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Introduction



Motivation: the sine-Gordon equation

sine-Gordon equation in one dimension (laboratory coordinates):

utt −uxx + sinu = 0, x ∈ R, t > 0,

Applications:

• Surfaces with negative Gaussian curvature (Eisenhart, 1909)

• Propagation of crystal dislocations (Frenkel and Kontorova, 1939)

• Elementary particles (Perring and Skyrme, 1962)

• Propagation of magnetic flux on a Josephson line (Scott, 1969)

• Dynamics of fermions in the Thirring model (Coleman, 1975)

• Oscillations of a rigid pendulum attached to a stretched rubber band

(Drazin, 1983)
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Superconductivity and quantum-tunneling

Josephson won the 1973 Nobel Prize in Physics for his discovery of the

Josephson effect, describing the emergence of a supercurrent through a

Josephson junction. The phase difference of wave functions of electrons

in the super-conductors satisfy the sine-Gordon equation.

Figure 1: Two dimensional Josephson junction: infinite plates of superconductors

separated by a thin dielectric barrier (image credit: AIST-NT, California, USA.)

4



The nonlinear Klein-Gordon equation

Nonlinear Klein-Gordon with periodic potential in 1D

utt −uxx +V ′(u) = 0.

for (x , t) ∈ R× [0,+∞), u scalar, V ∈ C 2, periodic. sine-Gordon:

V (u) =−cosu.

Assumptions on the potential:

(i) V : R→ R is of class C 2 in all its domain and it is periodic with

fundamental period P.

(ii) V has only non-degenerate critical points.

(iii) V ′(u)4(V (u)/V ′(u)2)′′ ≥ 0 for all u under consideration.

Assumption (iii) implies monotonicity of the period map with respect to

the energy.
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Periodic traveling waves

u(x , t) = ϕ(x− ct), z = x− ct, solution to the nonlinear pendulum

equation:

(c2−1)ϕzz +V ′(ϕ) = 0,

c ∈ R (wave speed), c2 6= 1. Upon integration:

1
2 (c2−1)ϕ

2
z = E −V (ϕ),

E = constant (energy).

W.l.o.g.:

(iv) V has fundamental period P = 2π and

min
u∈R

V (u) =−1, max
u∈R

V (u) = 1.
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Classification

First dichotomy (wave speed c):

• Subluminal waves: c2 < 1

• Superluminal waves: c2 > 1

Second dichotomy (energy E ):

• Case |E |< 1, Librational wavetrain: ϕ(z +T ) = ϕ(z). Closed

trajectory inside the separatrix in the phase portrait.

• Case |E |> 1, Rotational wavetrain: ϕ(z +T ) = ϕ(z)±2π. Open

trajectory outside the separatrix in the phase plane. Sign ϕz is fixed.

E > 1, superluminal case; E <−1, subluminal case.
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Figure 2: Phase portrait sine-Gordon case: V (u) = 1−cosu: superluminal c2 > 1

(left); subluminal c2 < 1 (right).
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Figure 3: Phase portrait for V (u) =−(0.861)(cosu+ 1
3 sin(2u)): superluminal c2 > 1

(left); subluminal c2 < 1 (right).
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Subluminal rotations

Example: subluminal rotations for sine-Gordon equation

utt −uxx + sinu = 0,

“Periodic” wave, u(x , t) = ϕc,E (x− ct), determined for E <−1, c2 < 1

(subluminal rotation)

ϕc,E (z)=


− arccos−1

[
1−2cn 2

(√
1−E

2(1−c2)
z ;k

)]
, 0≤z≤T

2 ,

arccos−1

[
1−2cn 2

(√
1−E

2(1−c2)
(T−z);k

)]
, T

2 ≤z≤T ,

k2 =
2

1−E
∈ (0,1), elliptic modulus,

cn = cn (·), elliptic cnoidal function
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Figure 4: Rotational subluminal periodic wave ϕ = ϕc,E (z) with E =−2, c = 0.5 in

the interval z ∈ [−T ,2T ] where T = 3.2476.
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Spectral stability

• Consider solutions of form ϕ(z) + eλ tw(z) (perturbation); λ ∈ C.

• Linearize around the traveling wave ϕ to obtain equation for the

perturbation

(c2−1)wzz −2cλwz +
(
λ

2 +F ′(ϕ(z))
)
w = 0 (P)

(quadratic pencil).

• Leads to associated spectral problem, definition of spectrum σ on

L2(R;C). All σ is continuous (since coefficients are periodic).

12



Floquet spectrum

Parametrization the spectrum in terms of the Floquet multipliers

e iθ ∈ S1, or θ ∈ R (mod 2π). θ is the Floquet exponent. Let us define

the set σθ as the set of complex numbers λ for which there exists θ ∈ R
and a nontrivial solution to (P) with quasi-periodic boundary conditions

w(T ) = e iθw(0).

Clearly σθ = σθ+2πk , for all k ∈ Z. We thus define the Floquet spectrum

σF as:

σF :=
⋃

−π<θ≤π

σθ

Theorem. σ = σF
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Previous stability results for sine-Gordon

• A.C. Scott, Proc. IEEE (1969). Spectral stability.

• G.B. Whitham, Linear and nonlinear waves (1974). “Modulational”

stability results. Based on modulation theory (Whitham, 1965).

• Forest, MacLaughlin (1982); Murakami (1986); Ercolani, Forest,

McLaughlin (1990); Parkes (1991); etc. (abridged list).
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Summary of stability results

Wave Whitham (1974) Scott (1969)

Subluminal rotational stable stable

Superluminal rotational stable unstable

Subluminal librational unstable unstable

Superluminal librational unstable unstable
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Scott’s results

Scott (1969):

y = exp
(−cλz

c2−1

)
w ,

yzz +
V ′′(ϕ(z))

c2−1
y =

(
λ

c2−1

)2

y =: νy . (H)

Hill’s equation with period T . ν ∈ σH (Floquet spectrum of (H)) if there

is a bounded solution y .

Scott assumed that the transformation is isospectral: (σH = σ). This is

not true. Actually:

Lemma (Jones et al. (2013). If λ ∈ σH ∩σ then λ ∈ iR.

16



Scott’s results

Scott (1969):

y = exp
(−cλz

c2−1

)
w ,

yzz +
V ′′(ϕ(z))

c2−1
y =

(
λ

c2−1

)2

y =: νy . (H)

Hill’s equation with period T . ν ∈ σH (Floquet spectrum of (H)) if there

is a bounded solution y .

Scott assumed that the transformation is isospectral: (σH = σ). This is

not true. Actually:

Lemma (Jones et al. (2013). If λ ∈ σH ∩σ then λ ∈ iR.

16



References:

• Jones, Marangell, Miller, P., Phys. D 251 (2013)

• Jones, Marangell, Miller, P., J. Differential Equations 257 (2014)

• Angulo, P., Stud. Appl. Math. 137 (2016)

17



Summary:

Jones et al. (2013)

• Correct proof of Scott’s results (spectral)

• sine-Gordon case

Jones et al. (2014)

• More generic potentials

• Analysis of the monodromy map

• Modulational stability index

• Relation to Whitham’s modulation theory

Angulo, P. (2016)

• Orbital (nonlinear) stability of subluminal rotational waves

• Multidimensional orbital stability

18



Numerical calculation of the Floquet spectrum for sine-Gordon

Figure 5: Numerical plots of the Floquet spectrum σ for sine-Gordon periodic

wavetrains (Jones et al., 2013)
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Multidimensional nonlinear Klein-Gordon equation

Nonlinear Klein-Gordon equation in several space dimensions with

periodic potential

utt −∆u+F (u) = 0, x ∈ Rd , t > 0,

d ≥ 2, F (u) = V ′(u), same assumptions on V . W.l.o.g. we assume d = 2.

Goal: Nonlinear (orbital) stability of the periodic subluminal rotational

wave profile

Φ(z ,y) = ϕ(z), (z ,y) ∈ R2,

z = x− ct under “generic” perturbations.
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Figure 6: Rotational subluminal periodic wave u(x ,y ,t) = ϕc,E (x−ct,y), parameter

values E =−2, c = 0.5 in the moving box (x−ct,y) ∈ [−T/2,3T/2]× [−1,1]; here

T ≈ 3.2476.
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Well-posedness theory



Preliminaries: periodic Sobolev spaces

P = C∞
per([0,T ]) - collection of functions u : R→ C which are smooth

and periodic with period T > 0. Topological dual P ′ - continuous linear

functionals from P to C (set of periodic distributions).

Hs
per([0,T ]), s ∈ R, is the set of all u ∈P ′ with

‖u‖2
Hs

per
= T ∑

k∈Z
(1 +k2)s |û(k)|2 < ∞.

We denote H0
per([0,T ]) = L2

per([0,T ]). Parseval: if n ∈ N,

‖u‖2
Hn

per
=

n

∑
j=0

∫ T

0
|D j

xu|2 dx
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Preliminaries: function spaces

Let us denote the Hilbert space

Y := H1
per([0,T ]× [0,L])×L2

per([0,T ]× [0,L]),

to represent perturbations which are square integrable, T -periodic in z

and L-periodic in y , with L> 0 arbitrary. The space Y is endowed by the

standard norm

‖(u,v)‖2
Y = ‖u‖2

H1
per

+‖v‖2
L2

per
, for all (u,v) ∈ Y ,

where

‖u‖2
H1

per
= ‖uz‖2

L2
per

+‖uy‖2
L2

per
+‖u‖2

L2
per
, ‖u‖L2

per
=
∫ T

0

∫ L

0
|u(z ,y)|2 dy dz .

Standard inner product: 〈·, ·〉Y
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Two dimensional nonlinear Klein-Gordon equation

Nonlinear Klein-Gordon in 2D

utt −uxx −uyy +F (u) = 0, (nKG)

u = u(x ,y , t), scalar, (x ,y) ∈ R2 and t ≥ 0. F (u) = V ′(u), periodic

potential. Extrapolation to d ≥ 2 is immediate.

Theorem

The initial value problem associated to equation (nKG) is globally

well-posed in Y .
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Proof sketch (i)

• W.l.o.g. take T = L = 2π. Recast the equation as a first order

system for a perturbation variable v(z ,y , t) = u(z ,y , t)−ϕ(z), of

form
v t = Lv +R(v), (z ,y , t) ∈ [0,2π]2× (0,+∞),

v(0) = v 0, x ∈ [0,2π],

where v = (v ,vt)
> =: (v ,w)>, and

L =

(
0 I

(1− c2)∂ 2
z + ∂ 2

y 2c∂z

)
, R(v) =

(
0

F (ϕ)−F (ϕ + v)

)
.

• L is a linear, closed, densely defined operator in the Hilbert space

Y = H1
per([0,2π]× [0,2π])×L2

per([0,2π]× [0,2π]), with dense domain

D(L) = H2
per([0,2π]× [0,2π])×H1

per([0,2π]× [0,2π])
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Proof sketch (ii)

• The operator L : D(L)⊂ Y → Y is the infinitesimal generator of a

C0-group, {S(t)}t∈R in Y . This fact can be verified via a direct

computation of the group with standard Fourier analysis. Moreover,

it can be shown that

‖S(t)(v0,w0)>‖2
Y 5 4max{1, t2}‖(v0,w0)>‖2

Y ,

for all t > 0, (v0,w0)> ∈ Y , as well as,

‖S(t)R(v(s))‖2
Y 5 4max{1, t2}‖(0,F (ϕ)−F (ϕ + v))>‖2

Y

≤ 4C̄ max{1, t2}‖v(s)‖2
L2 .
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Proof sketch (iii)

• Local well-posedness. The local existence of solutions is proved via a

standard contraction mapping argument. Let T be such that

0 < T ≤ 1. Let us define

YT ,β :=
{

v ∈ C ([0,T ];Y ) : sup
t∈[0,T ]

‖v(t)‖Y < β

}
,

and for fixed v0 = (v0,w0)> ∈ Y , the mapping

Ψv0 (v)(t) := S(t)v0 +
∫ t

0
S(t− s)R(v(s))ds.

We can choose T > 0 and β > 0 such that Ψv0 (v(t)) ∈ YT ,β for all

v ∈ YT ,β and that Ψv0 (v(t)) : YT ,β → YT ,β is a contraction.
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Proof sketch (iv)

• Global well-posedness. Verify via a priori energy estimates, that the

procedure above can be extended globally in time. If v = (v ,w)> is

a solution then

vt = w ,

wt = (1− c2)vzz + vyy + 2cwz +F (ϕ)−F (ϕ + v).

Set

H(t) := 1
2

(
‖v‖2

L2
per

+ (1− c2)‖vz‖L2
per

+‖vy‖2
L2

per
+‖w‖2

L2
per

)
Upon integration by parts and periodicity

dH

dt
=
∫ 2π

0

∫ 2π

0
vw dz dy +

∫ 2π

0

∫ 2π

0
F (ϕ)−F (ϕ + v)dz dy
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Proof sketch (v)

dH

dt
5 (1 + C̄ )

∫ 2π

0

∫ 2π

0
|v ||w |dz dy 5 C (‖v‖2

L2
per

+‖w‖2
L2

per
) 5 CH(t),

for some uniform C > 0. Thus, by Gronwall’s lemma we obtain

H(t) 5 eCtH(0) 5 C (T )H(0).

Hence, the solution can be extended globally in time by the same

procedure. We conclude that there exists a unique global solution

v ∈ C ([0,+∞);Y ) to the Cauchy problem.
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Orbital stability



Preliminaries

Interested in the dynamics of the set

Oϕ = {ϕ(·+ ζ ) : ζ ∈ R}

under the flow generated by (nKG). Consider the space

P±(T ) := {u : R→ R : u(z +T ) = u(z)∓2π, for all z ∈ R},

i.e. u produces a translation of the fundamental period of V after a

period T .
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Main theorem (i)

Theorem (transverse orbital stability)

The rotational subluminal traveling wave profile Φ(z ,y) = ϕ(z),

(z ,y) ∈ R2, is orbitally stable in Y by the flow generated by the

two-dimensional nonlinear Klein-Gordon equation (nKG) in the following

sense: for every ε > 0 there exists δ > 0 such that for

u0 = u0(·, ·) ∈P±(T )×H1
per([0,L]) and u1 ∈ L2

per([0,T ]× [0,L]) satisfying

‖u0−Φ‖H1
per([0,T ]×[0,L]) +‖c∂zu0 +u1‖L2

per([0,T ]×[0,L]) < δ ,

then the solution u = u(z ,y , t) to (nKG) with initial conditions

u(·, ·,0) = u0(·, ·) and ut(·, ·,0) = u1(·, ·) satisfies, for all t ≥ 0,{
t→ u(·+ ct, ·, t)−Φ(·, ·) ∈ H1

per([0,T ]× [0,L])

t→ c∂zu(·+ ct,y , t) +ut(·+ ct,y , t) ∈ L2
per([0,T ]× [0,L]),

and, for all t > 0.
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Main theorem (ii)

Theorem (transverse orbital stability - continued)

Moreover,

‖u(·+ γ, ·, t)−Φ(·, ·)‖H1
per([0,T ]×[0,L])+

+‖c∂zu(·, ·, t) +ut(·, ·, t)‖L2
per([0,T ]×[0,L]) < ε.

Here the modulation parameter γ is given explicitly by γ(t) = ct. In

addition, we have t ∈R→ u(·,y , t) ∈P±(T ), for all y fixed and all t > 0.
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Remark. The notation u0(·, ·) ∈P±(T )×H1
per([0,L]) means:{

z → u0(z ,y) ∈P±(T ), for every y ∈ R

u(z , ·) ∈ H1
per([0,L]), for every z ∈ R.
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Perturbation variables

For any solution u = u(x ,y , t) to (nKG), consider the perturbation

variable

v(z ,y , t) = u(z + ct,y , t)−ϕ(z).

Suppose x → u(x , ·, t) ∈P±(T ) and y → u(·,y , t) ∈ L2
per([0,L]) for all

t ∈ R, then v is a doubly-periodic function on R2,

v(z +T ,y +L, t) = u(z +T + ct,y +L, t)−ϕ(z +T )

= u(z + ct,y , t)∓2π−ϕ(z)±2π = v(z ,y , t).

v satisfies the nonlinear equation

vtt −2cvzt + (c2−1)vzz −vyy +F ′(ϕ(z) + v)−F ′(ϕ(z)) = 0.

Need to study the nonlinear stability of the trivial solution v ≡ 0.
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First order Hamiltonian system

Recast nonlinear eq. for v as a first order Hamiltonian system

v t = JE ′(v),

where v = (v ,vt) := (v ,w)>,

J =

(
0 1

−1 2c∂z

)
,

and E ′ is the derivative of the well-defined smooth functional

E : H1
per([0,T ]× [0,L])×L2

per([0,T ]× [0,L])→ R,

E (v ,w) =
1

2

∫ T

0

∫ L

0
(1− c2)v2

z + v2
y +w2 + 2G (v) dy dz ,

with G ′(v(z ,y)) = F (ϕ(z) + v(z ,y))−F (ϕ(z)).
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Properties of the functional E (i)

• J is a skew-adjoint operator with respect to the inner product in

L2
per([0,T ]× [0,L]).

• Since for z fixed,

G (s) =
∫ s

0
F (ϕ(z) + τ)−F (ϕ(z))dτ,

then |G (s)| ≤ 1
2 s

2 and E is well defined,

|E (v ,w)| ≤ 1
2 (1− c2)‖vz‖2

L2
per

+‖vy‖2
L2

per
+ 1

2‖w‖
2
L2

per
.

• The Hamiltonian structure implies that E is a conservation law.

• Also,

E ′(v ,w) =

(
(c2−1)∂ 2

z v −∂ 2
y v +G ′(v)

w

)
.

E ′(0,0) = 0.
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Properties of the functional E (ii)

• Stability of v ≡ (0,0) in Y requires to study the self-adjoint operator

E ′′(v ,w) =

(
(c2−1)∂ 2

z −∂ 2
y +F ′(ϕ(z) + v)

w

)
: Y → Y ,

evaluated at (v ,w) = (0,0).
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Spectral analysis

Lemma (spectral analysis of E ′′(0,0))

We consider the linear self-adjoint operator E ′′(0,0) : Y → Y with dense

domain D = H2
per([0,T ]× [0,L])×L2

per([0,T ]× [0,L]). Then the spectrum

σ = σ(E ′′(0,0)) of E ′′(0,0) is discrete, σ = {0,µ1,µ2, ...}, where

0 < µ1 ≤ µ2 ≤ µ3 ≤ µ4 ≤ · · ·

and kerE ′′(0,0) = span{(ϕz ,0)}. Moreover, there exists β > 0 such that

for every h ∈ Y satisfying h⊥(ϕz ,0)>

〈h,E ′′(0,0)h〉Y ≥ β‖h‖2
Y .
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Proof (i)

Proof. E ′′(0,0)(ϕz ,0)> = 0 because ∂yϕ(z) = 0 and ϕ is a solution to

the spectral equation with λ = 0. Let µ < 0 be an eigenvalue for E ′′(0,0)

with (h,g)> ∈ H2
per([0,T ]× [0,L])×L2

per([0,T ]× [0,L]) eigenfunction.

Thus, {
L1h := (c2−1)∂

2
z h−∂

2
y h+F ′(ϕ(z))h = µh

g = µg .

It follows that L1hy = µhy . So, h and hy are eigenfunctions of L1.

Next, we see that h is a function only of the variable z , namely,

h(z ,y) = A(z) for all (z ,y) ∈ R2. W.l.o.g. suppose that µ = inf σ(L1).

From a classical result on d-dimensional Schrödinger operators (cf.

Eastham, 1973), d ≥ 2, µ is a simple eigenvalue for L1 with an

eigenfunction that does not take the value zero in [0,T ]× [0,L].
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Proof (ii)

Thus, suppose that h(z ,y) > 0 for every z ,y . Then, there exists θ > 0

such that hy (z ,y) = θh(z ,y) for every z ,y . For z fixed define

j(y) = h(z ,y), so that j satisfies the following boundary problem,{
j ′(y) = θ j(y)

j(0) = h(z ,0) =: A(z).

Therefore,

j(y) = h(z ,y) = A(z)eθy , for all y .

Since h is periodic in the y -variable, θ = 0. Therefore, h(z ,y) = A(z) for

all z ,y , and satisfies

L1A(z) = [(c2−1)∂
2
z +F (ϕ(z))]A(z) = µA(z), µ < 0.

This is a contradiction with oscillation theory for Hill’s operators

(Magnus, Winkler, 1966): L1 is a Hill’s type scalar operator in

L2
per([0,T ]), and zero is the first eigenvalue of L and it is simple, with

eigenfunction ϕz .
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Proof (iii)

Moreover, σ(L1) = {0,γ1,γ2, ...}, where

0 < γ1 ≤ γ2 < γ3 ≤ γ4 < · · ·.

Hence, E ′′(0,0) is a non-negative operator.

By the analysis above L1 has no negative eigenvalues. Moreover,

L1G = 0 with G (z ,y) = ϕz ∈ H2
per([0,T ]× [0,L]) and G (z ,y) > 0 for all

z ,y . Therefore, zero is an simple eigenvalue for L1, it which implies that

kerE ′′(0,0) = span{(ϕz ,0)>}. The proof of the inequality follows by

integration by parts.
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Coerciveness

Lemma

There exist C0 > 0 and ε > 0 such that

E (h)≥ C0‖h‖2
Y ,

for all h ∈ B(0;ε) = {h ∈ Y : ‖h‖Y < ε}.

Proof. Since E (0,0) = E ′(0,0) = 0,

E (h) = 1
2 〈h,E

′′(0,0)h〉Y +o(‖h‖2
Y ),

for every h ∈ B(0;ε). Hence, from the spectral theorem above we get

that, for every h ∈ Y ,

h = γ(ϕz ,0)>+h⊥, h⊥⊥(ϕz ,0)>,

〈h,E ′′(0,0)h〉Y = 〈h⊥,E ′′(0,0)h⊥〉Y ≥ β‖h⊥‖2
Y .
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Therefore, we obtain for ε sufficiently small, that

E (h)≥ β‖h⊥‖2
Y +o(‖h‖2

Y )≥ C0‖h‖2
Y ,

for some C0 > 0 and ‖h‖Y < ε.

E is a local Lyapunov function for the flow of the PDE.
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E (h)≥ β‖h⊥‖2
Y +o(‖h‖2

Y )≥ C0‖h‖2
Y ,

for some C0 > 0 and ‖h‖Y < ε.

E is a local Lyapunov function for the flow of the PDE.
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Orbital stability of the trivial solution

Theorem

The trivial solution v ≡ (0,0) is orbitally stable in Y by the periodic flow

generated by the evolution equation (nKG). That is, for every ε > 0 there

exists δ > 0 such that for v 0 ∈ Y , and ‖v 0‖Y < δ , we have that the

global solution v(t) of (nKG) with v(0) = v 0 satisfies v(t) ∈ Y and

‖v(t)‖Y < ε for all t ≥ 0.

Proof.

Suppose that v = (0,0) is Y -unstable. Then we can choose initial data

vk(0) ∈ Y with ‖vk(0)‖Y < 1/k and ε > 0, such that

sup
t≥0
‖vk(t)‖Y ≥ ε,

where vk(t) is the solution to (nKG) with initial datum vk(0).
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Now, by continuity in t, we can select the first time tk such that

‖vk(tk)‖Y = ε

2 . Since E is continuous over Y and is a conservation law

for (nKG), we get from coerciveness, that

0← E (vk(0)) = E (vk(tk))≥ C0‖vk(tk)‖2
Y ,

as k → ∞, which contradicts the sup condition. This finishes the proof.
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Proof of main theorem

From the relation v(x ,y , t) = u(z + ct,y , t)−ϕ(z) and from the

assumptions

(u0,u1) ∈ Y ⊂ L2
per([0,T ]× [0,L])×L2

per([0,T ]× [0,L]),

we obtain

v(z ,y ,0) = u0(z ,y)−ϕ(z) ∈ H1
per([0,T ]× [0,L]),

vt(z ,y ,0) = c∂zu(z ,y ,0) +ut(z ,y ,0) = c∂zu0 +u1 ∈ L2
per([0,T ]× [0,L]).

Therefore, from the definition of the Y -norm and from

‖u0−Φ‖H1
per([0,T ]×[0,L]) +‖c∂zu0 +u1‖L2

per([0,T ]×[0,L]) < δ ,

apply orbital stability of the trivial solution to obtain
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{
t→ u(·+ ct, ·, t)−Φ(·, ·) ∈ H1

per([0,T ]× [0,L])

t→ c∂zu(·+ ct,y , t) +ut(·+ ct,y , t) ∈ L2
per([0,T ]× [0,L]),

and

‖u(·+ ct, ·, t)−Φ(·, ·)‖H1
per([0,T ]×[0,L])+

+‖c∂zu(·, ·, t) +ut(·, ·, t)‖L2
per([0,T ]×[0,L]) < ε.

This finishes the proof.
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Extension

Remark. It follows immediately that rotational subluminal traveling

wavetrain profiles

Φ(z ,y1,y2, ...,yd−1) = ϕ(z), (z ,y1,y2, ...,yd−1) ∈ Rd ,

where ϕ(·) is the one-dimensional subluminal rotational profile, are also

nonlinearly stable in

H1
per([0,T ]× [0,L1]×· · ·× [0,Ld−1])×L2

per([0,T ]× [0,L1]×· · ·× [0,Ld−1])

for any chosen wavelengths Li > 0, 1 5 i 5 d −1, by the flow of the

d-dimensional nonlinear Klein-Gordon equation.
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Discussion



Open problems

• The orbital (in)stability with respect to co-periodic perturbations of

superluminal rotational and superluminal librational waves has not

been established, not even in one dimension. (Detection of a

co-periodic eigenvalue.)

• We attempted to show orbital stability under two-dimensional

perturbations which are co-periodic in the variable of propagation,

but localized (i.e. in L2(R)) in the transverse direction. It can be

shown that the corresponding operator E ′′(0,0) has not closed range

and λ = 0 belongs to the essential spectrum, precluding the

existence of a spectral gap.

• The orbital, nonlinear stability of subluminal rotations under

localized perturbations in the direction of propagation is an open

problem, even in one spatial dimension.
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Thanks!
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