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Chapter 1

Introduction

In ecology, the precept of adaptability of the organisms is crucial in order to understand the

mechanisms of survival in complex populations. One of these adaptations is such as basic

as the concept of movement: the navigation within a complex environment through the

detection, integration and processing of a variety of internal and external signals. These

movement mechanisms can include many behaviors, among which we find for instance,

location of food sources, avoidance of predators and of course attracting mates (see [17]).

Take for instance, the notable example of bacteria populations. When those popu-

lations face hostile environment conditions, such as low levels of nutrients or high con-

centrations of agar (the most commonly used support medium for bacterial and fungal

culture), bacterial colonies may show various morphological aggregation patterns, among

them we find: a fractal morphogenesis for nutrient-poor solid agar; a dense-branching

morphology on semi-solid agar; and finally on a softness-nutrient-agar environment the

bacteria can show a simple homogeneously circular pattern (see [11], [14], [18] [23]).

In order to explain the experiments showing those patterns in bacterial colonies in

laboratory, lots of mathematical models have been proposed. One of the classical models

corresponds to the deterministic reactions-diffusion approach in which bacterial density,

b = b(x, t), and the nutrient concentrate, n = n(x, t), are described with continous time

evolution systems of partial differential equations of the form{
bt = Db∇2b+ F (b, n),

nt = Dn∇2n+G(b, n),
(1.1)

where (x, t) ∈ Rn × [0,+∞), the model assumes that the bacteria and the nutrients

diffuse, with diffusion coefficients Db and Dn, respectively. There are kinetic functions,

F = F (b, n) and G = G(b, n), which represents the growth rate of bacteria cells and the

consumption rate of the nutrient, respectively (see [16]).

However, there exist other models explaining phenomena which need to be taken

into consideration. A key property of many bacteria is that in the presence of certain

chemicals they move preferentially towards higher concentration of the chemical, when it
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is a chemoattractant, or towards a lower concentration when it is a repellent. This yields

to the concept of chemotaxis : the directed movement of cells and organisms in response

to chemical gradients (see [10]).

1.1 Mathematical models for chemotaxis

The first mathematical models for chemotaxis phenomena date from the 1950s by the

Patlak’s works and the nowadays Keller and Segel’s prevailing methods in the 1970s.

The original Keller-Seller (KS) model consists of four coupled reaction-advection-diffusion

equations, which it can be reduced under quasi-steady-state assumptions to a model for

two unknown functions. The general form of the model is

{
bt = ∇ · (k1(b, n)∇b− k2(b, n)∇n) + F (b, n),

nt = Dn∇2n+G(b, n),
(1.2)

where b represents the bacteria, cell or any organism density, n is the chemical or nutrient

concentration; both within a domain Ω ⊂ Rn. Also, k1(b, n) describes the diffusivity of the

cells (sometimes also called motility) while k2(b, n) is the chemotactic sensitivity; both

functions may depend on the levels of b and n. The functions F (b, n) and G(b, n) again

are kinetic functions describing the growth rate of bacteria cells and the consumption or

degradation rate of the nutrient, respectively.

In contrast to the reaction diffusion system (1.1), these models come under the class of

strongly coupled parabolic systems and are also known in the literature as cross-diffusion

systems, as they naturally incorporate inter-species and intra-species competition, namely

in the system (1.2), the interaction between the chemical and the bacteria.

Later, Mimura and Kawasaki [15] are who brought the concept of cross-diffusion to

describe numerically the segregation effects for large time of a two-component (inter-

species) competitive system. Cross-diffusion expresses the population fluxes of one species

due to the presence of the other species. Positive cross-diffusion term denotes one species

tends to move in the direction of lower concentration of another species.

After these groundbreaking works for chemotaxis, the literature has speedily grown in

the last decades thanks to the work and analysis of some special and remarkable cases.

The main focus on these models consists on the study of their solvability.

The great obstacle when these cross-diffusion models are studied is the lack of structure

a that allows to use directly standard theorems in parabolic partial differential equations,

as the classic results from [1], [2], [3] and [12].

However, in the last two decades, there have been some other techniques developed to

obtain results thereon. Galiano and et al. [9] introduced a nonlinear population model

with cross-diffusion terms for two competing species, which is studied analytically and

numerically. Due to the cross diffusion terms, the problem is strongly nonlinear and so,
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no maximum principle generally applies.

Most recently, Anaya et al. [4] worked with a model of the indirect transmission

of an epidemic disease between two spatially distributed host populations having non-

coincident spatial domains with nonlocal and cross-diffusion, they proved the existence

of weak solutions and, by regularity, theory they showed the existence and uniqueness of

classical solutions.

Subsequently, Arumugam et al. [6] established the existence of weak solutions for

a Keller–Segel chemotaxis system with an additional cross–diffusion term in the second

equation.

In a recent contribution, Plaza [19] made the justification of the macroscopic, mean-

field nutrient taxis system with doubly degenerate cross-diffusion (1.3) proposed by Leyva

et al. [13], which models the complex spatio-temporal dynamics exhibited by the bac-

terium Bacillus subtilis during experiments run in vitro (Ohgiwari et al. [18]). This

system is established as follows

∂t

(
b

n

)
= ∇ ·

((
σbn −σb2nχ(n)

0 1

)
∇
(
b

n

))
+

(
bn

−bn

)
, (1.3)

where σ > 0 a constant measuring the hardness of the agar medium (large σ for low agar

concentration) and χ = χ(n) the receptor law (see [13]).

In the present work, we study the Cauchy problem for a variation to the model (1.3).

The structure of this study is the following.

In the next sections, we introduce a chemotaxis model, we present the main hypotheses

and parameters for the Cauchy problem, we give the definition of weak solution and a

theorem asserting its existence is established.

In chapter two, the regularized systems are introduced in order to present the approx-

imated solutions as a result of Schauder’s fixed point theorem. To achieve this goal some

estimates are demonstrated. We prove the non negativity of approximated solutions and

some more estimations which lead to a limit solution.

Finally, in chapter three, we conclude the proof of the existence of a weak solution to

the Cauchy problem (1.4)-(1.8) as a limit of approximated solutions. We also give a short

conclusion.

1.2 Existence framework

In this work we consider a chemotaxis model for a bacterial nutrient-taxis system with

doubly degenerate cross-diffusion, which reads as follows:

∂t

(
u

v

)
= ∇ ·

(
Aδ(u, v)∇

(
u

v

))
+ F (u, v) on QT := Ω× (0, T ), (1.4)
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where T > 0 is a fixed time and Ω is a bounded domain in Rd, d ∈ N, with smooth

boundary ∂ Ω. For δ > 0 fixed we consider Aδ(u, v), the difussion matrix, defined as

Aδ(u, v) = A(u, v) +

(
δ 0

0 δ

)
:=

(
δ + σu

1
2v

1
2 −σu2vχ(u, v)

0 δ + 1

)
(1.5)

with σ > 0 and F (u, v) =

(
F1(u, v)

F2(u, v)

)
, where F1 and F2 are smooth functions for

(u, v) ∈ R2, and χ = χ(u, v) is a bounded non-negative continuous function on R2.

Additionally, the system (1.4) is supplemented by non-flux boundary conditions(
(δ + σu

1
2v

1
2 )∇u− σu2vχ(u, v)∇v

)
· η = 0, (1.6)

∇v · η = 0, on ΓT := ∂Ω× (0, T ), (1.7)

where η is the exterior unit normal to ∂ Ω. A no-flux boundary condition is imposed on

∂Ω such that the ecosystem is closed to the exterior environment.

Finally we implement the initial conditions

u(x, 0) = u0(x) ∈ L2(Ω), v(x, 0) = v0(t) ∈ L2(Ω) for all x ∈ Ω. (1.8)

1.3 Hypotheses and main result

From now on we fix δ > 0. We want the matrix Aδ(u, v) to be uniformly definite positive

whenever u, v ≥ 0, then we ask for some conditions on the function χ(u, v). We assume

that

0 < χ(u, v)4 ≤ 16

σ2u7v3
for any u, v > 0. (1.9)

Notice that the last conditions assure that χ is bounded. For instance, we accomplish

the conditions (1.9) with

χ(u, v)4 =
16

σ2(Kd + u2)
7
2 (Kd + v2)

3
2

,

where Kd is a positive constant (in some models, Kd represents the receptor-ligand binding

dissociation constant, which has nutrient concentration units, and represents the nutrient

level needed for half of receptor to be occupied). So it turns out that the diffusion matrix

is uniformly definite positive.

In the following, we denote by I the identity matrix in M2×2(R).

Proposition 1.1. Assuming (1.9) it holds that A(u, v) ≥ δI, for any u, v ≥ 0.
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Proof. Let be u, v ≥ 0. From the hypothesis, we have that 2
√
σ(uv)

1
4 − σu2vχ(u, v) ≥ 0

and then(
x

y

)ᵀ

Aδ(u, v)

(
x

y

)
= δ(x2 + y2) + (σ(uv)

1
2x2 + y2)− σu2vχ(u, v)xy

≥ δ(x2 + y2) + 2
√
σ(uv)

1
4 |xy| − σu2vχ(u, v)|xy|

≥ δ(x2 + y2) =

(
u

v

)ᵀ

(δI)

(
u

v

)
,

where it was used ax2 + by2 ≥ 2
√
ab |xy| for a, b ≥ 0.

If condition (1.9) does not hold, the ellipticity condition established in Proposition 1.1

could not be true, which leads to unbounded solutions in finite time that is called blow-

up. Therefore, the assumption (1.9) allows us to actually prove the existence of weak

solutions, via suitable estimations.

Another important ingredient to have in mind is the form of the kinetic functions. In

order to have our model realistic and congruent to the biological phenomena, we need

some kinetic functions appearing in the literature in chemotaxis systems (see [4], [6], [9]):

i) Lotka-Volterra terms. Assuming Ri, γij > 0, for i, j ∈ {1, 2},

F1(u, v) = (R1 − γ11u− γ12v)u, (1.10)

F2(u, v) = (R2 − γ21u− γ22v)v, (1.11)

herein R1 and R2 are the intrinsic growth rates of the first and second species or

chemicals (in our case the bacteria and the nutrient), respectively, γ11 and γ22 are

the coefficients of intra-specific competition, and γ12 and γ21 are those of inter-specific

competitions.

ii) Creation-degradation terms.

F1(u, v) = β1v − α1u, (1.12)

F2(u, v) = α2u− β2v, (1.13)

where β1 > 0 and α2 > 0 are the creation rates for bacteria and nutrient, respectively,

and α2, β2 > 0 are the degradation rates.

iii) Logistic growth terms.

F1(u, v) = u(1− u), (1.14)

F2(u, v) = v(1− v). (1.15)

We can also choose any combination of the kinetic terms F1 and F2 stated before.
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Now, we introduce the definition of a weak solution to our problem (1.4)-(1.8).

Definition 1.2. We say that (u, v) is a weak solution to the problem (1.4)-(1.8) if

a) u, v ≥ 0 satisfy the regularity properties

u, v ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)) ∩H1(0, T ;
(
W 1,∞(Ω)

)∗
),

b) the equations (1.4)-(1.7) are satisfied in the following sense∫ T

0

〈ut, ϕ〉 dt+

∫∫
QT

(
(δ + σ(uv)

1
2 )∇u− (σu2vχ(u, v))∇v

)
· ∇ϕdx dt,

=

∫∫
QT

F1(u, v)ϕdx dt (1.16)∫ T

0

〈vt, ψ〉 dt+ (δ + 1)

∫∫
QT

∇v · ∇ψ dx dt =

∫∫
QT

F2(u, v)ψ dx dt, (1.17)

for all ϕ, ψ ∈ L2(0, T ;W 1,∞(Ω)) test functions, where 〈·, ·〉 represents the duality prod-

uct in (W 1,∞(Ω))
∗ ×W 1,∞(Ω),

c) and the initial conditions (1.8) are satisfied in the sense

lim
t−→0
‖u(·, t)− u0(·)‖(W 1,∞(Ω))∗ = 0, (1.18)

lim
t−→0
‖v(·, t)− v0(·)‖(W 1,∞(Ω))∗ = 0. (1.19)

We can now establish the main-existence result.

Theorem 1.3. Assume the condition (1.9), if u0, v0 ∈ L2(Ω) are such that u0, v0 ≥ 0 a.e.

in Ω and F1, F2 satisfy

|F1(p, q)|, |F2(p, q)| ≤ CF (p2 + q2 + 1), (1.20)

F1(0, q) ≥ 0, (1.21)

F2(p, 0) ≥ 0, (1.22)

F1(p, q) ≤ CF p, (1.23)

F2(p, q) ≤ CF q, for all p, q ≥ 0, (1.24)

for some CF > 0 uniform constant, then the problem (1.4)-(1.8) has a weak solution

(u, v) in the sense of Definition 1.2.

Notice that the kinetic functions described in (1.10)-(1.15) satisfy the hypotheses of

Theorem 1.3. The proof of Theorem 1.3 can be found in Section 3.1.
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Chapter 2

Regularized systems and

approximated solutions

In this chapter we introduce the approximated problems to (1.4)-(1.8) which we will call

regularized systems. These systems help us to develop fixed point technique to prove the

existence of approximated solutions, since we have established before, that the matrix

diffusion A(u, v) does not have uniformly upper bounds.

In the following we assume the hypothesis of Theorem 1.3. For ε > 0 arbitrary, we

start by defining

fε(s) :=
s+

1 + ε s+
, where s+ := max{0, s}.

Then it follows that

0 ≤ fε(s) ≤
1

ε
, (2.1)

lim
ε−→0

fε(s) = s+, for any s ∈ R.

We consider now the approximated diffusion matrices

Aδ,ε(u, v) := Aδ(fε(u), fε(v)) =

(
δ + σ [fε(u)fε(v)]

1
2 −σfε(u)2fε(v)χ(fε(u), fε(v))

0 δ + 1

)
,

(2.2)

for all (u, v) ∈ R2. Note that by Proposition 1.1, we have that Aδ,ε is uniformly definite

positive in R2, namely,

Aδ,ε(u, v) ≥ δI for any (u, v) ∈ R2. (2.3)

8



In the same way, we define

Fε(u, v) =

(
F1,ε(u, v)

F2,ε(u, v)

)
:=

(
F1(fε(u), fε(v))

F2(fε(u), fε(v))

)
. (2.4)

Since Fi is continuous and 0 ≤ fε(u), fε(v) ≤ 1
ε
, we obtain that

|Fi,ε(u, v)| ≤Mε, (2.5)

where Mε is a constant depending on F =

(
F1

F2

)
and ε, and for i = 1, 2.

2.1 Fixed point technique for regularized systems

Our next aim is to prove the existence of a non negative solution (uε, vε) to the regularized

system



∂t

(
w

z

)
= ∇ ·

(
Aδ,ε(w, z)∇

(
w

z

))
+ Fε(w, z) in QT := Ω× (0, T ),

(aε(w, z)∇w − bε(w, z)∇z) · η = 0

∇z · η = 0 on ΓT := ∂Ω× (0, T ),

w(x, 0) = u0(x) ∈ L2(Ω), z(x, 0) = v0(x) ∈ L2(Ω) for all x ∈ Ω,

(2.6a)

(2.6b)

(2.6c)

(2.6d)

where

aε(w, z) = δ + σ [fε(w)fε(z)]
1
2 ,

bε(w, z) = σfε(w)2fε(z)χ(fε(w), fε(z)).

We demonstrate the existence of a non negative solution (uε, vε) by using Schauder’s

fixed point theorem (see [21]).

So, in order to apply Shauder’s fixed point theorem, we consider fist the Banach space

XT :=
{
u ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)) : ut ∈ L2(0, T ;

(
H1(Ω)

)∗
)
}

whose norm is defined by

‖u‖XT
:= max

{
‖u‖L∞(0,T ;L2(Ω)) , ‖u‖L2(0,T ;H1(Ω)) , ‖ut‖L2(0,T ;(H1(Ω))∗)

}
,
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and the following subspace

K := {u ∈ L2(QT ) ∩ XT : ‖u‖XT
≤ ρ}

where ρ > 0 is a constant that we need to choose in a convenient way and where K is

thought of as a subspace of L2(QT ), i.e., K is endowed with the norm ‖·‖L2(QT ) .

It is straightforward to verify that K is a closed convex subspace of L2(QT ).

Additionally, if we fix (u, v) ∈ K, we can apply the general results for linear systems of

equations associated to uniformly parabolic operators in [12, Chapter VII], to show that

there exists a unique solution (u, v) ∈ XT ×XT for the problem



∂t

(
u

v

)
= ∇ ·

(
Aδ,ε(u, v)∇

(
u

v

))
+ Fε(u, v) in QT := Ω× (0, T ),

(aε(u, v)∇u− bε(u, v)∇v) · η = 0

∇v · η = 0 on ΓT := ∂Ω× (0, T ),

u(x, 0) = u0(x) ∈ L2(Ω), v(x, 0) = v0(t) ∈ L2(Ω) for all x ∈ Ω.

(2.7a)

(2.7b)

(2.7c)

(2.7d)

For this, we notice that (Aδ,ε(u, v))ij ∈ L∞(QT ) due to (2.1),(2.2) and the bounded-

ness of χ; and that Fi,ε(u, v) ∈ L2(QT ) by (2.5). Finally, we recall the uniform definite

positiveness of Aδ,ε(u, v). Then the classical results from [12, Chapter VII] leads to the

existence and uniqueness of the problem (2.7a)-(2.7d).

The following step is to define the map T : K ×K −→ XT × XT by T (u, v) = (u, v)

where (u, v) ∈ XT × XT is the unique solution to (2.7a)-(2.7d). We want now to apply

the Schauder’s fixed point theorem to T . First, we shall prove that T is invariant, which

means that we need to find ρ such that T (K×K) ⊆ K×K, for this purpose we establish

the next proposition:

Proposition 2.1. For each ε > 0, there exists a uniform constant Rε > 0, independent

on ρ, such that for any (u, v) ∈ (L2(QT ) ∩ XT )
2

the estimate ‖u‖XT
, ‖v‖XT

≤ Rε holds.

Proof. Let (u, v) ∈ (L2(QT ) ∩ XT )
2

and (u, v) be the unique solution to (2.7a)-(2.7d). Due

to the regularity of (u, v) we can use them as test functions in the equations (2.7a)-(2.7c)

to obtain, for almost every t ∈ [0, T ],

1

2

d

dt

∫
Ω

(u2 + v2) dx+ δ

∫
Ω

(
|∇u|2 + |∇v|2

)
dx (2.8)

≤1

2

d

dt

∫
Ω

(u2 + v2) dx+

∫
Ω

(
Aδ,ε(u, v)∇

(
u

v

))
· ∇
(
u

v

)
dx

=

∫
Ω

(F1,ε(u, v)u+ F2,ε(u, v)v) dx
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≤ 1

2

∫
Ω

(
u2 + v2 + F 2

1,ε(u, v) + F 2
2,ε(u, v)

)
dx

≤ M2
ε |Ω|+

1

2

∫
Ω

(u2 + v2) dx, (2.9)

where it was used (2.3) and (2.5). From (2.8) and (2.9) we deduce

d

dt

∫
Ω

(u2 + v2) dx ≤ 2M2
ε |Ω|+

∫
Ω

(u2 + v2) dx

and, applying the Gronwall’s lemma to the function E(t) =

∫
Ω

(u2 +v2) dx, it follows that

∫
Ω

(u2 + v2) dx ≤
(

2M2 |Ω|+
∫

Ω

(u2
0 + v2

0) dx

)
et. (2.10)

By taking the supremum over (0, T ), we get

sup
t∈(0,T )

[
‖u(·, t)‖2

L2(Ω) + ‖v(·, t)‖2
L2(Ω)

]
≤ eT

(
2M2

ε |Ω|+ ‖u0‖2
L2(Ω) + ‖v0‖2

L2(Ω)

)
, (2.11)

which proves that

‖u‖L∞(0,T ;L2(Ω)) , ‖v‖L∞(0,T ;L2(Ω)) ≤ R1 (2.12)

where R1 > 0 is a constant depending entirely on u0, v0, ε,Ω and T. Now, integrating over

(0, T ) the two sides of the inequalities, (2.8) and (2.9), and using the estimate (2.10), it

holds that

δ

∫∫
QT

(
|∇u|2 + |∇v|2

)
dx dt ≤M2

ε |Ω|T +

(
M2

ε |Ω|+
1

2

∫
Ω

(u2
0 + v2

0) dx

)(
eT − 1

)
+

1

2

∫
Ω

(u2
0 + v2

0) dx,

which leads to

‖u‖2
L2(0,T ;H1(Ω)) + ‖v‖2

L2(0,T ;H1(Ω)) =

∫∫
QT

(
u2 + v2 + |∇u|2 + |∇v|2

)
dx dt

≤
(

2 +
1

δ

)(
M2

ε |Ω|+
1

2

∫
Ω

(u2
0 + v2

0) dx

)(
eT − 1

)
+

1

δ

(
1

2

∫
Ω

(u2
0 + v2

0) dx+M2
ε |Ω|T

)
,

where we integrated again (2.10) over (0, T ). This gives us the estimate

‖u‖L2(0,T ;H1(Ω)) , ‖v‖L2(0,T ;H1(Ω)) ≤ R2, (2.13)
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where R2 > 0 is a constant depending entirely on u0, v0, ε,Ω, δ and T.

Finally we prove that ‖ut‖L2(0,T ;(H1(Ω))∗) , ‖vt‖L2(0,T ;(H1(Ω))∗) ≤ R3, where R3 > 0 is a

constant (independent of ρ). For this, we fix ϕ ∈ L2(0, T ; (H1(Ω))) as a test function and

using the first equation of (2.7a) we obtain∣∣∣∣∫ T

0

〈ut, ϕ〉 dt
∣∣∣∣ ≤∫∫

QT

|aε(u, v)||∇u · ∇ϕ| dx dt+

∫∫
QT

|bε(u, v)||∇v · ∇ϕ| dx dt

+

∫∫
QT

|F1,ε(u, v)| |ϕ| dx dt

≤
(
δ +

σ

ε

)(∫∫
QT

|∇u|2 dx dt
) 1

2
(∫∫

QT

|∇ϕ|2 dx dt
) 1

2

+
(σχmax

ε3

)(∫∫
QT

|∇u|2 dx dt
) 1

2
(∫∫

QT

|∇ϕ|2 dx dt
) 1

2

+

(∫∫
QT

F1,ε(u, v)2 dx dt

) 1
2
(∫∫

QT

ϕ2 dx dt

) 1
2

,

where it was used the Hölder’s inequality and (2.1). By using the estimate (2.13) and

(2.5) it follows that∣∣∣∣∫ T

0

〈ut, ϕ〉 dt
∣∣∣∣ ≤ ((δ +

σ

ε
+
σχmax
ε3

)
R2 +Mε

√
T |Ω|

)
‖ϕ‖L2(0,T ;H1(Ω)) . (2.14)

Analogously, it is proved that∣∣∣∣∫ T

0

〈vt, ϕ〉 dt
∣∣∣∣ ≤ (R2 +Mε

√
T |Ω|

)
‖ϕ‖L2(0,T ;H1(Ω)) . (2.15)

The estimates (2.14) and (2.15) yield

‖ut‖L2(0,T ;(H1(Ω))∗) , ‖vt‖L2(0,T ;(H1(Ω))∗) ≤ R3 (2.16)

for some constant R3 and finishing the proof by taking Rε = max{R1, R2, R3}.

Proposition 2.1 assure us that if we take 0 < Rε < ρ then T : K ×K −→ K ×K is

well defined.

Now, we are in shape to prove the continuity of T : K × K −→ K × K, for this

purpose we need some classical results of compact embeddings for Sobolev spaces and for

Banach-space-valued functions.

We adopt, at this point, the notation X ⊂⊂ Y meaning that X is compactly (linearly)

embedded in Y, and X ↪→ Y for a continuous (linear) embedding, where X and Y are

12



Banach spaces.

Theorem 2.2 ([8], Section 5.7). For any U bounded open subset of Rd, d ∈ N, with

∂ U ∈ C1 and for all 1 ≤ p <∞, it satisfies

W 1,p(U) ⊂⊂ Lp(U).

In particular H1(U) ⊂⊂ L2(U).

The second result establishes the compactness embedding for Banach-space-valued

functions, first proved by Aubin in 1963 for reflexive Banach spaces [7] and subsequently

Simon removed this condition in 1986 [22].

Theorem 2.3 (Aubin-Lions-Simmon lemma, [20], [22]). Let X0, X and X1 be Banach

spaces satisfying X0 ⊂⊂ X ↪→ X1 with continuous embeddings. For 0 < T < ∞ and

1 ≤ p, q ≤ ∞ let

W = {u ∈ Lp(0, T ;X0) : ut ∈ Lq(0, T ;X1)}

Banach space whose norm is defined by ‖u‖W = max
{
‖u‖Lp(0,T ;X0) , ‖ut‖Lq(0,T ;X1)

}
. Then

i) if p <∞, W ⊂⊂ Lp(0, T ;X);

ii) if p =∞ and q > 1, W ⊂⊂ C([0, T ];X).

Next, we apply Theorem 2.2 to obtain H1(Ω) ⊂⊂ L2(Ω) ↪→ (H1(Ω))∗ continuous

embedding and then, by Theorem 2.3, we conclude that{
u ∈ L2(0, T ;H1(Ω)) : ut ∈ L2(0, T ; (H1(Ω))∗)

}
⊂⊂ L2(0, T ;L2(Ω)) = L2(QT ),

thus, by the definition of XT , we have the compact embedding

XT ⊂⊂ L2(QT ). (2.17)

The next proposition proves the continuity of T : K ×K −→ K ×K.

Proposition 2.4. T is a compact continuous function in K ×K.

Proof. Recall that K is a subspace of L2(QT ). In order to demonstrate the continuity of

T , let (un, vn) ∈ K ×K be a subsequence and (u, v) ∈ K ×K such that

(un, vn) −→ (u, v) a.e. in QT and strongly in
(
L2(QT )

)2
. (2.18)

We need to prove that

(un, vn) := T (un, vn) −→ (u, v) := T (u, v) a.e. in QT strongly in
(
L2(QT )

)2
. (2.19)

13



To this end, by a characterization of convergence, it is sufficient to prove that any

subsequence of (un, vn) has a further subsequence which convergences to (u, v) strongly

in (L2(QT ))
2
.

Let (unk
, vnk

) be a subsequence of (un, vn). By Proposition 2.1, by (2.17) and since

L2(0, T ;H1(Ω)) and L2(0, T ; (H1(Ω))∗) are Hilbert spaces, we can assure the existence of

a further subsequence (unkj
, vnkj

) such that


(unkj

, vnkj
)→ (u′, v′) a.e. in QT and strongly in

(
L2(QT )

)2

(unkj
, vnkj

) ⇀ (u′, v′) weakly in
(
L2(0, T ;H1(Ω))

)2

(∂tunkj
, ∂tvnkj

) ⇀ (u′t, v
′
t) weakly in

(
L2(0, T ; (H1(Ω))∗)

)2

(2.20a)

(2.20b)

(2.20c)

for some (u′, v′) ∈ L2(QT ).

Since (unkj
, vnkj

) are classical solutions of (2.7a)-(2.7d) for (unkj
, vnkj

) respectively, in

particular they are weak solutions in the sense of distributions, which means that

∫
Ω

(
∂tunkj

)
ϕdx+

∫
Ω

(
aε(unkj

, vnkj
)∇unkj

− bε(unkj
, vnkj

)∇vnkj

)
· ∇ϕdx

=

∫
Ω

F1,ε(unkj
, vnkj

)ϕdx, (2.21)∫
Ω

(
∂tvnkj

)
ψ dt+

∫
Ω

(
(δ + 1)∇vnkj

)
· ∇ψ dx =

∫
Ω

F2,ε(unkj
, vnkj

)ψ dx; (2.22)

for any ϕ, ψ ∈ C∞(Ω) and for a.e. t ∈ [0, T ].

Using (2.18), (2.20a)-(2.20c), the fact that F1,ε(unkj
, vnkj

), F2,ε(unkj
, vnkj

) ∈ L∞(Ω)

(see (2.5)), and the continuity of aε, bε, F1 and F2, we deduce, tending nkj −→∞, that

∫
Ω

u′t ϕdx+

∫
Ω

(aε(u, v)∇u′ − bε(u, v)∇v′) · ∇ϕdx =

∫
Ω

F1,ε(u, v)ϕdx,∫
Ω

v′t ψ dx+

∫
Ω

((δ + 1)∇v′) · ∇ψ dx =

∫
Ω

F2,ε(u, v)ψ dx;

for any ϕ, ψ ∈ C∞(Ω) and for a.e. t ∈ [0, T ].

This shows, by the uniqueness of weak solutions in distribution sense (see again [12])

and the definition of T , that (u′, v′) = (u, v) a.e. in QT , and which proves in turn that

(unkj
, vnkj

)→ (u, v) a.e. in QT and strongly in
(
L2(QT )

)2
.

Therefore (2.19) holds, demonstrating the continuity of T .
By the same arguments, the compactness of T is proved using again the compact

14



embedding (2.17).

Finally from Proposition 2.4 we are able to use Schauder’s fixed point theorem to

operator T ; then, for each ε > 0, there exists a solution (uε, vε) ∈ K ×K to the Cauchy

problem (2.6a)-(2.6d). In particular, the solutions (uε, vε) satisfy the following weak

conditions in a distribution sense:

∫
Ω

(∂tuε)ϕdx+

∫
Ω

(aε(uε, vε)∇uε − bε(uε, vε)∇vε) · ∇ϕdx =

∫
Ω

F1,ε(uε, vε)ϕdx, (2.23)∫
Ω

(∂tvε)ψ dx+ (δ + 1)

∫
Ω

∇vε · ∇ψ dx dt =

∫
Ω

F2,ε(uε, vε)ψ dx, (2.24)

for all ϕ, ψ ∈ L2(0, T ;W 1,∞(Ω)).

2.2 Estimates for approximated solutions

Proposition 2.5. Assuming the hypothesis of Theorem 1.3. Then the solution (uε, vε) is

non negative. Moreover, there exist uniform constants C1, C2, C3 > 0 not depending on ε

such that

‖uε‖L∞(0, T ;L2(Ω)) , ‖vε‖L∞(0, T ;L2(Ω)) ≤ C1, (2.25)

‖uε‖L2(0, T ;H1(Ω)) , ‖vε‖L2(0, T ;H1(Ω)) ≤ C2, (2.26)

‖∂tuε‖L2(0, T ; (W 1,∞(Ω))∗) , ‖∂tvε‖L2(0, T ; (W 1,∞(Ω))∗) ≤ C3. (2.27)

Proof. We start proving the non negativeness of (uε, vε). Since we have the regularity

properties for uε, we can consider

ϕ = u−ε = min{uε, 0},
ψ = v−ε = min{vε, 0},

as test functions in the equations (2.23) and (2.24), adding both of them and noticing

that;

∇w · ∇w− =
∣∣∇w−∣∣2 ,

(∂tw)w− =
(
∂tw

−)w−,
aε(u, v) = a(0, fε(v)) = δ in {u ≤ 0},
bε(u, v) = b(0, fε(v)) = 0 in {u ≤ 0};

we obtain that
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1

2

d

dt

∫
Ω

[
(u−ε )2 + (v−ε )2

]
dx+ δ

∫
Ω

(
|∇u−ε |2 + |∇v−ε |2

)
dx

≤
∫

Ω

∂t

(
uε
vε

)
·
(
u−ε
v−ε

)
dx+

∫
Ω

(
Aδ,ε(uε, vε)∇

(
uε
vε

))
· ∇
(
u−ε
v−ε

)
dx

=

∫
Ω

[
F1,ε(uε, vε)u

−
ε + F2,ε(uε, vε) v

−
ε

]
dx

=

∫
Ω

[
F1(0, fε(vε))u

−
ε + F2(fε(uε), 0) v−ε

]
dx ≤ 0,

where it was used the hypothesis (1.21) and (1.22). Thus it follows that∫
Ω

[
(u−ε )2 + (v−ε )2

]
dx ≤ 0,

and therefore, since u0, v0 ≥ 0,∫
Ω

[
(u−ε )2 + (v−ε )2

]
dx ≤

∫
Ω

[
(u−0 )2 + (v−0 )2

]
dx = 0.

Which proves that u−ε , v
−
ε = 0 a.e. in Ω for a.e. t ∈ [0, T ]. Showing that uε and vε are

non negative.

Now, in order to demonstrate the estimates (2.25)-(2.27), we will follow the same

arguments in Proposition 2.1 with some slightly differences, since we need to obtain

uniformly bounds not depending on ε. Indeed, taking this time ϕ = uε and ψ = vε as test

functions in (2.23) and (2.24), we have

1

2

d

dt

∫
Ω

(u2
ε + v2

ε) dx+ δ

∫
Ω

(
|∇uε|2 + |∇vε|2

)
dx

≤
∫

Ω

∂t

(
uε
vε

)
·
(
uε
vε

)
dx+

∫
Ω

(
Aδ,ε(uε, vε)∇

(
uε
vε

))
· ∇
(
uε
vε

)
dx

=

∫
Ω

[F1,ε(uε, vε)uε + F2,ε(uε, vε) vε] dx

=

∫
Ω

[F1(fε(uε), fε(vε)) fε(uε)(1 + ε uε) + F2(fε(uε), fε(vε)) fε(vε)(1 + ε vε)] dx

≤
∫

Ω

[
fε(uε)

2(1 + ε uε) + fε(vε)
2(1 + ε vε)

]
dx

≤
∫

Ω

(
u2
ε + v2

ε

)
dx,

where we have used (1.23), (1.24), (2.3) and the definition of Fε (see (2.4)). Summing up

the latter inequalities we obtain
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1

2

d

dt

∫
Ω

(u2
ε + v2

ε) dx+ δ

∫
Ω

(
|∇uε|2 + |∇vε|2

)
dx ≤

∫
Ω

(
u2
ε + v2

ε

)
dx (2.28)

and then, applying Gronwall’s inequality, we can deduce∫
Ω

(u2
ε + v2

ε) dx ≤
(
‖u0‖2

L2(Ω) + ‖v0‖2
L2(Ω)

)
e2t. (2.29)

Therefore and taking supremum over [0, T ],

‖uε‖L∞(0,T ;L2(Ω)) , ‖vε‖L∞(0,T ;L2(Ω)) ≤
(
‖u0‖2

L2(Ω) + ‖v0‖2
L2(Ω)

) 1
2
eT =: C1.

For the estimate (2.26), we integrate (2.28) and (2.29) over [0, T ] so we can have

‖uε‖2
L2(0,T ;H1(Ω)) + ‖vε‖2

L2(0,T ;H1(Ω)) =

∫∫
QT

[
u2
ε + v2

ε + |∇uε|2 + |∇vε|2
]
dx dt

≤ 1

2

(
1 +

1

δ

)(
‖u0‖2

L2(Ω) + ‖v0‖2
L2(Ω)

)
(e2T − 1)

+
1

2δ

(
‖u0‖2

L2(Ω) + ‖v0‖2
L2(Ω)

)
=: C2

2 .

Hence ‖uε‖L2(0,T ;H1(Ω)) , ‖vε‖L2(0,T ;H1(Ω)) ≤ C2.

Finally, we prove the estimate (2.27). For this purpose, we notice first that aε(uε, vε)

and bε(uε, vε) are uniformly bounded in L∞(0, T ; L2(Ω)). Indeed, from hypothesis (1.9)

and the definition of aε and bε,

0 ≤ aε(uε, vε) ≤ δ + u
1
2
ε v

1
2
ε ≤ δ +

1

2
(uε + vε), (2.30)

bε(uε, vε) ≤ 2
√
σu

1
4
ε v

1
4
ε ≤
√
σ(u

1
2
ε + v

1
2
ε ) ≤

√
σ

(
1

2
uε +

1

2
vε + 1

)
, (2.31)

where Young’s inequality was applied. These bounds together with the estimate (2.25)

lead to

‖aε(uε, vε)‖L∞(0, T ;L2(Ω)) , ‖bε(uε, vε)‖L∞(0, T ;L2(Ω)) ≤ C,

where C is a positive constant independent on ε.

Analogously, by the hypothesis (1.20), we have that F1,ε(uε, vε), F2,ε(uε, vε) are uni-

formly bounded in L∞(0, T ; L1(Ω)), namely

‖F1,ε(uε, vε)‖L∞(0, T ;L1(Ω)) , ‖F2,ε(uε, vε)‖L∞(0, T ;L1(Ω)) ≤ C ′

and C ′ is again a positive constant independent on ε.
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Now, it is deduced from (2.23) and repeated occasions of Hölder inequality that, for

every ϕ ∈ L2(0, T ;W 1,∞(Ω)),

∣∣∣∣∫ T

0

〈∂t uε, ϕ〉 dt
∣∣∣∣ ≤∫∫

QT

|aε(uε, vε)||∇uε · ∇ϕ| dx dt+

∫∫
QT

|bε(uε, vε)||∇vε · ∇ϕ| dx dt

+

∫∫
QT

|F1,ε(uε, vε)||ϕ| dx dt

≤
∫ T

0

‖ϕ(t)‖W 1,∞(Ω) ‖aε(uε(t), vε(t))‖L2(Ω) ‖∇uε(t)‖L2(Ω) dt

+

∫ T

0

‖ϕ(t)‖W 1,∞(Ω) ‖bε(uε(t), vε(t))‖L2(Ω) ‖∇vε(t)‖L2(Ω) dt

+

∫ T

0

‖F1,ε(uε(t), vε(t))‖L1(Ω) ‖ϕ‖W 1,∞(Ω) dt

≤
∫ T

0

‖ϕ(t)‖W 1,∞(Ω) ‖aε(uε(t), vε(t))‖L2(Ω) ‖uε(t)‖H1(Ω) dt

+

∫ T

0

‖ϕ(t)‖W 1,∞(Ω) ‖bε(uε(t), vε(t))‖L2(Ω) ‖vε(t)‖H1(Ω) dt

+

∫ T

0

‖F1,ε(uε(t), vε(t))‖L1(Ω) ‖ϕ‖W 1,∞(Ω) dt

≤ ‖aε(uε, vε)‖L∞(0, T ;L2(Ω)) ‖uε‖L2(0, T ;H1(Ω)) ‖ϕ‖L2(0, T ;W 1,∞(Ω))

+ ‖bε(uε, vε)‖L∞(0, T ;L2(Ω)) ‖vε‖L2(0, T ;H1(Ω)) ‖ϕ‖L2(0, T ;W 1,∞(Ω))

+ ‖F1,ε(uε, vε)‖L2(0, T ;L1(Ω)) ‖ϕ‖L2(0, T ;W 1,∞(Ω))

≤ ‖aε(uε, vε)‖L∞(0, T ;L2(Ω)) ‖uε‖L2(0, T ;H1(Ω)) ‖ϕ‖L2(0, T ;W 1,∞(Ω))

+ ‖bε(uε, vε)‖L∞(0, T ;L2(Ω)) ‖vε‖L2(0, T ;H1(Ω)) ‖ϕ‖L2(0, T ;W 1,∞(Ω))

+
√
T ‖F1,ε(uε, vε)‖L∞(0, T ;L1(Ω)) ‖ϕ‖L2(0, T ;W 1,∞(Ω))

≤ (2C C2 +
√
T C ′) ‖ϕ‖L2(0, T ;W 1,∞(Ω)) ,

which gives the estimate ‖∂t uε‖L2(0, T ; (W 1,∞(Ω))∗) ≤ 2C C2 +
√
T C ′.

By the same arguments, we can derive that, for any ψ ∈ L2(0, T ; W 1,∞(Ω)),
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∣∣∣∣∫ T

0

〈∂t vε, ϕ〉 dt
∣∣∣∣ ≤ (δ + 1)

∫∫
QT

|∇vε · ∇ψ| dx dt+

∫∫
QT

|F2,ε(uε, vε)||ψ| dx dt

≤ (δ + 1)

∫ T

0

‖∇vε(t)‖L1(Ω) ‖∇ψ(t)‖L∞(Ω) dt

+

∫ T

0

‖F2,ε(uε(t), vε(t))‖L1(Ω) ‖ψ‖L∞(Ω dt

≤ (δ + 1)
√

Ω

∫ T

0

‖vε(t)‖H1(Ω) ‖ψ(t)‖W 1,∞(Ω) dt

+

∫ T

0

‖F2,ε(uε(t), vε(t))‖L1(Ω) ‖ψ‖L∞(Ω dt

≤ (δ + 1)
√

Ω ‖v‖L2(0, T ;H1(Ω)) ‖ψ‖L2(0, T ;W 1,∞(Ω))

+ ‖F2,ε(uε, vε)‖L2(0, T ;L1(Ω)) ‖ψ‖L2(0, T ;W 1,∞(Ω))

≤ (δ + 1)
√

Ω ‖v‖L2(0, T ;H1(Ω)) ‖ψ‖L2(0, T ;W 1,∞(Ω))

+
√
T ‖F2,ε(uε, vε)‖L∞(0, T ;L1(Ω)) ‖ψ‖L2(0, T ;W 1,∞(Ω))

≤ ((δ + 1)
√

ΩC2 +
√
T C ′) ‖ψ‖L2(0, T ;W 1,∞(Ω))

and thus

‖∂t uε‖L2(0, T ; (W 1,∞(Ω))∗) ≤ (δ + 1)
√

ΩC2 +
√
T C ′.

Then we define

C3 := max{2C C2 +
√
T C ′, (δ + 1)

√
ΩC2 +

√
T C ′}.

This completes the proof of the proposition.
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Chapter 3

Existence of weak solutions

From Aubin’s lemma (see Theorem 2.3) and Proposition 2.5, we deduce that {(uε, vε)}ε>0

forms a bounded subset of{
u ∈ L2(0, T ;H1(Ω)) : ut ∈ L2(0, T ; (W 1,∞(Ω))∗)

}
⊂⊂ L2(QT )

(we have used also that H1(Ω) ⊂⊂ L2(Ω) ↪→ (W 1,∞(Ω))∗).

Using the previous fact together with the fact that L2(0, T ; H1(Ω)) and L2(0, T ; (W 1,∞(Ω))∗)

are Hilbert spaces and (2.17), we obtain the existence of an element (u, v) ∈ (L2(0, T ;H1(Ω)))
2

with (ut, vt) ∈ (L2(0, T ; (W 1,∞(Ω))∗))
2

such that, as ε −→ 0, the following convergences

(up to a subsequence) hold:


(uε, vε)→ (u, v) a.e. in QT and strongly in

(
L2(QT )

)2
,

(uε, vε) ⇀ (u, v) weakly in
(
L2(0, T ;H1(Ω))

)2
,

(∂tuε, ∂tvε) ⇀ (ut, vt) weakly in
(
L2(0, T ; (W 1,∞(Ω))∗)

)2
.

(3.1a)

(3.1b)

(3.1c)

Note that, in particular, (3.1a) and (3.1b) imply that

(∇uε,∇vε) ⇀ (∇u,∇v) weakly in (L2(QT ))2. (3.2)

Our goal is to show that (u, v) is the weak solution established in Definition 1.2. In

order to achieve this aim, since (uε, vε) verifies in particular the weak formulation
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∫ T

0

〈∂tuε, ϕ〉 dt+

∫∫
QT

(aε(uε, vε)∇uε − bε(uε, vε)∇vε) · ∇ϕdx dt =

∫∫
QT

F1,ε(uε, vε)ϕdx dt,

(3.3)∫ T

0

〈∂tvε, ψ〉 dt+ (δ + 1)

∫∫
QT

∇vε · ∇ψ dx dt =

∫∫
QT

F2,ε(uε, vε)ψ dx dt;

(3.4)

for any ϕ, ψ ∈ L2(0, T ; W 1,∞(Ω)), we want to make ε −→ 0 to obtain

∫ T

0

〈ut, ϕ〉 dt+

∫∫
QT

(a(u, v)∇u− b(u, v)∇v) · ∇ϕdx dt =

∫∫
QT

F1(u, v)ϕdx dt, (3.5)∫ T

0

〈vt, ψ〉 dt+ (δ + 1)

∫∫
QT

∇v · ∇ψ dx dt =

∫∫
QT

F2(u, v)ψ dx dt; (3.6)

where a(u, v) = δ+ σ u
1
2v

1
2 and b(u, v) = σ u2 v χ(u, v). We verify this fact by proving the

convergence term by term, namely, we show, as ε −→ 0, that∫ T

0

〈∂tuε, ϕ〉 dt −→
∫ T

0

〈ut, ϕ〉 dt, (3.7)∫∫
QT

aε(uε, vε)∇uε · ∇ϕdx dt −→
∫∫

QT

a(u, v)∇u · ∇ϕdx dt, (3.8)∫∫
QT

bε(uε, vε)∇vε · ∇ϕdx dt −→
∫∫

QT

b(u, v)∇v · ∇ϕdx dt, (3.9)∫∫
QT

F1,ε(uε, vε)ϕdx dt −→
∫∫

QT

F1(u, v)ϕdx dt, (3.10)∫ T

0

〈∂tvε, ψ〉 dt −→
∫ T

0

〈vt, ψ〉 dt, (3.11)∫∫
QT

∇vε · ∇ψ dx dt −→
∫∫

QT

∇v · ∇ψ dx dt, (3.12)∫∫
QT

F2,ε(uε, vε)ψ dx dt −→
∫∫

QT

F2(u, v)ψ dx dt, (3.13)

for all ϕ, ψ ∈ L2(0, T ; W 1,∞(Ω)).

Note that (3.7), (3.11) and (3.12) are deduced directly from (3.1c) and (3.2). Now, we

show the other convergences, first we give the next lemma.

Lemma 3.1. For (u, v) satisfying (3.1a)-(3.1c) it follows, as ε −→, 0 that

(fε(uε), fε(vε)) −→ (u, v) a.e. in QT and strongly in
(
L2(QT )

)2
.
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Proof. Recall that Ω ⊆ Rd. If d ≥ 3 we take p := p∗ = 2d
d−2

; if d = 1 or 2, then take

any d′ ≥ 3 and consider again p = 2d′

d′−2
. In this way, by Gagliardo-Nirenberg-Sobolev

inequalities, we know that H1(Ω) ↪→ Lp(Ω) and thus

‖u‖Lp(Ω) ≤M ‖u‖H1(Ω)

for some M > 0 constant depending only on Ω and d. Therefore, using Hölder inequality,

it is deduced:∫∫
QT

(u− fε(uε))2 dx dt =

∫∫
QT

(
u− uε + ε u uε

1 + ε uε

)2

dx dt

≤ 2

∫∫
QT

(u− uε)2 dx dt+ 2

∫∫
QT

(
ε u uε

1 + ε uε

)2

dx dt

≤ 2 ‖u− uε‖2
L2(QT ) + 2

∫∫
QT

(ε u uε)
2

(ε uε)
2− 4

d (1 + ε uε)
4
d

dx dt

≤ 2 ‖u− uε‖2
L2(QT ) + 2 ε

4
d

∫∫
QT

u2 u
4
d
ε dx dt

≤ 2 ‖u− uε‖2
L2(QT )

+ 2 ε
4
d

∫ T

0

(∫
Ω

up(t) dx

) 2
p
(∫

Ω

u
4p

d(p−2)
ε (t) dx

) p−2
p

dt

≤ 2 ‖u− uε‖2
L2(QT ) + 2 ε

4
d

∫ T

0

‖u(t)‖2
Lp(Ω) ‖uε(t)‖

4
d

L2(Ω) dt

≤ 2 ‖u− uε‖2
L2(QT ) + 2 ε

4
d M2 ‖uε‖

4
d

L∞(0, T ;L2(Ω))

∫ T

0

‖u(t)‖2
H1(Ω) dt

≤ 2 ‖u− uε‖2
L2(QT ) + 2 ε

4
d M2 ‖uε‖

4
d

L∞(0, T ;L2(Ω)) ‖u‖
2
L2(0, T ;H1(Ω))

−→ 0 as ε −→ 0,

where it was used that (uε) is uniformly bounded in L∞(0, T ; L2(Ω)). This proves the

convergence fε(uε) −→ u in L2(QT ). Analogously, fε(vε) −→ v in L2(QT ) is deduced.

As a direct consequence of Lemma 3.1, we have the following convergences.

Lemma 3.2. The following convergences hold as ε −→ 0 :

a) aε(uε, vε) −→ a(u, v) and bε(uε, vε) −→ b(u, v) in L2(QT );

b) Fi,ε(uε, vε) −→ Fi(u, v) in L2(0, T ; L1(Ω)) for i = 1, 2.

Proof. a) From Lemma 3.1 we have in particular that (fε(uε), fε(vε)) −→ (u, v) a.e. in

Q2
T and, by the continuity of a(·, ·),
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aε(uε, vε) −→ a(u, v) a.e. in QT .

Now, since (fε(uε), fε(vε)) −→ (u, v) in (L2(QT ))2 and

|aε(uε, vε)| ≤ C(1 + fε(uε) + fε(v)), (3.14)

|a(u, v)| ≤ C(1 + u+ v) (3.15)

for some uniform constant C > 0 (compare with (2.30)), thus it follows using the

Generalized Dominated Convergence Theorem that

aε(uε, vε) −→ a(u, v) in L2(QT ).

The same arguments shows that

bε(uε, vε) −→ b(u, v) in L2(QT ),

since (see (2.31))

|bε(uε, vε)| ≤ C(1 + fε(uε) + fε(vε)),

|b(u, v)| ≤ C(1 + u+ v).

b) Lemma 3.1 implies that for a.e. t ∈ [0, T ],

(fε(uε(t)), fε(vε(t))) −→ (u(t), v(t)) a.e. in (L2(Ω))2

and therefore, by the continuity of Fi, we obtain that

Fi,ε(uε, vε)[t] −→ Fi(u, v)[t] a.e. in Ω.

Applying again the Generalized Dominated Convergence Theorem in Ω and the hy-

pothesis (1.20) we obtain

‖Fi(u, v)[t]− Fi,ε(uε, vε)[t]‖L1(Ω) −→ 0 for a.e. t ∈ [0, T ].

Moreover, using again the hypothesis (1.20), the definition of fε and (2.25)
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‖Fi(u, v)[t]− Fi,ε(uε, vε)[t]‖L1(Ω) ≤CF
(

2 |Ω|+ ‖fε(uε(t))‖2
L2(Ω) + ‖fε(vε(t))‖2

L2(Ω)

+ ‖u(t)‖2
L2(Ω) + ‖v(t)‖2

L2(Ω)

)
≤CF

(
2 |Ω|+ ‖uε(t)‖2

L2(Ω) + ‖vε(t)‖2
L2(Ω)

+ ‖u(t)‖2
L2(Ω) + ‖v(t)‖2

L2(Ω)

)
≤CF

(
2 |Ω|+ 4C2

1

)
,

for a.e. t ∈ [0, T ], by an application of the Bounded Convergence Theorem in [0, T ] we

have that,

‖Fi(u, v)− Fi,ε(uε, vε)‖L2(0, T ;L1(Ω)) −→ 0,

concluding the proof of this lemma.

3.1 Proof of the Theorem 1.3

We are ready to show that (u, v) is a weak solution to the problem (1.4)-(1.8). As we

noticed previously, in order to show (3.5) and (3.6) for any ϕ, ψ ∈ L2(0, T ; W 1,∞(Ω)), we

just need to demonstrate the convergences (3.8), (3.9), (3.10) and (3.13).

Since (3.2) holds, then, to demonstrate (3.8) and (3.9), it is sufficient to prove that,

for any ϕ ∈ L2(0, T ; W 1,∞(Ω)),

aε(uε, vε)∇ϕ −→ a(u, v)∇ϕ in L2(QT ), (3.16)

bε(uε, vε)∇ϕ −→ b(u, v)∇ϕ in L2(QT ). (3.17)

We check the first convergence (the second one is analogous). From Lemma 3.2 we

can assure that, for a.e. t ∈ [0, T ],

‖a(u, v)[t]− aε(uε, vε)[t]‖2
L2(Ω) −→ 0.

Moreover, from (3.14), (3.15) and (2.25), it follows that

‖a(u, v)[t]− aε(uε, vε)[t]‖2
L2(Ω) ≤ K

uniformly for a.e. t ∈ T, therefore

‖a(u, v)[t]− aε(uε, vε)[t]‖2
L2(Ω) ‖ϕ(t)‖2

W 1,∞(Ω) ≤ K ‖ϕ(t)‖2
W 1,∞(Ω) .
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Then, in view that ϕ ∈ L2(0, T ; W 1,∞(Ω)), we can apply the Dominated Convergence

Theorem to obtain that

∫∫
QT

|a(u, v)− aε(uε, vε)|2|∇ϕ|2 dx dt ≤
∫ T

0

‖a(u, v)[t]− aε(uε, vε)[t]‖2
L2(Ω) ‖ϕ(t)‖2

W 1,∞(Ω) dt

−→ 0.

This proves (3.16) and thus (3.8) holds. In the same way, one can show (3.9).

The proof of (3.10) and (3.13) are due by straightforward calculations, indeed

∣∣∣∣∫∫
QT

(Fi(u, v)− Fi,ε(uε, vε)) ξ dx dt
∣∣∣∣ ≤ ∫ T

0

‖Fi(u, v)[t]− Fi,ε(uε, vε)[t]‖L1(Ω) ‖ξ(t)‖W 1,∞(Ω) dx dt

≤ ‖Fi(u, v)− Fi,ε(uε, vε)‖L2(0, T ;L1(Ω)) ‖ξ‖L2(0, T ;W 1,∞(Ω))

−→ 0,

for any ξ ∈ L2(0, T ; W 1,∞(Ω)),where Lemma 3.2 was used again .

This shows that (u, v) satisfies (3.5) and (3.6).

The non negativity of (u, v) is clear due to Proposition 2.5 and (3.1a).

Finally, to see the initial conditions are satisfied in the sense of Definition 1.2, we just

need to point out the clear fact that (u(x, 0), v(x, 0)) = (u0(x), v0(x)) a.e. in Ω and the

fact that u ∈ H1(0, T ; (W 1,∞(Ω))∗) ↪→ C([0, T ]; (W 1,∞(Ω))∗), then the initial conditions

are accomplished, concluding the proof of Theorem 1.3.

3.2 Conclusions

In this work, we have proved the existence of weak solutions in the sense of definition

Definition 1.2 to a chemotaxis system with a cross-diffusion term. During the proof, we

used arguments of fixed point theorem and compact embeddings.

The main reasons why we needed to apply those techniques are because, on one side,

the system (1.4)-(1.5) is a strongly coupled non linear system, then standard tools as

maximum principle and regularity theory for parabolic equations do not apply.

On the other hand, there are no few examples of existence for quasi linear parabolic

systems which draw on classic results of their type, for instance,the Amann’s theorems

in [1], [3], [2] and Ladyzenskaja’s results in [12], however our system (1.4) is not the case

because of the following aspects (cf. [6]):

(1) we assume u0, v0 ∈ L2(Ω), meanwhile both of Amman and Ladyzenskaja’s theorems

hold provided initial conditions are in L∞(Ω);
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(2) the diffusion matrix Aδ(u, v) is not uniformly upper-bounded, indeed, this fact forced

us to introduce the regularized systems with diffusion matrices (2.2),

(3) the additional cross-diffusion term appearing in (1.4).

Notice that we have compensated the lack of structure in our system by demonstrating

the existence of weak solutions; moreover, the definition of weak solutions in Definition 1.2

is not the usual weak solution definition in distributional sense or in L2(Ω). Although,

the biggest contribution in this work is the study of a system presenting a cross diffusion

term.
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