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Modelling

• Coupled mechano-chemical system: calcium diffuses freely
on a cytoplasmic material (e.g.cytoskeletonmodel of
MURRAY, J. D.AND OSTER, G. F.,IMA J. Math. Appl.
Med. Biol. 1, pp. 51–75; gel-like substance, elastic
properties (deformable)).

• Coupling via:(i) Actomyosin molecules, exert stress on the
material; sensitive to calcium concentration; and,(ii)
activation of calcium due to deformation of cytoplasm.

• Slow diffusion of calcium: quasi-static balance of forces,
inertial terms neglected in the elastic equation.
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• E.g. Post-fertilization traveling waves on eggs. Mechanical
and chemical phenomena observed on surface of vertebrate
eggs shortly after fertilization. Calcium wave prevents
further fertilization.

• Simplest elasto-chemical system, underlies solutions of
traveling wave type.
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Model proposed byD. C. LANE, J. D. MURRAY, AND V. S.
MANORANJAN (IMA J. Math. Appl. Med. Biol.4 (1987), no. 4,
pp. 309–331.)

Chemical model: Calcium released by autocatalytic process
(self-estimulated), diffuses freely, and more calcium is seen as
cytoplasm is stretched (stretch activation)

ct = D∆c
︸︷︷︸

Fick’s diffusion

+ R(c)
︸︷︷︸

autocatalytic term

+ ǫ(divx u)
︸ ︷︷ ︸

stretch activation

c = free calcium concentration

R3 ∋ u = elastic displacement vector of citoplasm

0 ≤ ǫ = stretch factor or contraction stress coefficient

0< D = Fick’s diffusion coefficient of calcium
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Mechanical model: Slow diffusion of calcium, quasi-static
balance of forces. Inertial terms negligible!

∇ · σ + ρF = 0,

σ = µ1et + µ2(divxu)tI
︸ ︷︷ ︸

viscous stress

+ Ee+ (1− E)(divxu)I
︸ ︷︷ ︸

elastic stress

+

+ τ(c)I
︸ ︷︷ ︸

active contraction stress due to calcium

,
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Body forces proportional to elastic displacement:

F = −su, s> 0,

ρ = cytogel density

e = 1
2(∇u + ∇u⊤) = strain tensor

µi = bulk and shear viscosities

E = elastic modulus
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System of equations

One dimensional version of the model byLANE et al. :

µuxxt + uxx − τ(c)x − su= 0,

ct − Dcxx − R(c) − ǫux = 0,

(x, t) ∈ R × [0,+∞), where:

R ∋ u = elastic displacement,

R ∋ c = concentration of free calcium,

µ = µ1 + µ2 = combined shear and bulk viscosities,

0< s = restoring force,

0 ≤ ǫ = contraction stress on the increase ofc,

0< D = Fick’s diffusion constant of calcium.
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Nonlinear terms:

R(c) = autocatalytic term,

τ(c) = contractile forces acting on the medium due toc.

Assumptions:

1. R(0) = R(1) = R(c0) = 0, for somec0 ∈ (0,1).

2.
∫ 1

0 R(c) dc> 0.

3. R′(0) < 0, andR′(1) < 0 (bistable shape),

4. τ ′(c) bounded for allc ∈ (0,1),

5. τ has compact support in(0,1), with τ ≡ 1 for
c ∈ (δ,1− δ), 1≫ δ > 0.
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Form of the nonlinear termsR(c) andτ(c).



Stability of
waves to an

elasto-
chemical

model

Ramón G.
Plaza

The equations

Spectral
stability

Exponential
decay of
constructed
C0-semigroup

Nonlinear
orbital stability

Discussion

Traveling wave solutions

(u, c)(x, t) = (ū, c̄)(x + θt),

θ = wave speed,

with

ū(±∞) = 0, c̄(+∞) = 1, c̄(−∞) = 0.
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Wave equations:

µθū′′′ + ū′′ − (τ(c̄))′ − s̄u = 0,

θc̄′ − Dc̄′′ − R(c̄) − ǫū′ = 0.

x → x + θt, ′ = d/dx (galilean variable).
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Existence of traveling waves for
smallǫ ≥ 0

• G. FLORES, A. M INZONI, K. M ISCHIAKOW, AND

V. M OLL, Nonlinear Anal.36 (1999), no. 1, Ser. A: Theory
Methods, pp. 45–62.

Proposition
For ǫ ≥ 0 suff. small, there exist(ūǫ, c̄ǫ) such that̄uǫ(±∞) = 0,
c̄ǫ(+∞) = 1, c̄ǫ(−∞) = 0, and the speed is uniquely determined
by

θ(ǫ) = θ0 + o(1),

θ0 :=

∫ 1
0 R(c) dc

∫

R
c̄′(x)2 dx

> 0,

Whenǫ = 0, c̄0 is the bistable Nagumo front, with speedθ0.
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Corollary (Exponential decay)

|∂ j
xū

ǫ(x)| . e−|x|/C1, as|x| → +∞, j = 0,1,2,

|∂ i
x(c̄

ǫ(x) − 1)| . e−x/C1, asx → +∞, i = 0,1,

|∂ i
xc̄

ǫ(x)| . e+x/C1, asx → −∞, i = 0,1,

uniform C1 > 0, for all ǫ ∼ 0+.
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Perturbed problem

Let u + ū, c + c̄ be solutions, with(u, c) perturbations.

Nonlinear perturbation equations

µθuxxx + µuxxt + uxx − su− (τ(c + c̄) − τ(c̄))x = 0,

ct + θcx − Dcxx − ǫux − (R(c + c̄) − R(c̄)) = 0.
(NL)

Linearized (around the waves) system for the perturbation

µθuxxx + µuxxt + uxx − su− (τ ′(c̄)c)x = 0,

ct + θcx − Dcxx − ǫux − R′(c̄)c = 0.
(L)
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Results

• G. FLORES AND R. P.,Journal of Differential Eqs.247
(2009), no. 5, pp. 1529–1590.

Theorem 1(Spectral stability)
For eachǫ ≥ 0 sufficiently small, traveling waves(ūǫ, ūǫ) are
spectrally stable andλ = 0 is an isolated simple eigenvalue.
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Theorem 2(Semigroup estimates)
For eachǫ ≥ 0 sufficiently small, there existsω0 > 0 such that for
each inicial cond.(u0, c0) ∈ H2 × H1 there is a global solution
(ux, c) en C([0,+∞); H1 × H1) to system (L) and someα∗ ∈ R

such that

‖(ux, c)(·, t) − α∗(ū
ǫ
xx, c̄

ǫ
x)(·)‖L2×L2 . e−ω0t,

for each t> 0. Moreover, if(u0, c0) ∈ (W1,1 ∩ H3) × H2 then

‖(u, c)(·, t) − α∗(ū
ǫ
x, c̄

ǫ
x)(·)‖L∞×L∞ → 0, if t → +∞.
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Theorem 3(Nonlinear stability)
For eachǫ ≥ 0 sufficiently small there existsη0 > 0 such that, if
(ũ0, c̃0) ∈ H2 × H1 andα0 ∈ R satisfy

‖(ũ0x, c̃0)(·) − (ūǫ
x, c̄

ǫ)(· + α0)‖H1×H1 < η ≤ η0,

Then there exists a unique global solution
(ũx, c̃) ∈ C([0,+∞); H1 × H1) to system (NL) and someα∞ ∈ R

such that
|α0 − α∞| < C1η0,

‖(ũx, c̃)(·, t) − (ūǫ
x, c̄

ǫ)(· + θt + α∞)‖H1×H1 ≤ Cη0e−
1
2ω0t → 0,

as t→ +∞. Moreover, if(ũ0, c̃0) ∈ (W1,1 ∩ H3) × H2 then

‖(u, c)(·, t) − (ūǫ, c̄ǫ)(· + θt + α∞)‖L∞×L∞ ≤ Cη0e−ω0t → 0,

as t→ +∞.
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Spectral problem

Perturbations of form(eλtu(x),eλtc(x)) with λ ∈ C:

µθuxxx + (µλ+ 1)uxx − su− (τ ′(c̄)c)x = 0,

λc + θcx − Dcxx − ǫux − R′(c̄)c = 0.

Necessary condition for stability: no solutions(u, c) ∈ L2 with
Reλ > 0.
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First order system formulation

J. ALEXANDER, R. A. GARDNER, AND C.K.R.T. JONES, J.
Reine Angew. Math.410(1990), pp. 167–212.

Spectral problem:

Wx = Aǫ(x, λ)W,

W := (u,ux,uxx, c, cx)
⊤.

W ∈ L2(R; C5)
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Aǫ(x, λ) :=

=









0 1 0 0 0
0 0 1 0 0

s/µθ 0 −(1 + µλ)/µθ τ ′′(c̄)c̄x/µθ τ ′(c̄)/µθ
0 0 0 0 1
0 −ǫ/D 0 (λ− R′(c̄))/D θ/D








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Asymptotic systems:

Wx = Aǫ
±(λ)W,

Aǫ(λ) :=

=









0 1 0 0 0
0 0 1 0 0

s/µθ 0 −(1 + µλ)/µθ 0 τ ′(n)/µθ
0 0 0 0 1
0 −ǫ/D 0 (λ− R′(n))/D θ/D









n = 0,1 for x = −∞,+∞.



Stability of
waves to an

elasto-
chemical

model

Ramón G.
Plaza

The equations

Spectral
stability

Exponential
decay of
constructed
C0-semigroup

Nonlinear
orbital stability

Discussion

Definition of spectra
Family of densely defined closed operators inL2(R; C5):

T (λ) : D(T ) −→ L2(R; C5),

T (λ)W := Wx − Aǫ(x, λ)W,

domainD(T ǫ) = H1(R; C5), indexed byǫ ≥ 0 andλ ∈ C.
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Definition (Spectra)

ρ := {λ ∈ C : T (λ) is 1 - 1 and ontoT (λ)−1 bounded},

σpt := {λ ∈ C : T (λ) is Fredholm with index 0 and

non-trivial kernel} ,

σess := {λ ∈ C : T (λ) either has non-zero index or is not Fredholm}

The spectrum isσ = σess∪ σpt. SinceT closed, thenρ = C\σ. We
sayλ ∈ σpt is an eignvalue.
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Definition (Multiplicities)
For λ ∈ σpt: (i) Its geometric multiplicity (g.m.) is the maximal
number of linearly independent elements in kerT (λ). (ii) Suppose
λ ∈ σpt has g.m. = 1, so that kerT (λ) = span{W1}. We sayλ
has algebraic multiplicity (a.m.) equal to m if we can solve

T ǫ(λ)Wj = Ãǫ
1(x)Wj−1,

for each j= 2, . . . ,m, with Wj ∈ H1, but there is no H1 solution
W to

T ǫ(λ)W = Ãǫ
1(x)Wm.

For an arbitrary eigenvalueλ ∈ σpt with g.m. = l, the a.m. is
defined as the sum of the multiplicities

∑l
k mk of a maximal set of

linearly independet elements in kerT (λ) = span{W1, . . . ,Wl}.
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Remark : The definition coincides with the usual one for
equations in standard formUt = LU, for a given linearized
operatorL, when written as a first order system. This holds
becausethe Fredholm properties ofL − λ andT (λ) are the same.
See:

• B. SANDSTEDE, Stability of travelling waves, in Handbook
of dynamical systems, Vol. 2, B. Fiedler, ed., North-Holland,
Amsterdam, 2002, pp. 983–1055.

• B. SANDSTEDE AND A. SCHEEL,Proc. Roy. Soc.
Edinburgh Sect. A130 (2000), no. 2, pp. 419–448.

• B. SANDSTEDE AND A. SCHEEL, Math. Nachr.232(2001),
pp. 39–93.
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Definition (Spectral stability)
We say the waves are spectrally stable if

σ ⊂ {λ ∈ C : Reλ < 0} ∪ {0},

i.e., there are no solutions in L2 with Reλ ≥ 0; hereλ = 0 is the
eigenvalue associated to trasnlation invariance, with
eigenfunction(ūx, c̄x).
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Idea:

• For ǫ = 0, spectral stability of the Nagumo and elastic fronts
follow by energy estimates.

• For ǫ ≥ 0 sufficiently small, stability persists due to uniform
convergence of theEvans functionsasǫ→ 0+.
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Evans function

• Ω = open region in the complement of the essential spectrum
containing{Reλ ≥ 0}.

• The Evans functionDǫ(λ) is an analytical function defined
onΩ; its zeroes coincide in location and multiplicity with the
eigenvalues of the spectral problem.

• D can be defined via the Wronskian of the first order system.
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Λ0 := min{|R′(1)|, |R′(0)|,1/µ} > 0

Ω := {λ ∈ C : Reλ > −1
2Λ0}.

In Ω the dimensions of the stable and unstable manifolds of the
asymptotic systemsWx = A±W are contant:

dimUǫ
±(λ) = 2, dimSǫ

±(λ) = 3.
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Algebraic curves for ε = 0
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Algebraic curves limiting the essential spectrum forǫ ∼ 0+. Note
the spectral gap.
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Definition of Evans function:

Dǫ(λ) = det
(
W−

1 (x, λ),W−
2 (x, λ),W+

3 (x, λ),

W+
4 (x, λ),W+

5 (x, λ)
)

|x=0 ,

Properties: Dǫ analytic inΩ, andDǫ = 0 iff λ is an eigenvalue.
The order of the zero coincides with the algebraic multiplicity.
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Facts:

• (ū0, c̄0) are spectrally stable (proof with energy estimates).
λ = 0 is a simple eigenvalue, i.e.,D0(λ) 6= 0 for Reλ ≥ 0,
except forλ = 0; (d/dλ)D0(0) 6= 0.

• For all ǫ ∼ 0+, λ ∈ Ω, Aǫ
±(λ) are hyperbolic with

dimUǫ
±(λ) = 2, dimSǫ

±(λ) = 3. This shows
σess⊂ {Reλ < 0}.

• For all ǫ ≥ 0 fixed,σpt ∩ {Reλ ≥ −1/2µ} is uniformly
bounded.
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• Forλ ∈ Ω, ǫ ≥ 0 small,Uǫ
−,S

ǫ
+ → U0

−,S
0
+ in angle as

ǫ→ 0+ with rateO(ǫ+ δ(ǫ)) =: η(ǫ), i.e.,

|vǫ
j± − v0

j±| ≤ η(ǫ).

for spanning bases. Moreover, by exp. decay of the waves,

|(Aǫ − Aǫ
±) − (A0 − A0

±)| ≤ C2η(ǫ)e
−|x|/C1.
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Convergence result:

• R.P.AND K. ZUMBRUN (Discr. and Cont. Dynam. Syst.10
(2004), no. 4, pp. 885–924).

Under such structural conditions (hiperbolicity, exponential decay,
regularity) the sequence of Evans functionsDǫ converges locally
and uniformly toD0 asǫ→ 0+ with ratio

|Dǫ − D0| ≤ O(ǫ+ |δ(ǫ)|) = O(η(ǫ));

recallθ = θ0 + δ(ǫ), δ(ǫ) = o(1).
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D0(λ) 6= 0 in Reλ ≥ 0, except atλ = 0. Thus,Dǫ(λ) 6= 0 for
ǫ ∼ 0 small (by uniform convergence and analyticity). There are
no non-zero eigenvalues with{Reλ ≥ 0}. The multiplicity
persists by convergence of the derivatives ofDǫ.

This showsTheorem 1.
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Key ideas:

1. Write the linear system (L) in terms of the deformation gradient
(v, c) := (ux, c),

L(∂x, ∂t)(v, c) = 0.

2. Construction of the semigroup associated to the above
equation. Global solution operator:

(v0, c0) ∈ H1 × H1 7→ S(t)(v0, c0) ∈ C([0,+∞); H1 × H1).

Lemma
S(t) is a C0-semigroup in H1 × H1.
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3. S(t) has a densely defined generatorA

A : D ⊂ H1 × H1 −→ H1 × H1,

where
D = (H2 ∩ L1 ∩ U) × H3,

and

U = {u ∈ L2 :

∫

u = 0,
∫ ∫ x

u = 0, two antiderivatives inL2}.

(û(k) has a double zero ink = 0.)
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4. Fredholm properties:

nul(A− λ) ≤ nul (T (λ)),

nul(A∗ − λ∗) ≤ nul (T (λ)∗),

imply

σpt(A) ⊆ σ,

σess(A) ⊆ σ,

Thus, spectral stability for smallǫ ≥ 0.
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5. (ūxx, c̄x)− eigenfunction associated toλ = 0. (ψ̄, φ̄)− adjoint
eigenfunction.

Projection:

P1(v, c) := (v, c) −
〈(v, c), (ψ̄, φ̄)〉H1×H1

Θ
(ūxx, c̄x),

Θ := 〈(ūxx, c̄x), (ψ̄, φ̄)〉H1×H1 6= 0.

X1 := rank of P1 ⊂ H1 × H1,

A1 := A|X1

S1(t) := S(t)P1

is aC0-semigroup inX1.
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5. Resolvent estimates:

(a) For eachǫ ≥ 0, Reλ ≥ 0 and|Imλ| suff. big,

‖(λ−A)−1‖H1→H1 ≤ C,

(b) Forǫ ≥ 0 suff. small and Reλ ≥ 0 big enough

‖(λ−A)−1‖H1→H1 ≤
C

Reλ
.

for some uniformC > 0.

Proof via energy estimates on the resolvent equations
(non-standard for the elastic variable).
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6. Gearhart-Prüss criterion (C0-semigroups in Hilbert spaces):

Since

sup{Reλ : λ ∈ σ(A1)} < 0,

sup
Reλ>0

‖(λ −A1)
−1‖X1→X1 < +∞,

then the semigroupS1(t) on the Hilbert spaceX1 is exponentially
stable:

‖S1(t)(v, c)‖H1 ≤ Ce−ω0t‖(v, c)‖H1 , (v, c) ∈ X1.

This yieldsTheorem 2.
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Ideas:
1. Ansatz of form:

(ṽ, c̃)(x, t) = (v, c)(x + θt + α(t), t) + (ūx, c̄)(x + θt + α(t)),

α(t) = modulated phase depending ont.

• PEGO AND WEINSTEIN, Comm. Math. Phys.164(1994),
pp. 305–349.
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2. Local existence of the decomposition. Findα such that

(v, c)(·, t) ∈ X1.

Implicit function theorem applied to the functional

G[(ṽ, c̃), α](t) := 〈(v, c) , (ψ̄, φ̄)〉H1 = 0

3. Phase modulation equation:

α̇(t) =
Θ−1〈(µ−1N1,N2), (ψ̄, φ̄)〉H1×H1

1− Θ−1〈(v, c), (ψ̄ξ , φ̄ξ)〉H1×H1

Ni = nonlinear terms.
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If (v0, c0) are sufficiently small, by exponential decay of the
semigroupS1, (v, c) remain small. The perturbation is subject to

(v, c)(·, t) ∈ X1.

Projection of the equation ontoX1:

(v, c)t = A1(v, c) + P1Q,

Initial condition:

(v0, c0) = (ṽ0, c̃0) − (ūx, c̄)(· + α0) ∈ X1.
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Stability of
waves to an

elasto-
chemical

model

Ramón G.
Plaza

The equations

Spectral
stability

Exponential
decay of
constructed
C0-semigroup

Nonlinear
orbital stability

Discussion

|α̇(t)| ≤ C̄η2
0e−ω0t, α(t) → α∞.

‖(ṽ, c̃)(·, t) − (ūx, c̄)(· + θt + α(t))‖H1×H1 ≤ Cη0e−
1
2ω0t → 0,

‖(ṽ, c̃)(·, t) − (ūx, c̄)(· + θt + α∞)‖H1×H1 ≤ C̃η0e−ω0t,

if the initial condition is suff. small.

This yieldsTheorem 3.

Details in:FLORES-P, Journal of Differential Eqs.247(2009),
no. 5, pp. 1529–1590.
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‖(ṽ, c̃)(·, t) − (ūx, c̄)(· + θt + α∞)‖H1×H1 ≤ C̃η0e−ω0t,

if the initial condition is suff. small.

This yieldsTheorem 3.

Details in:FLORES-P, Journal of Differential Eqs.247(2009),
no. 5, pp. 1529–1590.



Stability of
waves to an

elasto-
chemical

model

Ramón G.
Plaza

The equations

Spectral
stability

Exponential
decay of
constructed
C0-semigroup

Nonlinear
orbital stability

Discussion

1 The equations

2 Spectral stability

3 Exponential decay of constructedC0-semigroup

4 Nonlinear orbital stability

5 Discussion



Stability of
waves to an

elasto-
chemical

model

Ramón G.
Plaza

The equations

Spectral
stability

Exponential
decay of
constructed
C0-semigroup

Nonlinear
orbital stability

Discussion

• Spectral analysis using a first order formulation and Evans
function methods.

• Definition of spectra compatible with the usual one when the
system is written in standard form.

• Persistence of spectral stability forǫ ∼ 0+ (uniform
convergence of Evans functions).

• Persistence of multiplicity ofλ = 0, eigenfunction(ūx, c̄x).

• Direct construction of theC0-semigroup associated to the
linear equations,withoutgenerating theorems of
Hille-Yosida type.
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• Resolvent estimates allow application of the Gearhart-Prüss
criterion to obtain exponential decay on the Hilbert space,
range of the projection associated to the transaltion
eigenvalue.

• Nonlinear orbital stability by modulating the phase
(Pego-Weinstein). Trivial Jordan block as the speed is
uniquely determined.
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