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Introduction

Consider the one dimensional quantum hydrodynamics (QHD) system with nonlinear
viscosity in Eulerian coordinates:

ρt `mx “ 0,

mt `

ˆ

m2

ρ
` ppρq

˙

x

“ εµρ

ˆ

mx

ρ

˙

x

` ε2k2ρ

ˆ

p
?
ρqxx
?
ρ

˙

x

,
(1.1)

with x P R and t ą 0 being the spatial and time variables respectly. The scalar func-
tions ρpx, tq ą 0 and mpx, tq “ ρpx, tqupx, tq denotes the density and the momentum
fields and upx, tq is the velocity. Here ppρq denotes the pressure and it’s an equation
of state. It will be assumed that ppρq “ ργ, with γ ě 1 a constant. The constants
0 ď ε ! 1, µ ą 0 and k ą 0 determine the viscosity εµ, and the dispersion (or
capilarity) ε2k2, respectly.

The function
´

p
?
ρqxx
?
ρ

¯

is known as the (normalized) quantum Bohm potential
[1, 2], providing the model with a nonlinear third order dispersive term. It can be
interpreted as a quantum correction to the classical pressure (stress tensor). On the
otherside, the nonlinear viscosity term is motivated by the theory of superfluidity (see
for example [3]).

Models in QHD represent an equivalent alternative formulation of the Schrödinger
equation, written in terms of hydrodynamical variables, and structurally similar to
the Navier–Stokes equations of fluid dynamics.

The first derivation of the QHD equations is due to Madelung [4], during the early
times of quantum mechanics and it was a precursor of the de Broglie–Bohm causal
interpretation of quantum theory [5]. Since then, quantum fluid models have been
applied to describe many physical phenomena, such as the modeling of quantum semi-
conductors, the dynamics of Bose–Einstein [6, 7] condensates and the mathematical
description of superfluidity [3, 8], among others.
The analysis of QHD models has recently attracted the attention of many mathemati-
cians, specially researchers working in analysis and PDE because of the relevance in
physics and the underlying mathematical challenges; look for example [9, 10, 11].

1



CHAPTER 1. INTRODUCTION 2

Our investigation focuses on showing that system (1.1) of partial differential equa-
tions satisfies the strict dissipativity property, or, in other words, it tell us that so-
lutions to the linearized problem around equilibrium states satisfy some decay struc-
ture. In physical terms, this property tell us that the dissipation terms do not allow
solutions of traveling wave type to be, simultaneously, solutions to the associated
hyperbolic system without dissipation.

This characterization of strict dissipativity, known as genuine coupling , has been
extensively studied by Kawashima and Shizuta, see for example [12, 13, 14, 15, 16].
The genuine coupling condition tell us that no eigenvectors of the hyperbolic part of
our system, lies in the kernel of the viscous terms, Kawashima and Shizuta, prove that
for symmetric systems, the strict dissipativity and the genuine coupling condition are
equivalent.

Jeffrey Humphreys in [17] proposed and extension of Kawashima and Shizuta the-
ory, by considering higher order derivatives. In our case, we will follow Humphreys,
method, if we notice, the quantum Bohm potential

´

p
?
ρqxx
?
ρ

¯

will turn into a third
order dispersive term, so it will be necessary to consider higher order derivatives.

The structure of the work is as follows. Section 2, is devoted to write our system in
conservative form, we use the concept of enthalpy (see for instance [18]) to transform
system (1.1) into a one that their conserved variables are the mass density ρ and the
velocity u. Once with that, we write our system in quasi-linear form, to see which
structure will have our system while linearizing around an equilibrium state. After
that, we proceed to prove that the obtained system satisfies the strictly hyperbolic
condition, which ensure us that the local Cauchy problem have an unique solution.

In section 3, the Kawashima Shizuta theory is developed, and once with that, we
extended to the Humphreys theory for higher order derivatives, this section concludes
by proving that our system of interest satisfies the genuine coupling condition (which
is equivalent to the dissipative structure).

Finally, we end with a discussion of the obtained results and some proposals to
extend the results for the non-linear cases.



QHD system and Strictly Hyperbolic
Condition.

This section is devoted to write our system in conservative form, thanks to that, sys-
tem (1.1) is transform into a system where preserved variables are the density and the
velocity, after that, we write our system in quasi-linear form. To finish this section,
we prove that our system satisfies the stricly hyperbolic conditon.

2.1 QHD system

First, we express the system (1.1) in conservative form, where the conserved variables
are pρ, uq (see [19, 20]), to obtain this, we recall the definition of entalphy :

hpρq :“

#

ln ρ, γ “ 1,
γ
γ´1

ργ´1, γ ą 1,
(2.1)

so, it will be satisfied the equality:

ppρqx “ ρhpρqx. (2.2)

Applying equation (2.2) to system (1.1), we obtain the system:

ρt ` pρuqx “ 0,

ut `

ˆ

1

2
u2
` hpρq

˙

x

“ εµ

ˆ

pρuqx
ρ

˙

x

` ε2k2

ˆ

p
?
ρqxx
?
ρ

˙

x

. (2.3)

Remark. In contrast to its counter part in the classical fluid mechanics, with
nonlinear viscosity and capillarity (see e.g., [21, 22, 23, 24]), it is to be noticed that
the conserved variables in the QHD system (2.3) are the mass density and the velocity
(not the momentum m), the conserved quantities are different for both systems (the
quantum and classical dynamics), changing the structure of the equations. Indeed,
the viscosity term for standard compressible fluids has the general form pµ̂pρquxqx,
with µ̂pρq is a general, nonlinear viscosity term. In our case, the superfluidity case,

3



CHAPTER 2. QHD SYSTEM AND STRICTLY HYPERBOLIC CONDITION. 4

the viscosity term depends on
ˆ

pρxuq{ρ

˙

x

, which comes from the second equation of

(2.3). On the other hand, the dispersive term was already different due to the quan-
tum Bohm potential

´

p
?
ρqxx
?
ρ

¯

, which contrasts with the capillarity terms of Korteweg
type, where the capillarity is assumed to be constant and have the form kpρρxx´

1
2
ρ2
xqx

(see [23, 24] for details).

To write our system (2.3) in quasi-linear form, let’s notice that:
ˆ

pρuqx
ρ

˙

x

“

ˆ

ρux ` uρx
ρ

˙

x

“ uxx `

ˆ

uρx
ρ

˙

x

“ uxx `
puxρx ` uρxxqρ´ uρ

2
x

ρ2
.

On the otherside, we have that

p
?
ρqxx “

ˆ

ρx
2
?
ρ

˙

x

“
1

2

¨

˝

ρxx
?
ρ´ ρ2x

2
?
ρ

ρ

˛

‚“
1

2

¨

˝

2ρxxρ´ρ2x
2
?
ρ

ρ

˛

‚“
1

2

ˆ

2ρxxρ´ ρ
2
x

2
?
ρρ

˙

.

So, making the quotient with ?ρ and taking the spatial derivative, we have
ˆ

p
?
ρqxx
?
ρ

˙

x

“
1

4

ˆ

2ρxxρ´ ρ
2
x

ρ2

˙

x

,

“
1

2

ˆ

ρxx
ρ

˙

x

´
1

4

ˆ

ρ2
x

ρ2

˙

x

,

“
1

2

ˆ

ρxxx
ρ
´
ρxxρx
ρ2

˙

´
1

4

ˆ

2ρxρxxρ
2 ´ 2ρρxρxx
ρ4

˙

.

We will consider a vector of the form U “ pρ, uqJ P U Ă R2 being the vector of state
variables, where:

U :“ tpρ, uqJ P R2 : 0 ă ρu,

is known as the state space.
In this way, for U P U the system (2.3) can be written in quasi-linear form as:

Ut ` A
1
pUqUx “ BpUqUxx ` CpUqUxxx `GpU,Ux, Uxxq. (2.4)

Where

A1
pUq :“

ˆ

u ρ
h1pρq u

˙

; BpUq :“ εµ

ˆ

0 0
u
ρ

1

˙

; CpUq :“ ε2k2

ˆ

0 0
1
2ρ

0

˙

,

and GpU,Ux, Uxxq denotes the high order (fully nonlinear) terms, given by:

GpU,Ux, Uxxq :“

˜

0

εµ
´

uxρxρ´uρ2x
ρ2

¯

` ε2k2

2

´

ρxρxx´ρρxρxx
ρ3

´
ρxρxx
ρ2

¯

¸

.



CHAPTER 2. QHD SYSTEM AND STRICTLY HYPERBOLIC CONDITION. 5

Remark. Let us notice that A1, B, C P C8pU ;R2ˆ2q, G P C8pU ˆR4ˆR4,R4q, this
thanks to the fact that 0 ă ρ, and also notice that B ě 0 is semi-positive definite for
all state U P U .

Relaxation terms, are those of the form:

QpUq “

ˆ

q1pρ, uq
q2pρ, uq

˙

,

with qi : U Ñ R, for i “ t1, 2u.
In our case, for system (2.4), we would not have any relaxation term, that isQpUq ” 0,
for all U P U .

In the study of systems of conservation laws with relaxation, the large time be-
havior of solutions is determined by a “relaxed” structure [25, 26], chosen so that the
dynamics leads solutions towards an equilibrium manifold. In quasi-linear systems,
the equilibrium manifold in two dimensions is defined as:

V :“ tU P U : QpUq “ 0u.

A solution U “ Upx, tq to quasi-linear system, is said to be an equilibrium solution
(or a Maxwellian) if it lies in the equilibrium manifold V .
In our case, and thanks to the lack of relaxation any constant state Ū P U will be an
equilibrium solution.

2.2 Hyperbolicity

Considering the hyperbolic part of our system (2.4)

Ut ` A
1
pUqUx “ 0. (2.5)

Which results from neglacting the viscous, dispersive and non-linear terms in system
(2.4). For any state U P U , (2.5) is a quasi-linear, strictly hyperbolic first order sys-
tem, to prove this, let us obtain the characteristics speeds.

For any U P U let us consider the polynomial given by:

πpζq “ det

ˆ

A1
pUq ´ ζI

˙

.

Where I denotes the identity matrix in M2ˆ2pRq.
The roots of the polynomial πpζq “ 0 are known as characteristic speeds of the
system (2.5). If those roots are all real and distinct, we will say that the system (2.5)
is strictly hyperbolic for U P U .
Let us remember, that the notion of hyperbolicity is motivated by the existence of
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traveling wave solutions to system (2.5) of the form Upx, tq “ ϕpx´ stq, for some real
propagating speed s P R and a profile vector function ϕ.
This reduce our problem to a spectral one, of the form:

pA1
pϕq ´ sIqϕ1 “ 0,

with eigenvalue s P R and eigenfunction ϕ1.

After a straightforward computation we see that

πpζq “ det

ˇ

ˇ

ˇ

ˇ

ˆ

u´ ζ ρ
h1pρq u´ ζ

˙
ˇ

ˇ

ˇ

ˇ

,

“ pu´ ζq2 ´ h1pρqρ .

So πpζq “ 0 if only if

ζ “ u˘
a

h1pρqρ . (2.6)

Notice that

h1pρqρ “ γργ´1,

and thanks to the fact that ρ ą 0, then the roots of
a

h1pρqρ are both real, so the
characteristic speeds will be given by:

ζ1 “ u´
a

h1pρqρ ă u`
a

h1pρqρ “ ζ2 .

Due to the fact that both roots are real and dinstinct, we can ensure that our system
is strictly hyperbolic.
We can summary the previous results as the following:

Lemma. For each U “ pρ, uqJ P U Ă R2, the first order system (2.5) is strictly
hyperbolic at U P U , and the characteristic speeds are given by:

ζ1pUq “ u´
a

h1pρqρ,

ζ2pUq “ u`
a

h1pρqρ .
(2.7)

In [27], Plaza and collaborators, studied the existance and structure of dispersive
shock profiles for system (1.1), with nonlinear viscosity, the study of the case with
linear viscosity was mainly developed by Lattanzio and Zhelyazov in [19] (for related
results, see [28]).



Kawashima and Shizuta Theory

3.1 Genuine coupling condition

Kawashima’s theory [12, 13, 14, 15, 16, 29, 30] considers the second-order constant
coefficient systems of the form:

A0Ut ` A
1Ux “ BUxx. (3.1)

Where A0, A1 and B are symmetric matrices with B positive semi-definite .
Since it is a system with constant coefficients, the solution can be determined by its
Fourier transform in the spatial variables x P R. The resulting equation is

A0Ût ` iξA
1Û ` ξ2BÛ “ 0. (3.2)

Where Û “ Ûpξ, tq denotes the Fourier transform of the state variable U . The fact
that A0, B ą 0 is not enough to ensure the decay of solutions to the linear. We resort
to the following sufficient condition for the essential spectrum of the linear constant
coefficient differential operator to be stable. For ξ P R, ξ ‰ 0, let λ “ λpξq P C denote
the eigenvalues of the corresponding characteristic equation, namely, the roots of the
following dispersion relation,

detpλA0
` iξA1

` ξ2Bq “ 0. (3.3)

Definition. (Strict dissipativity). System (3.1) is said to be strictly dissipative if
Reλpξq ă 0 for all ξ P R, ξ ‰ 0.

Closely related to the dissipativity condition is the following.

Definition. (Genuine coupling). System (3.1) satisfies genuine coupling condi-
tion at any state Ū P U if for any V P R2, V ‰ 0 with BV “ 0 then we have that
pλA0 ` A1qV “ 0, for all λ P R.

This condition basically expresses that no eigenvector of the hyperbolic part of
the operator lies in the kernel of the dissipative terms. Such property is physically
relevant. We remark that a loss of coupling in these instances means that a purely
hyperbolic direction exists whereby discontinuous “shock wave” solutions can persist.

7
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It tell us that traveling wave solutions to system (2.5) are not dissipated by the vis-
cous and relaxation terms.

Definition. A matrix K is a compansating function for system (3.1) provided
that:

• KA0 is skrew symmetric.

• 1
2
pKA1 ` pKA1qJq `B is positive definite.

Theorem. (Shizuta-Kawashima) [12] Assume Aj, B j “ 0, 1 are real symmetric ma-
trices, with A0, B ą 0. Then the following statements are equivalent:

1. System (3.1) is stricly dissipative.

2. System (3.1) satisfies genuine coupling condition at Ū P U .

3. There exists a compensation function K for system (3.1).

4. There exists a positive constant k ą 0 such that for any ξ P R, ξ ‰ 0,and any
root λ “ λpξq of the characteristic equation (3.3) there holds

Reλpξq ď ´
kξ2

1` ξ2
. (3.4)

The last theorem was generalized by Humpherys by considering the general linear
system of the form:

A0Ut “ ´
n
ÿ

k“0

Dk
B
k
xU ; U P Rm. (3.5)

Where each mˆm matrix Dk is a constant matrix.
Likewise, by taking the Fourier transform, the evolution of (3.5) reduces to the eigen-
value problem

λA0Ût `
n
ÿ

k“1

piξqkDkU “ 0. (3.6)

Simplifying by separating the odd and even terms in (3.6), we get
`

λA0
` iξApξq ` Bpξq

˘

“ 0, (3.7)

where

Apξq :“
ÿ

k odd

Dk
piξqk´1; Bpξq :“

ÿ

k even

p´1qk{2Dkξk. (3.8)
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The matrix Apξq and Bpξq are referred as the generalized flux and the generalized
viscosity, respectively.

Then we have the following definitions

Definition.

1. System (3.5) is called strictly dissipative if for each ξ ‰ 0 we have Repλpξqq ă 0.

2. System (3.5) is said to be genuinely coupled if no eigenvalue of Apξq is in the
kernel of Bpξq.

Mathematically, it is easy to see that genuine coupling is a necessary condition for
strict dissipativity. The main result in Humpherys paper shows that for symmetric
systems, the properties of strict dissipativity, genuine coupling for systems of the form
like system (3.5), and the existence of a skew-Hermitian compensating matrix K are
equivalent.
The following assumptions are made

(H1) Apξq is symmetric and of constant multiplicity in ξ.

(H2) Bpξq ě 0 (symmetric and positive semi-definite).

Next, we state the main result without proof and after that we make some impor-
tant remarks.

Theorem. (Humpherys) [17]. Given (H1) and (H2) above, the following statements
are equivalent:

1. System (3.5) is strictly dissipative.

2. System (3.5) is genuinely coupled.

3. There exists a real-analytic skew-Hermitian matrix-values Kpξq such that rKpξq,Apξqs`
Bpξq ą 0 for all ξ ‰ 0.

Where rKpξq,Apξqs “ KpξqApξq ´ ApξqKpξq.

Remarks. The compensation matrix K is of the form:

Kpξq “
ÿ

i‰j

πiBpξqπj
µi ´ µj

, (3.9)
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that is the Drazin inverse or reduced resolvent of the commutator operator, where
tµku

r
k“1 denote the distinct eigenvalues of Apξq with corresponding eigenprojections

tπku
r
k“1.

The above theorem can be extended with the following definition:

Definition. System (3.5) is called symmetrizable in the sense of Humpherys if
there exists a symmetric real-analytic matrix-valued Spξq ą 0 such that both SpξqApξq
and SpξqBpξq are symmetric, and SpξqBpξq ě 0. We say that Spξq is a symmetrizer
of system (3.5).

We notice that this notion of symmetrizability differs from the Friedrichs’ one.
With this more general notion of symmetrizability, we can extend easily Theorem
above to the following:

Theorem. If Spξq is a symmetrizer of system (3.5) then the following statements are
equivalent:

1. System (3.5) is strictly dissipative.

2. System (3.5) is genuinely coupled.

3. There exists a real-analytic skew-Hermitian matrix-values Kpξq such that rKpξq, S¨
Apξqs ` S ¨ Bpξq ą 0 for all ξ ‰ 0.

It is the last generalization of the standard definition of symmetrizability the one
that we adopt here.

3.2 Symmetrizability

Symmetrizability implies hyperbolicity of system (2.5). As we can see in Friedrichs
[31] and Goudunov [32] works, symmetrizability has established itself as an important
property. It plays a key role, for example, to perform energy estimates and to study
existence and stability of solutions.
Let us notice that writting our QHD system as in (3.6) we have

Apξq “ A1
pUq ` ξ2CpUq “

ˆ

u ρ
h1pρq u

˙

` ε2k2ξ2

ˆ

0 0
1
2ρ

0

˙

“

˜

u ρ

h1pρq ` ε2k2ξ2

2ρ
u

¸

,

Bpξq “ ξ2BpUq “ ξ2εµ

ˆ

0 0
u
ρ

1

˙

.
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We define

βpξq :“ h1pρq `
ε2k2ξ2

2ρ
.

In this way, we need to find a symmetric matrix S “ Spξq positive definite such that
S ¨ Apξq and S ¨ Bpξq are both symmetric.
Let us consider S being of the form:

S :“

ˆ

s1 s2

s2 s3

˙

.

Making the product S ¨ Bpξq we have:

S ¨ Bpξq “
ˆ

s1 s2

s2 s3

˙

¨ ξ2εµ

ˆ

0 0
u
ρ

1

˙

.

In order that the product S ¨ Bpξq being symmetric, the next equality must satisfy

s2 “ s3
u

ρ
.

Following the same process for Apξq, we obtain the equality

s1 “ s3
βpξq

ρ
.

With these, we have that S need to be of the form:

S “

˜

s3
β
ρ

s3
u
ρ

s3
u
ρ

s3

¸

,

which is a symmetric matrix.

Let us remember the readers that our matrix S will be positive definite if only if
all it’s eigenvalues λi are both real and positive, thanks that our matrix S is symmet-
ric, we can ensure that the eigenvalues are real, so we only have to establish enough
conditions to make our eigenvalues positive.

We now show under which conditions our matrix S is positive definite. To this,
we proceed to calculate the eigenvalues:

|S ´ λI| “ det

ˇ

ˇ

ˇ

ˇ

ˇ

˜

s3
βpξq
ρ
´ λ s3

u
ρ

s3
u
ρ

s3 ´ λ

¸
ˇ

ˇ

ˇ

ˇ

ˇ

.

So, we obtain the polynomial
ˆ

s3
βpξq

ρ
´ λ

˙

ps3 ´ λq ´

ˆ

s3
u

ρ

˙ˆ

s3
u

ρ

˙

“ 0,

λ2
´

ˆ

s3

„

βpξq

ρ
` 1

˙

λ` s2
3

ˆ

βpξq

ρ
´
u2

ρ2

˙

“ 0.

(3.10)
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Using the quadratic formula, the roots of the polynomial (3.10) are given by:

λ1,2 “

´

s3

”

βpξq
ρ
` 1

ı¯

˘

c

s2
3

”

βpξq
ρ
` 1

ı2

´ 4
´

s2
3

´

βpξq
ρ
´ u2

ρ2

¯¯

2
,

“ s3

¨

˚

˚

˝

βpξq
ρ
` 1˘

c

”

βpξq
ρ
´ 1

ı2

` 4
´

u2

ρ2

¯

2

˛

‹

‹

‚

.

So, we can ensure that the eigenvalues, will be positive, if the term

ˆ

βpξq

ρ
` 1

˙

˘

d

„

βpξq

ρ
´ 1

2

` 4

ˆ

u2

ρ2

˙

, (3.11)

do not suffers a change of sign, and have the same sign of s3.
Let us notice that in the case that we consider the eigenvalue

λ1 “ s3

¨

˚

˚

˝

βpξq
ρ
` 1`

c

”

βpξq
ρ
´ 1

ı2

` 4
´

u2

ρ2

¯

2

˛

‹

‹

‚

.

Then, (3.11) will have a positive sign and we must ask s3 being positive, that is
s3 ą 0, using these, we must ensure that

d

ˆ

βpξq

ρ
´ 1

˙2

` 4

ˆ

u2

ρ2

˙

ă

ˆ

βpξq

ρ
` 1

˙

. (3.12)

Via direct calculation, condition (3.12) is satisfy if only if
ˆ

βpξq

ρ
´ 1

˙2

` 4

ˆ

u2

ρ2

˙

ă

ˆ

βpξq

ρ
` 1

˙2

, (3.13)

or equivalent
ˆ

u2

ρ

˙

ă βpξq. (3.14)

Remark. Let us notice that condition (3.14) must be satisfy for all ξ P R, so condition
(3.14) can be rewritten as:

u2
ă h1pρqρ. (3.15)

If we notice in our characteristics speeds given in (2.7), condition (3.15) is equivalent
that our system satisfies a subsonic condition.
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For systems in conservation form the symmetrizer is usually the Hessian of a con-
vex entropy function. Even in the case of quasi-linear systems not in conservation
form (where the coefficients Aj are not necessarily Jacobians of the flux functions f j)
it is possible to define a convex entropy, as shown by Kawashima and Yong [16]: if the
symmetrizer is the Jacobian of a diffeomorphic change of variables SpUq :“ DUΨpUq,
then a convex entropy function can be introduced.

As a way of conclusion, if we consider s3 “ ρ we have the following result.

Lemma. If our flux satisfies the subsonicity condition (3.15), then, the linearized
system associated to system (2.4) is symmetrizable in the sense of Humpherys and
the symmetric matrix S P C8pU ,R2ˆ2q is given by

Spξq :“

ˆ

βpξq u
u ρ

˙

. (3.16)

Proof: Clearly S is smooth in the convex open set U . Moreover, S is symmetric, and
thaks to condition (3.15), will be positive definite.
That S symmetrizes system (2.4) follows from straighforward computations that yield

Âpξq : “ S ¨ Apξq “
ˆ

2βpξqu βρ` u2

βρ` u2 2βpξqu

˙

,

B̂pξq : “ S ¨ Bpξq “ ξ2εµ

ˆ

u2

ρ
u

u ρ

˙

,

which are smooth symmetric matrix functions of U P U .

Once we have prove that our system can put in symmetric form, we are in the
right way to follow Humpherys theory and study the strict dissipativity of our system.

3.3 Strict Dissipativity and Genuine Coupling Con-
dition for QHD system

In order to define the strict dissipativity of the system, let us consider solutions around
a constant equilibrium state

Ū “ pρ̄, ūqJ P U Ă R2.

If U ` Ū is a solution to our system, then we can recast the system as:

Ut ` A
1
pŪqUx “ BpŪqUxx ` CpŪqUxxx `N pU,Ux, Uxx, Uxxxq, (3.17)
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where N comprises the nonlinear terms. Let us consider the linear part of system
(3.17) that is, the linear system:

Ut ` A
1
pŪqUx “ BpŪqUxx ` CpŪqUxxx. (3.18)

If we consider our matrix Apξq and Bpξq as in (3.6), we have

Apξq “ A1
pŪq ` ξ2CpŪq “

ˆ

ū ρ̄
¯h1pρq ū

˙

` ε2k2ξ2

ˆ

0 0
1
2ρ̄

0

˙

“

˜

ū ρ̄

h1pρ̄q ` ε2k2ξ2

2ρ̄
ū

¸

,

Bpξq “ ξ2BpŪq “ ξ2εµ

ˆ

0 0
ū{ρ̄ 1

˙

.

And we define, the term βpξq as

βpξq “ h1pρ̄q `
ε2k2ξ2

2ρ̄
.

We are now in a suitable position to show that for any fixed state Ū P U system
(3.17) satisfies the genuine coupling condition at Ū “ pρ̄, ūqJ P U .

Theorem. The system (3.18) satisfies the genuine coupling condition at any state
Ū “ pρ̄, ūqJ P U .

Proof. The eigenvalues of the matrix Apξq will be given by:

λ1,2 “ u˘
a

βpξqρ̄. (3.19)

So the eigenvectors will be of the form:

V1 :“

˜ ?
ρ̄?
βpξq

1

¸

; V2 :“

˜

´
?
ρ̄?
βpξq

1

¸

. (3.20)

In this way, we will have that for i P t1, 2u, Vi P KerBpξq, if

Bpξq ¨ Vi “
ˆ

0
0

˙

, (3.21)

or equivalent, if we consider the eigenvalue V1, then we have:

ū

ρ̄

?
ρ̄

a

βpξq
` 1 “ 0,

ū
a

ρ̄βpξq
` 1 “ 0.
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These is satisfy if only if :

ū “ ´
a

ρ̄βpξq,

so, if we define ξ as:

ξ “

d

2

ˆ

ū2 ´ h1pρ̄qρ̄

ε2k2

˙

. (3.22)

In this case, we will have

βpξq “ h1pρ̄q `
ε2k2

2ρ̄
¨ 2

ˆ

ū2 ´ h1pρ̄qρ̄

ε2k2

˙

,

βpξq “ h1pρ̄q `
ū2

ρ̄
´ h1pρ̄q,

βpξq “
ū2

ρ̄
.

So, it must be satisfied that

´
a

ρ̄βpξq “

d

ρ̄ū2

ρ̄
“
?
ū2.

Taking the negative root, we will have that:

´
a

ρ̄βpξq “ ū,

so V1 will be in the kernel of Bpξq.
The same result arises in the case of V2, that is, V2 will be in KerBpξq if

ū “
a

ρ̄βpξq.

So, V1 and V2 will be in KerBpξq if only if ξ is define as in (3.22), but if we define ξ
in this way, then thanks to the subsonic condition (3.15), we will have that

ˆ

ū2 ´ h1pρ̄qρ̄

ε2k2

˙

ă 0,

using this inequality, we arises that

ξ “

d

2

ˆ

ū2 ´ h1pρ̄qρ̄

ε2k2

˙

P C.

Which is a contradiction because ξ must be a real number. So, it can not be any
eigenvector of Apξq in the kernel of Bpξq, that means that genuine coupling condition
is satisfy for our linearized system (3.18).
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Although genuine coupling readily implies the existence of a compensating func-
tion, it is often possible to provide an explicit formula for it, via the Humphery’s
formula given in (3.9).

First, let us observe that for a constant state Ū “ pρ̄, ūqJ the eigenvalues of the
matrix symmetric matrix Âpξq “ S ¨ Apξq are given by

µ1 “ 2βpξqū´ pū2
` βpξqρ̄q,

µ2 “ 2βpξqū` pū2
` βpξqρ̄q.

The eigenvectors are respectively given by:

v1 “ p´1, 1qJ; v2 “ p1, 1q
J.

So the canonical basis in 2 dimensions, can be written as:

p1, 0qJ “ ´
1

2
p´1, 1qJ `

1

2
p1, 1qJ,

p0, 1qJ “
1

2
p´1, 1qJ `

1

2
p1, 1qJ.

With these, the eigenprojections, will be given by:

π1pξq “
1

2

ˆ

1 ´1
´1 1

˙

; π2pξq “
1

2

ˆ

1 1
1 1

˙

.

Applying formula (3.9), we have:

π1B̂pξqπ2

µ1 ´ µ2

“ ´κpξq

ˆ

1 ´1
´1 1

˙

¨

ˆ

ū2

ρ̄
ū

ū ρ̄

˙

¨

ˆ

1 1
1 1

˙

“ ´κpξq

˜

ū2

ρ̄
´ ρ̄ ū2

ρ̄
´ ρ̄

ρ̄´ ū2

ρ̄
ρ̄´ ū2

ρ̄

¸

,

π2B̂pξqπ1

µ2 ´ µ1

“ κpξq

ˆ

1 1
1 1

˙

¨

ˆ

ū2

ρ̄
ū

ū ρ̄

˙

¨

ˆ

1 ´1
´1 1

˙

“ κpξq

˜

ū2

ρ̄
´ ρ̄ ρ̄´ ū2

ρ̄
ū2

ρ̄
´ ρ̄ ρ̄´ ū2

ρ̄

¸

,

where
κpξq “

ξ2εµ

8pū2 ` βpξqρ̄q
.

In this way, we obtain:

Kpξq “
ξ2εµ

4pū2 ` βpξqρ̄q

˜

0 ρ̄´ ū2

ρ̄
ū2

ρ̄
´ ρ̄ 0

¸

. (3.23)

Clearly Kpξq is skew-hermitian, and we have

Kpξq ¨ Âpξq ´ Âpξq ¨Kpξq “2κpξq

¨

˝

pβpξqρ̄` ū2q

´

ρ̄´ ū2

ρ̄

¯

2βpξqū
´

ρ̄´ ū2

ρ̄

¯

´2βpξqū
´

ρ̄´ ū2

ρ̄

¯

pβpξqρ̄` ū2q

´

ū2

ρ̄
´ ρ̄

¯

˛

‚

´2κpξq

¨

˝

´pβpξqρ̄` ū2q

´

ρ̄´ ū2

ρ̄

¯

2βpξqū
´

ρ̄´ ū2

ρ̄

¯

´2βpξqū
´

ρ̄´ ū2

ρ̄

¯

´pβpξqρ̄` ū2q

´

ū2

ρ̄
´ ρ̄

¯

˛

‚,

Kpξq ¨ Âpξq ´ Âpξq ¨Kpξq “
ξ2εµ

2

¨

˝

´

ρ̄´ ū2

ρ̄

¯

0

0
´

ū2

ρ̄
´ ρ̄

¯

˛

‚.



CHAPTER 3. KAWASHIMA AND SHIZUTA THEORY 17

Adding the matrix B̂pξq we have:

Kpξq ¨ Âpξq ´ Âpξq ¨Kpξq ` B̂pξq “
ξ2εµ

2

˜

ρ̄´ ū2

ρ̄
0

0 ū2

ρ̄
´ ρ̄

¸

`
ξ2εµ

2

ˆ

2 ū
2

ρ̄
2ū

2ū 2ρ̄

˙

,

“
ξ2εµ

2

˜

ρ̄` ū2

ρ̄
2ū

2ū ū2

ρ̄
` ρ̄

¸

.

To verify that the matrix Kpξq ¨ Âpξq ´ Âpξq ¨Kpξq ` B̂pξq is positive definite, let us
obtain the eigenvalues of the matrix M , where M is defined as:

M :“

˜

ρ̄` ū2

ρ̄
2ū

2ū ū2

ρ̄
` ρ̄

¸

.

Let us notice, that its eigenvalues will be determined by the characteristic polynomial:
ˆ

ρ̄2 ` ū2

ρ̄
´ λ

˙2

“ 4u2,

ρ̄2 ` ū2 ´ ρ̄λ

ρ̄
“ ˘2ū.

From these, we have that the eigenvalues of the matrix M are given by:

λ1 “
pρ̄´ ūq2

ρ̄
,

λ2 “
pρ̄` ūq2

ρ̄
,

and thanks to the fact that ρ̄ ą 0, then we can ensure that both eigenvalues λ1, λ2

are positive. So we can conclude that the matrix Kpξq ¨ Âpξq ´ Âpξq ¨Kpξq ` B̂pξq is
positive definite.

Thus the matrix Kpξq defined in (3.23) is the required compensating matrix.
It is worth to note that the matrix Kpξq is compensating function in the sense of
Humpherys.



Conclusions

During the present work we have mainly developed the study of the dissipative struc-
ture for the one-dimensional quantum hydrodynamics system given by equation (1.1).
Due to the presence of the third order dispersive term, given by the quantum Bohm
potential, this study, follows the Humpherys method.

Although, the study of PDE models in quantum hydrodynamics have been a grow-
ing area in recent years, the study of the dissipative structure for our model has not
been reported in the literature, and this is the main contribution of the present work.

We have proved strict dissipativity for these systems by verifying the genuine cou-
pling condition in Humpherys sense, as well as by providing explicit forms for the
compensating function using the Drazin inverse given in Humpherys paper [17].

Genuine coupling condition tell us that traveling wave solutions to the hyperbolic
system are not dissipated by the viscous and relaxation terms. This implies deep
consequences on the time asymptotic smoothing behavior of solutions.

As we have pointed out in the second chapter, symmetrizability is a fundamental
property in the theory. Which enable us to ensure the hyperbolicity of the system.
Let us outstand that in our case, in order to ensure the symmetrizability of our sys-
tem, it must be satisfy to subsonic condition imposed in equation (3.15).

Let us noticed that the study of the dissipative structure is the first step to give
a nonlinear result, once we have seen that our model of interest is well-posed and we
can find a compensation matrix, we are in the right way to give decay rates of the
solutions to the linearized system around a constant state. Once with that, we can
extend the result into the nonlinear case.

So, the following step of the present work is to obtain the linear decay rates of our
system, in the direction followed by Plaza, Angeles and Valdovinos in [21, 33], the big
difference between our case and the classic Korteweg model presented in [21] is that
the viscous contribution for the second equation of our system will depend of the two
variables of state ρ, u, this small difference will be the one which will complicate the
obtaining of the linear decay rates, which nowadays still being an open problem.

18
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Another natural line of work is to ask whether multi-dimensional quantum hy-
drodynamics systems are strictly dissipative. With respect to this problem, let us
remark, however, that not even the existence of a symmetrizer in several space di-
mensions is yet clear.

In this sense the present work represents a contribution in quantum hydrodynam-
ics systems, by ensuring the dissipative structure of the presented problem, but not
only that, it leads us to new open problems in the area.
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