Orbital stability of standing waves for the nonlinear Schrödinger equation with attractive delta potential and double power repulsive nonlinearity

[^0]Joint work with: Jaime Angulo Pava (Univ. Sao Paulo) and César Hernández Melo (Univ. Maringá)

Sponsors:

- DGAPA-UNAM, program PAPIIT, grant no. IN-100318.
- FAPESP, São Paulo, processo 12543-4.

Table of contents

1. Introduction
2. Local and global well posedness for the NLS
3. Existence of standing waves
4. Orbital stability

Introduction

Nonlinear Schrödinger equation (NLS)

NLS equation with attractive delta potential and repulsive double power nonlinearity:

$$
i u_{t}+u_{x x}+Z \delta(x) u+\lambda_{1} u|u|^{p-1}+\lambda_{2} u|u|^{2 p-2}=0
$$

- Unknown: $u=u(x, t) \in \mathbb{C}$, for $x, t \in \mathbb{R}$.
- Parameters: $\lambda_{1} \leq 0, \lambda_{2}<0, Z>0, p>1$.
- $\delta: H^{1}(\mathbb{R}) \rightarrow \mathbb{C},\langle\delta, g\rangle=g(0)$ (Dirac delta centered at $x=0$.)
- Linear interaction: $\partial_{x}^{2}+Z \delta(x)$.
- Nonlinear term: $\lambda_{1} u|u|^{p-1}+\lambda_{2} u|u|^{2 p-2}$.
- $i^{2}=-1$.

Physical applications

- We recall that the general NLS model

$$
i u_{t}+u_{x x}+V(x) u+f\left(|u|^{2}\right) u=0
$$

represents a trapping (wave-guiding) structure for light beams, induced by an inhomogeneity of the local refractive index.

- The delta-function term $V(x)=Z \delta(x)$ represents a narrow trap which is able to capture broad solitonic beams.
- It models a spatially localized point defect of the medium in which the soliton travels (localized attractive "impurity").
- The non linear term $f(x)=\lambda_{1} x^{(p-1) / 2}+\lambda_{2} x^{p-1}$ is well known in optical media.

Standing waves

Standing waves are solutions to the NLS model of the form

$$
u(x, t)=e^{-i \omega t} \phi(x),
$$

where $\omega \in \mathbb{R}$ and the profile of the wave $\phi: \mathbb{R} \rightarrow \mathbb{R}$ satisfies

$$
\left\{\begin{array}{l}
\phi^{\prime \prime}+Z \delta(x) \phi+\omega \phi+f\left(|\phi|^{2}\right) \phi=0 \tag{ODE}\\
\phi \in H^{1}(\mathbb{R})
\end{array}\right.
$$

where $f=f(\cdot)$ is an arbitrary function satisfying

$$
\begin{array}{r}
f \in C^{1}((0,+\infty) ; \mathbb{R}) \quad \text { with } f(0)=0 \tag{f}\\
f^{\prime}(x)<0 \quad \text { for all } x>0
\end{array}
$$

Standing waves

Standing waves are solutions to the NLS model of the form

$$
u(x, t)=e^{-i \omega t} \phi(x),
$$

where $\omega \in \mathbb{R}$ and the profile of the wave $\phi: \mathbb{R} \rightarrow \mathbb{R}$ satisfies

$$
\left\{\begin{array}{l}
\phi^{\prime \prime}+Z \delta(x) \phi+\omega \phi+f\left(|\phi|^{2}\right) \phi=0 \tag{ODE}\\
\phi \in H^{1}(\mathbb{R})
\end{array}\right.
$$

where $f=f(\cdot)$ is an arbitrary function satisfying

$$
\begin{array}{r}
f \in C^{1}((0,+\infty) ; \mathbb{R}) \quad \text { with } f(0)=0, \tag{f}\\
f^{\prime}(x)<0 \quad \text { for all } x>0
\end{array}
$$

Example: if $1<p<\infty, \lambda_{1} \leq 0$ and $\lambda_{2}<0$ then

$$
f(x)=\lambda_{1} x^{(p-1) / 2}+\lambda_{2} x^{p-1}
$$

satisfies $\left(\mathrm{H}_{f}\right)$.

δ-interaction quantum operator

The δ-interaction quantum operator A_{Z} is defined as

$$
A_{Z}:=-\partial_{x}^{2}-Z \delta(x)
$$

$$
\left\{\begin{aligned}
A_{Z} f(x) & =-f^{\prime \prime}(x), \quad x \neq 0, \\
D\left(A_{Z}\right) & =\left\{f \in H^{1}(\mathbb{R}) \cap H^{2}(\mathbb{R} \backslash\{0\}): f^{\prime}(0+)-f^{\prime}(0-)=-Z f(0)\right\},
\end{aligned}\right.
$$

Orbital stability

Definition (orbital stability)

The standing wave $e^{-i \omega t} \phi_{\omega}$ is orbitally stable by the flow of the NLS equation $\mathrm{n} H^{1}(\mathbb{R})$, if for any $\varepsilon>0$ there exists $\delta>0$ such that if $\left\|u_{0}-\phi_{\omega}\right\|_{H^{1}}<\delta$ then

$$
\inf _{\theta \in \mathbb{R}}\left\|u(t)-e^{i \theta} \phi_{\omega}\right\|_{H^{1}}<\varepsilon, \quad \text { for all } t \in \mathbb{R},
$$

where $u(t)$ denotes the solution to the NLS equation with initial data $u(0)=u_{0} \in H^{1}(\mathbb{R})$. Otherwise, $e^{-i \omega t} \phi_{\omega}$ is said to be orbitally unstable in $H^{1}(\mathbb{R})$.

Main theorem

Theorem (Angulo Pava, Hernandez Melo, P (2019))

Let $1<p<\infty, \lambda_{1} \leq 0, \lambda_{2}<0$ and $Z>0$ in the NLS equation. Then for all values of $\omega<0$ satisfying

$$
-\frac{p \lambda_{1}^{2}}{(p+1)^{2} \lambda_{2}}<-\omega<\frac{z^{2}}{4}
$$

the family of standing wave solutions, $u(x, t)=e^{-i \omega t} \phi_{\omega}$, with ϕ_{ω} given by

$$
\phi_{\omega}=\left[\frac{\alpha}{-\omega}+\frac{\sqrt{v}}{-\omega} \sinh \left((p-1) \sqrt{-\omega}\left(|x|+R_{1}^{-1}\left(\frac{Z}{2 \sqrt{-\omega}}\right)\right)\right)^{-\frac{1}{\rho-1}}\right.
$$

where $v=\omega \beta-\alpha^{2}$, are orbitally stable solutions in $H^{1}(\mathbb{R})$ under the flow of the NLS equation.

Previous results

- Case $Z=0$: Ohta (1995), double power nonlinearity; Maeda (2008), multiple power nonlinearity.
- Repulsive δ potential: Fukuizumi, Jeanjean (2008)
- Attractive δ potential: Fukuizumi et al. (2008)
- Kaminaga, Ohta (2009): attractive δ with repulsive single power nonlinearity.

Multibody interactions of same sign (repulsive, double power nonlinearity) appear in the study of Bose-Einstein condensates: Brazhnyi, Konotop (2004); Belobo Belobo et al. (2014); Kamchatnov, Salerno (2009); Kamchatnov, Korneev (2010) (dark solitons).

Concentration-compactness method: Cazenave, Lions (1982)

- The Cauchy problem: The initial value problem associated to the NLS equation is globally well-posed in $H^{1}(\mathbb{R})$ for $1<p<+\infty$, $\lambda_{1} \leq 0, \lambda_{2}<0$ and $Z>0$.
- Existence of profile solution ϕ_{ω} : for parameter values $p, \lambda_{1}, \lambda_{2}, Z$ and ω satisfying the assumptions there exists a profile solution ϕ_{ω} of the elliptic equation (ODE) (explicit construction).
- The stationary problem: The set \mathscr{A}_{ω} of non-trivial solutions of the equation for the profiles in $H^{1}(\mathbb{R})$ will be characterized, via uniqueness, by

$$
\mathscr{A}_{\omega}=\left\{v: G_{\omega}^{\prime}(v)=0, v \neq 0\right\}=\left\{e^{i \theta} \phi_{\omega}: \theta \in \mathbb{R}\right\},
$$

where

$$
\begin{gathered}
G_{\omega}(v)=E(v)-\frac{\omega}{2}\|v\|_{L^{2}}^{2}, \\
E(v):=\frac{1}{2}\left\|v_{x}\right\|_{L^{2}}^{2}-\frac{Z}{2}|v(0)|^{2}-\frac{\lambda_{1}}{p+1}\|v\|_{L^{p+1}}^{p+1}-\frac{\lambda_{2}}{2 p}\|v\|_{L^{2 p}}^{2 p},
\end{gathered}
$$

for $v \in H^{1}(\mathbb{R})$.

Concentration-compactness method (ii)

- The minimization problem: For $p, \lambda_{1}, \lambda_{2}, Z$ and ω satisfying the assumptions of our main theorem, the quantity

$$
m(\omega)=\inf \left\{G_{\omega}(v): v \in H^{1}(\mathbb{R})\right\},
$$

satisfies the following properties:
(a) (boundedness below) $-\infty<m(\omega)<0$; and,
(b) (compactness) any sequence $h_{n} \in H^{1}(\mathbb{R})$ such that $\lim _{n \rightarrow \infty} G_{\omega}\left(h_{n}\right)=m(\omega)$ admits a subsequence converging to some $h \in H^{1}(\mathbb{R})$ with $G_{\omega}(h)=m(\omega)$.

Local and global well posedness for the NLS

Preliminaries (i)

The formal expression $A_{Z}:=-\partial_{x}^{2}-Z \delta(x)$ represents all the self-adjoint extensions (von Neumann theory) associated to the following closed, symmetric, densely defined linear operator:

$$
\left\{\begin{aligned}
A_{0} & =-\partial_{\chi}^{2} \\
D\left(A_{0}\right) & =\left\{g \in H^{2}(\mathbb{R}): g(0)=0\right\}
\end{aligned}\right.
$$

More precisely, the quantum operator $A_{Z}=-\partial_{x}^{2}-Z \delta(x)$ is given by

$$
\left\{\begin{aligned}
A_{Z} f(x) & =-f^{\prime \prime}(x) \quad x \neq 0, \\
D\left(A_{Z}\right) & =\left\{f \in H^{1}(\mathbb{R}) \cap H^{2}(\mathbb{R} \backslash\{0\}): f^{\prime}(0+)-f^{\prime}(0-)=-Z f(0)\right\} .
\end{aligned}\right.
$$

Preliminaries (ii)

Upon application of the First Representation Form Theorem (cf. Kato), it is possible to show that the associated form to A_{Z} is given by

$$
F_{Z}[u, v]=\operatorname{Re} \int_{-\infty}^{+\infty} u^{\prime}(x) \overline{v^{\prime}(x)} d x-Z \operatorname{Re}(u(0) \overline{v(0)}),
$$

where $(u, v) \in D\left(F_{Z}\right)=H^{1}(\mathbb{R}) \times H^{1}(\mathbb{R})$. The bilinear form defined above is closed and bounded below. In addition, operator $A_{Z}=-\partial_{x}^{2}-Z \delta(x)$ can be extended as a linear bounded operator $u \rightarrow A_{Z} u$ from $H^{1}(\mathbb{R})$ to $H^{-1}(\mathbb{R})$. This action is defined by

$$
\left\langle A_{Z} u, v\right\rangle=F_{Z}[u, v], \quad \text { for } u, v \in H^{1}(\mathbb{R}) .
$$

Spectral properties of A_{Z}

- Essential spectrum: $\Sigma_{\text {ess }}\left(A_{Z}\right)=[0,+\infty)$, for all $Z \in \mathbb{R}$.
- Discrete spectrum:

$$
\Sigma_{\mathrm{dis}}\left(A_{Z}\right)= \begin{cases}\varnothing, & Z \leq 0 \\ \left\{-Z^{2} / 4\right\}, & Z>0\end{cases}
$$

For $Z>0, \Psi_{Z}(x)=\sqrt{\frac{Z}{2}} e^{-\frac{Z}{2}|x|}$ is the normalized eigenfunction associated to the unique negative simple eigenvalue $-Z^{2} / 4$. In addition, the operators A_{Z} are bounded from below:

$$
\begin{cases}A_{z} \geq-Z^{2} / 4, & Z>0 \\ A_{z} \geq 0, & Z<0\end{cases}
$$

Ref.: Albeverio, Gesztesy, Høegh-Kron (2005).

The Cauchy problem

Consider the Cauchy problem,

$$
\left\{\begin{array}{l}
i u_{t}-A_{Z} u+\left(\lambda_{1}|u|^{p-1}+\lambda_{2}|u|^{2 p-2}\right) u=0 \\
u(0)=u_{0} \in H^{1}(\mathbb{R})
\end{array}\right.
$$

Ref. Cazenave, Courant LN, vol. 10 (2003).

Local well-posedness

Theorem (local well-posedness)

For any $u_{0} \in H^{1}(\mathbb{R})$ and $Z \in \mathbb{R}$, there exists $T>0$ and a unique solution $u \in C\left([-T, T] ; H^{1}(\mathbb{R})\right) \cap C^{1}\left([-T, T] ; H^{-1}(\mathbb{R})\right)$ to the NLS equation with $u(0)=u_{0}$ such that

$$
\lim _{t \rightarrow T^{-}}\|u(t)\|_{H^{1}}=+\infty, \quad \text { if } T<\infty .
$$

Moreover, the solution $u(t)$ satisfies conservation of charge and energy:

$$
\|u(t)\|_{L^{2}}=\left\|u_{0}\right\|_{L^{2}}, \quad E(u(t))=E\left(u_{0}\right),
$$

for all $t \in[-T, T]$, where the energy functional E is defined as

$$
E(v):=\frac{1}{2}\left\|v_{x}\right\|_{L^{2}}^{2}-\frac{Z}{2}|v(0)|^{2}-\frac{\lambda_{1}}{p+1}\|v\|_{L^{p+1}}^{p+1}-\frac{\lambda_{2}}{2 p}\|v\|_{L^{2 p}}^{2 p},
$$

for $v \in H^{1}(\mathbb{R})$.

Proof sketch

- The nonnegative self-adjoint operator $\mathscr{A} \equiv A_{Z}+\beta$ on the space $X=L^{2}(\mathbb{R})$, with $\beta=Z^{2} / 4$ for $Z>0$ and $\beta=0$ for $Z \leq 0$, and domain $D(\mathscr{A})=D\left(A_{Z}\right)$, induces a norm

$$
\|u\|_{X_{\mathscr{A}}}^{2}=\left\|u_{x}\right\|_{L^{2}}^{2}+(\beta+1)\|u\|_{L^{2}}^{2}-Z|u(0)|^{2}
$$

which is equivalent to the usual norm in $H^{1}(\mathbb{R})$.

- The self-adjoint operator A_{Z} generates a strongly continuous group of unitary operators $T(t) g=e^{-i t A_{z}} g$.
- Duhamel integral

$$
u(t)=T(t) u_{0}+\int_{0}^{t} T(t-s)\left(\lambda_{1}|u(s)|^{p-1} u(s)+\lambda_{2}|u(s)|^{2 p-2} u(s)\right) d s
$$

Direct application of Thm. 3.7.1 in Cazenave.

Remark: Gagliardo-Nirenberg interpolation inequality

For any $p>1, H^{1}(\mathbb{R}) \subset L^{2}(\mathbb{R}) \cap L^{p+1}(\mathbb{R}) \cap L^{2 p}(\mathbb{R})$, inasmuch as the Gagliardo-Nirenberg interpolation inequality (cf. Leoni, 2017) yields

$$
\begin{aligned}
\|u\|_{L^{p+1}} & \leq C_{1}\|u\|_{L^{2}}^{\theta_{1}}\left\|u_{x}\right\|_{L^{2}}^{1-\theta_{1}} \\
\|u\|_{L^{2 p}} & \leq C_{2}\|u\|_{L^{2}}^{\theta_{2}}\left\|u_{x}\right\|_{L^{2}}^{1-\theta_{2}},
\end{aligned}
$$

with uniform constants $C_{j}>0$ and $\theta_{1}=(p+2) /(2 p+2) \in(0,1)$, $\theta_{2}=(p+1) / 2 p \in(0,1)$.

Conservation of charge/energy

- Conservation of charge:

$$
\begin{aligned}
\frac{d}{d t}\|u(t)\|_{L^{2}}^{2} & =2 \operatorname{Re} \int_{\mathbb{R}} u_{t} \bar{u} d x \\
& =2 \operatorname{Re} \int_{\mathbb{R}}-i\left(A_{Z} u\right) \bar{u}+i f\left(|u|^{2}\right)|u|^{2} d x=0
\end{aligned}
$$

- Conservation of Energy: NLS equation can be written in the Hamiltonian form $u_{t}=-i E^{\prime}(u(t))$, then

$$
\frac{d}{d t} E(u(t))=\operatorname{Re} \int_{\mathbb{R}} E^{\prime}(u(t)) \bar{u}_{t} d x=\operatorname{Re} \int_{\mathbb{R}} i\left|E^{\prime}(u(t))\right|^{2} d x=0
$$

Auxiliary bound

Let us define the following C^{1} functional in $H^{1}(\mathbb{R})$,

$$
R(v):=\frac{1}{2}\left\|v_{x}\right\|_{L^{2}}^{2}-\frac{Z}{2}|v(0)|^{2}-\frac{\lambda_{2}}{2 p}\|v\|_{L^{2} p}^{2 p}=E(v)+\frac{\lambda_{1}}{p+1}\|v\|_{L^{p+1}}^{p+1} .
$$

Lemma (Auxiliary bound)
Let $1<p<\infty, \lambda_{1} \leq 0, \lambda_{2}<0$ and $Z>0$. Then there exists a uniform constant $C=C(p, Z)>0$ such that

$$
\frac{Z}{2}|v(0)|^{2} \leq R(v)+C, \quad \text { for all } v \in H^{1}(\mathbb{R})
$$

Proof sketch

By Sobolev and Young's inequalities, for any $Z>0$ there exists
$C_{1}=C_{1}(Z)>0$ such that for $v \in H^{1}(\mathbb{R})$

$$
Z|v(0)|^{2} \leq \frac{1}{2}\left\|v_{x}\right\|_{L^{2}}^{2}+C_{1}\|v\|_{L^{2}(-1,1)}^{2}
$$

Apply Hölder's and Young's inequalities to estimate

$$
\|v\|_{L^{2}(-1,1)}^{2} \leq 2^{(p-1) / p}\left(\int_{-1}^{1}|v|^{2 p} d x\right)^{1 / p} \leq \delta\|v\|_{L^{2 p}(-1,1)}^{2 p}+2 C_{\delta},
$$

for any $\delta>0$. Since $\lambda_{2}<0$, choose $\delta=-\lambda_{2} /\left(2 p C_{1}\right)>0$ to obtain

$$
Z|v(0)|^{2} \leq \frac{1}{2}\left\|v_{x}\right\|_{L^{2}}^{2}-\frac{\lambda_{2}}{2 p}\|v\|_{L^{2 p}}^{2 p}+2 C_{1} C_{\delta} .
$$

Global well-posedness

Theorem (global well-posedness)

For every $p>1, Z>0, \lambda_{1} \leq 0$ and $\lambda_{2}<0$ the Cauchy problem is globally well-posed in $H^{1}(\mathbb{R})$.

Proof. Let $u \in C\left([-T, T] ; H^{1}(\mathbb{R})\right) \cap C^{1}\left([-T, T] ; H^{-1}(\mathbb{R})\right)$ be the local solution to the Cauchy problem for $t \in(-T, T)$.

$$
\begin{aligned}
\frac{1}{2}\left\|u_{x}\right\|_{L^{2}}^{2} & =E(u)+\frac{Z}{2}|u(t)|^{2}+\frac{\lambda_{1}}{p+1}\|u\|_{L^{p+1}}^{p+1}+\frac{\lambda_{2}}{2 p}\|u\|_{L^{2 p}}^{2 p} \\
& \leq E(u(t))+\frac{Z}{2}|u(t)|^{2} \\
& \leq E(u(t))+R(u(t))+C
\end{aligned}
$$

Thus, we arrive at

$$
\frac{1}{2}\left\|u_{x}(t)\right\|_{L^{2}}^{2} \leq E(u(t))+R(u(t))+C \leq 2 E(u(t))+C .
$$

In view that u conserves charge and energy we finally conclude that

$$
\|u(t)\|_{H^{1}}^{2} \leq 4 E(u(0))+\|u(0)\|_{L^{2}}^{2}+2 C
$$

which implies, together with

$$
\lim _{t \rightarrow T^{-}}\|u(t)\|_{H^{1}}=+\infty, \quad \text { if } T<\infty,
$$

that the time of existence of the solution u is $T=+\infty$.

Existence of standing waves

ODE problem

Recall the profile equation

$$
\left\{\begin{array}{l}
\phi^{\prime \prime}+Z \delta(x) \phi+\omega \phi+f\left(|\phi|^{2}\right) \phi=0 \tag{ODE}\\
\phi \in H^{1}(\mathbb{R})
\end{array}\right.
$$

Hypothesis on f :

$$
\begin{array}{r}
f \in C^{1}((0,+\infty) ; \mathbb{R}) \quad \text { with } f(0)=0 \tag{f}\\
f^{\prime}(x)<0 \quad \text { for all } x>0
\end{array}
$$

$\phi \in H^{1}(\mathbb{R})$ is a solution in the distributional sense if for every $\chi \in H^{1}(\mathbb{R})$

$$
\begin{aligned}
0=\operatorname{Re} & {\left[\int_{-\infty}^{+\infty} \phi^{\prime}(x) \overline{\chi^{\prime}(x)} d x-Z \phi(0) \overline{\chi(0)}-\omega \int_{-\infty}^{+\infty} \phi(x) \overline{\chi(x)} d x\right.} \\
& \left.-\int_{-\infty}^{+\infty} f\left(|\phi|^{2}(x)\right) \phi(x) \overline{\chi(x)} d x\right]
\end{aligned}
$$

Analysis of the (ODE) (i)

Lemma

Let $\phi \in H^{1}(\mathbb{R})$, with $\phi^{\prime \prime}+Z \delta(x) \phi+\omega \phi+f\left(|\phi(x)|^{2}\right) \phi(x)=0$ in the distributional sense, then

$$
\begin{align*}
& \phi \in C^{j}(\mathbb{R} \backslash\{0\}) \cap C(\mathbb{R}), \quad j=1,2 \tag{1a}\\
& \phi^{\prime \prime}(x)+\omega \phi(x)+f\left(|\phi(x)|^{2}\right) \phi(x)=0, \quad \text { for } \quad x \neq 0 \tag{1b}\\
& \phi^{\prime}(0+)-\phi^{\prime}(0-)=-Z \phi(0) \tag{1c}\\
& \phi^{\prime}(x), \phi(x) \rightarrow 0, \quad \text { if } \quad|x| \rightarrow \infty \tag{1d}\\
& \left|\phi^{\prime}(x)\right|^{2}+\omega|\phi(x)|^{2}+g\left(|\phi(x)|^{2}\right)=0, \quad \text { for } \quad x \neq 0 \tag{1e}\\
& \text { where } \quad g(s)=\int_{0}^{s} f(s) d s
\end{align*}
$$

Analysis of the (ODE) (ii)

Lemma

Let $p>1, \omega, \lambda_{1}, \lambda_{2} \in \mathbb{R}$ and $Z \in \mathbb{R} \backslash\{0\}$. Let ϕ be a non-trivial solution to (1a) - (1e). Then $\phi(x) \neq 0$ for all $x \in \mathbb{R}$ and $|\phi|>0$. $-\phi$ is also a solution.

Lemma (Useful)

Let $p>1, \omega, \lambda_{1}, \lambda_{2} \in \mathbb{R}$ and $Z \in \mathbb{R} \backslash\{0\}$. Let ϕ be a non-trivial solution to (1a) - (1e). Then we have either one of the following:
(i) $\operatorname{Im}(\phi(x))=0$ for all $x \in \mathbb{R}$; or,
(ii) there exists $c \in \mathbb{R}$ such that $\operatorname{Re}(\phi(x))=c \operatorname{lm}(\phi(x))$ for all $x \in \mathbb{R}$.

Explicit profile construction for $\omega \neq 0, Z=0, \lambda_{1} \leq 0, \lambda_{2}<0$

By using $\phi, \phi^{\prime} \rightarrow 0$ as $x \rightarrow \infty$ we obtain

$$
\left[\phi^{\prime}\right]^{2}+\omega \phi^{2}+2 \alpha \phi^{p+1}+\beta \phi^{2 p}=0
$$

with $\alpha=\lambda_{1} /(p+1), \beta=\lambda_{2} / p$. Then,

$$
\phi(x)=\left[-\frac{\alpha}{\omega}+\frac{\sqrt{\omega \beta-\alpha^{2}}}{\omega} \sinh ((p-1) \sqrt{-\omega} x)\right]^{-\frac{1}{p-1}}
$$

is the profile of the standing wave solution provided that

$$
-\frac{p \lambda_{1}^{2}}{(p+1)^{2} \lambda_{2}}<-\omega
$$

Explicit construction

The function $\quad \phi_{1}(x):=\phi(-|x|-d), \quad-l<d$,
satisfies all the properties of our first lemma except possibly the jump condition: $\phi^{\prime}(0+)-\phi^{\prime}(0+)=-Z \phi(0)$. If we consider $R_{1}:(-I, \infty) \rightarrow(1, \infty)$ the diffeomorphism defined by

$$
R_{1}(d)=\frac{\sqrt{\omega \beta-\alpha^{2}} \cosh ((p-1) \sqrt{-\omega} d)}{\sqrt{\omega \beta-\alpha^{2}} \sinh ((p-1) \sqrt{-\omega} d)+\alpha} .
$$

then, we get

$$
d=R_{1}^{-1}\left(\frac{Z}{2 \sqrt{-\omega}}\right), \quad \text { with } \quad Z>0 \text { and }-\omega<\frac{Z^{2}}{4} .
$$

Profile existence theorem; case $\omega \neq 0$

Theorem

Let $p>1, \lambda_{1} \leq 0, \lambda_{2}<0$ and $Z>0$ in the NLS equation. Then for all values of $\omega<0$ satisfying

$$
-\frac{p \lambda_{1}^{2}}{(p+1)^{2} \lambda_{2}}<-\omega<\frac{Z^{2}}{4}
$$

the familiy of standing wave solutions, $u(x, t)=e^{-i \omega t} \phi_{\omega}$, with ϕ_{ω} given by

$$
\phi_{\omega}=\left[\frac{\alpha}{-\omega}+\frac{\sqrt{v}}{-\omega} \sinh \left((p-1) \sqrt{-\omega}\left(|x|+R_{1}^{-1}\left(\frac{Z}{2 \sqrt{-\omega}}\right)\right)\right)^{-\frac{1}{\rho-1}}\right.
$$

are solutions to the NLS equation. Here $v=\omega \beta-\alpha^{2}$.

Figure 1: Profile function $\phi_{\omega}=\phi_{\omega}(x)$ for parameter values $\omega=-0.25, Z=2$, $p=3, \lambda_{1}=\lambda_{2}=-1$.

Figure 2: Time evolution of the standing wave solution $u(x, t)=e^{-i \omega t} \phi_{\omega}(x)$ with $\omega=-0.25, Z=2$ and in the case of a quintic/cubic $(p=3)$, doubly repulsive ($\lambda_{1}=\lambda_{2}=-1$) nonlinearity.

Figure 3: Dynamics in the $\left(\phi, \phi^{\prime}\right)$-plane for $f(x)=-x\left(1+x^{2}\right)$, that is, for $\lambda_{1}=\lambda_{2}=-1$ and $\omega=-0.25$, in the case of a quintic/cubic nonlinearity with $p=3$.

Orbital stability

Critical points

Let us consider the functional $G_{\omega}: H^{1}(\mathbb{R}) \rightarrow \mathbb{R}$ for values $\omega \leq 0$, defined as

$$
G_{\omega}(v)=\frac{1}{2}\left\|v_{x}\right\|_{L^{2}}^{2}-\frac{Z}{2}|v(0)|^{2}-\frac{\omega}{2}\|v\|_{L^{2}}^{2}-\frac{1}{2} \int_{-\infty}^{\infty} g\left(|v(x)|^{2}\right) d x,
$$

and the set of critical points associated to G_{ω} as

$$
\mathscr{A}_{\omega}=\left\{v \in H^{1}(\mathbb{R}): G_{\omega}^{\prime}(v)=0, v \neq 0\right\} .
$$

Here $g=g(\cdot)$ is the antiderivative of $f=f(\cdot)$. For $\phi \in \mathscr{A}_{\omega}$ we have the relation

$$
G_{\omega}^{\prime}(\phi)=A_{Z} \phi-\omega \phi-f\left(|\phi|^{2}\right) \phi
$$

Properties of the set of critical points (i)

Lemma

Let $1<p<\infty, Z>0$ and let $\omega \in \mathbb{R}$ be such that $\omega+\frac{Z^{2}}{4} \leq 0$. Then the set \mathscr{A}_{ω} is empty.

Proof. If there exists $h \in H^{1}(\mathbb{R}) \backslash\{0\}$ satisfying $G_{\omega}^{\prime}(h)=0$, then

$$
0=\left.\frac{d}{d s} G(s h)\right|_{s=1}, \quad \text { and since } \quad\left\langle A_{Z} h, h\right\rangle \geq-\frac{Z^{2}}{4}\|h\|_{L^{2}}^{2}
$$

for all $h \in H^{1}(\mathbb{R})$, we then obtain

$$
\begin{aligned}
0 & =\left\|h_{x}\right\|_{L^{2}}^{2}-Z|h(0)|^{2}-\omega\|h\|_{L^{2}}^{2}-\int_{-\infty}^{\infty} f\left(|h(x)|^{2}\right)|h(x)|^{2} d x \\
& \geq-\left(Z^{2} / 4+\omega\right)\|h\|_{L^{2}}^{2}-\int_{-\infty}^{\infty} f\left(|h(x)|^{2}\right)|h(x)|^{2} d x \\
& \geq-\int_{-\infty}^{\infty} f\left(|h(x)|^{2}\right)|h(x)|^{2} d x>0,
\end{aligned}
$$

Properties of the set of critical points (ii)

Lemma

Let $1<p<\infty$ and $Z \in \mathbb{R}$. If $\omega>0$ then $\mathscr{A}_{\omega}=\varnothing$.

Lemma
Let $\omega \in \mathbb{R}$ and $Z<0$. Then, we have that $\mathscr{A}_{\omega}=\varnothing$.

Properties of the set of critical points (ii)

Lemma

Let $1<p<\infty$ and $Z \in \mathbb{R}$. If $\omega>0$ then $\mathscr{A}_{\omega}=\varnothing$.

Lemma
Let $\omega \in \mathbb{R}$ and $Z<0$. Then, we have that $\mathscr{A}_{\omega}=\varnothing$.

Proofs by contradiction.

Properties of the set of critical points (iii)

Lemma

Let $p>1, \lambda_{1}<0, \lambda_{2}<0, Z>0$ and ω such that $-\frac{p \lambda_{1}^{2}}{(p+1)^{2} \lambda_{2}}<-\omega<\frac{Z^{2}}{4}$.
Considering $f(x)=\lambda_{1} x^{(p-1) / 2}+\lambda_{2} x^{p-1}$, then

$$
\mathscr{A}_{\omega}=\left\{e^{i \theta} \phi_{\omega}: \theta \in \mathbb{R}\right\} .
$$

Proof. It is clear that for all $\theta \in \mathbb{R}, e^{i \theta} \phi_{\omega} \in \mathscr{A}_{\omega}$. Conversely, if $g \in \mathscr{A}_{\omega}$, then g satisfies all the necessary conditions to be a solution of the Euler-Lagrange equation and $|g|>0$. Goal: to show that there exist $\theta \in \mathbb{R}$ such that $g(x)=e^{i \theta} \phi_{\omega}(x)$ for all $x \in \mathbb{R}$.

- $\phi_{\omega} \in D\left(A_{Z}\right)$ is the unique positive solution of the Euler-Lagrange equation. Indeed, if $v \in H^{1}(\mathbb{R})$ is a positive solution then v satisfies the IVP

$$
\left\{\begin{aligned}
-\psi^{\prime \prime}(x) & =\omega \psi(x)+f\left(\psi^{2}(x)\right) \psi(x):=H(\psi(x)), \quad x>0 \\
\psi(0) & =c_{0}, \quad \psi^{\prime}(0)=-Z c_{0} / 2
\end{aligned}\right.
$$

where c_{0} is the unique positive root of

$$
\Phi_{\omega}(c, Z c / 2)=\frac{Z^{2}}{4} c^{2}+\omega c^{2}+g\left(c^{2}\right)
$$

Since H is locally Lipschitz around zero the IVP has a unique positive solution given by ϕ_{ω}. Thus, $v \equiv \phi_{\omega}$ on $(0, \infty)$. Similar arguments show that $v \equiv \phi_{\omega}$ on $(-\infty, 0)$. Hence, $v(x)=\phi_{\omega}(x)$ for all $x \in \mathbb{R}$.

- If $g(x)=e^{i \theta(x)} \rho(x)$ then $\theta, \rho>0$ satisfy

$$
\left\{\begin{aligned}
\theta^{\prime \prime} \rho+2 \theta^{\prime} \rho^{\prime}=0, & x>0, \\
-\left(\theta^{\prime}\right)^{2} \rho+\rho^{\prime \prime}+\omega \rho+f\left(|\rho|^{2}\right) \rho=0, & x>0 .
\end{aligned}\right.
$$

The first equation together with the boundedness of $\left|g^{\prime}\right|$ imply that $g(x)=e^{i \theta_{0}} \rho(x)$ for all $x \in(0,+\infty)$. Then, from second equation and by the analysis above we necessarily have that $g(x)=e^{i \theta_{0}} \phi_{\omega}(x)$ for all $x \in(0, \infty)$. A similar analysis shows that $g(x)=e^{i \theta_{1}} \phi_{\omega}(x)$ for all $x \in(-\infty, 0)$. Hence,

$$
g(x)=e^{i \theta_{0}} \phi_{\omega}(x), \quad \text { for all } x \in \mathbb{R} .
$$

The minimization problem

Let us suppose that $1<p<\infty, Z>0, \lambda_{1} \leq 0, \lambda_{2}<0, \omega$ is such that

$$
-\frac{p \lambda_{1}^{2}}{(p+1)^{2} \lambda_{2}}<-\omega<\frac{Z^{2}}{4}, \quad \text { and } \quad f(x)=\lambda_{1} x^{(p-1) / 2}+\lambda_{2} x^{p-1} .
$$

Minimization problem associated to G_{ω} :

$$
m(\omega)=\inf \left\{G_{\omega}(v): v \in H^{1}(\mathbb{R})\right\},
$$

and the minimal set

$$
M(\omega)=\left\{u \in H^{1}(\mathbb{R}): G_{\omega}(u)=m(\omega)\right\} .
$$

The set of minima

Lemma

$-\infty<m(\omega)<0$ and $M(\omega) \subset \mathscr{A}_{\omega}$.
Proof. First verify that $-\infty<m(\omega)$. Write

$$
G_{\omega}(v)=R(v)-\frac{\omega}{2}\|v\|_{L^{2}}^{2}-\frac{\lambda_{1}}{p+1}\|v\|_{L^{p+1}}^{p+1}, \quad v \in H^{1}(\mathbb{R})
$$

Then, by the auxiliary bound lemma we get

$$
G_{\omega}(v) \geq R(v) \geq \frac{Z}{2}|v(0)|^{2}-C \geq-C,
$$

for all $v \in H^{1}(\mathbb{R})$ and some uniform $C>0$, yielding $-\infty<m(\omega)$.

To show that $m(\omega)<0$, let $v(x):=\operatorname{sh}(x) \in H^{1}(\mathbb{R})$ with $s>0$ and where $h(x)=e^{-\frac{Z|x|}{2}}$ is the eigenfunction of the operator A_{Z} associated to the eigenvalue $\frac{-Z^{2}}{4}$. Therefore

$$
G_{\omega}(v)=-\frac{s^{2}}{2}\left(\frac{Z^{2}}{4}+\omega\right)\|h\|_{L^{2}}^{2}-\frac{1}{2} \int_{-\infty}^{\infty} g\left(s^{2} h^{2}(x)\right) d x
$$

Since $-g\left(s^{2} h^{2}(x)\right)<-f\left(s^{2}\right) s^{2} h^{2}(x)$,

$$
G_{\omega}(v) \leq-\frac{s^{2}}{2}\|h\|_{L^{2}}^{2}\left(\frac{Z^{2}}{4}+\omega+f\left(s^{2}\right)\right) .
$$

Since $Z^{2} / 4+\omega>0$ and $\lim _{s \rightarrow 0^{+}} f\left(s^{2}\right)=0$ we conclude that there exists $s_{0}>0$ such that $Z^{2} / 4+\omega>-f\left(s^{2}\right)>0$ for $0<s \leq s_{0}$ and so $G_{\omega}\left(s_{0} h\right)<0$. Lastly, suppose $M(\omega) \neq \varnothing$. Then since for $h \in M(\omega)$ we have $h \neq 0$ and $G_{\omega}^{\prime}(h)=0$, then by previous Lemmata we obtain $M(\omega) \subset \mathscr{A}_{\omega}$.

Auxiliary result: Brézis-Lieb lemma

A refinement of Fatou's lemma:
Lemma (Brézis-Lieb, 1983)
Let $2 \leq q<\infty$ and $\left\{u_{j}\right\}$ be a bounded sequence in $L^{q}(\mathbb{R})$ such that $u_{j}(x) \rightarrow u(x)$ a.e. in $x \in \mathbb{R}$ as $j \rightarrow \infty$. Then,

$$
\left\|u_{j}\right\|_{L^{q}}^{q}-\left\|u_{j}-u\right\|_{L^{q}}^{q}-\|u\|_{L^{q}}^{q} \rightarrow 0, \quad \text { as } j \rightarrow \infty .
$$

Compactness

Lemma

Let $h_{n} \in H^{1}(\mathbb{R})$ be such that $\lim _{n \rightarrow \infty} G_{\omega}\left(h_{n}\right)=m(\omega)$. Then there exists a subsequence $h_{n_{j}}$ and $h \in H^{1}(\mathbb{R})$ such that $\lim _{n_{j} \rightarrow \infty} h_{n_{j}}=h$ in $H^{1}(\mathbb{R})$ and $G_{\omega}(h)=m(\omega)$.

Proof. First, notice that for all $v \in H^{1}(\mathbb{R})$

$$
\begin{aligned}
I_{\omega}(v) & :=\frac{1}{2}\left\|v_{x}\right\|_{L^{2}}^{2}-\frac{\omega}{2}\|v\|_{L^{2}}^{2} \\
& =G_{\omega}(v)+\frac{Z}{2}|v(0)|^{2}+\frac{\lambda_{1}}{p+1}\|v\|_{L^{p+1}}^{p+1}+\frac{\lambda_{2}}{2 p}\|v\|_{L^{2 p}}^{2 p} .
\end{aligned}
$$

Since $\omega<0$, it follows that $I_{\omega}(v)$ is equivalent to $\|v\|_{H^{1}}^{2}$. From the fact that $\lambda_{1}, \lambda_{2}<0$, we obtain

$$
\frac{1}{2}\left\|v_{X}\right\|_{L^{2}}^{2}-\frac{\omega}{2}\|v\|_{L^{2}}^{2} \leq G_{\omega}(v)+R(v)+C \leq 2 G_{\omega}(v)+C
$$

for some uniform $C>0$.

Hence, it is clear that if the sequence $G_{\omega}\left(h_{n}\right)$ converges then the sequence h_{n} is bounded in $H^{1}(\mathbb{R})$. Thus, there exists a subsequence $h_{n_{j}}$ and $h \in H^{1}(\mathbb{R})$ such that $\left\{h_{n_{j}}\right\}$ converges wealky to h in $H^{1}(\mathbb{R})$. Since $H^{1}(-1,1)$ is compactly embedded in $C[-1,1]$, we deduce that $h_{n_{j}}(0) \rightarrow h(0)$. Thus,

$$
m(\omega) \leq G_{\omega}(h) \leq \liminf _{n_{j} \rightarrow \infty} G_{\omega}\left(h_{n_{j}}\right)=m(\omega),
$$

which implies that $h \in M(\omega)$.
Now, since $h_{n_{j}} \rightharpoonup h$ weakly in $H^{1}(\mathbb{R})$ we have that $h_{n_{j}}(x) \rightarrow h(x)$ a.e. in $x \in \mathbb{R}$ and also that

$$
\begin{array}{r}
\left\|h_{n_{j}}-h\right\|_{L^{2}}^{2}+\|h\|_{L^{2}}^{2}=\left\|h_{n_{j}}\right\|_{L^{2}}^{2}+o(1), \\
\left\|\partial_{x} h_{n_{j}}-h_{x}\right\|_{L^{2}}^{2}+\left\|h_{x}\right\|_{L^{2}}^{2}=\left\|\partial_{x} h_{n_{j}}\right\|_{L^{2}}^{2}+o(1),
\end{array}
$$

as $n_{j} \rightarrow \infty$.
$\left\|h_{n_{j}}\right\|_{H^{1}}$ uniformly bounded $\Rightarrow\left\|h_{n_{j}}\right\|_{L^{p+1}}$ and $\left\|h_{n_{j}}\right\|_{L^{2 p}}$ are uniformly bounded (by Gagliardo-Nirenberg interpolation inequalities). As $h_{n_{j}}(x) \rightarrow h(x)$ a.e. in $x \in \mathbb{R}$, by Brézis-Lieb lemma we get

$$
\begin{array}{r}
\left\|h_{n_{j}}-h\right\|_{L^{p+1}}^{p+1}+\|h\|_{L^{p+1}}^{p+1}=\left\|h_{n_{j}}\right\|_{L^{p+1}}^{p+1}+o(1), \\
\quad\left\|h_{n_{j}}-h\right\|_{L^{2 p}}^{2 p}+\|h\|_{L^{2 p}}^{2 p}=\left\|h_{n_{j}}\right\|_{L^{2 p}}^{2 p}+o(1),
\end{array}
$$

as $n_{j} \rightarrow \infty$.
Combining yields

$$
G_{\omega}\left(h_{n_{j}}-h\right)+G_{\omega}(h)=G_{\omega}\left(h_{n_{j}}\right)+o(1), \quad \text { as } n_{j} \rightarrow \infty
$$

From the def. of I_{ω},

$$
\begin{aligned}
0 \leq I_{\omega}\left(h_{n_{j}}-h\right) & \leq I_{\omega}\left(h_{n_{j}}-h\right)-\frac{\lambda_{1}}{p+1}\left\|h_{n_{j}}-h\right\|_{L^{p+1}}^{p+1}-\frac{\lambda_{2}}{2 p}\left\|h_{n_{j}}-h\right\|_{L^{2 p}}^{2 p} \\
& =G_{\omega}\left(h_{n_{j}}-h\right)+\frac{Z}{2}\left|h_{n_{j}}(0)-h(0)\right|^{2} \\
& =G_{\omega}\left(h_{n_{j}}\right)-G_{\omega}(h)+o(1),
\end{aligned}
$$

inasmuch as $h_{n_{j}}(0) \rightarrow h(0)$. This yields $h_{n_{j}} \rightarrow h$ in $H^{1}(\mathbb{R})$.

Characterization of the minimal set

Lemma

$M(\omega)=\mathscr{A}_{\omega}=\left\{e^{i \theta} \phi_{\omega}: \theta \in \mathbb{R}\right\}$, where ϕ_{ω} denotes the standing wave profile.

Proof. From the previous lemmas, we infer that $M(\omega) \neq \varnothing$. Then there exists $h \in H^{1}(\mathbb{R})$ such that $G_{\omega}(h)=m(\omega)$, that is, $h \in M(\omega)$. Since $M(\omega) \subset \mathscr{A}_{\omega}, h \in \mathscr{A}_{\omega}$. Thus, there exists $\theta_{0} \in \mathbb{R}$ such that $h=e^{i \theta_{0}} \phi_{\omega}$. Now, since $\phi_{\omega} \in H^{1}(\mathbb{R})$ and

$$
G_{\omega}\left(\phi_{\omega}\right)=G_{\omega}(h)=m(\omega),
$$

then $\phi_{\omega} \in M(\omega)$. This implies that $\mathscr{A}_{\omega} \subset M(\omega)$. The other inclusion was already proved above.

Proof of the main theorem

Suppose that the standing wave $e^{-i \omega t} \phi_{\omega}$ is orbitally unstable. Then there exists $\varepsilon_{0}>0$, a sequence $\left\{h_{n}(t)\right\}$ of solutions of the NLS equation and a sequence $t_{n}>0$, such that

$$
\begin{align*}
& \lim _{n \rightarrow \infty}\left\|h_{n}(0)-\phi_{\omega}\right\|_{H^{1}}=0, \tag{2a}\\
& \inf _{\theta \in \mathbb{R}}\left\|h_{n}\left(t_{n}\right)-e^{i \theta} \phi_{\omega}\right\|_{H^{1}} \geq \varepsilon_{0} . \tag{2b}
\end{align*}
$$

Since G_{ω} is conserved by the flow of the NLS equation, we get that $G_{\omega}\left(h_{n}\left(t_{n}\right)\right)=G_{\omega}\left(h_{n}(0)\right)$ for all $n \in \mathbb{N}$. Then (2a) and continuity of G_{ω} yield

$$
\lim _{n \rightarrow \infty} G_{\omega}\left(h_{n}\left(t_{n}\right)\right)=G_{\omega}\left(\phi_{\omega}\right)=m(\omega) .
$$

Henceforth, from the former results there exists a subsequence $h_{n_{j}}$ such that $h_{n_{j}}\left(t_{n_{j}}\right) \rightarrow h$ with $G_{\omega}(h)=m(\omega)$. Then $h \in \mathscr{A}_{\omega}$ and $h=e^{i \theta_{0}} \phi_{\omega}$ for some $\theta_{0} \in \mathbb{R}$. Therefore,

$$
\lim _{n_{j} \rightarrow \infty} h_{n_{j}}\left(t_{n_{j}}\right)=e^{i \theta_{0}} \phi_{\omega}
$$

in $H^{1}(\mathbb{R})$, which contradicts

$$
\inf _{\theta \in \mathbb{R}}\left\|h_{n}\left(t_{n}\right)-e^{i \theta} \phi_{\omega}\right\|_{H^{1}} \geq \varepsilon_{0}
$$

Hence, we conclude that $e^{-i \omega t} \phi_{\omega}$ is orbitally stable.

Reference

- J. Angulo Pava, C. A. Hernández Melo, R. G. P., J. Math. Phys. (2019), in press.

Happy birthday Kevin!

[^0]: Ramón G. Plaza
 Institute of Applied Mathematics (IIMAS)
 Universidad Nacional Autónoma de México (UNAM)
 July 3, 2019
 ZumbrunFest - Stability of Nonlinear Waves: Analysis and Computation. Institut Henri Poincaré.

