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Introduction



Nonlinear Schrodinger equation (NLS)

NLS equation with attractive delta potential and repulsive double power

nonlinearity:

iut"‘ Uxx +Z§(X)U+A«1U‘U|pil +12U‘U|2p72 -0

e Unknown: u = u(x,t) € C, for x,t € R.

e Parameters: 1; <0, 1, <0, Z2>0, p> 1.

§:HY(R) —C, (8,g) = g(0) (Dirac delta centered at x =0.)
Linear interaction: 07 + Z5(x).

e Nonlinear term: A;ufulPt + Asu L,‘Qp 2

o 2=—_1.



Physical applications

e We recall that the general NLS model
it + U + V(x)u+ f(Jul*)u =0,

represents a trapping (wave-guiding) structure for light beams,
induced by an inhomogeneity of the local refractive index.

e The delta-function term V/(x) = Z&(x) represents a narrow trap
which is able to capture broad solitonic beams.

e It models a spatially localized point defect of the medium in which
the soliton travels (localized attractive “impurity”).

e The non linear term f(x) = A;x(P~1/2 4 2,xP~1 is well known in
optical media.



Standing waves

Standing waves are solutions to the NLS model of the form

u(x,t) = e "®t9(x),

where @ € R and the profile of the wave ¢ : R — R satisfies

" 2 _
{¢ +216(x)¢+w¢+f(|¢| )¢ =0, (ODE)
¢ € H'(R),
where f = f(+) is an arbitrary function satisfying
1 o) i =
f e C((0,+);R) with f(0)=0, (Hy)

f'(x) <0 for all x> 0.



Standing waves

Standing waves are solutions to the NLS model of the form

u(x,t) = e "®t9(x),

where @ € R and the profile of the wave ¢ : R — R satisfies

" 2 _
{¢ +216(x)¢+w¢+f(|¢| )¢ =0, (ODE)
¢ € H'(R),
where f = f(+) is an arbitrary function satisfying
1 o) i =
f e C((0,+);R) with f(0)=0, (Hy)

f'(x) <0 for all x> 0.

Example: if 1 < p < oo, A; <0 and A, <0 then
f(X) :/11X</) = 24’/12Xp e

satisfies (Hy).



O-interaction quantum operator

The S-interaction quantum operator Az is defined as
Az :=—32—Z5(x)

Azf(x) = —f"(x), x #0,
D(Az) = {f € HY(R) N H?*(R\{0}) : f'(0+) — f'(0—) = —Zf(0)},



Orbital stability

Definition (orbital stability)

The standing wave e~ /®t¢,, is orbitally stable by the flow of the NLS
equation n H(R), if for any € > 0 there exists § > 0 such that if
|luo — Po |1 < & then

inf [[u(t) — e gl 1 < &, for all t € R,
0cR

where u(t) denotes the solution to the NLS equation with initial data
u(0) = up € H*(R). Otherwise, e~/®*¢,, is said to be orbitally unstable in
H(R).



Theorem (Angulo Pava, Hernandez Melo, P (2019))

Letl1<p<oo, 4 <0, A <0 and Z >0 in the NLS equation. Then for
all values of @ < 0 satisfying

pAL <-0< &
(p+1)°A2 4
the family of standing wave solutions, u(x,t) = e~ '®t¢g,, with ¢ given
by
1
a v . 1 V4 “pI
= |— + ~—sinh —1v— R
to= [ S5 2o (-0 (o (755 ) )

where v = ®f — o2, are orbitally stable solutions in H*(R) under the flow
of the NLS equation.



Previous results

e Case Z=0: Ohta (1995), double power nonlinearity; Maeda (2008),
multiple power nonlinearity.

e Repulsive § potential: Fukuizumi, Jeanjean (2008)
e Attractive 0 potential: Fukuizumi et al. (2008)

e Kaminaga, Ohta (2009): attractive 0 with repulsive single power
nonlinearity.

Multibody interactions of same sign (repulsive, double power
nonlinearity) appear in the study of Bose-Einstein condensates: Brazhnyi,
Konotop (2004); Belobo Belobo et al. (2014); Kamchatnov, Salerno
(2009); Kamchatnov, Korneev (2010) (dark solitons).



Concentration-compactness method: Cazenave, Lions (1982)

e The Cauchy problem: The initial value problem associated to the
NLS equation is globally well-posed in HY(R) for 1 < p < oo,

A <0, A <0and Z>0.

e Existence of profile solution ¢y: for parameter values p,A;,4,,Z
and o satisfying the assumptions there exists a profile solution ¢, of
the elliptic equation (ODE) (explicit construction).

e The stationary problem: The set 7, of non-trivial solutions of the
equation for the profiles in H*(R) will be characterized, via
uniqueness, by

Ay ={v:Gh(v)=0,v#0}={e%,: 0 cR},
where

(O]
Ga() = E() - SIvI

1 Z M 1 Ay 2
E(v) = 51wl = S MOP - 25 IVIE - ZIvIE.

for v € HY(R).

10



Concentration-compactness method (ii)

e The minimization problem: For p,A;,A,,Z and o satisfying the
assumptions of our main theorem, the quantity

m(®) = inf{Gy(v) : v e HY(R)},

satisfies the following properties:

(a) (boundedness below) —eo < m(®) < 0; and,

(b) (compactness) any sequence h, € H'(R) such that

limp e G (hn) = m(®) admits a subsequence converging to some
h € HY(R) with Gy (h) = m(®).

11



Local and global well posedness
for the NLS



Preliminaries (i)

The formal expression Az := —d2 — Z§(x) represents all the self-adjoint
extensions (von Neumann theory) associated to the following closed,
symmetric, densely defined linear operator:

{ Ay = —09?
D(Ao) = {g € H*(R) : g(0) = 0}.
More precisely, the quantum operator Az = —d2 — Z§(x) is given by

Azf(x)=—f"(x) x #0,
D(Az) = {f € HY(R) N H?*(R\{0}) : f/(0+) — f'(0—) = —Zf(0)}.

12



Preliminaries (ii)

Upon application of the First Representation Form Theorem (cf. Kato),
it is possible to show that the associated form to Az is given by

Folu ] =Re [ 7 W (VX dx — ZRe(u(0)V{0)),

—o0

where (u,v) € D(Fz) = HY(R) x H1(R). The bilinear form defined above
is closed and bounded below. In addition, operator Az = —92 — Z§(x)
can be extended as a linear bounded operator u — Azu from H(R) to
H=(R). This action is defined by

(Azu,v) = Fz[u,v], for u,v € H(R).

13



Spectral properties of A,

e Essential spectrum: Yeg(Az) =[0,+), for all Z € R.

e Discrete spectrum:

%] Z <0,

)

Zdis(AZ) = {{22/4} ’ 7 0,

For Z>0, Vz(x)= \[ ~%I is the normalized eigenfunction
associated to the unique negative simple eigenvalue —Z2/4. In addition,

the operators Az are bounded from below:

Ay >—Z2/4, Z>0,
Az >0, Z<0

Ref.: Albeverio, Gesztesy, Hgegh-Kron (2005).
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The Cauchy problem

Consider the Cauchy problem,

iy — Azu+ (A ulP™ 4+ Ao u|?P?)u =0,
u(0) = ug € HY(R).

Ref. Cazenave, Courant LN, vol. 10 (2003).
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Local well-posedness

Theorem (local well-posedness)

For any ug € HY(R) and Z € R, there exists T >0 and a unique solution
ue C([-T,T;HYR))NCY[-T, T]; H X(R)) to the NLS equation with
u(0) = ug such that

lim |Ju(t)|| g2 = +o0, if T <oo.
t—T~

Moreover, the solution u(t) satisfies conservation of charge and energy:

lu(®)ll 2 = Jwoll2, E(u(t)) = E(wo),
for all t € [~ T, T], where the energy functional E is defined as

1 V4

A
E(v):= 3 lwlf = ZMOF - 22

1V 1545

Lp+1 7” HL2pa

for v € H*(R).

16



Proof sketch

e The nonnegative self-adjoint operator & = Az + B on the space
X = L2(R), with B = Z?/4 for Z>0and B =0 for Z <0, and
domain D(«7) = D(Az), induces a norm

lullk, = lluxli2 + (B +1)llullfz — Z]u(0) P,

which is equivalent to the usual norm in H(R).

e The self-adjoint operator Az generates a strongly continuous group
of unitary operators T(t)g = e "Azg.

e Duhamel integral
u(t) = T(t)uo —&—'/Ot T(t—s)(Ax|u(s)P~ u(s) + Aa|u(s)|?P~2u(s))ds

Direct application of Thm. 3.7.1 in Cazenave.

17



Remark: Gagliardo-Nirenberg interpolation inequality

For any p > 1, HY(R) C L2(R) N LPTI(R) N L?P(RR), inasmuch as the
Gagliardo-Nirenberg interpolation inequality (cf. Leoni, 2017) yields
lull o < Gullull g 2™,

0, 1-6
lullze < Coflull 2l w2

with uniform constants C; >0 and 6; = (p+2)/(2p+2) € (0,1),
62 =(p+1)/2p€(0,1).

18



Conservation of charge/energy

e Conservation of charge:
d 5 S
E||u(t)||L2:2Re'/Rutudx
:2Re/ —i(Azu)a+ if (|ul?)|ul?dx = 0.
R

e Conservation of Energy: NLS equation can be written in the
Hamiltonian form u; = —iE’(u(t)), then

%E(u(t)):Re/RE’(u(t))thx:Re/Ri|E'(u(t))|2dx:0.

19



Auxiliary bound

Let us define the following C! functional in H(R),

1 V4

RW) = 3lla = ZIVO)P - 211 = £0)+

pr1”

p+1

Lemma (Auxiliary bound)

Let1<p<oo, A4 <0, A <0 and Z>0. Then there exists a uniform
constant C = C(p,Z) > 0 such that

g\v(O)\z <R(v)+C,  forall ve HY(R).

20



Proof sketch

By Sobolev and Young's inequalities, for any Z > 0 there exists
C1 = Gi(Z) > 0 such that for v € HY(R)

1
ZIVO < 3 el + GillvIZa
Apply Holder's and Young's inequalities to estimate
1 2 ol
VB <2092 ([ IvPax) < BIvIE ) +2Cs
for any 0 > 0. Since A, <0, choose § = —2,/(2pC;) > 0 to obtain

1
Z|v(0)]* < = |lwll22 — || V%8, +2G,Cs.

21



Global well-posedness

Theorem (global well-posedness)

Forevery p>1, Z>0, A1 <0 and A, <0 the Cauchy problem is globally
well-posed in H(R).

Proof. Let ue C([-T,T];H}(R))NCY([-T, T]; H }(R)) be the local
solution to the Cauchy problem for t € (=T, T).

1

z A
S lullfe = E(u) + S u(e)P + ==

p+1

A
1 2 2
lull 7 + 21l 5

[P+l 12p

< E(u(t) + 2 lu(e)?
< E(u(t))+ R(u(t))+C

22



Thus, we arrive at

1

S5 < Eu(t) + R(u(8)) + € < 2E(u(t) + C.

In view that u conserves charge and energy we finally conclude that
lu(®)1F < 4E(u(0)) + [|u(0)lI72 +2C,

which implies, together with

lim |Ju(t)||gr =400, if T <oo,
t—T-

that the time of existence of the solution v is T = +oo.

23



Existence of standing waves




ODE problem

Recall the profile equation

7 2 —
{¢ +Zl5(x)¢+a)¢+f(|¢| )¢ =0, (ODE)
0 € H'(R),
Hypothesis on f:
1 o0): wi =
f € C((0,+%):R) with £(0)=0, (Hr)

f'(x) <0 forall x> 0.
¢ € H'(R) is a solution in the distributional sense if for every y € H*(R)

0=Re| [ 0G0k~ 20020~ 0 [ 0

‘/:Qf (¢2(X))¢(X)X(X)dx} .

24



Analysis of the (ODE) (i)

Lemma

Let ¢ € H'(R), with ¢" + Z8(x)9 + @9 + F(|6(x)[2)#(x) = 0 in the

distributional sense, then
¢ € C(R\{0})NC(R), j=1,2. (1a)
90" (x) + 09 (x) + f(|9(x)*)p(x) =0, for x#0. (1b)
¢'(0+) - ¢'(0-) = —Z¢(0). (1c)
9'(x),0(x) =0, if |x| . (1d)
10'(x)1” + wlp()* +g(lp(x)?) =0,  for x#0. (Le)

where g(s)= /Os f(s) ds.

25



Analysis of the (ODE) (ii)

Lemma

Let p>1, ®,A1,A2 € R and Z € R\ {0}. Let ¢ be a non-trivial solution
to (1a) - (le). Then ¢(x) #0 for all x eR and |¢| > 0. —¢ is also a
solution.

Lemma (Useful)

Let p>1, @,A1,A2 €R and Z e R\ {0}. Let ¢ be a non-trivial solution
to (1a) - (le). Then we have either one of the following:

(i) Im(¢(x)) =0 for all x e R; or,
(ii) there exists ¢ € R such that Re (¢(x)) = cIm(¢(x)) for all x € R.

26



Explicit profile construction for ® #0, Z=0, 1; <0, A, <0

By using ¢,¢’ — 0 as x — 0 we obtain
[0/ + 09 +209P*" + B9 =0,

with a =241 /(p+1), B=2A2/p. Then,

sinh ((p— 1)v—0x)

1
a of — o2 (=
o, o

Q)

9(x) =

is the profile of the standing wave solution provided that

pA

SR e

27



Explicit construction

The function  ¢1(x) :=¢(—|x|—d), —I<d,

satisfies all the properties of our first lemma except possibly the jump
condition: ¢'(0+) — ¢’(0+) = —Z¢(0). If we consider
Ry : (—1,0) — (1,0) the diffeomorphism defined by

Ri(d) = V0B —a?cosh((p—1)v/—od)
' JoB —a2sinh((p—1)v/—ad) +a

then, we get

Z z2
d:R11<2m>7 with  Z>0 and —o < -

28



Profile existence theorem; case ® # 0

Theorem

Let p>1, 41 <0, A, <0 and Z >0 in the NLS equation. Then for all
values of @ < 0 satisfying

_pilf < —0< 272
(p+1)*22 4

the familiy of standing wave solutions, u(x,t) = e~ '®t¢y,, with ¢q, given
by

[ 2o vl ()

are solutions to the NLS equation. Here v = off — a?.

29
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0.2

0.0 I 1

Figure 1: Profile function ¢q = @ (x) for parameter values ® = —0.25, Z =2,
p=3, A1 =24 =—1.
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Figure 2: Time evolution of the standing wave solution u(x,t) = e 'ty (x)
with @ = —0.25, Z =2 and in the case of a quintic/cubic (p = 3), doubly
repulsive (A3 = A = —1) nonlinearity.
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Figure 3: Dynamics in the (¢,¢’)-plane for f(x) = —x(1+ x2), that is, for
A=A =—-1and w = —0.25, in the case of a quintic/cubic nonlinearity with
=8,
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Orbital stability




Critical points

Let us consider the functional G, : H}(R) — R for values ® < 0, defined
as

1 Z 0] 1 /=
Ga(v) = 5llwllZ = SIVOF = SlIviz ~ 5 [ g(viP)ex,

and the set of critical points associated to G as
Ay ={ve HY(R): G,(v)=0,v #0}.

Here g = g(+) is the antiderivative of f = f(-). For ¢ € <7, we have the
relation

Go(9) =Az9 — w0 — f(|9[*)¢

33



Properties of the set of critical points (i)

Lemma

Let 1< p<oo, Z>0 and let ® € R be such thata)+ZTQ < 0. Then the
set Wy is empty.

Proof. If there exists h € HY(R)\ {0} satisfying G/,(h) =0, then

d

. Z2
0— gG(sh) , andsince (Azh,h) > _Tth‘i2

s=1

for all h € H(R), we then obtain
0= ||hel32 = ZIN(O) ~ |l = [ F(Hx)P)IA(Cx)Pox
> ~(22/a+ o)l ~ [ F(IACP)IHG) o

>~ [ F(HGOP)IAGOPdx >0,

34



Properties of the set of critical points (ii)

Lemma
Letl<p<owand Z€eR. If >0 then o, = 2.

Lemma
Let w € R and Z < 0. Then, we have that </, = &.

35



Properties of the set of critical points (ii)

Lemma
Letl<p<owand Z€eR. If >0 then o, = 2.

Lemma
Let w € R and Z < 0. Then, we have that </, = &.

Proofs by contradiction.

35



Properties of the set of critical points (iii)

Lemma
Let p>1, A1 <0, A, <0, Z>0 and o such that —
Considering f(x) = Aix(P=1/2 4 2,xP=1 then

P
(p+1)%22 &F
Ay ={e®¢y: 6 €R}.

Proof. It is clear that for all 6 € R, e/9¢w € . Conversely, if g € o7,,
then g satisfies all the necessary conditions to be a solution of the
Euler-Lagrange equation and |g| > 0. Goal: to show that there exist

6 € R such that g(x) = e/%9,(x) for all x € R.

36



e ¢ € D(Az) is the unique positive solution of the Euler-Lagrange
equation. Indeed, if v € HY(R) is a positive solution then v satisfies
the IVP

{ V(%) = oy(x) + F(Y2(x)p(x) == H(w(x)), x>0,
v(0)=c, ¥'(0)=—-Zc/2,

where ¢ is the unique positive root of
Z2
dy(c,Zc/2) = Tc2 +oc? +g(c?).

Since H is locally Lipschitz around zero the IVP has a unique positive
solution given by ¢g. Thus, v =@, on (0,00). Similar arguments
show that v = ¢, on (—,0). Hence, v(x) = @ (x) for all x € R.



o If g(x) = e®™)p(x) then 6,p > 0 satisfy
0'p+20'p' =0, x>0,
—(8")p+p"+wp+f(lp)p =0, x>0.

The first equation together with the boundedness of |g’| imply that
g(x) = e®p(x) for all x € (0,+). Then, from second equation
and by the analysis above we necessarily have that g(x) = e’% ¢, (x)
for all x € (0,00). A similar analysis shows that g(x) = €% ¢4, (x) for
all x € (—e0,0). Hence,

g(x) =e®p,(x), forall xeR.
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The minimization problem

Let us suppose that 1 < p <o, Z >0, 4; <0, 4, <0, w is such that

7P7)~12 _ 272 _ (p—1)/2 p—1
b+1)% <0<, and  f(x)=MAx + AoxP

Minimization problem associated to G:
m(@) = inf{Gy(v) : v e H'(R)},

and the minimal set

M(w) = {u € H'(R) : Gy(u) = m(w)}.

39



The set of minima

Lemma
—oo < m(w) <0 and M(w) C <.

Proof. First verify that —eco < m(®). Write

M

p+1||v||"+1 v e H'(R).

Lp+1)

(0]
Go(v) =R(v) - §||VHi2 -
Then, by the auxiliary bound lemma we get

Go(v) > R(v) > 2

> SO -C2-C,

for all v € HY(R) and some uniform C > 0, yielding —e0 < m(®).

40



To show that m(®) < 0, let v(x) := sh(x) € H*(R) with s > 0 and where
h(x) = e is the eigenfunction of the operator Az associated to the

0 _ 72
eigenvalue TZ. Therefore

Go(v) =~ (5 +0) 1A~ 3 [ a(2h()ds

Since —g(s*h*(x)) < —f(sz)szhz(x),

Gu(v) < =S 112 (5 + 0+ 7).

Since Z2/4+® >0 and lim,_,y+ f(s?) = 0 we conclude that there exists
so > 0 such that Z2/4+ @ > —f(s?) >0 for 0 < s < s and so

Gw(soh) < 0. Lastly, suppose M(w) # @. Then since for h € M(®) we
have h#0 and GJ,(h) =0, then by previous Lemmata we obtain

M(w) C . O

41



Auxiliary result: Brézis-Lieb lemma

A refinement of Fatou's lemma:
Lemma (Brézis-Lieb, 1983)

Let 2 < g < e and {u;} be a bounded sequence in L9(R) such that
uj(x) = u(x) a.e. in x €R as j — co. Then,

lujll{a = Iluj = ullfa = llull{s =0, as j—oo.

42



Lemma

Let h, € HY(R) be such that lim,_. G, (h,) = m(®). Then there exists a
subsequence hy, and h € H'(R) such that limy, e hy, = h in H*(R) and
Go(h) = m(®).

Proof. First, notice that for all v € H!(R)

1 [0}
lo(v) := §HV><H%2 - §||VHi2

M
p+1

A
+1 21112
IvIIZ7+ +$HVIIL§p-

= Go(v) + ZIv(O) +

Since @ < 0, it follows that /y(v) is equivalent to ||v||3,,. From the fact
that A1,A» < 0, we obtain

1 [0}
Sl = SlIVIE: < Ga(v) +R(V) + € <26o(v) + €,

for some uniform C > 0.
43



Hence, it is clear that if the sequence Gy (h,) converges then the
sequence h, is bounded in H*(R). Thus, there exists a subsequence hy,
and h € H'(R) such that {hn; } converges wealky to h in HY(R). Since
H'(—1,1) is compactly embedded in C[—1,1], we deduce that

hn;(0) = h(0). Thus,

m(®) < Gg(h) <liminf Gy (hy,) = m(w),

nJ'*)OO

which implies that h € M(w).

Now, since h,. — h weakly in H'(R) we have that h, (x) — h(x) a.e. in
x € R and also that

ln; = AllZ2 + [[AlI72 = [[An;lI72 + o(1),
19xhn; = hillf2 + | iz = 1| xchny 12 + o(2),

as nj—>°°.
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[[An; [l 2 uniformly bounded = ||Ap, || p+1 and [|hp,[,2» are uniformly
bounded (by Gagliardo-Nirenberg interpolation inequalities). As
hn;(x) = h(x) a.e. in x €R, by Brézis-Lieb lemma we get

1 1 1
ln; = Al + AN T3 = 17555+ o(D),

18y — A5, + 1A1Z5, = 1 An, 175, + 0(1),
as nj —> 0o,

Combining yields
Go(hn; — h) + Go(h) = Go(hn;) + o(1), as nj — oo,

From the def. of I,

M
0 < lo(hn; —h) < ls(hn; — h) — +1 —hli7pn =5 H — i[5,
= Go(hn; —h)+ *\hnj(o) —h(0)[*
= Go(hn;) = Go(h) + (1),
inasmuch as hy,.(0) — h(0). This yields h,, — h in H'(R).
O
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Characterization of the minimal set

Lemma _
M(®) = oy = {€®¢p : 8 € R}, where ¢, denotes the standing wave

profile.

Proof. From the previous lemmas, we infer that M(®) # @. Then there
exists h € H'(R) such that G,(h) = m(®), that is, h € M(®). Since
M(®) C @y, h € oZg. Thus, there exists 6y € R such that h= ey,
Now, since ¢, € H*(R) and

Go(90) = Go(h) = m(w),

then ¢, € M(w). This implies that <7, C M(w). The other inclusion was
already proved above.

O
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Proof of the main theorem

Suppose that the standing wave e~ /®t¢,, is orbitally unstable. Then
there exists € > 0, a sequence {h,(t)} of solutions of the NLS equation
and a sequence t, > 0, such that

lim [[,(0) — g0l =0, (2a)
inf [|hn(ts) — e 9o || 1 > 0. (2b)
1SN
Since G, is conserved by the flow of the NLS equation, we get that
Go(hn(tn)) = Gu(hn(0)) for all n € N. Then (2a) and continuity of Gy

yield
lim Gp(hn(tn)) = Gu(9w) = m(®).

n—soo
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Henceforth, from the former results there exists a subsequence h,,j such
that hp(tn;) — h with Gy(h) = m(®). Then h€ /, and h= e'% ¢y, for
some 6y € R. Therefore,

- _ i
Jim b (1) = €0,
in HY(R), which contradicts
ég&th(tn) - ei0¢wHH1 2 &.

Hence, we conclude that e /®t¢,, is orbitally stable.

48



Reference

e J. Angulo Pava, C. A. Hernandez Melo, R. G. P., J. Math. Phys.
(2019), in press.

49



Happy birthday Kevin!
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