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Introduction



Nonlinear Schrödinger equation (NLS)

NLS equation with attractive delta potential and repulsive double power

nonlinearity:

iut +uxx +Zδ (x)u+ λ1u|u|p−1 + λ2u|u|2p−2 = 0

• Unknown: u = u(x , t) ∈ C, for x , t ∈ R.

• Parameters: λ1 ≤ 0, λ2 < 0, Z > 0, p > 1.

• δ : H1(R)→ C, 〈δ ,g〉= g(0) (Dirac delta centered at x = 0.)

• Linear interaction: ∂ 2
x +Zδ (x).

• Nonlinear term: λ1u|u|p−1 + λ2u|u|2p−2.

• i2 =−1.
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Physical applications

• We recall that the general NLS model

iut +uxx +V (x)u+ f (|u|2)u = 0,

represents a trapping (wave-guiding) structure for light beams,

induced by an inhomogeneity of the local refractive index.

• The delta-function term V (x) = Zδ (x) represents a narrow trap

which is able to capture broad solitonic beams.

• It models a spatially localized point defect of the medium in which

the soliton travels (localized attractive “impurity”).

• The non linear term f (x) = λ1x
(p−1)/2 + λ2x

p−1 is well known in

optical media.
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Standing waves

Standing waves are solutions to the NLS model of the form

u(x , t) = e−iωt
φ(x),

where ω ∈ R and the profile of the wave φ : R→ R satisfies{
φ
′′+Zδ (x)φ + ωφ + f (|φ |2)φ = 0,

φ ∈ H1(R),
(ODE)

where f = f (·) is an arbitrary function satisfying

f ∈ C 1((0,+∞);R) with f (0) = 0,

f ′(x) < 0 for all x > 0.
(Hf )

Example: if 1 < p < ∞, λ1 ≤ 0 and λ2 < 0 then

f (x) = λ1x
(p−1)/2 + λ2x

p−1

satisfies (Hf ).
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δ -interaction quantum operator

The δ -interaction quantum operator AZ is defined as

AZ :=−∂
2
x −Zδ (x){

AZ f (x) =−f ′′(x), x 6= 0,

D(AZ ) = {f ∈ H1(R)∩H2(R\{0}) : f ′(0+)− f ′(0−) =−Zf (0)},
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Orbital stability

Definition (orbital stability)

The standing wave e−iωtφω is orbitally stable by the flow of the NLS

equation n H1(R), if for any ε > 0 there exists δ > 0 such that if

‖u0−φω‖H1 < δ then

inf
θ∈R
‖u(t)− e iθ φω‖H1 < ε, for all t ∈ R,

where u(t) denotes the solution to the NLS equation with initial data

u(0) = u0 ∈ H1(R). Otherwise, e−iωtφω is said to be orbitally unstable in

H1(R).
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Main theorem

Theorem (Angulo Pava, Hernandez Melo, P (2019))

Let 1 < p < ∞, λ1 ≤ 0, λ2 < 0 and Z > 0 in the NLS equation. Then for

all values of ω < 0 satisfying

− pλ 2
1

(p+ 1)2λ2
<−ω <

Z 2

4

the family of standing wave solutions, u(x , t) = e−iωtφω , with φω given

by

φω =

[
α

−ω
+

√
v

−ω
sinh

(
(p−1)

√
−ω

(
|x |+R−1

1

(
Z

2
√
−ω

)))]− 1
p−1

where v = ωβ −α2, are orbitally stable solutions in H1(R) under the flow

of the NLS equation.
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Previous results

• Case Z = 0: Ohta (1995), double power nonlinearity; Maeda (2008),

multiple power nonlinearity.

• Repulsive δ potential: Fukuizumi, Jeanjean (2008)

• Attractive δ potential: Fukuizumi et al. (2008)

• Kaminaga, Ohta (2009): attractive δ with repulsive single power

nonlinearity.

Multibody interactions of same sign (repulsive, double power

nonlinearity) appear in the study of Bose-Einstein condensates: Brazhnyi,

Konotop (2004); Belobo Belobo et al. (2014); Kamchatnov, Salerno

(2009); Kamchatnov, Korneev (2010) (dark solitons).
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Concentration-compactness method: Cazenave, Lions (1982)

• The Cauchy problem: The initial value problem associated to the

NLS equation is globally well-posed in H1(R) for 1 < p < +∞,

λ1 ≤ 0, λ2 < 0 and Z > 0.

• Existence of profile solution φω : for parameter values p,λ1,λ2,Z

and ω satisfying the assumptions there exists a profile solution φω of

the elliptic equation (ODE) (explicit construction).

• The stationary problem: The set Aω of non-trivial solutions of the

equation for the profiles in H1(R) will be characterized, via

uniqueness, by

Aω = {v : G ′ω (v) = 0,v 6= 0}= {e iθ φω : θ ∈ R},

where

Gω (v) = E (v)− ω

2
‖v‖2

L2 ,

E (v) :=
1

2
‖vx‖2

L2 −
Z

2
|v(0)|2− λ1

p+ 1
‖v‖p+1

Lp+1 −
λ2

2p
‖v‖2p

L2p ,

for v ∈ H1(R).
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Concentration-compactness method (ii)

• The minimization problem: For p,λ1,λ2,Z and ω satisfying the

assumptions of our main theorem, the quantity

m(ω) = inf{Gω (v) : v ∈ H1(R)},

satisfies the following properties:

(a) (boundedness below) −∞ <m(ω) < 0; and,

(b) (compactness) any sequence hn ∈ H1(R) such that

limn→∞Gω (hn) = m(ω) admits a subsequence converging to some

h ∈ H1(R) with Gω (h) = m(ω).
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Local and global well posedness

for the NLS



Preliminaries (i)

The formal expression AZ :=−∂ 2
x −Zδ (x) represents all the self-adjoint

extensions (von Neumann theory) associated to the following closed,

symmetric, densely defined linear operator:{
A0 =−∂

2
x

D(A0) = {g ∈ H2(R) : g(0) = 0}.

More precisely, the quantum operator AZ =−∂ 2
x −Zδ (x) is given by{

AZ f (x) =−f ′′(x) x 6= 0,

D(AZ ) = {f ∈ H1(R)∩H2(R\{0}) : f ′(0+)− f ′(0−) =−Zf (0)}.
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Preliminaries (ii)

Upon application of the First Representation Form Theorem (cf. Kato),

it is possible to show that the associated form to AZ is given by

FZ [u,v ] = Re
∫ +∞

−∞

u′(x)v ′(x)dx−Z Re(u(0)v(0)),

where (u,v) ∈ D(FZ ) = H1(R)×H1(R). The bilinear form defined above

is closed and bounded below. In addition, operator AZ =−∂ 2
x −Zδ (x)

can be extended as a linear bounded operator u→ AZu from H1(R) to

H−1(R). This action is defined by

〈AZu,v〉= FZ [u,v ], for u,v ∈ H1(R).
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Spectral properties of AZ

• Essential spectrum: Σess(AZ ) = [0,+∞), for all Z ∈ R.

• Discrete spectrum:

Σdis(AZ ) =

{
∅, Z ≤ 0,{
−Z 2/4

}
, Z > 0,

For Z > 0, ΨZ (x) =
√

Z
2 e
− Z

2 |x | is the normalized eigenfunction

associated to the unique negative simple eigenvalue −Z 2/4. In addition,

the operators AZ are bounded from below:{
AZ ≥−Z 2/4, Z > 0,

AZ ≥ 0, Z < 0

Ref.: Albeverio, Gesztesy, Høegh-Kron (2005).
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The Cauchy problem

Consider the Cauchy problem,{
iut −AZu+ (λ1|u|p−1 + λ2|u|2p−2)u = 0,

u(0) = u0 ∈ H1(R).

Ref. Cazenave, Courant LN, vol. 10 (2003).
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Local well-posedness

Theorem (local well-posedness)

For any u0 ∈ H1(R) and Z ∈ R, there exists T > 0 and a unique solution

u ∈ C ([−T ,T ];H1(R))∩C 1([−T ,T ];H−1(R)) to the NLS equation with

u(0) = u0 such that

lim
t→T−

‖u(t)‖H1 = +∞, if T < ∞.

Moreover, the solution u(t) satisfies conservation of charge and energy:

‖u(t)‖L2 = ‖u0‖L2 , E (u(t)) = E (u0),

for all t ∈ [−T ,T ], where the energy functional E is defined as

E (v) :=
1

2
‖vx‖2

L2 −
Z

2
|v(0)|2− λ1

p+ 1
‖v‖p+1

Lp+1 −
λ2

2p
‖v‖2p

L2p ,

for v ∈ H1(R).
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Proof sketch

• The nonnegative self-adjoint operator A ≡ AZ + β on the space

X = L2(R), with β = Z 2/4 for Z > 0 and β = 0 for Z ≤ 0, and

domain D(A ) = D(AZ ), induces a norm

‖u‖2
XA

= ‖ux‖2
L2 + (β + 1)‖u‖2

L2 −Z |u(0)|2,

which is equivalent to the usual norm in H1(R).

• The self-adjoint operator AZ generates a strongly continuous group

of unitary operators T (t)g = e−itAZ g .

• Duhamel integral

u(t) = T (t)u0 +
∫ t

0
T (t− s)(λ1|u(s)|p−1u(s) + λ2|u(s)|2p−2u(s))ds

Direct application of Thm. 3.7.1 in Cazenave.
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Remark: Gagliardo-Nirenberg interpolation inequality

For any p > 1, H1(R)⊂ L2(R)∩Lp+1(R)∩L2p(R), inasmuch as the

Gagliardo-Nirenberg interpolation inequality (cf. Leoni, 2017) yields

‖u‖Lp+1 ≤ C1‖u‖θ1

L2‖ux‖
1−θ1

L2 ,

‖u‖L2p ≤ C2‖u‖θ2

L2‖ux‖
1−θ2

L2 ,

with uniform constants Cj > 0 and θ1 = (p+ 2)/(2p+ 2) ∈ (0,1),

θ2 = (p+ 1)/2p ∈ (0,1).
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Conservation of charge/energy

• Conservation of charge:

d

dt
||u(t)||2L2 = 2Re

∫
R
utudx

= 2Re
∫
R
−i(AZu)u+ if (|u|2)|u|2dx = 0.

• Conservation of Energy: NLS equation can be written in the

Hamiltonian form ut =−iE ′(u(t)), then

d

dt
E (u(t)) = Re

∫
R
E ′(u(t))utdx = Re

∫
R
i |E ′(u(t))|2dx = 0.
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Auxiliary bound

Let us define the following C 1 functional in H1(R),

R(v) :=
1

2
‖vx‖2

L2 −
Z

2
|v(0)|2− λ2

2p
‖v‖2p

L2p = E (v) +
λ1

p+ 1
‖v‖p+1

Lp+1 .

Lemma (Auxiliary bound)

Let 1 < p < ∞, λ1 ≤ 0, λ2 < 0 and Z > 0. Then there exists a uniform

constant C = C (p,Z ) > 0 such that

Z

2
|v(0)|2 ≤ R(v) +C , for all v ∈ H1(R).
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Proof sketch

By Sobolev and Young’s inequalities, for any Z > 0 there exists

C1 = C1(Z ) > 0 such that for v ∈ H1(R)

Z |v(0)|2 ≤ 1

2
‖vx‖2

L2 +C1‖v‖2
L2(−1,1)

.

Apply Hölder’s and Young’s inequalities to estimate

‖v‖2
L2(−1,1)

≤ 2(p−1)/p

(∫ 1

−1
|v |2p dx

)1/p

≤ δ‖v‖2p
L2p(−1,1)

+ 2Cδ ,

for any δ > 0. Since λ2 < 0, choose δ =−λ2/(2pC1) > 0 to obtain

Z |v(0)|2 ≤ 1

2
‖vx‖2

L2 −
λ2

2p
‖v‖2p

L2p + 2C1Cδ .
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Global well-posedness

Theorem (global well-posedness)

For every p > 1, Z > 0, λ1 ≤ 0 and λ2 < 0 the Cauchy problem is globally

well-posed in H1(R).

Proof. Let u ∈ C ([−T ,T ];H1(R))∩C 1([−T ,T ];H−1(R)) be the local

solution to the Cauchy problem for t ∈ (−T ,T ).

1

2
‖ux‖2

L2 = E (u) +
Z

2
|u(t)|2 +

λ1

p+ 1
‖u‖p+1

Lp+1 +
λ2

2p
‖u‖2p

L2p

≤ E (u(t)) +
Z

2
|u(t)|2

≤ E (u(t)) +R(u(t)) +C
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Thus, we arrive at

1

2
‖ux (t)‖2

L2 ≤ E (u(t)) +R(u(t)) +C ≤ 2E (u(t)) +C .

In view that u conserves charge and energy we finally conclude that

‖u(t)‖2
H1 ≤ 4E (u(0)) +‖u(0)‖2

L2 + 2C ,

which implies, together with

lim
t→T−

‖u(t)‖H1 = +∞, if T < ∞,

that the time of existence of the solution u is T = +∞.
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Existence of standing waves



ODE problem

Recall the profile equation{
φ
′′+Zδ (x)φ + ωφ + f (|φ |2)φ = 0,

φ ∈ H1(R),
(ODE)

Hypothesis on f :

f ∈ C 1((0,+∞);R) with f (0) = 0,

f ′(x) < 0 for all x > 0.
(Hf )

φ ∈ H1(R) is a solution in the distributional sense if for every χ ∈ H1(R)

0 = Re

[∫ +∞

−∞

φ
′(x)χ ′(x)dx−Zφ(0)χ(0)−ω

∫ +∞

−∞

φ(x)χ(x)dx

−
∫ +∞

−∞

f (|φ |2(x))φ(x)χ(x)dx

]
.
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Analysis of the (ODE) (i)

Lemma

Let φ ∈ H1(R), with φ ′′+Zδ (x)φ + ωφ + f (|φ(x)|2)φ(x) = 0 in the

distributional sense, then

φ ∈ C j (R\{0})∩C (R), j = 1,2. (1a)

φ
′′(x) + ωφ(x) + f (|φ(x)|2)φ(x) = 0, for x 6= 0. (1b)

φ
′(0+)−φ

′(0−) =−Zφ(0). (1c)

φ
′(x),φ(x)→ 0, if |x | → ∞. (1d)

|φ ′(x)|2 + ω|φ(x)|2 +g(|φ(x)|2) = 0, for x 6= 0. (1e)

where g(s) =
∫ s

0
f (s) ds.
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Analysis of the (ODE) (ii)

Lemma

Let p > 1, ω,λ1,λ2 ∈ R and Z ∈ R\{0}. Let φ be a non-trivial solution

to (1a) - (1e). Then φ(x) 6= 0 for all x ∈ R and |φ |> 0. −φ is also a

solution.

Lemma (Useful)

Let p > 1, ω,λ1,λ2 ∈ R and Z ∈ R\{0}. Let φ be a non-trivial solution

to (1a) - (1e). Then we have either one of the following:

(i) Im(φ(x)) = 0 for all x ∈ R; or,

(ii) there exists c ∈ R such that Re (φ(x)) = c Im(φ(x)) for all x ∈ R.
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Explicit profile construction for ω 6= 0, Z = 0, λ1 ≤ 0, λ2 < 0

By using φ ,φ ′→ 0 as x → ∞ we obtain

[φ ′]2 + ωφ
2 + 2αφ

p+1 + βφ
2p = 0,

with α = λ1/(p+ 1), β = λ2/p. Then,

φ(x) =

[
−α

ω
+

√
ωβ −α2

ω
sinh

(
(p−1)

√
−ωx

)]− 1
p−1

,

is the profile of the standing wave solution provided that

− pλ 2
1

(p+ 1)2λ2
<−ω.
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Explicit construction

The function φ1(x) := φ(−|x |−d), −l < d ,

satisfies all the properties of our first lemma except possibly the jump

condition: φ ′(0+)−φ ′(0+) =−Zφ(0). If we consider

R1 : (−l ,∞)→ (1,∞) the diffeomorphism defined by

R1(d) =

√
ωβ −α2 cosh((p−1)

√
−ωd)√

ωβ −α2 sinh((p−1)
√
−ωd) + α

.

then, we get

d = R−1
1

(
Z

2
√
−ω

)
, with Z > 0 and −ω <

Z 2

4
.
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Profile existence theorem; case ω 6= 0

Theorem

Let p > 1, λ1 ≤ 0, λ2 < 0 and Z > 0 in the NLS equation. Then for all

values of ω < 0 satisfying

− pλ 2
1

(p+ 1)2λ2
<−ω <

Z 2

4

the familiy of standing wave solutions, u(x , t) = e−iωtφω , with φω given

by

φω =

[
α

−ω
+

√
v

−ω
sinh

(
(p−1)

√
−ω

(
|x |+R−1

1

(
Z

2
√
−ω

)))]− 1
p−1

are solutions to the NLS equation. Here v = ωβ −α2.
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Figure 1: Profile function φω = φω (x) for parameter values ω =−0.25, Z = 2,

p = 3, λ1 = λ2 =−1.
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Figure 2: Time evolution of the standing wave solution u(x ,t) = e−iωtφω (x)

with ω =−0.25, Z = 2 and in the case of a quintic/cubic (p = 3), doubly

repulsive (λ1 = λ2 =−1) nonlinearity.
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Figure 3: Dynamics in the (φ ,φ ′)-plane for f (x) =−x(1 +x2), that is, for

λ1 = λ2 =−1 and ω =−0.25, in the case of a quintic/cubic nonlinearity with

p = 3.
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Orbital stability



Critical points

Let us consider the functional Gω : H1(R)→ R for values ω ≤ 0, defined

as

Gω (v) =
1

2
‖vx‖2

L2 −
Z

2
|v(0)|2− ω

2
‖v‖2

L2 −
1

2

∫
∞

−∞

g(|v(x)|2)dx ,

and the set of critical points associated to Gω as

Aω = {v ∈ H1(R) : G ′ω (v) = 0,v 6= 0}.

Here g = g(·) is the antiderivative of f = f (·). For φ ∈Aω we have the

relation

G ′ω (φ) = AZφ −ωφ − f (|φ |2)φ
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Properties of the set of critical points (i)

Lemma

Let 1 < p < ∞, Z > 0 and let ω ∈ R be such that ω + Z2

4 ≤ 0. Then the

set Aω is empty.

Proof. If there exists h ∈ H1(R)\{0} satisfying G ′ω (h) = 0, then

0 =
d

ds
G (sh)

∣∣∣
s=1

, and since 〈AZh,h〉 ≥ −
Z 2

4
‖h‖2

L2

for all h ∈ H1(R), we then obtain

0 = ‖hx‖2
L2 −Z |h(0)|2−ω‖h‖2

L2 −
∫

∞

−∞

f (|h(x)|2)|h(x)|2dx

≥−(Z 2/4 + ω)‖h‖2
L2 −

∫
∞

−∞

f (|h(x)|2)|h(x)|2dx

≥−
∫

∞

−∞

f (|h(x)|2)|h(x)|2dx > 0,
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Properties of the set of critical points (ii)

Lemma
Let 1 < p < ∞ and Z ∈ R. If ω > 0 then Aω = ∅.

Lemma
Let ω ∈ R and Z < 0. Then, we have that Aω = ∅.

Proofs by contradiction.
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Properties of the set of critical points (iii)

Lemma

Let p > 1, λ1 < 0, λ2 < 0, Z > 0 and ω such that − pλ 2
1

(p+1)2λ2
<−ω < Z2

4 .

Considering f (x) = λ1x
(p−1)/2 + λ2x

p−1, then

Aω = {e iθ φω : θ ∈ R}.

Proof. It is clear that for all θ ∈ R, e iθ φω ∈Aω . Conversely, if g ∈Aω ,

then g satisfies all the necessary conditions to be a solution of the

Euler-Lagrange equation and |g |> 0. Goal: to show that there exist

θ ∈ R such that g(x) = e iθ φω (x) for all x ∈ R.
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• φω ∈ D(AZ ) is the unique positive solution of the Euler-Lagrange

equation. Indeed, if v ∈ H1(R) is a positive solution then v satisfies

the IVP{
−ψ

′′(x) = ωψ(x) + f (ψ
2(x))ψ(x) := H(ψ(x)), x > 0,

ψ(0) = c0, ψ
′(0) =−Zc0/2,

where c0 is the unique positive root of

Φω (c ,Zc/2) =
Z 2

4
c2 + ωc2 +g(c2).

Since H is locally Lipschitz around zero the IVP has a unique positive

solution given by φω . Thus, v ≡ φω on (0,∞). Similar arguments

show that v ≡ φω on (−∞,0). Hence, v(x) = φω (x) for all x ∈ R.
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• If g(x) = e iθ(x)ρ(x) then θ ,ρ > 0 satisfy{
θ
′′
ρ + 2θ

′
ρ
′ = 0, x > 0,

−(θ
′)2

ρ + ρ
′′+ ωρ + f (|ρ|2)ρ = 0, x > 0.

The first equation together with the boundedness of |g ′| imply that

g(x) = e iθ0ρ(x) for all x ∈ (0,+∞). Then, from second equation

and by the analysis above we necessarily have that g(x) = e iθ0φω (x)

for all x ∈ (0,∞). A similar analysis shows that g(x) = e iθ1φω (x) for

all x ∈ (−∞,0). Hence,

g(x) = e iθ0φω (x), for all x ∈ R.
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The minimization problem

Let us suppose that 1 < p < ∞, Z > 0, λ1 ≤ 0, λ2 < 0, ω is such that

− pλ 2
1

(p+ 1)2λ2
<−ω <

Z 2

4
, and f (x) = λ1x

(p−1)/2 + λ2x
p−1.

Minimization problem associated to Gω :

m(ω) = inf{Gω (v) : v ∈ H1(R)},

and the minimal set

M(ω) = {u ∈ H1(R) : Gω (u) = m(ω)}.
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The set of minima

Lemma
−∞ <m(ω) < 0 and M(ω)⊂Aω .

Proof. First verify that −∞ <m(ω). Write

Gω (v) = R(v)− ω

2
‖v‖2

L2 −
λ1

p+ 1
‖v‖p+1

Lp+1 , v ∈ H1(R).

Then, by the auxiliary bound lemma we get

Gω (v)≥ R(v)≥ Z

2
|v(0)|2−C ≥−C ,

for all v ∈ H1(R) and some uniform C > 0, yielding −∞ <m(ω).
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To show that m(ω) < 0, let v(x) := sh(x) ∈ H1(R) with s > 0 and where

h(x) = e−
Z |x |

2 is the eigenfunction of the operator AZ associated to the

eigenvalue −Z
2

4 . Therefore

Gω (v) =− s2

2

(Z 2

4
+ ω

)
‖h‖2

L2 −
1

2

∫
∞

−∞

g(s2h2(x))dx .

Since −g(s2h2(x)) <−f (s2)s2h2(x),

Gω (v)≤− s2

2
‖h‖2

L2

(Z 2

4
+ ω + f (s2)

)
.

Since Z 2/4 + ω > 0 and lims→0+ f (s2) = 0 we conclude that there exists

s0 > 0 such that Z 2/4 + ω >−f (s2) > 0 for 0 < s ≤ s0 and so

Gω (s0h) < 0. Lastly, suppose M(ω) 6= ∅. Then since for h ∈M(ω) we

have h 6= 0 and G ′ω (h) = 0, then by previous Lemmata we obtain

M(ω)⊂Aω .
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Auxiliary result: Brézis-Lieb lemma

A refinement of Fatou’s lemma:

Lemma (Brézis-Lieb, 1983)

Let 2≤ q < ∞ and {uj} be a bounded sequence in Lq(R) such that

uj (x)→ u(x) a.e. in x ∈ R as j → ∞. Then,

‖uj‖qLq −‖uj −u‖qLq −‖u‖
q
Lq → 0, as j → ∞.
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Compactness

Lemma

Let hn ∈ H1(R) be such that limn→∞Gω (hn) = m(ω). Then there exists a

subsequence hnj and h ∈ H1(R) such that limnj→∞ hnj = h in H1(R) and

Gω (h) = m(ω).

Proof. First, notice that for all v ∈ H1(R)

Iω (v) :=
1

2
‖vx‖2

L2 −
ω

2
‖v‖2

L2

= Gω (v) +
Z

2
|v(0)|2 +

λ1

p+ 1
‖v‖p+1

Lp+1 +
λ2

2p
‖v‖2p

L2p .

Since ω < 0, it follows that Iω (v) is equivalent to ‖v‖2
H1 . From the fact

that λ1,λ2 < 0, we obtain

1

2
‖vx‖2

L2 −
ω

2
‖v‖2

L2 ≤ Gω (v) +R(v) +C ≤ 2Gω (v) +C ,

for some uniform C > 0.
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Hence, it is clear that if the sequence Gω (hn) converges then the

sequence hn is bounded in H1(R). Thus, there exists a subsequence hnj
and h ∈ H1(R) such that {hnj } converges wealky to h in H1(R). Since

H1(−1,1) is compactly embedded in C [−1,1], we deduce that

hnj (0)→ h(0). Thus,

m(ω)≤ Gω (h)≤ liminf
nj→∞

Gω (hnj ) = m(ω),

which implies that h ∈M(ω).

Now, since hnj ⇀ h weakly in H1(R) we have that hnj (x)→ h(x) a.e. in

x ∈ R and also that

‖hnj −h‖2
L2 +‖h‖2

L2 = ‖hnj ‖
2
L2 +o(1),

‖∂xhnj −hx‖2
L2 +‖hx‖2

L2 = ‖∂xhnj ‖
2
L2 +o(1),

as nj → ∞.
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‖hnj ‖H1 uniformly bounded ⇒ ‖hnj ‖Lp+1 and ‖hnj ‖L2p are uniformly

bounded (by Gagliardo-Nirenberg interpolation inequalities). As

hnj (x)→ h(x) a.e. in x ∈ R, by Brézis-Lieb lemma we get

‖hnj −h‖p+1

Lp+1 +‖h‖p+1

Lp+1 = ‖hnj ‖
p+1

Lp+1 +o(1),

‖hnj −h‖2p
L2p +‖h‖2p

L2p = ‖hnj ‖
2p
L2p +o(1),

as nj → ∞.

Combining yields

Gω (hnj −h) +Gω (h) = Gω (hnj ) +o(1), as nj → ∞.

From the def. of Iω ,

0≤ Iω (hnj −h)≤ Iω (hnj −h)− λ1

p+ 1
‖hnj −h‖p+1

Lp+1 −
λ2

2p
‖hnj −h‖2p

L2p

= Gω (hnj −h) +
Z

2
|hnj (0)−h(0)|2

= Gω (hnj )−Gω (h) +o(1),

inasmuch as hnj (0)→ h(0). This yields hnj → h in H1(R).
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Characterization of the minimal set

Lemma
M(ω) = Aω = {e iθ φω : θ ∈ R}, where φω denotes the standing wave

profile.

Proof. From the previous lemmas, we infer that M(ω) 6= ∅. Then there

exists h ∈ H1(R) such that Gω (h) = m(ω), that is, h ∈M(ω). Since

M(ω)⊂Aω , h ∈Aω . Thus, there exists θ0 ∈ R such that h = e iθ0φω .

Now, since φω ∈ H1(R) and

Gω (φω ) = Gω (h) = m(ω),

then φω ∈M(ω). This implies that Aω ⊂M(ω). The other inclusion was

already proved above.
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Proof of the main theorem

Suppose that the standing wave e−iωtφω is orbitally unstable. Then

there exists ε0 > 0, a sequence {hn(t)} of solutions of the NLS equation

and a sequence tn > 0, such that

lim
n→∞
‖hn(0)−φω‖H1 = 0, (2a)

inf
θ∈R
‖hn(tn)− e iθ φω‖H1 ≥ ε0. (2b)

Since Gω is conserved by the flow of the NLS equation, we get that

Gω (hn(tn)) = Gω (hn(0)) for all n ∈ N. Then (2a) and continuity of Gω

yield

lim
n→∞

Gω (hn(tn)) = Gω (φω ) = m(ω).
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Henceforth, from the former results there exists a subsequence hnj such

that hnj (tnj )→ h with Gω (h) = m(ω). Then h ∈Aω and h = e iθ0φω for

some θ0 ∈ R. Therefore,

lim
nj→∞

hnj (tnj ) = e iθ0φω ,

in H1(R), which contradicts

inf
θ∈R
‖hn(tn)− e iθ φω‖H1 ≥ ε0.

Hence, we conclude that e−iωtφω is orbitally stable.
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Happy birthday Kevin!
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