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Chapter 1

Introduction

Consider the following nonlinear Schrödinger equation with a delta potential

iut = −∂2
xu+ γδ(x)u+ |u|p−1u, x, t ∈ R, (1.1)

where γ < 0, 1 < p < ∞, and δ(x) is the Dirac delta measure at the origin. The equations
of the form (1.1) belong to a family of models featuring the competition between attractive
(γ < 0) and repulsive (α > 0) terms. The combination of this nonlinearities in (1.1) is
well-known in optical media (cf. Refs. [4]-[8]). In particular in the context of nonlinear
optics, we recall that for an effective linear potential term, V (x), the general NLS model,

iut + ∂2
xu+ V (x)u+ F (u) = 0,

represents a trapping structure for light beams induced by an inhomogeneity of the local
refractive index. In particular, the delta-function term in (1.1), adequately represents a
narrow trap which is able to capture broad solitonic beams. In the description of Bose-
Einstein codensates, the same equation with a delta potential models the dynamics of a
condensate in the presence of an impurity of a small lenght scale (cf. Refs. [13] and [17]).
Notably, in both physical theories, the most common form of the nonlinearity F (u) is a
single cubic.

The formal expression −∂2
x + γδ(x) is formulated as a lineal operator Aγ or Hγ asso-

ciated with the quadratic form

H1(R) ×H1(R) → R,

(u, v) 7−→ αγ(u, v) := Re
{∫

R
∂xu(x)v(x) dx+ γu(0)v(0)

}
.

Recall that H1(R) ↪→ Cb(R), where

Cb(R) =
{
u ∈ C(R;C) : lim

|x|→∞
u(x) = 0

}
.

The lineal operator Aγ : H1(R) → H−1(R) is defined by

⟨Aγu, v⟩ = αγ(u, v), u, v ∈ H1(R).
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2 1. Introduction

We define a linear operator Hγv = −∂2
xv for v ∈ D(Hγ), where

D(Hγ) = {v ∈ H2(R \ {0}) ∩H1(R) : ∂xv(0+) − ∂xv(0−) = γv(0)}.

Hγ is a self-adjoint operator in L2(R), and satisfies

(Hγu, v)L2 = αγ(u, v), u, v ∈ D(Hγ).

The following spectral properties of Hγ are known: σess(Hγ) = σac(Hγ) = [0,∞) and
σp(Hγ) = {−γ2

4 } with its positive eigenfunction (|γ|/2)1/2e− |γ||x|
2 .

It is worth remarking that for any p > 1, H1(R) ⊂ Lp+1(R). Indeed, the Gagliardo-
Nirenberg interpolation inequality (see, Theorem 12.82 in [15]) yields

∥u∥Lp+1(R) ≤ C∥u∥θ
L2(R)∥∂xu∥1−θ

L2(R), (1.2)

with C > 0 an uniform positive constant and θ = p+2
2p+2 ∈ (0, 1).

We study the structure and the orbital stability of the standing waves solutions eiωtφω(x)
for (1.1), where ω ∈ R and φω ∈ H1(R) is a positive solution of the stationary problem

Aγφ+ ωφ+ |φ|p−1φ = 0 in H−1(R). (1.3)

The well-posedness of the Cauchy problem for (1.1) in the space H1(R) follows from an
abstract result in Cazenave [11].

Proposition I.1. For any u0 ∈ H1(R) there exist T = T ∗(u0) ∈ (0,∞] and a unique
solution u ∈ C([0, T ∗);H1(R)) of (1.1) with u(0) = u0 such that

lim
t→T ∗

∥u(t)∥H1(R) = ∞ if T ∗ < ∞.

Moreover, we have that u(t) satisfies the conservation of charge and energy

∥u(t)∥L2(R) = ∥u0∥L2(R), E(u(t)) = E(u0), t ∈ [0, T ∗),

where the energy functional E, is defined as follows

E(v) = 1
2∥∂xv∥2

L2(R) + γ

2 |v(0)|2 + 1
p+ 1∥v∥p+1

Lp+1(R) v ∈ H1(R).

The stability of standing waves is defined as follows.
Definition I.2. We say that a standing wave solution eiωtφω is orbitally stable in

H1(R) if for any ε > 0 there exists δ > 0 such that if u0 ∈ H1(R) and ∥u0 −φω∥ < δ, then
the solution u(t) of (1.1) with initial value u(0) = u0 exists for all t ≥ 0 and

sup
t≥0

inf
θ∈R

∥u(t) − eiθφω∥ < ε.

Otherwise, eiωtφω is orbitally unstable in H1(R).
We state the main results for the case γ < 0 and α = 1.
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Theorem I.3 Let γ < 0, 1 < p < ∞ and 0 < ω < γ2

4 . Then, the stationary problem
(1.3) has a unique positive solution φω ∈ H1(R) given by

φω(x) =
(

(p+ 1)ω
2

) 1
p−1

{
sinh

(
(p− 1)

√
ω

2 |x| + cγ(ω)
)}− 2

p−1

x ∈ R, (1.4)

where cγ = tanh−1(2
√
ω/|γ|). The standing wave solution eiωtφω is orbitally stable in

H1(R).

♦

Theorem I.4 Let γ < 0, ω = 0 and 1 < p < 5. Then, the stationary problem (1.3)
has a unique positive solution φ0 ∈ H1(R) given by

φ0(x) =
(

2(p+ 1)(p− 1)2γ2

{4 + (p− 1)|γ||x|2}

) 1
p−1

for all x ∈ R. (1.5)

The equilibrium solution φ0 is orbitally stable in H1(R).

♦

We do not consider the case ω /∈ (0, γ2/4) or ω = 0 and p ≥ 5 in Theorems I.3 and I.4.
We prove that there exists no trivial solutions of (1.1) in H1(R) for these cases.

The main purpose of this work is to obtain explicitly the standing profiles (1.4) and
(1.5) using a quadrature procedure and to prove Theorem I.3 and I.4.





Chapter 2

Standing waves and equilibrium
solutions

This chapter is devoted to the construction of explicit solutions of the standing waves to
(1.1), with ω ̸= 0 and equilibrium solutions.

Next lemma establishes the principal properties of the solutions to (1.3) when φ ∈
H1(R). This result will be useful throughout the variational analysis,

Lemma II.1. Let γ ∈ R \ {0}, ω ∈ R and φ ∈ H1(R) a nontrivial solution of (1.3).
Then

φ ∈ C(R) ∩ C2(R \ {0}), (2.1)
− φ′′(x) + ωφ(x) + |φ(x)|p−1φ(x) = 0, x ∈ R \ {0}, (2.2)
φ′(0+) − φ′(0−) = γφ(0), (2.3)

lim
|x|→∞

φ(x) = 0, lim
|x|→∞

φ′(x) = 0, (2.4)

|φ′(x)|2 = ω|φ(x)|2 + 2
p+ 1 |φ(x)|p+1, x ∈ R\{0}. (2.5)

Proof. We give a sketch of the proof. Properties (2.1)-(2.5) are proved by a standard
bootstrap argument, namely, for all ξ ∈ C∞

0 (R \ {0}) and for every χ ∈ H1(R),

⟨−(ξφ)′′ + ω(ξφ), χ⟩ = ⟨−ξ′′φ− 2ξ′φ′ − |φ|p−1φξ, χ⟩,

because φ is a solution to (1.3) with χ substituted by χξ. Thus, we obtain the following
equality in the distributional sense

−(ξφ)′′ + ω(ξφ) = −ξ′′φ− 2ξ′φ′ − ξ|φ|p−1φ. (2.6)

Since the right-hand side of the previous identity is in L2(R), then ξφ ∈ H2(R), that is,
φ ∈ H2(R \ {0}) ∩ C1(R \ {0}). Using (2.6) again, we obtain (2.1) and (2.4). Moreover,
since φ ∈ C2(R \ {0}) and ξ ∈ C∞

0 (R \ {0}), we obtain that equality (2.2) holds for all
x ∈ R \ {0}.
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6 2. Standing waves and equilibrium solutions

Next, since φ satisfies (1.3), for every χ ∈ H1(R), we obtain, after integration by parts
and using (2.2), that

0 = Re
(
(φ(0+) − φ(0−) − γφ(0))χ(0)

)
.

Thus we obtain (2.3). Now, from (2.2), we deduce that

1
2
d

dx

(
|φ′(x)|2 − ω|φ(x)|2 − 2

p+ 1 |φ(x)|p+1
)

= Re
(
φ′′(x) − ωφ(x) − |φ(x)|p−1φ(x)

)
= 0.

Hence integrating respect x and using (2.4), we obtain (2.5).

Lemma II.2. Let γ ∈ R and ω ∈ R. Let φ as in the Lemma II.1. Then φ(x) ̸= 0 for
all x ∈ R.

Proof. Suppose that there exists x0 ∈ R such that φ(x0) = 0. If x0 > 0, by property
(2.5) of Lemma II.1, we have φ′(x0) = 0.

By the uniqueness of Cauchy’s problem for (2.2), we have that φ(x) = 0 for x > 0,
and for (2.3) we have φ(0) = φ′(0) = 0.

For the case x0 ≤ 0, we obtain that φ(0) = φ′(0) in the same way. Thus, by the
uniqueness of solutions of the Cauchy problem for (5), we obtain that φ(x) = 0 for all
x ∈ R. Since φ is a nontrivial solution, this is a contradiction. Then φ(x) ̸= 0 for all
x ∈ R.

Lemma III.3. Let γ ∈ R \ {0} and ω ∈ R. Let φ a nontrivial solution of (2.1)-(2.5).
Then we have either (i) or (ii):

(i) Imφ(x) = 0 for all x ∈ R.

(ii) There exists c ∈ R such that

Reφ(x) = c Imφ(x), x ∈ R.

Proof. Put u = Reφ and v = Imφ. Then, the pair (u, v) satisfies the following equations−u′′(x) + ωu(x) + |φ(x)|p−1u(x) = 0,
−v′′(x) + ωv(x) + |φ(x)|p−1v(x) = 0,

for x ∈ R \ {0}. Then, we have

(u′(x)v(x) − u(x)v′(x))′ = 0, for all x ∈ R \ {0}.
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By property (2.4) of Lemma II.1, we obtain

u′(x)v(x) = u(x)v′(x) for all x ∈ R \ {0}. (2.7)

If there exists x0 ∈ R, such that v(x0) = 0, then by (2.7) and Lemma II.2, we have that
v′(x0) = 0. As in the proof of Lemma II.2, we have that v(x) = 0 for all x ∈ R. This is
the case (i).

Otherwise v(x) ̸= 0 for all x ∈ R. Then, by (2.7), we have

d

dx

(
u(x)
v(x)

)
= u′(x)v(x) − u(x)v′(x)

v(x)2 = 0,

for all x ∈ R \ {0}, this implies (ii).

2.1 Standing waves with ω ̸= 0.
In this subsection, we construct explicit standing wave solutions to (1.1) with ω ̸= 0 and
γ ̸= 0.

Theorem II.4. Let p > 1 and γ < 0 in (1.3). Then, for all

ω ∈
(

0, γ
2

4

)
,

the family of standing wave solutions, u(x, t) = eiωtφω, where φω is given by (1.4) are
solutions to the nonlinear Schrödinger equation (1.1).

Proof. Let us first compute positive solutions φ to (1.3) with γ ≡ 0. Under these
assumptions, we obtain that φ ≡ φω satisfies the nonlinear elliptic equation

−φ′′(x) + ωφ(x) + φp(x) = 0, x ∈ R. (2.8)

By a quadrature procedure and using the condition for the profile φ(x) → 0 as |x| → ∞,
we obtain

[φ′]2 = ωφ2 + βφp+1, (2.9)
where we define β := 2

p+1 > 0. Upon substitution y = φp−1 into the last equality, we
deduce that

x = 1
p− 1

∫ dy

y
√
ω + βy

= − 2
p− 1

coth−1
(√

ω+βy√
ω

)
√
ω

.

Thus, for x < 0, we have

|x| = 2
p− 1

coth−1
(√

ω+βy√
ω

)
√
ω

. (2.10)
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Using the substitution y = φp−1, we obtain the profile function

φ(x) =
(

(p+ 1)ω
2

) 1
p−1

{
sinh

(
(p− 1)

√
w

2 |x|
)}− 2

p−1

, x < 0, (2.11)

is a positive solution defined for x ∈ (−∞, 0) and satisfies

lim
x→−∞

φ(x) = 0 and, lim
x→0−

φ(x) = ∞.

In other words, φ decays to zero at −∞ and blows up at x = 0. Next, we use the
noncontinuous profile (2.11) to construct a continuous profile when γ ̸= 0. For d > 0 (to
be specified later), we define for x ≤ 0 the half-profile ψ(x) = φ(x − d) and consider the
even profile

ϕ1(x) :=

ψ(x), x ≤ 0,
ψ(−x), x > 0.

In other words,
ϕ1(x) := φ(−|x| − d), x ∈ R, (2.12)

which satisfies ϕ1 ∈ H1(R) and all the properties of Lemma II.1, except for the jump
condition (2.3). Since ϕ1 is an even function, the jump condition can be rewritten as

ϕ′
1(0+) = γ

2ϕ1(0), or equivalently φ′(−d) = γ

2φ(−d).

Hence

d = 2
(p− 1)

√
ω

tanh−1
(

2
√
ω

|γ|

)
.

Finally, we conclude that the even-profile φω = ϕ1 is given by

φω(x) = ϕ1(−|x| − d)

=
(

(p+ 1)ω
2

) 1
p−1

{
sinh

(
(p− 1)

√
w

2 (|x| + d)
)}− 2

p−1

=
(

(p+ 1)ω
2

) 1
p−1

{
sinh

(
(p− 1)

√
w

2 |x| + tanh−1
(

2
√
ω

|γ|

))}− 2
p−1

=
(

(p+ 1)ω
2

) 1
p−1

{
sinh

(
(p− 1)

√
w

2 |x| + cγ(ω)
)}− 2

p−1

,

where cγ(ω) = tanh−1
(

2
√

ω
|γ|

)
. This concludes the proof.
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Figure 2.1: Profile function φω defined in (1.4) for the parameter values ω = 0.5, γ = −1
in the case of a cubic (p = 3) nonlinearity.

2.2 Equilibrium solutions of rational profile
In this section, we construct explicit equilibrium solutions ω = 0 to the nonlinear Schrödinger
equation (1.1).

Theorem II.5. Let γ < 0, ω = 0 and 1 < p < 5. The family of positive even-rational
profiles defined by (1.5) are solutions to the nonlinear Schrödinger equation (1.1)

Proof. As before, we start by considering the case with γ = 0. Upon substitution of
ω = 0 and γ = 0 into (1.3), we obtain that φ = φ0 satisfies the nonlinear elliptic equation

−φ′′(x) + φp(x) = 0, x ∈ R. (2.13)

Once again, one uses a quadrature procedure and applies the boundary condition for the
profile φ(x) → 0 as |x| → ∞ to arrive at

[φ′]2 = βφp+1, (2.14)

where we define β := 2
p+1 > 0. Let us assume that φ > 0. Upon substitution of y = φp−1

into the previous equation, we deduce that

x = −(2(p+ 1))1/2y−1/2. (2.15)

It is not difficult to verify that φ has the positive profile

φ(x) =
(

2(p+ 1)
|x|2

) 1
p−1

, x < 0, (2.16)

and satisfies
lim

x→−∞
φ(x) = 0 and, lim

x→0−
φ(x) = ∞,
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so that φ decays to zero at −∞ and blows up at x = 0.
For d > 0 (to be determined below) we define the function

ϕ0(x) := φ(−|x| − d), x ∈ R. (2.17)

Then ϕ0 ∈ H1(R) and satisfies all the properties of Lemma II.1, except the jump condition
(2.3). Since ϕ0 is an even function, the jump condition can be rewritten as

ϕ′
0(0+) = γ

2ϕ0(0), or equivalently φ′(−d) = γ

2φ(−d).

Hence d = 4
(p−1)|γ| . We conclude that the even-rational profile φ0 = ϕ0 is given by

φ0(x) = φ(−|x| − d)

=
(

2(p+ 1)
(|x| + d)2

) 1
p−1

=

 2(p+ 1)(
|x| + 4

(p−1)|γ|

)2


1

p−1

=
(

2(p+ 1)(p− 1)2γ2

{4 + (p− 1)|γ||x|}2

) 1
p−1

This conclude the proof.

Figure 2.2: Depiction of the profile function φ0 defined in (1.5) for the parameter values
γ = −1 and p = 2.



Chapter 3

Stability theory

In this section, we prove Theorems I.3 and I.4, based on the minimization of the charge/energy
functional and on the uniquess of the profiles in (1.4) and (1.5)

3.1 Description of the critical points
Let us consider the functional Jω : H1(R) → R, defined as

Jω(u) := 1
2∥∂xu∥2

L2(R) + ω

2 ∥u∥2
L2(R) + γ

2 |v(0)|2 + 1
p+ 1∥u∥p+1

Lp+1(R), u ∈ H1(R), (3.1)

and the set of critical points associated with Jω as

Aω := {u ∈ H1(R) : J ′
ω(u) = 0, u ̸= 0}.

The following lemmas show the nonexistence of nontrivial solutions for (1.3)

Lemma III.1. Let 1 < p < ∞, γ < 0 and α > 0. If ω ≥ γ2

4 then Aω = ∅.
Proof. Suppose that there exists φ ∈ Aω. Then, we have

∥∂xφ∥2
L2(R) + ω∥φ∥2

L2(R) − |γ||φ(0)|2 + ∥φ∥p+1
Lp+1(R) = d

dτ

∣∣∣∣
τ=1

Jω(τφ) = 0.

Because the first eigenvalue of Hγ is −γ2

4 , then

inf
{
∥∂xu∥2

L2(R) − |γ||u(0)|2 : u ∈ H1(R), ∥u∥L2(R) = 1
}

= −γ2

4 .

Then we have

0 = ∥∂xφ∥2
L2(R) + ω∥φ∥2

L2(R) − |γ||φ(0)|2 + ∥φ∥p+1
Lp+1(R)

≥
(
ω − γ2

4

)
∥φ∥2

L2(R) + ∥φ∥p+1
Lp+1(R)

> 0.

This is impossible. Then Aω = ∅.

11



12 3. Stability theory

Lemma III.2. Let 1 < p < ∞ and γ < 0. If ω < 0 then Aω = ∅.
Proof. Suppose that there exists φ ∈ Aω. Then by (2.4) in the Lemma II.1, there

exists L > 0 such that
α

p+ 1 |φ(x)|p−1 ≤ |ω|
4 if |x| ≥ L.

Moreover, by property (2.5) in the Lemma II.1 and Lemma II.2, we obtain

|φ′(x)|2 = |φ(x)|2
(
ω + 2

p+ 1 |φ(x)|p−1
)

≤ |φ(x)|2
(
ω − ω

2

)
= |φ(x)|2 ω2 < 0,

if |x| ≥ L. This is is a contradiction. Then Aω = ∅.

Now, we assume 1 < p < ∞, γ < 0 and ω ∈
(
0, γ2

4

)
. The following lemma characterizes

the set of nontrivial critical points in this case.
Lemma III.3. Let 1 < p < ∞, γ < 0 and 0 < ω < γ2

4 . Then

Aω = {eiθφω : θ ∈ R},

where φω is given by (1.4).
Proof. It is clear that for all θ ∈ R, eiθφω ∈ Aω. Conversely, if g ∈ Aω then g satisfies

(2.1)-(2.5) and by Lemma II.2 |g| > 0. We will show that there exist θ ∈ R such thar
g(x) = eiθφω(x) for all x ∈ R.

First, we show that φω is the unique positive solution for (1.3). Indeed, for Lemma
II.2, it is sufficient to consider v ∈ H1(R) satisfying v(x) > 0 for all x ∈ R and properties
(2.1)-(2.5). We consider the following polynomial P : (0,∞) → R defined by

P (c) = 1
4
γ2

4 c
2 + F (c), F (c) = −

∫ c

0
(ωt+ |t|p−1t) dt,

and the following initial value problem on (0,+∞),
−ψ′′(x) = H(ψ(x)), x > 0,
ψ(0) = c0,

ψ′(0) = γ
2c0,

(3.2)

where H(ψ) = −ωψ − |ψ|p−1ψ and where c0 > 0 is the unique positive root of P (to
be determined below). Since H is locally Lipschitz around zero, we have that the IVP
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problem (3.2) has a unique positive solution and it is given by φω. Indeed, since v is a
positive solution of −v′′ = H(v) we have

−
∫ R

0
v′(t)v′′(t) dt =

∫ R

0
H(v(t))v′(t) dt

=
∫ R

0
F ′(v(t))v′(t) dt

= F (v(R)) − F (v(0)).

Thus, for all R > 0, 1
2v

′(0+)2 − 1
2v

′(R)2 + F (v(0+)) − F (v(R)) = 0. Then for R → ∞ we
obtain

1
2v

′(0+)2 + F (v(0+)) = 0. (3.3)

On the same way, we obtain

1
2v

′(0−)2 + F (v(0−)) = 0. (3.4)

Next, since v is continuous in x = 0, we get from (3.3) and (3.4) that |v′(0+)| = |v′(0−)|.
Now, suppose that v′(0+) = v′(0−). Hence, from Lemma II.1, there holds v(0) = 0. Now
we divide our analysis into two steps:

(i) If v′(0+) = v′(0−) = 0, then v′(0) = 0 and c0 = 0. Then, the IVP has the unique
solution v ≡ 0. This is a contradiction with v(x) > 0 for all x ∈ R.

(ii) If v′(0+) = v′(0−) ̸= 0, then there exists x0 ∈ R close to zero, such that v(x0) < 0,
which cannot happen.

From the analysis above, we necessarily have v′(0+) = −v′(0−) and, from the jump con-
dition, we obtain v′(0+) = γ

2v(0). Then by (3.3), we obtain

P (v(0+)) = 1
2
γ2

4 v(0+)2 + F (v(0+))

= 1
2v

′(0+)2 + F (v(0+))

= 0.

It follows that P (v(0+)) = 0. Next, we determine the existence of a unique zero of P on
(0,+∞). Since

P (c) = 1
2

(
γ2

4 − ω

)
c2 − 1

p+ 1c
p+1.

If we define r = cp−1, we have that P (c) = 0 if and only if 1
2(γ2

4 −ω) − 1
p+1r = 0. This last

polynomial has a unique positive root in (0,+∞).
Then, since P (v(0+)) = 0 with v(0+) > 0, we need to have c0 = v(0+). Then, v is the

unique local solution for the IVP (3.2), for at least x ∈ (0, a). Now, since v ∈ Cj(0,∞),
j = 0, 1, 2, and v(x) → 0 as x → +∞, it follows that v ∈ L∞(0,+∞). From standard
ODE arguments, we can choose a = ∞, and consequently, the unique solution of (3.2)
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on (0,+∞) is positive. A similar analysis on (−∞, 0) shows that v is the unique positive
solution of (3.2) on (−∞, 0). Therefore, since φω is a continuous profile satisfying the IVP
(3.2) on (−∞, 0) and (0,+∞), necessarily v = φω.

Finally, since g ∈ C2(0,+∞), we can write g(x) = ρ(x)eiθ(x) for some ρ, θ ∈ C2(0,+∞)
with ρ > 0. Thus by substituting g in (1.3) and taking real and imaginary part, we obtain
the system ρθ′′ + 2ρ′θ′ = 0, x > 0,

−ρ′′ + ρ(θ′)2 + ωρ+ ρp = 0, x > 0.
(3.5)

Therefore, there is a real constant K such that ρ2θ′ = K on (0,+∞). Now, since |g′|
is bounded, we get that ρ2(θ′)2 = K2

ρ2 is bounded on (0,+∞). But, since ρ(x) → 0 as
x → +∞, we need to have K = 0. Then, there exists θ0 ∈ R such that θ(x) = θ0 for
all x ∈ (0,+∞). Thus, g(x) = eiθ0ρ(x) for all x ∈ (0,+∞). From the second equation
in (3.5), we obtain that ρ is a positive solution of (1.3). Thus, we have ρ(x) = φω(x)
for all x ∈ (0,+∞). On the same way, we obtain that there exists θ1 ∈ R, such that
g(x) = eiθ1φω(x) for all x ∈ (−∞, 0). Finally, by continuity, we obtain eiθ0 = eiθ1 and
hence g(x) = eiθ0φω(x) for all x ∈ R.

A similar result for ω = 0 is obtained.

Lemma III.4. Let γ < 0. If 1 < p < 5, then A0 = {eiθφ0 : θ ∈ R}, where φ0 is
defined by (1.5). If p ≥ 5, then the set Aω is a empty set.

Proof. If 1 < p < 5, in the same way of the proof of Lemma III.4, we get that
A0 = {eiθφ0}, where φ0 is defined by (1.5). While if p ≥ 5, then φ0 /∈ L2(R) and thus
A0 = ∅.

3.2 Orbital stability of standing waves for ω ̸= 0
This section is devoted te prove Theorem I.3. Suppose that the parameter values satisfy
1 < p < ∞, γ < 0 and 0 < ω < γ2

4 . We put

dω := inf
u∈H1(R)

Jω(u),

Mω := {u ∈ H1(R) : Jω(u) = dω}.

Lemma III.5. −∞ < dω < 0 and Mω ⊂ Aω.

Proof. First we will prove that there exists positive constants C1 and C2 such that

|γ||u(0)|2 ≤ 1
2∥∂xu∥2

L2(R) + C1∥u∥2
L2(−1,1) ≤ 1

2∥∂xu∥2
L2(R) + 1

p+ 1∥u∥p+1
Lp+1(R) + C2,
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for each u ∈ H1(R). Indeed, if ρ ∈ (0, 1) we have the following estimate

γu(ρ)2 − γu(0)2 =
∫ ρ

0

d

dτ
(γu(τ)2) dτ

=
∫ ρ

0
2γu(τ)∂τu(τ) dτ

≤ 1
2

∫ ρ

0
|∂τu(τ)|2 dτ + 2γ2

∫ s

0
|u(τ)|2 dτ

≤ 1
2

∫
R

|∂τu(τ)|2 dτ + 2γ2
∫ ρ

0
|u(τ)|2, dτ.

Thus, we obtain

−γ|u(0)|2 ≤ 1
2∥∂xu∥2

L2(R) + 2γ2∥u∥2
L2(−1,1) − γu(ρ)2.

As the same way, we can prove that the last inequality holds for ρ ∈ (−1, 0). Then, we
have

−γ|u(0)|2 ≤ 1
2∥∂xu∥2

L2(R) + 2γ2∥u∥2
L2(−1,1) − γu(ρ)2 if ρ ∈ (−1, 1).

We integrate respect ρ ∈ (−1, 1), to deduce

−2γ|u(0)|2 ≤ ∥∂xu∥2
L2(R) + 4γ2∥u∥2

L2(−1,1) + |γ|∥u∥2
L2(−1,1).

Hence, there exists C1 > 0 a positive constant, such that

|γ||u(0)|2 ≤ 1
2∥∂xu∥2

L2(R) + C1∥u∥2
L2(−1,1).

Now, we define g : [0,∞) → R given by g(τ) = C1τ
2 − 1

p+1τ
p+1. Is easy to see that

lim
τ→∞

g(τ) = −∞. Hence there exists a positive constant C > 0 such that g(τ) ≤ C for all
τ ≥ 0. We see that

C1∥u∥2
L2(−1,1) − 1

p+ 1∥u∥p+1
Lp+1(R) ≤ 2C.

We conclude that there exists C1, C2 > 0 positive constants such that

|γ||u(0)|2 ≤ 1
2∥∂xu∥2

L2(R) + C1∥u∥2
L2(−1,1) ≤ 1

2∥∂xu∥2
L2(R) + 1

p+ 1∥u∥p+1
Lp+1(R) + C2.

Then

E(u) = 1
2∥∂xu∥2

L2(R) + γ

2 |u(0)|2 + 1
p+ 1∥u∥p+1

Lp+1(R)

≥ 1
4∥∂xu∥2

L2(R) + 1
2(p+ 1)∥u∥p+1

Lp+1(R) − C2.

Thus we have the following estimate

E(u) ≥ 1
4∥∂xu∥2

L2(R) + 1
2(p+ 1)∥u∥p+1

Lp+1(R) − C2, (3.6)
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this implies dω ≥ −C2
2 and thus dω > −∞.

Next, we prove that dω < 0. Since Φ(x) = e− |γ||x|
2 is a eigenfunction ofHγ corresponding

to the first eigenvalue −γ2

4 , we have

dω ≤ Jω(λΦ)

= λ2

2 (∥∂xΦ∥2
L2(R) + γ|Φ(0)|2 + ω∥Φ∥2

L2(R)) + λp+1

p+ 1∥Φ∥p+1
Lp+1(R)

= λ2

2

(
ω − γ2

4

)
∥Φ∥2

L2(R) + λp+1

p+ 1∥Φ∥p+1
Lp+1(R) < 0,

for sufficiently small λ > 0. Thus dω < 0.
Let u ∈ Mω. Then, we have J ′

ω(u) = 0. Moreover, since Jω(u) = dω < 0, we have
u ̸= 0. Thus, u ∈ Aω. This proves Mω ⊂ Aω.

Recall the following refinement to Fatou’s lemma due to Brézis and Lieb [10].
Lemma III.6 (Brézis-Lieb). Let 1 < q < ∞ and {un}n∈N a bounded sequence in

Lq(R) such that un(x) → u(x) for a.e. x ∈ R as n → ∞. Then

∥un∥q
Lq(R) − ∥un − u∥q

Lq(R) − ∥u∥q
Lq(R) → 0, as n → ∞.

The following lemma establishes the improvement from weak to strong convergence due
to convergence of the charge/energy functional.

Lemma III.7. Let {un}n∈N ⊂ H1(R) such that Jω(un) → dω. Then passing to a
subsequence, exists a function u ∈ Mω such that un → u in H1(R).

Proof. For v ∈ H1(R) we put

∥v∥ω := 1
2∥∂xv∥2

L2(R) + ω

2 ∥v∥2
L2(R) = Jω(v) − γ

2 |v(0)|2 − 1
p+ 1∥v∥p+1

Lp+1(R).

It is easy to see that ∥ · ∥ω is a equivalent norm to the standard norm of H1(R).
Let {un}n∈N ⊂ H1(R) such that Jω(un) → dω. We have the following estimate

Jω(un) = E(un) + ω

2 ∥un∥2
L2(R)

≥ 1
4∥∂xun∥2

L2(R) + ω

2 ∥un∥2
L2(R) + 1

2(p+ 1)∥un∥p+1
Lp+1(R) − C2

≥ C3∥un∥2
H1(R) − C2,

when in the first inequality, we used (3.6), this implies that {un}n∈N is a bounded sequence
in H1(R). Passing to a subsequence, we may assume that there exists u ∈ H1(R) such
that un ⇀ u weakly in H1(R) and un(x) → u(x) for almost everywhere x ∈ R.
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Moreover, since the embeddingH1(−1, 1) ↪→ C[−1, 1] is compact, we have that un(0) →
u(0). Then, we obtain

dω ≤ Jω(u) ≤ lim inf
n→∞

Jω(un) = dω,

this implies that u ∈ Mω. To prove that un → u in H1(R), we use the Brezis-Lieb Lemma
to obtain

∥un − u∥2
L2(R) + ∥u∥2

L2(R) = ∥un∥2
L2(R) + o(1), (3.7)

∥∂xun − ∂xu∥2
L2(R) + ∥∂xu∥2

L2(R) = ∥∂xun∥2
L2(R) + o(1). (3.8)

On the other hand, by (3.6) we see that {un}n∈N is bounded in Lp+1(R). Therefore, by
the Brezis-Lieb lemma we have

∥un − u∥p+1
Lp+1(R) + ∥u∥p+1

Lp+1(R) = ∥un∥p+1
Lp+1(R) + o(1). (3.9)

Thus, we see that

Jω(un − u) + Jω(u) = 1
2(∥∂xun − ∂xu∥2

L2(R) + ∥∂xu∥2
L2(R)) + ω

2 (∥un − u∥2
L2(R) + ∥u∥2

L2(R))

+ 1
p+ 1(∥un − u∥p+1

Lp+1(R) + ∥u∥p+1
Lp+1+(R)) + γ

2 (|un(0) − u(0)|2 + |u(0)|2)

= Jω(un) + o(1).

Therefore, we have
Jω(un − u) + Jω(u) = Jω(un) + o(1). (3.10)

Finally, we have

∥un − u∥ω = Jω(un − u) − γ

2 |un(0) − u(0)|2 − 1
p+ 1∥un − u∥p+1

Lp+1(R)

≤ Jω(un − u) − γ

2 |un(0) − u(0)|2

= Jω(un) − Jω(u) − γ

2 |un(0) − u(0)|2 + o(1),

where in the first inequality we used that α > 0. Then un → u in H1(R).

Lemma III.8. Mω = Aω = {eiθφω : θ ∈ R}.
Proof. By Lemmas III.5 and III.7, we have ∅ ≠ Mω ⊂ Aω. By Lemma III.3, we have

Aω = {eiθφω : θ ∈ R}. Then Mω = Aω.

Now we give the proof of Theorem I.3.
Proof of Theorem I.3. Suppose that eiωtφω is orbitally unstable in H1(R). Then there

exists ε0 > 0, a sequence {un(t)}n∈N of solutions of (1.1) and a sequence {tn} ⊂ (0,∞)
such that

∥un(0) − φω∥H1(R) → 0, (3.11)
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inf
θ∈R

∥un(tn) − eiθφω∥H1(R) ≥ ε0. (3.12)

By (3.11) and the law of conservation of charge and energy, we see that

Jω(un(tn)) = Jω(un(0)) → Jω(φω) = dω.

By Lemmas III.7 and III.8, passing to a subsequence, we can suppose that there exists
η ∈ R such that

un(tn) → eiηφω in H1(R),
this contradicts (3.12). Then eiωtφω is orbitally stable in H1(R).

3.3 Orbital stability of equilibrium solutions
This section is devoted to prove Theorem I.4. Let assume 1 < p < 5, γ < 0 and α = 1.
We consider the space

X = {u ∈ Lp+1(R) : ∂xu ∈ L2(R)}.
Thus X is a Banach reflexive space with the norm

∥u∥X = ∥∂xu∥L2(R) + ∥u∥Lp+1(R).

We put
d = inf

u∈X
E(u),

M = {φ ∈ X : E(φ) = d},
A = {φ ∈ X : E ′(φ) = 0, φ ̸= 0}.

Lemma III.9. −∞ < d < 0 and M ⊂ A = {eiθφ0 : θ ∈ R}.
Proof. As the same way as in the Lemma III.5, we have −∞ < d < 0 and M ⊂ A.

Remark that inequality (3.6) holds in X. If φ ∈ A, then φ satisfies properties (2.1)-(2.5)
of Lemma II.1 with ω = 0. As in Lemma III.4, we obtain A = {eiθφ0 : θ ∈ R}.

Lemma III.10. Let {un}n∈N ⊂ H1(R) such that E(un) → d. Then, passing to a
subsequence un → u in X, for some u ∈ M.

Proof. By (3.6) {un}n∈N is bounded in X. Since X is reflexive, passing to a subse-
quence, we may assume that there exists u ∈ X such that

un ⇀ u weakly in X.

Then un(0) → u(0), un ⇀ u weakly in Lp+1(R) and ∂xun ⇀ ∂xu weakly in L2(R). Thus,
we have

d ≤ E(u) ≤ lim inf
n→∞

E(un) = d.

This implies that u ∈ M, ∥un∥Lp+1(R) → ∥u∥Lp+1(R) and ∥∂xun∥L2(R) → ∥∂xu∥L2(R). Then
un → u in X.
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Lemma III.11. Let {un}n∈N ⊂ H1(R) such that E(un) → E(φ0) and ∥un∥L2(R) →
∥φ0∥L2(R). Then, passing to a subsequence we may assume that there is θ0 ∈ R such that
un → eiθ0φ0 in H1(R).

Proof. By Lemmas III.9 and III.10, we have M = A = {eiθφ0 : θ ∈ R} and d = E(φ0).
By Lemma III.9, passing to a subsequence we assume that there exists θ0 ∈ R such that
un → eiθ0φ0 in X, un ⇀ eiθ0φ0 weakly in L2(R). Thus, we have

∥eiθ0φ0∥L2(R) ≤ lim inf
n→∞

∥un∥L2(R) = ∥φ0∥L2(R) = ∥eiθ0φ0∥L2(R),

which implies that un → eiθ0φ0 in L2(R). Since H1(R) is a Hilbert space, we obtain that
un → eiθ0φ0 in H1(R).

Proof of Theorem I.4. Suppose that eiωtφ0 is orbitally unstable in H1(R). Then there
exists ε0 > 0, a sequence {un(t)}n∈N of solutions of (1.1) and a sequence {tn} ⊂ (0,∞)
such that

∥un(0) − φ0∥H1(R) → 0, (3.13)

inf
θ∈R

∥un(tn) − eiθφ0∥H1(R) ≥ ε0. (3.14)

By (3.13) and the law of conservation of charge and energy, we see that

E(un(tn)) = E(un(0)) → E(φ0) = d.

By Lemma III.11, passing to a subsequence, we can suppose that there exists η ∈ R such
that

un(tn) → eiηφ0 in H1(R),

this contradicts (3.14). Then eiωtφ0 is orbitally stable in H1(R).





Conclusions

In this work, we have constructed explicitly the standing waves of the nonlinear Schrödinger
equation (1.1) by a quadrature procedure. Also we have proved that standing waves are
orbitally stable in H1(R) where we used that the embedding H1(−1, 1) ↪→ C[−1, 1] is
compact and properties of reflexive Banach Spaces.

On one hand, tools like the Rellich-Kondrachov theorem do not apply in this un-
bounded setting. We overcame this obstacle exploiting the interplay between the attractive
delta potential (γ < 0) and the repulsive nonlinearity (α = 1). This competition ensures
that the energy functional (3.1) achieves its minimum in H1(R), thereby compensating
for the lack of compactness.

On the other hand, employing techniques from the theory of Hilbert spaces and prop-
erties of reflexive Banach spaces, we established that the constructed standing waves are
orbitally stable in H1(R). This orbital stability result confirms the robustness of these pro-
files under small perturbations. The biggest contribution in this work is the construction
of the profiles to the nonlinear Schrödinger equation (1.3).
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