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Introduction

In recent years there has been increasing interest in the convection-reaction-
di�usion equations due mainly in the great amount to applications in which they
naturally emerge. For instance, Burgers-Fisher equation has many applications
a lot of branches of physics, biology, medicine, etc.

The Burgers-Fisher equation can be considered as a viscous balance law
and models convective transport that includes a di�usive phenomenon. In �rst
place we will show that the Fisher equation combined with Burgers equation
give us a viscous balance law. The importance of Burgers-Fisher equation arises
mainly in the context of population dynamical, particularly in chemotaxis phe-
nomenona. Viscous conservation laws are parabolic type with the de�ective of
in�nite propagation velocity of its solutions. That is why has been proposed
before in the literature coupling the Burgers-Fisher equation with the delay
Cattaneo-Maxwell equation. The resulting system is hyperbolic one with �nite
propagation velocity of its solutions.

The main topic in this work is to investigate the dynamical behavior of a
scalar variable u subject to a transport mechanism of hyperbolic type coupled
with a reaction process. The qualitative behaviour of the parabolic Burgers-
Fisher equation has been studied in [16]. In this work, we will show that the
hyperbolic Burgers-Fisher equation presents in part a similar qualitative be-
haviour in its travelling wave solutions. We will prove the existence of a family
of bounded periodic travelling wave solutions with �nite fundamental period
from suitable assumptions. The existence emerge from Hopf bifurcation around
a critical value of the wave speed.
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Chapter 1

Hyperbolic Burgers-Fisher

Equation

In this �rst chapter we are concerned with a well understanding of the Hyper-
bolic Burgers-Fisher model. The chapter has two principal parts. In the �rst
part, is observed that Burgers-Fisher model is a standard viscous balance law.
Each component in the standard viscous balance law has a meaning which is
explained. Further, we are concerned with a correct understanding of the very
particular features in the Burgers-Fisher model as a viscous balance law. In the
second part, it is observed a defect in the model. Burguers-Fisher equation is a
parabolic one and its classical solutions have in�nite speed of propagation. In or-
der to avoid this feature, the system is coupled with Maxwell-Cattaneo transfer
law and we obtain a new hyperbolic model called the hyperbolic Burgers-Fisher
equation.

1.1 Burgers-Fisher Equation

Nonlinear Partial Di�erential Equations are a powerful tools in mathematical
modelling of real processes arising in physics, chemistry, biology, ecology, econ-
omy, medicine, etc. In recent years, Burgers-Fisher equation (and in general all
the called nonlinear-reaction-di�usion equations) has received increasing atten-
tion due to its real world application [2]. The next equation is known as the
Burgers-Fisher equation,

ut + uux = uxx + u(1− u)

The term uux is the convective term, the term uxx is a di�usive term and u(u−1)
is a reaction term.

Burgers-Fisher equation is a combination of two famous models, the Fisher-
KPP equation and the Burgers equation. Both of them have a general form
of a standard balance law. A standard balance law describes how a conserved
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2 CHAPTER 1. HYPERBOLIC BURGERS-FISHER EQUATION

quantity di�uses obeying a balance function. Every standard balance law has
the following form

ut + f(u)x = g(u)

with (x, t) ∈ R × [0,∞), u(x, t) ∈ Ω ⊆ R, where Ω is an open and connected
region. A standard balance law asserts that a quantity u di�uses according a �ux
function f ∈ C2(R) and grows or decays like the balance function g ∈ C2(R).

Including the di�usive term uxx, the standard balance law receives the name
of a viscous balance law. The viscous balance law includes viscous e�ects and
from the physical point of view is more complete. The inclusion of the viscous
e�ects is obtained adding the viscous term (di�usive term) εuxx in the balance
law as follows

ut + f(u)x = εuxx + g(u).

The meaning of the viscous term can be interpreted depending of the context.
In a �uid, the viscosity term represents the resistance to deformation. In general,
the inclusion of the viscous term permet the model represent the appearance of
a di�usive phenomenon. The viscous term makes the system parabolic and it
thus possesses only smooth solutions [15]

1.1.1 Burgers and Fisher models

On one hand, we have the Fisher-KPP equation. The Fisher-KPP equation can
be seen as an example of a viscous balance law as follows. Let us consider the
general form of the scalar viscous balance law

ut + f(u)x = uxx + g(u)

where u is the conserved quantity. We take the particular �ux f ≡ 0 and then
the equation turns into the semilinear parabolic equation

ut = uxx + g(u).

Now the balance term g(u) is called the reaction term. Taking the particu-
lar reaction term g(u) := u(1 − u), the resultant equation is the Fisher-KPP
equation:

ut = uxx + u(1− u)

The Fisher-KPP equation was originally proposed like a model for gene
spread [11]. Fisher-KPP equation models di�usion in a closed environment, it
represents di�usive dispersal and logistic population growth. g(0) = 0 represents
not spread at all and g(1) = 0 a complete spread in a population.

On the other hand, we have the Burgers equation. Let us take in the general
balance law the �ux function f(u) = 1

2u
2 with no balance term g(u) = 0 (there

is no �ux of conserved quantity u in or out the region) and we obtain the inviscid
Burguers equation:

ut + uux = 0,
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where the term uux is called convective term. The inviscid Burgers equation can
be interpreted as a simpli�cation of the Navier-Stokes equations that describes
the dynamical behaviour of an ideal �uid. Taking into account viscous e�ects
in a �uid we add the term εuxx and we obtain the viscous Burgers equation

ut + uux = εuxx,

As it is pointed out in [15], the solutions to Burgers equation without viscous
term usually produce discontinuities called shocks waves. However, when the
viscosity is present, all the discontinuities that appears turn out into smooth
transition layers.

Now, adding a balance term like Fisher-KPP reaction term, we obtain the
Burgers-Fisher equation:

ut + uux = uxx + u(1− u).

The Burgers-Fisher equation represents the non-linear convective movement
in closed environments for a density population including di�usive e�ects. The
equation models the non-linear convective movement in which individuals move
to neighbouring regions with lower densities more rapidly as the population gets
more crowded. Such equation arises in a variety of contexts like mathematical
biology modelling individual populations by transport phenomena, mainly in
chemotaxis phenomena.

1.1.2 Chemotaxis

Chemotaxis refers to several mechanisms through which individuals in a popu-
lation can move in response to an external chemical signal. For example, insects
and animals usually produce chemical signals like pheromones as a sex attrac-
tant, etc. Bacterial or unicellular populations can move only in response to this
signal. These organisms have several biological devices for moving. For example
[12], the bacteria Escherichia coli is are composed of �agella, Proteus mirabilis
can swim, creating an adequate substance, Amebae Dictyostelium disco�deum
crawl by sending an internal arm, etc.

The understanding of Chemotaxis is of fundamental importance in medical
research. Chemotactic activity can be altered due to pharmaceutical agents.
For example, when a bacterial infection invades the body it can be attacked by
�moving� leuckocyte cells towards the region of bacterial in�ammation or the
infection can be decreased or inhibited.

The Burgers-Fisher equation arises naturally in the study of pattern forma-
tion by bacterial colonies. Bacteria have several biological devices for moving
themselves. Bacterial movement is a random process which can be approxi-
mated by di�usion. The movement of bacterial obeys a convective transport
in a spatial homogeneous situation with limited availability of nutrients that
a�ects the reproduction of bacteria.

Chemotaxis phenomenon is a rather complex one. However, the movement
in a cell population can be modelled taking into account the interaction between
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chemical concentration and the density attracted cells. Let us denote by ρ(x, t)
the density of bacteria chemotactic to a single chemical element of concentration
s(x, t) with (x, t) ∈ R × [0,∞). The density ρ, with logistic growth, evolves
according to,

ρt = (Dρx − ρχsx)x + ρ(1− ρ)

where D > 0 is a di�usive constant and χ > 0 is chemotactic factor.
In cases where the rate of chemical consumption is due mainly to the ability

of the bacteria to consume it we have

st = −kρ.

where k > 0 is a di�usive constant. If we now look for traveling wave solutions
s = s(x − ct) and ρ = ρ(x − ct), then st = −csx, so sx = kρ

c . The problem
reduces to following partial di�erential equation for ρ,

ρt = Dρxx −
χk

c
(ρ2)x + ρ(1− ρ).

The last equation is Burgers-Fisher equation. In next section is considered a
re�nement of Burgers-Fisher equation. Coupling Burgers-Fisher equation with
Cattaneo-Maxwell equation we have a better model as we will show.

1.2 Hyperbolic Model

In the previous section we mentioned the interpretation of Burgers-Fisher equa-
tion. Nevertheless in spite of its usefulness, the model is defective and unre-
alistic. Burgers-Fisher model is classi�ed like a non-linear parabolic equation
and have the same criticism that the standard linear di�usion equation and
Fisher-KPP equation concerning the in�nite speed of propagation of distur-
bances. Even for the general linear parabolic equation it is proved [4] that if
the coe�cients are bounded and uniformly Hölder continuous, the equation pos-
sesses a positive fundamental equation. It follows that under the same assump-
tions on the coe�cients [5], the general reaction-di�usion-convection equation
has classical solutions with in�nite speed of propagation.

To avoid this di�culty, in [6] a coupled Burgers-Fisher equation with Maxwell-
Cattaneo transfer law was proposed. In Burgers-Fisher equation, we take v = ux
giving the equation a conservative form with �ux function v

ut + uux = vx + u(1− u).

To circumvent the problem of in�nite speed of propagation in the solutions,
let us assume the �ux does not depend instantaneously at a point. We replace
the equation,

v(x, t) = ux(x, t)

by a delay equation,
v(x, t+ τ) = ux(x, t).
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This way, there is a short time before the e�ect is felt. Let us write the
Taylor's series expansión,

v(x, t+ τ) = v(x, t) + τ
∂v

∂t
(x, t) +O(τ2).

The terms O(τ2) are neglected and substitute in order to obtain the Maxwell-
Cattaneo transfer law:

τvt + v = ux.

The equation states that the �ux v relaxes toward ux in a time-scale τ > 0.
By its form, Maxwell-Cattaneo equation is of hyperbolic type. We now observe
that this is the classical form of an hyperbolic system with unknowns density u
and �ux v, {

ut + uux = vx + u(1− u) x ∈ R, t ≥ 0.
τvt + v = ux

with initial conditions

u(x, 0) = u0(x) x ∈ R
v(x, 0) = v0(x)

Let us note that, by the Kac's trick we can eliminate the variable v. Di�er-
entiate the �rst equation with respect to t obtaining,

vxt = utt + (uux)t − (u(1− u))t.

Di�erentiate the second equation with respect to x,

τvtx + vx = uxx.

Substituing vxt and adding ut + uux we obtain

ut + uux + τ(utt + (uux)t − (u(1− u))t) + vx = ut + uux + uxx.

Thus
ut + uux + τ(utt + (uux)t − (u(1− u))t) = uxx + u(1− u).

with initial conditions

u(x, 0) = u0(x) x ∈ R
ut(x, 0) = −u0(x)u′0(x) + v′0(x) + u0(x)(1− u0(x))

Now, if we take limit τ ↓ 0, then we recover Burgers-Fisher equation.
The hyperbolic coupled system can be interpreted as a model for a reaction-

di�usion-convection process. By hyperbolicity, the new model has the realistic
feature of �nite speed of propagation of disturbances, correcting in this way the
parabolic defective feature for reaction-di�usión-convection model established
in Burgers-Fisher equation. Even more, it has been showed [3] that coupling
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Burgers-Fisher equation with Cattaneo-Maxwell equation produces a better ad-
justment to experimental research [3].

Finally, Burgers-Fisher equation models convective and di�usive movement
in a limited space. That is why the model has particular importance in modelling
population phenomena like chemotaxis in which bacteria are dispersed in a
closed environment attracted by a particular chemical stimulus.

The next chapter is devoted to the qualitative analysis of the travelling wave
solutions of the hyperbolic Burguers-Fisher equation. The Hopf bifurcation the-
orem for planar systems is the main tool for proving the conditions of existence
of a bounded periodic travelling wave solution of small amplitud. Those wave
solutions emerge from a Hopf bifurcation around a critical value of the speed.



Chapter 2

Periodic Waves

This chapter is devoted to the qualitative analysis of the hyperbolic Burgers-
Fisher equation. The Hopf bifurcation theorem is the main tool to prove the
existence of a bounden periodic travelling wave solution. The �rst section shows
the Hopf bifurcation theorem for planar systems and explains its meaning. The
second section presents the main result and is proof, with the aid of Hopf bifurca-
tion theorem. The main result asserts the existence and conditions of existence
of a bounded periodic travelling wave solution of small amplitude to hyperbolic
Burgers-Fisher equation.

2.1 Hopf Bifurcation Theorem

In general way, bifurcation theory works on systems of di�erential equations
that depend on parameters and detects changes in the structure of solutions.
The qualitative behavoir of solutions may change when the parameters change.
The parameter values in which the structure of the solutions change is called
bifurcation values.

There are many kinds of bifurcation. A Hopf Bifurcation occurs when a
periodic solution or limit cycle, surrounding an equilibrium point arises as a
parameter in a system of di�erential equations varies. When a stable limit cycle
surrounds an unstable equilibrium point, the bifurcation is called a supercritical
Hopf bifurcation. If the limit cycle is unstable and surrounds a stable equilibrium
point, then the bifurcation is called a subcritical Hopf bifurcation [10].

Next, we present the version of the Hopf Bifurcation Theorem in two dimen-
sions. The following version was read in [10]. The Theorem reads as follows,

Theorem 1 (Hopf Bifurcation). Let us consider the planar system,

ẋ = fµ(x, y)

ẏ = gµ(x, y)
(2.1)

where µ is the parameter. Let us suppose there is a �xed point. Without loss of
generality we may assume that the �xed point is located at the origin, (x, y) =

7
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(0, 0). Let the eigenvalues of the linearised system about the �xed point be given
by,

λ(µ) = α(µ) + β(µ)

λ̄(µ) = α(µ)− β(µ)
(2.2)

Suppose further that for a certain value of µ, which we may assume to be 0, the
following conditions are satis�ed:

1. (non-hyperbolicity condition: conjugate pair of imaginary eigenvalues)

α(0) = 0

β(0) = ω 6= 0
(2.3)

where sgn(ω) = sgn
(
∂gµ
∂x

)
|µ=0(0, 0)

(transversality condition: the eigenvalues cross the imaginary axis with non-zero
speed)

dα(µ)

dµ
|µ=0 = d 6= 0 (2.4)

(genericity condition)
a 6= 0

where

a =
1

16
(fxxx+fxyy+gxxy+gyyy)+

1

16ω
(fxy(fxx+fyy)−gxy(gxx+gyy)−fxxgxx+fyygyy)

Then a unique curve of periodic solutions bifurcates from the origin into the
region

The Hopf Bifurcation Theorem provides conditions of existence of a periodic
solution from an equilibrium point as a parameter crosses a bifurcation value.
It determines the existence of a periodic solution for a system of equations. In
next section the existence of periodic travelling wave solutions in hyperbolic
Burgers-Fisher is established.

2.2 Existence of periodic solutions

The coupled hyperbolic Burgers-Fisher equation reads,{
ut + uux = vx + f(u),
τvt + v = ux.

(2.5)

Here f(u) = u(1− u) and τ is such that 0 < τ < τm := 1
supu∈[0,1] |f ′(u)| = 1. Let

us substitute the travelling wave solutions to (2.5) and de�ne ξ = x− ct. Using
the traveling wave pro�le (u, v)(x, t) = (U, V )(ξ) = (U, V )(x− ct), we obtain

ut = −cU ′

vt = −cV ′

ux = U ′

vx = V ′
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The new system is, {
(U − c)U ′ − V ′ = f(U)
U ′ + τcV ′ = V

(2.6)

Let us verify that the system (2.6) satis�es Hopf Bifurcation Theorem hy-
pothesis. In matrix form we express the system as,(

U − c −1
1 τc

)(
U ′

V ′

)
=

(
U(1− U)

V

)
We de�ne the matrix

A :=

(
U − c −1

1 τc

)
and calculate its determinant det(A) = 1 − τc2 + cτU . Like U ∈ [0, 1] and
the critical value for the velocity of the travelling wave pro�le is c = 0, then
det(A) 6= 0 for all c such that |c|(1 + c2) < 1

2τ . Therefore the matrix A is a
invertible with inverse,

A−1 :=
1

1− τc2 + cτU

(
τc 1
−1 U − c

)
.

Thus (
U ′

V ′

)
=

1

1− τc2 + cτU

(
τc 1
−1 U − c

)(
f(U)
V

)
(2.7)

We de�ne,

fc(U, V ) :=
f(U)τc+ V

1− τc2 + cτU

and

gc(U, V ) :=
UV − f(U)− cV

1− τc2 + cτU

Calculating Jacobian matrix we obtain

J(U, V ) :=

(
∂fc(U,V )

∂U
∂gc(U,V )

∂U
∂fc(U,V )

∂V
∂gc(U,V )

∂V

)

where
∂fc(U, V )

∂U
=

τcf ′(U)

1− τc2 + cτU
− (cτ)(f(U)τc− V )

(1− τc2 + cτU)2

∂fc(U, V )

∂V
=

1

1− τc2 + cτU
∂gc(U, V )

∂U
=

V − f ′(U)

1− τc2 + cτU
− (UV − f(U)− cV )(cτ)

(1− τc2 + cτU)2

∂gc(U, V )

∂V
=

U − c
1− τc2 + cτU
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Note f(0) = 0. Thus, fc(0, 0) = 0 and gc(0, 0) = 0, so the point (0, 0) is an
equilibrium point of (2.7). Evaluating the Jacobian matrix we obtain,

J(0, 0) :=

(
∂fc(0,0)
∂U

∂gc(0,0)
∂U

∂fc(0,0)
∂V

∂gc(0,0)
∂V

)
=

1

1− τc2

(
τcf ′(0) −f ′(0)

1 −c

)
(2.8)

The following theorem establishes the existence of small amplitude periodic
traveling waves corresponding the small amplitude limit cycles around the equi-
librium (0, 0) arising from Hopf bifurcation

Theorem 2. Exists a unique periodic solution to (2.5) wich bifurcates form the
equilibrium point if c > 0. Even more, the equilibrium (0, 0) is stable and the
periodic solution is unstable (from the dynamical systems viewpoint).

Proof. Let us consider the linearized system (2.8). The matrix J(0, 0) has eigen-
vales λ1,2 = α(c)± iβ(c), where

α(c) =
−c(1− τf ′(0))

2

β(c) =

√
−c2(1− τf ′(0))2 + 4f ′(0)(1− τc2)

2

We observe that if c = 0 then α(0) = 0 and β(0) =
√
f ′(0) 6= 0. The eigenvalues

are imaginary and complex conjugates. We shall see that the Hopf's bifurcation
theorem conditions are satisfaced.

1. Non-Hiperbolicity condition.
β(0) =

√
f ′(0) 6= 0. Let us calculate,

gc(U, V ) =
UV − f(U)− cV

1− τc2 + cτU
∂gc(U, V )

∂U
=

V − f ′(U)

1− τc2 + cτU
− (UV − f(U)− cV )(cτ)

(1− τc2 + cτU)2

∂gc(0, 0)

∂U

∣∣∣∣
c=0

= −f ′(0) < 0.

Then,

sgn(
√
f ′(0)) = sgn

(
∂gc(0, 0)

∂U

∣∣∣∣
c=0

)
= sgn(−f ′(0)) < 0.

2. Transversality condition.

Take α(c) = −c(1−τf ′(0))
2 and derive. If 0 < τ ≤ supU∈[0,1]

1
|f ′(U)| = τm then

dα(c)

dc
=
−1 + τf ′(0)

2
:= d

dα(c)

dc

∣∣∣∣
c=0

=
−1 + τf ′(0)

2
6= 0

3. Lyapunov's exponent.
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Now let us calcule the Lyapunov's exponent:

a =
1

16
(fUUU + fUV V + gUUV + gV V V )

+
1

16ω
(fUV (fUU − fV V )− gUV (gUU + gV V )− fUUgUU + fV V gV V )

where ω =
√
f ′(0) = 1,

fUU =
∂2fc(0, 0)

∂U2

∣∣∣∣
c=0

= 0

fUV =
∂2fc(0, 0)

∂U∂V

∣∣∣∣
c=0

= 0

fV V =
∂2fc(0, 0)

∂V 2

∣∣∣∣
c=0

= 0

gUU =
∂2gc(0, 0)

∂U2

∣∣∣∣
c=0

= f ′′(0) = −2

gUV =
∂2fc(0, 0)

∂U∂V

∣∣∣∣
c=0

= 1

gV V =
∂2gc(0, 0)

∂V 2

∣∣∣∣
c=0

= 0

fUUU =
∂3fc(0, 0)

∂U3

∣∣∣∣
c=0

= 0

fUV V =
∂3fc(0, 0)

∂U∂V 2

∣∣∣∣
c=0

= 0

gUUV =
∂3gc(0, 0)

∂U2∂V

∣∣∣∣
c=0

= 0

gV V V =
∂3gc(0, 0)

∂V 3

∣∣∣∣
c=0

= 0

This implies,

a =
2

16ω
=

1

8

Now

d =
−1 + τf ′(0)

2

Then,

ad =
−1 + τ

16

We need to see the sign of ad. Remember that 0 < τ ≤ supU∈[0,1]
1

|f ′(U)| =

τm = 1. This implies,

τ − 1 < 0
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So ad < 0. By the Hopf's bifurcation theorem, exists a unique curve of periodic
solutions bifurcates from the equilibrium point into the region c > 0. Like d < 0
the point (0, 0) is stable and the periodic solution is unstable.

Next let us examine the results of numerical simulations illustrating the
periodic solution whose existence is proved in the Theorem. In the �rst �gure
we take c = 0.01 > 0 and τ = 0.1. Te solution in red is taken with initial
conditions (0, 0.3) and we go back in time. The solution in blue is taken with
initial conditions (0, 0.17) and we go back in time too. Observe they approximate
the periodic cycle.

Figure 2.1: Graph of two solutions with c > 0
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Figure 2.2: Near sight to the periodic solution
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Conclusions

Burgers-Fisher equation is an example of a di�usion-convection-reaction equa-
tion and is a combination from two famous and well known equations namely
Burgers equation and Fisher-KPP equation. The importance of Burgers-Fisher
equation is due to its many applications mainly in population dynamics. The
equation models non-linear convective movement in witch individuals move aside
a di�usive e�ect in a closed environment.

An example in which Burgers-Fisher equation arises in a natural way is in
pattern formation of bacterial model. Bacterial are attracted by chemical signals
due nutrients. with a di�usive e�ect obeying a convective transport.

Burgers-Fisher equation is of parabolic type and can be proved that its clas-
sical solution have in�nite speed of propagation. Nevertheless, the defective
characteristic in its solutions can be corrected coupling with Cattaneo-Maxwell
transfer law. The resulting system is an hyperbolic one and its classical solu-
tions have �nite speed of propagation. The hyperbolic model have a similar
qualitative behaviour that the parabolic one. In chapter two we proved the ex-
istence of bounded periodic travelling wave solutions with small amplitude and
bounded period which emerge which emerge from a Hopf bifurcation around a
critical value of the wave speed.
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