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Nutrient taxis model with

nonlinear cross-diffusion



Bacterial (in vitro) dynamical patterns

• Bacterial colonies in vitro exhibit complex morphological aggregation

patterns

• Hostile environmental conditions: low nutrient level, hard agar,

presence of anti-biotics, etc.

• Adaptive survival strategies lead to complex spatio-temporal

patterns.

• Complex self-organization: micro-level (cell-cell), macro-level

(colony), chemical signalling, gene exchange, etc.
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Example: Bacillus subtilis

• Gram positive bacterium, rod-shaped, aerobe.

• Protective endospore (tolerate extreme environmental conditions)

• Very flagellated
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In vitro experiments (cf. Ohgiwari et al., 1992)

• Strain of B. subtilis point inoculated in center of Petri dish

• Agar plate containing peptone as nutrient

• Average pore size of the agar smaller that size of bacteria, inducing

two-dimensional growth on agar surface
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Bacillis subtilis strain on 0.75% of agar substrate. Fractal growth due to low

level of nutrient. Courtesy of: Fujikawa, Matsushita, J. Phys. Soc. Japan

(1989).
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Observations

• Low nutrient, hard agar: Diffusion limited aggregation (DLA).

Fractal patterns (Matsuyama and Matsushita (1993);

Ben-Jacob (1994)). (A)

• Semi-solid agar, low nutrient: Dense branch morphology (DBM).

Smooth colony envelope (Ohgiwari et al. (1992)). (E)

• Higher nutrient, soft agar: homogeneous colony, smooth boundary

envelope. (D)

• Hard agar, high nutrient: envelope with fractal boundary. (B)

• Rings: transition from (B) to (D).

Cv - concentration of nutrient; Ca - agar concentration (softness 1/Ca)
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Morphological diagram

Rings (C) Fractal (A)

Disk (D) DBM (E) Cv vs. 1/Ca
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How to model the dynamics?

• Bacteria as discrete agents: Model bacteria as discrete

self-propelled particles. Move, interact with environment. Agents

consume nutrients, multiply, sporulate and die. Suitable to track the

internal state of bacteria.

• Bacteria as a continuous density: Describe the evolution of

bacterial concentration. Other constituents (nutrients, signaling

factors, etc.) are also densities.
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Experimental observations

• Ohgiwari et al. (1992):

• In the DBM regime: movement of bacteria inactive in the inner

region with low nutrient levels; active at the periphery with high

nutrient

• Cells become inactive again at the outermost front of bacterial

colonies where cell density is apparently low

• Ben-Jacob et al. (1994): Experimental evidence of chemotaxis of

B. subtilis towards amino acids (nutrients)

• Ben-Jacob et al. (2000): Identified three types of chemotactic

internal signalling:

• (Repulsive - Long range) By starving bacteria in the center.

• (Attractive - Short range) Bacteria in the front ask for help to

metabolize waste.

• Nutrient taxis: Dominant signal. Attractive, short range.

• Proposed (Ben-Jacob et al., 2000), based on experiments, a

relation bet. diffusion and chemotaxis (certain nutrient regimes).
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Chemotactic model with non-linear cross diffusion (i)

Leyva, Málaga, P. Phys. A (2013). Model system in non-dimensional

form:
vt = ∆v −uv ,

ut = ∇ · (σuv∇u) +uv −χ0∇ ·
(

σvu2

(1 + v)2
∇v

)
,

(RDC)

v - nutrient and u - bacterial concentrations, (x ,y) ∈ Ω⊂ R2, t > 0. Ω

bounded, open set. Nutrient diffusion coefficient: Dv ≡ 1 constant.

χ0 > 0 - constant (chemotactic sensitivity). 0 < σ ∼ 1/Ca (constant)

measures hardness of the agar.
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Chemotactic model with nonlinear cross-diffusion (ii)

System (RDC) is further endowed with:

• No-flux boundary conditions:

∇u · n̂ = 0, ∇v · n̂ = 0, (x ,y) ∈ ∂ Ω, t > 0.

• Initial conditions:

u(x ,y ,0) = u0(x ,y), v(x ,y ,0) = v0(x ,y), (x ,y) ∈ Ω.
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Modelling chemotaxis

General form of chemotactic term of Keller-Segel (1971)-type: add a

term of form divJc , where

Jc = ζ (u,v)χ(v)∇v

χ = χ(v) ≷ 0 - chemotactic sensitivity function; ζ = ζ (u,v) - bacterial

response function to nutrient gradient.

Ben-Jacob’s experimental observation (Ben-Jacob et al. (2000)): In

semi-solid agar, low colony density,

|ζ (u,v)| ∝ uDu. (*)

Bacterial response function:

ζ (u,v) = uDu = σu2v .

Example: if the diffusion coefficient is constant, D > 0, then we recover the

classical Keller-Segel chemotactic flux, Jc =±χu∇v

Note: This relationship can be theoretically justified by taking a diffusive limit

of a stochastic velocity jump process: P., J. Math. Biol. (2019)
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Features:

• Nonlinear degenerate cross-diffusion (Kawasaki et al. (1997)):

Du = σuv .

• Conveys immotility when either u or v are low. Models high activity

in the boundary only.

• Valid for the transition region E ↔ D

• Complex dense morphology

• Chemotactic sensitivity: Lapidus-Schiller (1976) receptor’s law

(attractive),

χ(v) =− χ0

(1 + v)2
, χ0 > 0.

• Kinetic (production/consumption) term f (u,v) =±uv
• Rich mathematical structure (Satnoianu, Maini and

Sánchez-Garduño (2001); Sherratt (2010)).
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Numerical simulations

• Square domain [0,1]× [0,1]. Grid of 2048 × 2048

• Finite difference, 2nd. order Runge-Kutta scheme

• Very small time steps to avoid instabilities (stiffness)

• Crudeness of the scheme compensated by parallel high performance

computations with Graphic Processing Units (GPUs)

• Millions of steps in a few hours.

• NVIDIA Tesla c© C2070 graphics card with 448 CUDA cores

• Initial conditions:

v(x ,y ,0)≡ v0, u(x ,y ,0) = 0.71e−(x2+y2)/6.25 (Kawasaki)

• Parameter values: σ = 4.0 (soft-medium agar); v0 = 0.71 (initial

constant nutrient concentration); chemotactic signal χ0 = 0,2.5,5.0.
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No chemotaxis: χ0 = 0

t ∼ 5min. t ∼ 10min. t ∼ 15min.
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χ0 = 2.5

t ∼ 5min. t ∼ 10min. t ∼ 15min.
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χ0 = 5.0

t ∼ 5min. t ∼ 10min. t ∼ 15min.
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Main results (i): Leyva, Málaga, P. (2013)

• Incorporation of a suitable chemotactic term to Kawasaki’s nonlinear

cross diffusion model, compatible with low-nutrient regime

experimental observations (Ben-Jacob)

• High resolution numerical simulations confirm enhancement of the

speed

• Numerical observation: In the low-nutrient, soft-agar regime: change

in morphology, patterns become smoother (less branches) in the

presence of chemotaxis

• Numerical estimation (one-d simulation) approximates well the

asymptotic speed calculation

• Under the conservation law approximation, the front equation

becomes a scalar reaction-diffusion equation with degenerate

diffusion

• Asymptotics show that the speed of the envelope front increases

with chemotaxis
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Main results (ii): Butanda, Málaga, P. (2017)

• The change in morphology in the DBM regime can be explained and

quantified

• Asymptotics: quantitative analysis shows that when the chemotactic

sensitivity is increased, the eigenvalues of the linearized operator

around the envelope front become “more stable”

• Energy estimates provide bounds for the eigenvalues of the linearized

operator around the front. These bounds decrease as functions of

the chemotactic sensitivity χ0 ≥ 0, suggesting that, the patterns

become more stable
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The stabilizing effect of

chemotaxis: a traveling front

approach



Model system and hypotheses

Generic model system:

ut = ∇ ·
(
D̄(u,v)∇u

)
−∇ ·

(
ξ (u,v)χ(v)∇v

)
+uv ,

vt = ∆v −uv ,

(x ,y) ∈ Ω⊂ R2, t > 0, + Neumann b.c. and initial cond.

Hypotheses:

(H1) D̄ ∈ C 2(R2), D̄(u,v)≥ 0 for all u,v ∈ R. Moreover, D̄ = 0 if u = 0

or v = 0.

(H2) For all u,v ∈ R under consideration:

ξ (u,v) = uD̄(u,v).

(H3) χ ∈ C 2(R) and uniformly bounded: 0≤ χ(v)≤ C for some constant

C > 0 and all v ∈ R.
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Approximations (i)

First approximation: due to balanced production/loss terms ±uv , in

the absence of diffusion and chemotaxis the total mass is conserved

(Kawasaki et al. (1997)). Thus, in the DBM regime and for small

values of u and v there holds

u+ v ≈ C , constant.

Choose C = v0 (nutrient reference value):

v = v0−u.
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Approximations (ii)

Upon substitution, scalar equation for the bacterial density u

ut = ∇ ·
(
D(u)∇u

)
+g(u), (x ,y) ∈ Ω, t > 0.

Effective nonlinear, doubly-degenerate, density-dependent diffusion

coefficient:

D(u) := D̄(u,v0−u)
(
1 +uχ(v0−u)

)
.

Effective reaction term:

g(u) := v0u
(

1− u

v0

)
.

Remark: The chemotactic term has been absorbed into the new

nonlinear diffusion.
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Approximations (iii)

Second approximation: Geometric front propagation

• Local curvilinear coordinates: normal ζ (x ,y , t), tangent τ(x ,y , t)

• u(x ,y , t)≈ u(ζ (x ,y , t)) motion in the normal direction

τ

ζ (x,y,t)

(x,y,t)

Making a rotation of coordinates we assume u(x ,y , t)≈ φ(x− ct), front

propagates in the x-direction.
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Approximations (iv)

Third approximation: approximate χ(v) by a constant value,

χ(v)≡ χ(0) = χ0 ≥ 0,

For suitably normalized values of v ∈ [0,v0] the Lapidus-Schiller

chemotactic law is uniformly bounded: this approximation represents no

loss of generality.
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Envelope front (i)

Ansatz: one-dimensional planar front solution of the form

u(x ,y , t) = φ(x− ct) = φ(z),

on a strip domain,

ΩL = {(x ,y) ∈ R2 : −∞ < x < ∞, 0 < y < L},

some L> 0. z := x− ct, c ∈ R constant speed.

Substituting we obtain the profile ODE

−cφz = D(φ)φzz +D(φ)zφz +g(φ).
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Envelope front (ii)

In pattern formation problems, it is natural to consider infinite domains

and to neglect the influence of boundary conditions. Due to finite speed

of propagation and the fact that we are interested in the local-in-time,

local-in-space evolution near the interface this means no loss of generality.

Consequently, we assume that the front has asymptotic limits of the form

u± = lim
z→±∞

φ(z).

The front spreads from the region occupied by the cells toward outer

regions filled with nutrient. Hence:

u+ = 0, u− = v0.

Moreover, the front is monotone:

φz(z) < 0, for all z ∈ R.
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Existence theory (i)

Theoretical results

• Malaguti and Marcelli (2003)

Fisher-KPP equation with doubly degenerate diffusion:

ut = (D(u)ux )x +g(u)

0 < u < 1, D ∈ C 1([0,1]), g ∈ C 1([0,1])

D(0) = D(1) = 0, D(u) > 0 for all 0 < u < 1,

g(0) = g(1) = 0, g(u) > 0 for all 0 < u < 1,
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Existence theory (ii)

Malaguti and Marcelli show existence of monotone TWS provided the

speed c satisfies:

0 < c∗ ≤ c

Threshold velocity c∗ of a sharp front:

0 < c∗ ≤ 2

√
sup

s∈(0,1)

D(s)g(s)

s
.
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Existence theory (iii)

By-products of existence results:

• Heteroclinic orbit belongs to a center manifold passing through

degenerate equilibria; e.g. when φ(z)→ 0 as z →+∞,

φz =−αφ +O(φ
2) < 0, (monotone)

for some α > 0; we deduce exponential decay of φ and derivatives,

|φ |, |φz |, |φzz | ≤ Ce−αz , z →+∞,

• Degenerate diffusion coefficients decay exponentially to zero as they

approach equilibria,

D(φ)→ 0, as φ(z)→

{
0, z →+∞

v0, z →−∞,
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Perturbation of the envelope front

Consider perturbations of form w = w(z ,y , t) with b.c.

w(±∞,y , t) = 0, t > 0, 0 < y < L,

w(z ,L, t) = w(z ,0, t) = 0, t > 0, z ∈ R.

}

Substituting u(x ,y , t) = φ(z) +w(z ,y , t) and linearizing around the front:

wt = D(φ)
(
wzz +wyy

)
+
(
2D(φ)z + c

)
wz +

(
D(φ)zz +g ′(φ)

)
w .
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Spectral stability problem

Consider perturbations of form

w(z ,y , t) = eλ tU(z ,y),

λ ∈ C, U ∈ L2(ΩL), with b.c.

U(±∞,y) = 0, y ∈ [0,L],

Uy (z ,0) = Uy (z ,L) = 0, z ∈ R.

}

Upon substitution we get the spectral problem

λU = D(φ)
(
Uzz +Uyy

)
+
(
2D(φ)z + c

)
Uz +

(
D(φ)zz +g ′(φ)

)
U,

RHS defines a closed, densely defined operator in L2(ΩL)

LU := D(φ)
(
Uzz +Uyy

)
+
(
2D(φ)z + c

)
Uz +

(
D(φ)zz +g ′(φ)

)
U,

L : D(L ) = H2(ΩL)⊂ L2(ΩL)→ L2(ΩL),

with domain D(L ) = H2(ΩL). λ - eigenvalue, U - eigenfunction.
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Eigenfunction decomposition (i)

For any U ∈ H2(ΩL) eigenfunction and any m = 0,1,2, . . ., define

Um(z) :=
∫ L

0
U(z ,y)Ym(y)dy ,

where

Ym(y) =


1√
L
, m = 0,

√
2

L
cos
(mπy

L

)
, m = 1,2, . . .

Eigenfunctions are thus decomposed as

U(z ,y) =
+∞

∑
m=0

Um(z)Ym(y).
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Eigenfunction decomposition (ii)

Hierarchy of spectral equations

For each m ∈ Z, m ≥ 0,

λU0 =D(φ)∂
2
zU0 +

(
2D(φ)z +c

)
∂zU0 +

(
D(φ)zz +g ′(φ)

)
U0, for m = 0,

and,

λUm =D(φ)∂
2
zUm+

(
2D(φ)z +c

)
∂zUm+

(
D(φ)zz +g ′(φ)−m2π2

L2
D(φ)

)
Um, for m∈Z,m≥ 1,

for the same eigenvalue λ ∈ C
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Traslation invariance

The function Φ := φz ∈ H2(R) is a solution with λ = 0 and m = 0.

Differentiate profile equation:

0 = D(φ)Φzz +
(
2D(φ)z + c

)
Φz +

(
D(φ)zz +g ′(φ)

)
Φ.

λ = 0 - eigenvalue associated to translation invariance, with eigenfunction

U(z ,y) = Φ(z) = φz(z). Expansion is given by U0 =
√
Lφz , and

Um(z) =
∫ L

0
φz(z)Ym(y)dy = 0,

for all m ≥ 1.
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Energy estimates and transversal stability (i)

For each m ∈ Z, m ≥ 0, define

Wm(z) := Um(z)exp
(c

2

∫ z

z0

dζ

D(φ(ζ ))

)
,

where z0 ∈ R is fixed but arbitrary.

Lemma From exponential decay of the eigenfunction U ∈ H2(ΩL) we

have for each m ≥ 1

Wm ∈ H2(R).

Upon substitution:

λWm = D(φ)∂
2
zWm + 2D(φ)z∂zWm +

(
H(z)− m2

π2L2
D(φ)

)
Wm,

H(z) := D(φ)zz +g ′(φ)− c2

4D(φ)
− cD(φ)z

2D(φ)
.
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Energy estimates and transversal stability (ii)

Lemma (spectral transversal stability)
If λ ∈ C is an eigenvalue of the associated spectral problem, such that

last equation holds for each mode m ∈ Z, m ≥ 0 with Wm ∈ H2(R), then

λ ∈ R and λ ≤ 0.

Proof sketch: When m = 0 and Φ = φz , the change of variables for this

eigenfunction

Ψ(z) := Φ(z)exp
(c

2

∫ z

z0

dζ

D(φ(ζ ))

)
,

yields

0 = D(φ)∂
2
z Ψ + 2D(φ)z∂zΨ +H(z)Ψ.

Multiply both eqs. by D(φ)≥ 0 and rearrange the terms:

λD(φ)Wm = ∂z

(
D(φ)2

∂zWm

)
+D(φ)H(z)Wm−

m2

π2L2
D(φ)2Wm, (*)

0 = ∂z

(
D(φ)2Ψz

)
+D(φ)H(z)Ψ. (**)
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Energy estimates and transversal stability (iii)

Substitute

D(φ)H(z) =− (D(φ)2Ψz)z
Ψ

,

into (??) to arrive at

λD(φ)Wm =
(
D(φ)2

∂zWm

)
z
−
(
D(φ)2Ψz

Ψ
+

m2

π2L2
D(φ)2

)
Wm.

Take the L2 product of Wm with last equation and integrate by parts:

λ

∫ +∞

−∞

D(φ)|Wm|2 dz =

∫ +∞

−∞

W̄m(D(φ)2
∂zWm)z dz−

∫ +∞

−∞

(D(φ)2Ψz )z

Ψ
|Wm|2 dz+

− m2

π2L2

∫ +∞

−∞

D(φ)2|Wm|2 dz

=

∫ +∞

−∞

D(φ)2

(
Ψz∂z

( |Wm|2

Ψ

)
−|∂zWm|2−

m2

π2L2
|Wm|2

)
dz

=−
∫ +∞

−∞

D(φ)2Ψ2

∣∣∣∣∂z(Wm

Ψ

)∣∣∣∣2 dz − m2

π2L2

∫ +∞

−∞

D(φ)2|Wm|2 dz

≤ 0,

for any m ≥ 1. We conclude that λ is real and non-positive.
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Remark

• At first order approximation (locally planar front for a scalar

equation due to the balanced source and loss kinetic terms), the

envelope front is stable under transversal small, local-in-space

perturbations. This behavior is verified by numerics on the actual

(curved) envelope front.
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The stabilizing effect of chemotaxis (i)

Weighted Sobolev spaces

Define

η(z) :=
√
D(φ(z))≥ 0, z ∈ R.

Customary weighted energy function spaces

Hk
η (R;C) = {v : η(z)v(z) ∈ Hk(R;C)},

for k ∈ Z, k ≥ 0, which are Hilbert spaces endowed with the inner

product (and norm),

〈u,v〉Hk
η

:= 〈ηu,ηv〉Hk , ‖v‖2
Hk

η

:= ‖ηv‖2
Hk = 〈v ,v〉Hk

η
.

According to custom: H0
η (R;C) = L2

η (R;C).
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The stabilizing effect of chemotaxis (ii)

Let λ ∈ (−∞,0] be an eigenvalue associated to an eigenfunction

U = ∑UmYm ∈ H2(ΩL). Let m ∈ Z, m ≥ 1 be a single mode for which

Um 6≡ 0. Consequently, Wm 6≡ 0 and ‖Wm‖L2
η
> 0. (The modes m ≥ 1 for

which Um ≡ 0 do not contribute to the energy estimate.) Then

|λ |
∫ +∞

−∞

D(φ)|Wm|2 dz =

∫ +∞

−∞

D(φ)2|∂zWm|2 dz +
m2

π2L2

∫ +∞

−∞

D(φ)2|Wm|2 dz +J,

where

J:=−
∫+∞
−∞ D(φ)2Ψz∂z

(
|Wm |2

Ψ

)
dz=

∫+∞
−∞ 2D(φ)D ′(φ)φz

Ψz
Ψ |Wm|2 dz +

∫+∞
−∞ D(φ)2 Ψzz

Ψ |Wm|2 dz .

Lemma
The functions D ′(φ)φzΨz/Ψ and D(φ)Ψzz/Ψ are uniformly bounded in

z ∈ R.

Proof. Follows from the definition of Ψ, the exponential rates of decay

and straightforward computations.
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The stabilizing effect of chemotaxis (iii)

In view of last lemma:

|J| ≤ C
∫ +∞

−∞

D(φ)|Wm|2 dz = C‖Wm‖2
L2

η

,

for some uniform C > 0. Substituting back yields:

|λ |‖Wm‖2
L2

η

≤
(

sup
z∈R

D(φ)
)(
‖∂zWm‖2

L2
η

+
m2

π2L2
‖Wm‖2

L2
η

)
+C‖Wm‖2

L2
η

.

This estimate provides an upper bound for |λ | in terms of each m ≥ 1.

Since D(φ) (weight of the Sobolev norm) depends on χ0 , normalize with

respect to the weighted L2-norm to obtain

|λ | ≤ ρmCm

(
sup
z∈R

D(φ)
)

+C ,

where ρm := ‖Wm‖2
H1

η

/‖Wm‖2
L2

η

> 0, Cm > 0 constant satisfying

Cm ≤ C (1 +m2).
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z∈R

D(φ)
)

+C ,

where ρm := ‖Wm‖2
H1

η

/‖Wm‖2
L2

η

> 0, Cm > 0 constant satisfying

Cm ≤ C (1 +m2).
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The stabilizing effect of chemotaxis (iv)

Lemma
For any u ∈ H1

η (R;C) with ‖u‖L2
η
> 0, the ratio

ρ =
‖u‖2

H1
η

‖u‖2
L2

η

is a uniformly bounded function of χ0 > 0.

Proof: Since D(·) is uniformly bounded from above, it is clear that

Hk
η ⊂ Hk for all k ≥ 0. The conclusion follows by noticing that both the

numerator and the denominator are linear on χ0,

ρ =
‖u‖2

H1
η1

+ χ0‖u‖2
H2

η2

‖u‖2
L2

η1

+ χ0‖u‖2
L2

η2

= O(1),

for all χ0 > 0 and where the weight functions η1,η2 are given by

η1 =
√

σ0v0φ(1−φ/v0), η2 =
√

σ0v0φ 2(1−φ/v0).
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The stabilizing effect of chemotaxis (v)

Consequences: the bounds for the eigenvalues and their dependence on

the intensity of the chemotactic signal are controlled by

sup
z∈R

D(φ) = max
u∈[0,v0]

D(u) = max
u∈[0,v0]

(
σ0v0u

(
1− u

v0

)
(1 + χ0u)

)
.

Let

G (u) := u
(
1− u

v0

)
(1 + χ0u), u ∈ [0,v0].

For positive values of χ0 > 0, the maximum G on [0,v0] occurs at

u∗(v0,χ0) =
1

3

(
v0−

1

χ0
+

√(
v0−

1

χ0

)2
+

3v0

χ0

)
∈ (0,v0).
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The stabilizing effect of chemotaxis (vi)

Thus, the maximum of G (and hence the energy bound for |λ |) is

controlled by

Θ(v0,χ0) := G (u∗(v0,χ0)) = u∗(v0,χ0)
(

1− u∗(v0,χ0)

v0

)
(1 + χ0u∗(v0,χ0)).

For fixed values of the initial nutrient concentration v0, the bound Θ is

an increasing function of the chemotactic signal χ0 ≥ 0.
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Behavior of Θ as a function of χ0, for different fixed values of

v0 = 0.5,0.75,1.0,1.5.
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Discussion



Discussion (i)

• Under balanced kinetic terms and the geometric front propagation

approximation, the bacterial envelope fronts are spectrally stable

under transversal perturbations.

• Energy estimates provide, in addition, bounds for the eigenvalues of

the linearized operator around the front, which decrease as functions

of the chemotactic sensitivity χ0 ≥ 0, suggesting that, as χ0 grows,

the patterns are “more stable”.

• Heuristic explanation: the effective nonlinear density-dependent

diffusion coefficient depends also on χ0, hence pushing the interface

to be deformable on shorter scales than the new diffusion length as

the chemotactic signal is increased.

• This quantitative observation is compatible with the results of

Arouh and Levine (2000): chemotaxis suppresses the instability of

fronts for a Kessler-Levine system with constant diffusivities,

nutrient chemotactic terms and balanced kinetic terms.
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Discussion (ii)

• Tucker (2010): same observation for a model for Paenibacillus

dendritiformis, also with balanced kinetic terms.

• In summary: supression of colony branching when the bacteria are

assisted chemotactically toward nutrients.

• Funaki, Mimura, Tsujikawa (2006) show that when the

chemotactic signal is present traveling front solutions are

destabilized for a reaction-diffusion-chemotaxis system for which the

production and degradation terms are not balanced.

• In systems without chemotaxis it is well-known that balanced kinetic

terms cause stable wave pinning (Mori, Jilkine, Edelstein-Keshet

(2011).

• Loss of balabced form may cause branching instabilities.
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Thanks!
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