)
+ ε‖ρ−1/2∂xxφ̃2‖2.

Moreover,

−〈∂x(uφ̃2), ∂xxφ̃2〉 = −〈(∂xu)φ̃2, ∂xxφ̃2〉 − 〈u∂xφ̃2, ∂xxφ̃2〉

= −
∫
R

(∂xu)φ̃2∂xxφ̃2dx−
1

2

∫
R
u∂x

(
∂xφ̃2

)2

dx

=

∫
R
∂x((∂xu)φ̃2)∂xφ̃2dx+

1

2

∫
R

(∂xu)
(
∂xφ̃2

)2

dx

≤ C
(
‖φ̃2‖2 + ‖∂xφ̃2‖2

)
.

Thus, we obtain the estimate

−1

2
∂t‖∂xφ̃2‖2 + µ‖ρ−1/24φ̃2‖2 − 〈ρφ̃1,4(∂xφ̃2)〉

≤ C
(
‖φ̃2‖2 + ‖∂xφ̃2‖2 + ‖g̃2‖2

)
.

(4.33)

From the first equation in (4.30) one finds that

4∂xφ̃2 = ν−1
[
(∂t + ∂xu) φ̃1 + ∂x(p′(ρ)ρ−1φ̃2) + g̃1

]
,

and

〈ρφ̃1, ∂tφ̃1〉 =

∫
R
ρφ̃1∂tφ̃1dx =

1

2
∂t‖ρ1/2φ̃1‖2 −

1

2

∫
R
φ̃2

1∂tρdx

≤ 1

2
∂t

∫
R
ρφ̃2

1dx+ C‖φ̃1‖2,

18



〈ρφ̃1, ∂x(uφ̃1)〉 = 〈ρφ̃1, (∂xu)φ̃1 + u∂xφ̃1〉

=

∫
R
ρ(∂xu)φ̃2

1dx+
1

2

∫
R
ρu∂x

(
φ̃1

)2

dx

=

∫
R
ρ(∂xu)φ̃2

1 −
1

2

∫
R

(∂x(ρu))φ̃2
1dx

≤ C‖φ̃1‖2,

〈ρφ̃1, ∂x(p′(ρ)ρ−1φ̃2)〉 =

∫
R
ρφ̃1∂x(p′(ρ)ρ−1φ̃2)dx

≤ C
(
‖φ̃1‖2 + ‖φ̃2‖2 + ‖∂xφ̃2‖2

)
= C

(
‖φ̃‖2 + ‖∂xφ̃2‖2

)
.

Therefore, from (4.33) we obtain the following estimate:

−∂t
(
‖φ̃1‖2 + ‖∂xφ̃2‖2

)
+ ‖ρ−1/24φ̃2‖2 ≤ C

(
‖φ̃‖2 + ‖∂xφ̃2‖2 + ‖g̃‖2

)
. (4.34)

Combining (4.32) and (4.34) yields

−∂t
(
‖φ̃‖2 + ‖∂xφ̃2‖2

)
+ ‖ρ−1/24φ̃2‖2 ≤ C

(
‖φ̃‖2 + ‖∂xφ̃2‖2 + ‖g̃‖2

)
,

from which it follows that

−∂t
(
‖φ̃‖2 + ‖∂xφ̃2‖2

)
≤ C

(
‖φ̃‖2 + ‖∂xφ̃2‖2 + ‖g̃‖2

)
. (4.35)

Applying the Gronwall inequality and noticing that φ̃ = 0 in t = T , we get (4.29). �

Next, we derive the negative norm estimates for the solutions of (4.27) and (4.28). Let Λ denote
the operator with symbol

λ (ξ) =
√

1 + ξ2,

where ξ is the dual variable of x. Now, we state the following theorem

Theorem 4.4 For any s ∈ R, the solution of (4.27) and (4.28) satisfies the following estimate:

‖Λsφ̃(t)‖2 + ‖Λs+1φ̃2‖2 ≤ C
∫ T

0

‖Λsg̃(τ)‖2dτ. (4.36)

We omit the proof, since its proof is very similar to the one of the previous theorem, except that we
need to take a little care with the pseudo-differential operator Λ. Using theorem 4.4 we can derive the
existence of a differentiable weak solution for (4.25) and (4.26). Since, for any large integer k, we have∣∣∣∣∣

∫ T

0

〈f̃ , φ̃〉dt

∣∣∣∣∣ =

∣∣∣∣∣
∫ T

0

〈Λkf̃ ,Λ−kφ̃〉dt

∣∣∣∣∣ ≤
∫ T

0

‖Λkf̃‖‖Λ−kφ̃‖dt,

and applying (4.36) with s = −k, we obtain∣∣∣∣∣
∫ T

0

〈f̃ , φ̃〉dt

∣∣∣∣∣ ≤ C
(∫ T

0

‖Λkf̃‖dt

)(∫ T

0

‖Λ−kL∗φ̃‖2dt

)1/2

.

Therefore, ∫ T

0

〈f̃ , φ̃〉dt,
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defines a bounded linear functional of L∗φ̃ in the space L2
(
[0, T ];H−k(R)

)
. Then, using the Hanh-

Banach extension theorem and the Riesz representation theorem, we conclude that there exist a unique
w̃ ∈ L2

(
[0, T ];Hk(R)

)
such that∫ T

0

〈f̃ , φ̃〉dt =

∫ T

0

〈w̃, L∗φ̃〉dt =

∫ T

0

〈Lw̃, φ̃〉dt ∀φ̃ ∈ C∞0 ([0, T ]× R) , (4.37)

since it is well known that the dual space of Lp ([0, T ];X) is Lq ([0, T ];X∗), with (p, q) conjugate
indices. We note that the last equality is, precisely, the definition of L∗. Now, since equality (4.37) is
taking place in L2

(
[0, T ];H−k(R)

)
, we can conclude that

〈f̃ , φ〉L2(R) = 〈Lw̃, φ〉L2(Ω), ∀φ ∈ C∞0 (R) ,

for almost every t ∈ [0, T ] (see Lemma 7.4 in [12]). Also, we are assuming k ≥ 3, so that by the em-
bedding Sobolev theorem, the space derivatives in the above expression are derivatives in the classical
sense. Then, with all the previous discussion and some remarks that are going to be make in the next
subsection, we have proved the following:

Theorem 4.5 For all f̃ ∈ L2
(
[0, T ];Hk (R)

)
, f̃1 ∈ L2

(
[0, T ];Hk+1 (R)

)
, w̃0 ∈ Hk (R), ρ̃0 ∈ Hk+1 (R),

the Cauchy problem (4.4)-(4.5) has a unique solution w̃ such that its norm ‖w̃‖k,[0,T ] is bounded and
satisfies the estimate (4.19).

4.3 Local existence of solution for the nonlinear problem

Once that we have established the existence of the linearized problem, we are in a position to prove
the local existence of solutions for the Cauchy problem of (4.1) and (4.3). Let us consider the initial
value problem 

ρt + (ρu)x = 0,

(ρu)t +
(
ρu2
)
x

=
{
−p− ν

2ρ
2
x + νρρxx + 4

3µux
}
x
,

(4.38)

ρ(x, 0) = ρ0(x), u(x, 0) = u0(x). (4.39)

We have the following

Theorem 4.6 For any initial condition (ρ0, u0) such that ρ0 − ρ̄0 ≥ δ > 0, ρ0 − ρ̄0 ∈ Hk+1 (R), and

(ρ0 − ρ̄0, u0) ∈
(
Hk (R)

)2
, where ρ̄0 > 0 is a constant, there exists a T > 0 such that for t ∈ [0, T ], the

Cauchy problem (4.38) and (4.39) has a unique solution (ρ, u) such that ρ−ρ̄0 ∈ L∞
(
[0, T ];Hk+1 (R)

)
,

u ∈ L∞
(
[0, T ];Hk (R)

)
, and

‖w − (ρ̄0, 0)‖2k,[0,T ] ≤ Ck
(
‖(ρ0 − ρ̄0, u0)‖2k + ‖ρ0 − ρ̄0‖2k+1

)
.

Remark. The solution of the above theorem are classical solutions, i.e., all the derivatives in (4.38)
exist and are continuous, and (4.38) and (4.39) are satisfied in the classical sense.

The remark is shown as follows. First, from

ρ ∈ L∞
(
[0, T ];H5 (R)

)
, u ∈ L∞

(
[0, T ];H4 (R)

)
, (4.40)

we have
∂3
xρ ∈ L∞

(
[0, T ];H2 (R)

)
, ∂2

xu ∈ L∞
(
[0, T ];H2 (R)

)
. (4.41)

Since in the first equation in (4.38) we have only fist order spatial derivatives, and in the second we
have up to third order, we obtain

∂tρ ∈ L∞
(
[0, T ];H3 (R)

)
, ∂tu ∈ L∞

(
[0, T ];H2 (R)

)
. (4.42)
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Therefore,
∂t∂

3
xρ ∈ L∞

(
[0, T ];H0 (R)

)
, ∂t∂

2
xu ∈ L∞

(
[0, T ];H0 (R)

)
. (4.43)

From (4.41) and (4.43), and the fact that L∞ ([0, T ];X) ⊂ L2 ([0, T ];X) for T > 0 finite (and Theorem
4 in [6], p. 304), we have

∂3
xρ ∈ C

(
[0, T ];H1 (R)

)
, ∂2

xu ∈ C
(
[0, T ];H1 (R)

)
.

Thus, by Sobolev’s imbedding theorem,

∂3
xρ ∈ C ([0, T ];Cb (R)) , ∂2

xu ∈ C ([0, T ];Cb (R)) , (4.44)

where Cb (R) denotes the bounded and continuous real functions defined on R. Again from (4.38), we
obtain

∂2
t ρ ∈ L∞

(
[0, T ];H1 (R)

)
, ∂2

t u ∈ L∞
(
[0, T ];H0 (R)

)
. (4.45)

Them combining (4.42) and (4.45), by the same reasoning used to get (4.45), we have

∂tρ ∈ C ([0, T ];Cb (R)) , ∂tu ∈ C ([0, T ];Cb (R)) . (4.46)

This concludes the proof of the remark.

We write (4.38) in quasilinear form, that is

L (w)w ≡
{

(∂t + u∂x) ρ+ ρux = 0,
(∂t + u∂x)u+ p′ (ρ) ρ−1∂xρ− ν4∂xρ− 4

3µρ
−14u = 0.

Now, let us consider the following problem{
L (w)w = f,
w(x, 0) = (ρ0 − ρ̄0, u0),

(4.47)

where f is such that f1 ∈ L2
(
[0, T ];Hk+1 (R)

)
and f2 ∈ L2

(
[0, T ];Hk (R)

)
. Then, Theorem 4.6 is

equivalent to the following

Theorem 4.7 Under the conditions of Theorem 4.6, for any f1 ∈ L2
(
[0, T ];Hk+1 (R)

)
and f2 ∈

L2
(
[0, T ];Hk (R)

)
, there exists a T > 0 such that in t ∈ [0, T ] the Cauchy problem (4.47) has a unique

solution w such that ρ− ρ̄0 ∈ L∞
(
[0, T ];Hk+1 (R)

)
, u ∈ L∞

(
[0, T ];Hk (R)

)
, satisfying

‖w − (ρ̄0, 0)‖2k,[0,T ] ≤ Ck

(
‖(ρ0 − ρ̄0, u0)‖2k + ‖ρ0 − ρ̄0‖2k+1 +

∫ T

0

(
‖f‖2k + ‖f1‖2k+1

)
dt

)
. (4.48)

Before we start the proof of the theorem, let us just mention that the estimate (4.48) is the same as
in Theorem 4.6, just by taking f1 = f2 = 0 .

Proof. We are going to use a fixed point argument. Let w0(x, t) = 0 and wj(x, t) (j = 1, 2, . . .)
be defined as the unique solution (which exists because of Theorem 4.5) of the following linear Cauchy
problem:

L (wj−1) (wj − (ρ̄0, 0)) = f, wj(x, 0) = (ρ0 − ρ̄0, u0). (4.49)

The proof finishes if we can prove that the above problem has a fixed point. First, applying (4.19), we
obtain for v1 = w1 − (ρ̄0, 0)

‖v1‖2k,[0,T ] ≤ Ck(T )

(
‖(ρ0 − ρ̄0, u0)‖2k + ‖ρ0 − ρ̄0‖2k+1 +

∫ T

0

(
‖f‖2k + ‖f1‖2k+1

)
dt

)
, (4.50)
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and by Sobolev imbedding, the norm ‖ · ‖k,[0,T ] is an upper bound of the supremum norm in (x, t).
Then, with the last estimate, we choose T � 1 such that ρ̃1 > 0 and bounded from below, so that

sup
x,t

(ρ̃1)
−1
,

is well defined. Also, by (4.46) applied to v1, and again by the Sobolev imbedding theorem, to obtain
(4.17) for w1 it is enough to have

‖v1‖2k,[0,T ] ≤ βk,

which will be satisfied uniformly for all j = 1, 2, . . ., and some constant δ > 0

‖vj‖2k,[0,T ] ≤ δ ≤ βk, (4.51)

because of the estimate (4.50). Notice that the constant Ck is the same for all iterations (since it only
depends on βk). The constant δ > 0 depends on T > 0.

If we can show that the successive solutions vj satisfy

‖vj − vj−1‖k−2,[0,T ] ≤
1

2
‖vj−1 − vj−2‖k−2,[0,T ], (4.52)

by the fixed point theorem, applied to the space whose elements satisfy ‖ · ‖k−2,[0,T ] < ∞, we can
conclude the proof. The above mentioned space is a Banach space because is the intersection of spaces
of the form L∞ ([0, T ];X) and L2 ([0, T ];Y ), with X and Y being Banach spaces.

Let us prove (4.52) by induction. Assume that (4.51) and (4.52) are true for some j and all smaller
indices. From the energy estimate (4.19) for the linearized problem, we obtain

‖vj+1‖k,[0,T ] ≤ Ck

(
‖(ρ0 − ρ̄0, u0)‖2k + ‖ρ0 − ρ̄0‖2k+1 +

∫ T

0

(
‖f‖2k + ‖f1‖2k+1

)
dt

)
.

On the other hand, wj+1 − wj satisfies the homogeneous initial data and the equation:

L(wj) (wj+1 − wj) = (L(wj−1)− L(wj))wj , (4.53)

and if we make the computations, we obtain

(L(wj−1)− L(wj))wj =


(uj−1 − uj) ∂xρj + (ρj−1 − ρj) ∂xuj ,

(uj−1 − uj) ∂xuj +
(
p′(ρj−1)ρ−1

j−1 − p′(ρj)ρ
−1
j

)
∂xρj − 4

3µ
(
ρ−1
j−1 − ρ

−1
j

)
∂xxuj .

.

Since we have derivatives up to one and second order in the first and second term, respectively, then
we can apply Theorem 4.2 for k − 2, to obtain

‖wj+1 − wj‖2k−2,[0,T ] ≤ Ck−2δ

∫ T

0

‖wj − wj−1‖2k−2dt ≤ C̃k−2δ‖wj − wj−1‖2k−2,[0,T ], (4.54)

where we have used the Cauchy-Schwartz inequality in the left hand side of the estimate (4.19). Now,
since

‖vj − vj−1‖k−2,[0,T ] = ‖wj − wj−1‖k−2,[0,T ],

choosing δ such that C̃k−2δ <
1
4 , we get (4.52). This concludes the proof of Theorem 4.7. �
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5 Linear decay rates of solutions

Once we have seen that our model of interest is well-posed and we can find a compensation matrix,
we are in position of obtaining decay rates of the solutions to the linearized system around a constant
state (Maxwellian). This is the first step to give a nonlinear result.
First, we observe that the model in (3.10), linearized around a constant equilibrium state (τ̄ , ū) for
the specific volume and velocity field, respectively, and only taking the linear part, has the following
structure in the frequency space:

∂tÛ + iξA(ξ)Û + ξ2BÛ = 0, (5.1)

for ξ ∈ R, t > 0 and where

A(ξ) =

(
0 −1

−β(ξ) 0

)
, B =

(
0 0
0 µ̄/τ̄

)
.

Here τ̄ > c0 > 0 (no vacuum), µ̄ = µ(ū) (kinematic viscosity), and

β(ξ) = q̄ + ξ2k̄ > 0,

with k̄ = k(τ̄) > 0 (capillarity coefficient), and q̄ = −p′(τ̄) > 0 (a positive constant, since we are
assuming the pressure function satisfies p′(τ) < 0 for all τ). Û is the Fourier transform of (τ, u)T ,
perturbations of (τ̄ , ū).

We observe that system (5.1) is not symmetric, so we need to symmetrize it, but instead of the
symmetrizer used in §3.3, in this section we use the following

S0(ξ) =

(
1 0
0 β(ξ)−1

)
. (5.2)

Clearly S0(ξ) > 0 and symmetric, and we define

Â(ξ) := S0(ξ)A(ξ) =

(
0 −1
−1 0

)
, B̂(ξ) := S0(ξ)B =

(
0 0
0 β(ξ)−1µ̄/τ̄

)
,

which are symmetric and B̂ ≥ 0. Then we have the symmetric version of (5.1)

S0(ξ)Ût + iξÂ(ξ)Û + ξ2B̂(ξ)Û = 0. (5.3)

Thus we have the following definition.

Definition 5.1 Let S0, Â, B̂ ∈ C∞
(
R;R2×2

)
smooth, real matrix functions of ξ ∈ R. Assume that

S0, Â, B̂ are symmetric, with S0 > 0 and B̂ ≥ 0 for all ξ ∈ R. A real matrix valued function K ∈
C∞

(
R;R2×2

)
is said to be a compensating function for the triplet (S0, Â, B̂) if

a) K(ξ)S0(ξ) is skew-symmetric for all ξ ∈ R.

b)
[
K(ξ)Â(ξ)

]s
+ B̂(ξ) > 0 for all ξ ∈ R, ξ 6= 0.

Here [KA]
s

= 1
2

(
KA+ (KA)T

)
is the symmetric part of KA.

Regarding the comment made at the end of §3.4, Humpherys’ theory enable us to construct a com-
pensating function for the triplet (I, Â, B̂). One can easily check the following lemma.

Lemma 5.2 Under the assumptions of definition 5.1. Let us define

Ã(ξ) := S0(ξ)−1/2Â(ξ)S0(ξ)−1/2,
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B̃(ξ) := S0(ξ)−1/2B̂(ξ)S0(ξ)−1/2,

which are symmetric matrices and B̃ ≥ 0. Assume that K̃ = K̃(ξ) is a compensating function for the
triplet (I, Ã, B̃). Then

K(ξ) := S
1/2
0 (ξ)K̃(ξ)S

−1/2
0 (ξ), ξ ∈ R,

is a compensating function for the triplet
(
S0, Â, B̂

)
.

What we need next is a compensating function for the triplet (S0, Â, B̂), for S0, Â, and B̂ defined
as above. Then by the preceding lemma if we can construct a compensating function for the triplet
(I, Ã, B̃), automatically we obtain one for the triplet (S0, Â, B̂). Then we use the construction due to
Humpherys applied to the triplet (I, Ã, B̃).
Now, verifying the genuinely coupling condition for Ã and B̃ it is equivalent to verifying it for A and
B. This because by definition

Ã(ξ) = S0(ξ)1/2A(ξ)S0(ξ)−1/2,

B̃(ξ) = S0(ξ)1/2B(ξ)S0(ξ)−1/2.

Then v in the kernel of B̃ implies S
−1/2
0 (ξ)v is in the kernel of B. Now if v is also an eigenvector of Ã,

we have
S0(ξ)1/2A(ξ)S0(ξ)−1/2v = λv,

which implies
A(ξ)S0(ξ)−1/2v = λS0(ξ)−1/2v,

that is, S0(ξ)−1/2v is an eigenvector of A. Therefore genuine coupling of A and B implies the one for
Ã and B̃.

One can easily, as we did for (Â, B̂) in §3.4, that A and B satisfy the genuine coupling condition,
thus, according to the above remark, such condition also holds for Ã and B̃. Then we have the following
lemma.

Lemma 5.3 Let us define

K(ξ) := δ
ξ2µ̄

4β(ξ)2τ̄

(
0 −1
1 0

)
S0(ξ)−1,

where 0 < δ < 2k̄. Then:

i) K(ξ) ∈ C∞
(
R;R2×2

)
.

ii) K(ξ) is a compensating matrix function for the triplet (S0, Â, B̂).

iii) K(ξ) is uniformly bounded in ξ, that is, there exists C > 0 (independent of ξ) such that

|K(ξ)| ≤ C, ∀ξ.

Proof. Clearly, because of the form of β(ξ) and S0, the first assertion is true.
Next we proceed to prove ii). By the definition of K(ξ), we have

K(ξ)S0(ξ) = δ
ξ2µ̄

4β(ξ)2τ̄

(
0 −1
1 0

)
,
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which is a skew-symmetric matrix. For the product K(ξ)Â(ξ), we get

K(ξ)Â(ξ) = δ
ξ2µ̄

4β(ξ)2τ̄

(
0 −1
1 0

)
S0(ξ)−1S0(ξ)A(ξ)

= δ
ξ2µ̄

4β(ξ)2τ̄

(
0 −1
1 0

)
A(ξ)

= δ
ξ2µ̄

4β(ξ)2τ̄

(
0 −1
1 0

)(
0 −1

−β(ξ) 0

)
= δ

ξ2µ̄

4β(ξ)2τ̄

(
β(ξ) 0

0 −1

)
,

which is symmetric, then [KÂ]s = KÂ and[
K(ξ), Â(ξ)

]s
+ B̂(ξ) = K(ξ)Â(ξ) +B(ξ)

= δ
ξ2µ̄

4β(ξ)2τ̄

(
β(ξ) 0

0 −1

)
+

(
0 0
0 β(ξ)−1µ̄/τ̄

)
=

ξ2µ̄

4β(ξ)2τ̄

[
δ

(
β(ξ) 0

0 −1

)
+

(
0 0
0 4β(ξ)/ξ2

)]
=

ξ2µ̄

4β(ξ)2τ̄

(
δβ(ξ) 0

0 (4β(ξ)/ξ2)− δ

)
,

so that [K, Â] + B̂(ξ) > 0 if (4β(ξ)/ξ2)− δ > 0, which holds when 0 < δ < 2k̄, since we have that

4β(ξ)

ξ2
− δ =

4q̄ + ξ2k̄

ξ2
− δ ≥ 4k̄ − δ.

Thus the proof of ii) is complete.
To show iii), let us observe that

S0(ξ)−1 =

(
1 0
0 β(ξ)

)
.

Then we have

|K(ξ)| = δ
ξ2µ̄

4β(ξ)2τ̄
O(β(ξ)) = C̃ ·O

(
ξ2

β(ξ)

)
= C̃ ·O(1) = C,

where C > 0 is independent of ξ, and we have used that β(ξ) = q̄+ ξ2k̄. Thus the proof of the lemma
is complete. �

Next, we state and prove the results regarding the decay of the solution to the linearized system.
The statements and proofs are the same as in [3] , however, for the sake of completeness we include
the proofs.
Let us 〈, 〉 denote the inner product in Cn, and U the solution to the linearization of (3.10). Then we
have the following lemma.

Lemma 5.4 There exists k > 0 such that the solution to the linear system (3.12) satisfies

|Û(ξ, t)| ≤ C|Û(ξ, 0)| exp

(
− kξ2t

1 + ξ2

)
, (5.4)

for all t ≥ 0, ξ ∈ R and some uniform constant C > 0.
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Proof. We apply the Fourier transform to (3.12) and obtain (5.1); then we multiply by S0 to obtain
the symmetric system (5.3). Using that the coefficients matrices are symmetric, if we take the inner
product of (5.3) with Û and then take the real part, we obtain

1

2
∂t〈Û , S0Û〉+ ξ2〈Û , B̂Û〉 = 0. (5.5)

Now multiply (5.3) by −iξK and take the inner product with Û . We obtain

−〈Û , iξKS0Ût〉+ ξ2〈Û ,KÂÛ〉 − 〈Û , iξ3KB̂Û〉 = 0. (5.6)

Using the fact that KS0 is skew-symmetric one can easily verify that

Re〈Û , iξKS0Ût〉 =
1

2
ξ∂t〈Û , iKS0Û〉.

Also, we have the relation

Re
(
〈Û ,KÂÛ〉

)
=

1

2

(
〈Û ,KÂÛ〉+ 〈Û ,KÂÛ〉

)
=

1

2

(
〈Û ,KÂÛ〉+ 〈KÂÛ, Û〉

)
=

1

2

(
〈Û ,KÂÛ〉+ 〈Û , (KÂ)T Û〉

)
= 〈Û , [KÂ]sÛ〉.

Thus, we take the real part in (5.6) and get

−1

2
ξ∂t〈Û , iKS0Û〉+ ξ2〈Û , [KÂ]sÛ〉 = Re(〈Û , iξ3KB̂Û〉),

Since B̂ ≥ 0, we obtain, using (4.31), the estimate

−1

2
ξ∂t〈Û , iKS0Û〉+ ξ2〈Û , [KÂ]sÛ〉 ≤ εξ2|Û |2 + Cεξ

4〈Û , B̂Û〉, (5.7)

for any ε > 0 and where Cε > 0 is a uniform constant depending only on ε > 0 and |KB̂1/2|. Before
we proceed, we note that |KB̂1/2| is uniformly bounded in ξ since

K(ξ)B̂1/2(ξ) =
δξ2µ̄

4β2τ̄

(
0 −1
1 0

)(
1 0
0 β

)(0 0

0
√

µ̄
τ̄ β
−1/2

)

=
δξ2µ̄

4β2τ̄

(
0 −1
1 0

)(0 0

0
√

µ̄
τ̄ β

1/2

)
,

so that

|KB̂1/2| = ξ2

β2
O(β1/2) = O

(
ξ2

β3/2

)
= O

(
ξ2

ξ3

)
= O

(
1

ξ

)
.

Now multiply equation (5.5) by 1 + ξ2, equation (5.7) by γ > 0 and add them up. The result is

1

2
∂t

(
(1 + ξ2)〈Û , S0Û〉 − γξ〈Û , iKS0Û〉

)
+ ξ4〈Û , B̂Û〉

+ ξ2
(
γ〈Û , [KÂ]sÛ〉+ 〈Û , B̂Û〉

)
≤ εγξ2|Û |2 + γCεξ

4〈Û , B̂Û〉

(5.8)
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Now define

R := 〈Û , S0Û〉 −
γξ

1 + ξ2
〈Û , iKÂÛ〉.

Since S0 is symmetric and KS0 is skew-symmetric, R is real. Also, S0 > 0, so that we can find
C0 > 0 such that 〈Û , S0Û〉 ≥ C0|Û |2. Thus, we can easily find γ0 > 0, sufficiently small, such that if
0 < γ < γ0, then

1

C1
|Û |2 ≤ R ≤ C1|Û |2,

for some uniform C1 > 0.
Now, from the property b) of definition (5.1) for the compensating function K, there exists C̃0 > 0

such that 〈Û , ([KÂ]s + B̂)Û〉 ≥ C̃0|Û |2. Then if we take 0 < γ < 1 we arrive at

〈Û , (γ[KÂ]s + B̂)Û〉 ≥ C̃0γ|Û |2.

Now, we choose ε = C̃0/2 and 0 < γ < min {1, γ0, 1/Cε}. Thus from the last inequality and (5.8) we
obtain

1

2
∂tR+

1

2

(
ξ2

1 + ξ2

)
γC̃0|Û |2 +

(1− γCε)
1 + ξ2

ξ4〈Û , B̂Û〉 ≤ 0.

Using the lower bound for R and that 〈Û , B̂Û〉 ≥ 0, the above expression implies

∂tR+
kξ2

1 + ξ2
R ≤ 0,

where k = C̃0γ/C1. This inequality together with the Gronwall theorem imply the desire estimate
(5.4). �

Theorem 5.5 Suppose that U0 ∈ Hs(R)∩L1(R), with s ≥ 2. Then the solution to the Cauchy problem
for the linear system (3.12) with U(x, 0) = U0 satisfies the decay rate

‖∂lxU‖2L2 ≤ C
(
e−kt‖∂lxU0‖2L2 + (1 + t)−(l+1/2)‖U0‖2L1

)
, (5.9)

for 0 ≤ l ≤ s− 1 and some uniform C > 0.

Proof. Multiplying estimate (5.4) by ξ2l and then integrating yields∫
R2

ξ2l|Û(ξ, t)|2dξ ≤ C
∫
R
ξ2l|Û(ξ, 0)|2exp

(
− 2kξ2t

1 + ξ2

)
dξ =: C (R1(t) +R2(t)) ,

where R1 and R2 denote the integral on the right side computed on the sets ξ ∈ (−1, 1) and |ξ| > 1,
respectively. Since for ξ ∈ (−1, 1) it holds 1

2ξ
2 ≤ ξ2/(1 + ξ2), we have the estimate for R1(t)

R1(t) =

∫ 1

−1

ξ2l|Û(ξ, 0)|2exp

(
− 2kξ2t

1 + ξ2

)
dξ ≤ sup

ξ∈R
|Û0(ξ)|2

∫ 1

−1

ξ2le−kξ
2tdξ

≤ ‖U0‖2L1

∫ 1

−1

ξ2le−kξ
2tdξ.

Now, we claim that

A(t) := (1 + t)
l+1/2

∫ 1

−1

ξ2le−kξ
2tdξ (5.10)

is continuous and uniformly bounded for all t > 0. Then we obtain that

R1(t) ≤ C (1 + t)
−(l+1/2) ‖U0‖2L1 ,
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for some C > 0 and all t ≥ 0. Now, for ξ2 ≥ 1, 2ξ2 ≥ 1+ξ2, then it holds exp(−2kξ2t/(1+ξ2)) ≤ e−kt.
Therefore together with the Pancherel’s theorem, we obtain

R2(t) =

∫
|ξ|≥1

ξ2l|Û(ξ, 0)|2exp

(
− 2kξ2t

1 + ξ2

)
dξ

≤ e−kt
∫
R
ξ2l|Û0(ξ)|2dξ

≤ e−kt‖∂lxU0‖2L2 .

Combining the estimates for R1(t) and R2(t) we get (5.9). �
Before stating a corollary of theorem (5.5), we prove the claim made in the proof above.

Clearly A(t) ≥ 0 and continuous for all t ≥ 0, then for R > 0, we can find CR(R) such that

A(t) ≤ CR, ∀t ∈ [0, R].

Now, making the change of variable y = ξ2t, one gets

A(t) = 2 (1 + t)
l+1/2

∫ 1

0

ξ2le−kξ
2t dξ

= 2 (1 + t)
l+1/2

∫ t

0

(y
t

)l e−ky

2t1/2y1/2
dy, dy = 2ξtdξ = 2

(y
t

)1/2

t = 2y1/2t1/2

=
(1 + t)

l+1/2

tl+1/2

∫ t

0

yl−1/2e−kydy

=

(
1 +

1

t

)l+1/2 ∫ t

0

yl−1/2e−kydy.

Since we can bound the term (1 + 1/t)l+1/2 for t large, it is enough to show that the limit

lim
t→∞

∫ t

0

yl−1/2e−kydy

exists. To see that, let us remember that for properties of the exponential function, for R sufficiently
large we have

yl−1/2 ≤ Ceky/2, for y ≥ R,

and C > 0 a constant. Therefore

A(t) =

(
1 +

1

t

)l+1/2 ∫ t

0

yl−1/2e−kydy

=

(
1 +

1

t

)l+1/2
(∫ R

0

yl−1/2e−kydy +

∫ t

R

yl−1/2e−kydy

)

≤
(

1 +
1

t

)l+1/2
(∫ R

0

yl−1/2e−kydy + C

∫ t

R

e−ky/2dy

)

≤ C̃R +

(
1 +

1

t

)l+1/2(
−C 2

k
e−ky/2

) ∣∣∣∣∣
t

R

= C̃R +

(
1 +

1

t

)l+1/2
2C

k

(
e−

k
2R − e− k

2 t
)

≤ C̃R +

(
1 +

1

t

)l+1/2
2C

k
e−

k
2R = C, for all t ∈ [R,∞).

which completes the proof of the claim.
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Corollary 5.6 Let Ū = (τ̄ , ū) be a constant equilibrium state. If U0− Ū ∈ Hs(R)∩L1(R), with s ≥ 2,
is a initial perturbation (with finite energy ang mass) of the equilibrium state Ū then the solution U−Ū
to the linearized equation around Ū satisfy the decay estimate

‖∂lx(U − Ū)‖2L2 ≤ C
(
e−kt‖∂lx(U0 − Ū)‖2L2 + (1 + t)−(l+1/2)‖U0 − Ū‖2L1

)
. (5.11)

Proof. Let Ū = (τ̄ , ū) be a constant equilibrium state, and suppose U = Ū +V is a solution of (3.10).
Such system, we can write it in the quasilinear form (3.11):

Vt +D1(Ū)Vx +D2(Ū)Vxx +D3(Ū)Vxxx = N ,

where N contains the non-linear terms and V = U − Ū represents a perturbation of the equilibrium
state. If we discard the non-linear terms we arrive at the constant coefficient, linearized system (3.12)
for the perturbation V , that is

Vt + V1(Ū)Vx +D2(Ū)Vxx +D3(Ū)Vxxx = 0.

Thus the hypotheses of Theorem (5.5) are satisfied, and for any solution V = U − Ū of the linearized
system (3.12) with initial condition U0 − Ū ∈ Hs(R) ∩ L1(R) for some s ≥ 2 the desired linear decay
holds. �

6 Conclusions

For the one-dimensional isothermal compressible model for fluids of Korteweg type we have done a
study of its dissipative structure in the sense of Humpherys. Such study has not been reported in the
literature, and this is one of the contributions of the present work.

It is worth to note the detailed analysis made of the well-posedness of the model. Although such
analysis is based on the one made by Hattori and Li, the presented here has been adapted to the
one-dimensional case and improved in some senses. For example we gave detailed proofs for the a
priori energy estimates and presented a more direct fixed point argument for the local existence of the
nonlinear problem.

We have obtained linear decay of the solutions for the linearized model around constants states,
which is the first step in obtaining a nonlinear result. In that direction we are working to publish a
paper.
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