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Hyperbolic Allen-Cahn equation with
relaxation
Particles or individuals react or interact according to a rate
law f (u) and diffuse. Reaction-diffusion model with
“relaxation”: flux J relaxes to ∇u with relaxation time τ > 0,
small,

ut +divJ = f (u),
τJt +∇u =−J.

x ∈Ω⊂ Rn, t > 0, u = u(x, t) scalar (population density),
J ∈ Rn (flux function). Here diffusion coefficient is D = 1.

When τ→ 0+ one formally recovers the standard
parabolic Allen-Cahn equation: ut = ∆u+ f (u)
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Allen-Cahn (bi-stable) reaction
f ∈ C2([0,1]) satisfies:

f (0) = f (α) = f (1), f ′(0), f ′(1)< 0, f ′(α)> 0
f (u)> 0, u ∈ (0,1), f (u)< 0, u ∈ (−∞,0)∪ (1,+∞)

Bi-stable reaction:

u = 0, u = 1, stable, u = α ∈ (0,1), unstable

e.g. f (u) = u(1−u)(u−α).
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Figure : Bistable reaction f = f (u).
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Prototype for:

• phase separation (Cahn–Hilliard, Ginzburg–Landau)

• nerve conduction (Hogdkin-Huxley, Nagumo)

• kinetics of biomolecular reactions (Mikhailov, Murray)

• population dynamics (Allee effect)

• phase trasitions (Allen-Cahn)
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Hyperbolic Allen-Cahn system in one
dimension
Make J =−v ∈ R1, n = 1, x ∈ R, t > 0:

ut− vx = f (u)
τvt−ux =−v.

(HAC)

Hyperbolic system of equations for u,v, scalars.
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Motivation
• Hyperbolic theory of heat conduction:

Fourier (Fick) empirical heat transfer law:

J =−κ∇u

replaced by a heat transfer law of Cattaneo-Maxwell
type:

τJt +J =−κ∇u, 1� τ > 0

J. C. Maxwell, Trans. Soc. London 157 (1867); Cattaneo, “Sulla conduzione del calore”, Atti. Sem. Mat.

Fis. Univ. Modena 3 (1948)
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• Reaction correlated random walk (1d)

Taylor, Proc. London Math. Soc. (1920); Fürth, Z. Phys. (1920); Goldstein, Quart. J. Mech. Appl. Math. (1951);

Kac, Rocky Mountain J. Math. (1974).

Features:

• Particles or individuals take steps of length ∆x and
duration ∆t

• Particles density: u = u++u−, right and left moving
particles.

• Particles continue previous direction with probability
α = 1−µ∆t, reverse direction with prob. β = µ∆t;
µ = frequency of “turns”.

• Particles, in addition, react with each other: correlated
random walk is Markovian, it is legitimate to add
reaction terms.
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• In the continuum limit

γ = lim
∆t,∆x→0

∆x
∆t

= constant

• Particles travel with speed γ

Reaction correlated random walk equations
(Goldstein-Kac){

∂tu++ γ∂xu+ = µ(u−−u+)+F+(u+,u−)

∂tu−− γ∂xu− = µ(u+−u−)+F−(u+,u−)
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Isotropic reaction:

F+(u+,u−) = F−(u+,u−) = 1
2F(u++u−) = 1

2F(u),

i.e. reaction does not depend on direction of motion.

Substitute u := u++u− (total mass), v = γ(u−−u+)
(particle flux). One recovers (HAC):

ut− vx = f (u)
τvt−Dux =−v.

with correlation time of particle turning process: τ = 1/2µ;
diffusion coefficient D = γ2/(2µ).
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Kac’s trick
Cross differentiate (HAC) to eliminate v:

τutt +(1− τf ′(u))ut = uxx + f (u).

Telegrapher’s equation: Nonlinear wave equation with
“damping” term (1− τf ′(u)). Condition:

0 < τ <
1

sup |f ′(u)|
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Parabolic fronts
Bistable (Allen-Cahn) reaction f ∈ C2. Parabolic equation
ut = uxx + f (u) underlies traveling front solutions:

u(x, t) = U(ξ), ξ = x− ct

U(+∞) = 1, U(−∞) = 0.

Features:

• Unique wave speed cAC

• Profile unique up to translations

• U monotone increasing
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Example: cubic nonlinearity f (u) = u(1−u)(u−α),
α ∈ (0,1)

U(ξ) =
1
2

(
1+ tanh

(
ξ

2
√

2

))
, cAC =

√
2
(
α− 1

2

)
.

General case: phase plane analysis for (U,U′).
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Hyperbolic Allen-Cahn fronts

ut− vx = f (u)
τvt−ux =−v.

(HAC)

Traveling wave solutions: (U,V)(ξ), ξ = x− ct. Profile
equations:

cU′+V ′+F(U) = 0, U′+ cτV ′−V = 0

(U,V)(−∞) = (0,0), (U,V)(+∞) = (1,0)
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Theorem (Existence)
f bistable, let τ satisfy

0 < τ < τm := 1/ sup
u∈[0,1]

|f ′(u)|. (SC)

Then, there exists a unique value c∗ ∈ (−1/
√

τ,1/
√

τ) for
which system (HAC) possesses a traveling wave (U,V)(ξ)
connecting (0,0) with (1,0). Moreover,

• U is monotone increasing

• U and V are positive and converge to their asymptotic
states exponentially fast

• c∗ depends continuously on τ ∈ (0,τm), converges to
cAC as τ→ 0+
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Sketch of proof
• Assuming there is a tws: sgnc =−sgn

∫ 1
0 f (u)du and

c2
τ < 1

(subcharacteristic condition, same interpretation as in
HCL: equilibrium wave speed cannot exceed
characteristic speed of the perturbed wave eqn.)

• Under ξ→ (1− c2τ)−1ξ study

U′= φ(U,V)= cτf (U)+V, V ′=ψ(U,V)=−f (U)−cV

• Saddle points (0,0), (1,0). For c2 < 1/τ, U0(c) =
unstable manifold at 0, S1(c) stable manifold at 1.
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• Shooting method: there exists a unique value c∗ such
that the graphs of U0 and S1 match: v1(c∗) = v0(c∗)

Figure : f (u) = u(1−u)(u−α)(0.5+u), α = 0.4, τ = 1. Manifolds
U0 and S1 are represented for different values of c ∈ (−1,1).
(Monotonicity with respect to the parameter c.) For c = 0.229 the two
curves intersect at u = α = 0.4. Thin red lines = graphs of ±

√
τ f .
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• Monotonicity by contradiction: U′ never changes sign.

• By hyperbolicity of the end points, exponential decay:∣∣∣∣ dj

dξj (U−U±,V)(ξ)

∣∣∣∣≤ C exp(−ν|ξ|) ∀ξ ∈ R

C > 0, j = 0,1,2.

• Continuity on τ: by implicit function theorem on
v0(c,τ) = v1(c,τ)
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Numerics of propagating speed

Graph of the function
α 7→ c∗

for τ = 2 (dashed), 4 (dots), 6 (line). Thin straight line: cAC.
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Graph of the function

α 7→ c∗− cAC

cAC

for τ = 2 (dashed), 4 (dots), 6 (line).
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Main result: nonlinear (orbital) stability

Theorem (Stability)
Let f ∈ C3 bistable, τ ∈ [0,τm). Let (U,V) be a traveling
wave of (HAC) with speed c∗. Then, there exists ε > 0
such that for any (u0,v0)− (U,V) ∈ H1(R) with
‖(u0,v0)− (U,V)‖

H1 < ε, the solution (u,v) to the Cauchy
problem for (HAC) satisfies

‖(u,v)(·, t)− (U,V)(·− c∗t+δ)‖
H1

≤ C‖(u0,v0)− (U,V)‖
H1 e−θ t

for some shift δ ∈ R and constants C,θ > 0.
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Three step program:

• Spectral stability. Linearization around the wave.
The associated operator is spectrally stable
σ(L)⊂ {Re λ < 0}∪{0}

• Semigroup and exponential decay. Resolvent
estimates, generation of a C0 semigroup and
application of Gearhart-Prüss theorem

• Nonlinear (orbital) stability. Suff. small initial
conditions, solutions to nonlinear eq. converge to
δ-shifted profile
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Spectral stability
Main idea: Analyze the problem as an asymptotic limit as
τ→ 0+.
Linearized operator around the wave (U,V)(x), x→ x− ct
(Galilean coordinate):

Lτw =−B−1
(

A
dw
dx

+C(x)w
)
, w = (u,v)> ∈ H1

A=

(
−c −1
−1 −cτ

)
, B=

(
1 0
0 τ

)
, C(x)=

(
−a(x) 0

0 1

)
,

a(x) = f ′(U)

Densely defined closed operator with domain D = H1 to
L2. Stability under localized perturbations.
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Observation: The operator is singular when τ→ 0+. (It is
not defined at τ = 0.) In the limit, it formally converges to a
scalar perturbation equation, the linearized operator
around the parabolic front:

L0u = uxx + cux + f ′(u)u.

Theorem (Henry, Fife-Mcleod)

There exists ω0 > 0 such that the spectrum σ(L0) of the

operator L0 can be decomposed as σ(L0) = {0}∪σ
(0)
− ,

where λ = 0 is an (isolated) eigenvalue with algebraic
multiplicity equal to one and eigenspace generated by
dU/dx ∈ L2(R), and σ

(0)
− is contained in the half-space

{λ ∈ C : Re λ≤−ω0 < 0}.
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Reformulation
Eigenvalue problem: Lw = λw

cu′+ v′+(a−λ)u = 0,
u′+ cτv′− (1+ τλ)v = 0.

Apply (spectral) Kac’s trick:

(1− c2
τ)u′′+ c(1+ τ(2λ−a(x))u′

+
(
(1+ τλ)(a(x)−λ)− cτa′(x)

)
u = 0

Spectral scalar quadratic pencil in λ ∈ C
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Alexander, Gardner, Jones (1990)
Spectral problem can be written as a first order system:

Wx = Aτ(x,λ)W, W = (u,u′)>

Aτ(x,λ) =
1

1− c2τ

(
0 1− c2τ

cτa′+(1+ τλ)(λ−a) c(τa− (1+2τλ))

)
= Aτ

0(x)+λAτ

1(x)+λ
2Aτ

2(x).

Family of closed, densely defined operators:

T τ(λ) : D = H2 ⊂ L2→ L2

T τ(λ)W = Wx−Aτ(x,λ)W.

Observation: Well defined for τ = 0.
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Definition (cf. Sandstede (2002))
The resolvent ρ, the point spectrum σpt and the essential
spectrum σess are defined as:

ρ = {λ ∈ C : T τ(λ) is one-to-one and onto, and

T τ(λ)−1 is bounded},
σpt = {λ ∈ C : T τ(λ) is Fredholm with zero index

and has a non-trivial kernel},
σess = {λ ∈ C : T τ(λ) is either not Fredholm or

has index different from zero}.

The spectrum is σ = σess∪σpt. (T τ(λ) closed⇒ ρ =C\σ.)

Ramón G. Plaza — Traveling fronts for Allen-Cahn model with relaxation — 10th IMACS International Conference in Nonlinear Waves. Athens, GA. March 29-31, 2017.
Slide 31/62



U N I V E R S I D A D N A C I O N A L A U T O N O M A D E M E X I C O I I M A S

Spectral Kac’s transformation:

K : ker(Lτ−λ)⊂ H1 → kerT τ(λ)⊂ H1,

K(u,v) = (u,u′)> = W, for each (u,v) ∈ ker(Lτ−λ),

Lemma
K is one-to-one and onto.

Lemma
K induces a one-to-one correspondence between Jordan
chains with same block structure and length.
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Simple eigenvalue λ = 0

Lemma
For each τ ∈ [0,τm), λ = 0 is a simple eigenvalue
associated to (U′,V ′).

Proof sketch:
By studying the adjoint equation

Yx =−Aτ(x,0)∗Y,

has a unique bounded solution Y0 = (ζ,η)> ∈ H1, and by
computing the Melnikov-type integral

Γ := 〈Y0,Aτ
1(x)W0〉L2 =

∫ +∞

−∞

(
ζ

η

)∗
Aτ

1(x)
(

Ux
Uxx

)
dx,

W0 = (Ux,Uxx)
>.
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Γ = a−1
0 (1+ c2

τa−1
0 )

∫ +∞

−∞

|1− τa(x)|exp
(∫ x

0
a1(y)/a0 dy

)
|Ux|2dx

> 0,

where

a0 = 1− c2
τ > 0, a1(x) = c(1− τa(x)).
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No purely imaginary point spectrum

Lemma
For each τ ∈ [0,τm): if λ is an eigenvalue and λ ∈ iR, then
λ = 0.

Proof sketch: Follows by energy estimates: make
u(x) = w(x)z(x) with z(x) = exp(−

∫ x b) and
b =−a1/2a0,

wxx +αλwx−β(x,λ)w = 0,

with

α =
2cτ

1− c2τ

Ramón G. Plaza — Traveling fronts for Allen-Cahn model with relaxation — 10th IMACS International Conference in Nonlinear Waves. Athens, GA. March 29-31, 2017.
Slide 35/62



U N I V E R S I D A D N A C I O N A L A U T O N O M A D E M E X I C O I I M A S

β(x,λ) =
1

4a2
0

(
a1(x)2−4a0a2(x)−2a0a′1(x)

)
+

(1− τa(x))
a2

0
λ+

τ

a0
λ

2.

Multiply by w̄, integrate in R:∫
R

Imλ
{

2cτ(1−c2
τ)Re (wxw̄) +

(
1−τa(x)

)
|w|2

}
dx = 0.

(by assumption, λ ∈ iR). For λ 6= 0, thanks to

Re (w̄wx) =
1
2

(
|w|2

)
x,

we conclude w = 0 a.e. since 1− τa(x)> 0.
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Stability of σess

Determined by asymptotic operators as x→±∞.
Fredholm curves λ roots of

det(iξ−Aτ
±(λ)) = 0.

Aτ
± = limx→±∞Aτ(x,λ).

Lemma
For each 0 < τ < τm, there exists a uniform

χ0 =
1
2

min{δ+,δ−}> 0,

such that the algebraic curves λ = λ
±
1,2(ξ), ξ ∈ R, satisfy

Reλ
±
1,2(ξ)<−χ0 < 0,
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Ω = {λ ∈ C : Re λ >−χ0}

Lemma

For all 0 < τ < τm, and all λ ∈Ω, the coefficient matrices
Aτ
±(λ) have no center eigenspace and, moreover,

dimSτ
±(λ) = dimUτ

±(λ) = 1.

Corollary (Stability of the essential spectrum)
For each 0 < τ < τm, the essential spectrum is contained
in the stable half-plane. More precisely,

σess ⊂ {λ ∈ C : Re λ≤−χ0 < 0}.
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Stability of σpt

Continuation argument gives

u′′+
{

a(x)+
(
τa(x)−1

)
λ− τλ

2}u≈ u′′+
{

a(x)−λ
}

u

Based on Evans function: convergence of approximate
flows leads to spectral description (small τ)
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Evans function

Sτ
+ = span{w+(λ)}, Uτ

− = span{w−(λ)},

Definition

Dτ(λ) := det(w−(λ), w+(λ)), λ ∈Ω.

Properties:

• Dτ is analytic in λ ∈Ω;

• Dτ(λ) = 0 if and only if λ ∈ σpt∩Ω; and,

• the order of λ as a zero of Dτ is equal to its algebraic
multiplicity

(cf. AGJ (1990); Sandstede (2002))
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Gap lemma: (Kapitula, Sandstede (1997); Gardner,
Zumbrun (1997))
Exponential decay⇒ def. of Evans function near σess.

Evans function for τ = 0, i.e. stability of the Nagumo front:

Corollary
D0(λ) 6= 0 for all Re λ≥ 0, λ 6= 0. Moreover, λ = 0 is a
simple zero of D0(·).
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Convergence of approximate flows (P, Zumbrun (2004)):

Theorem
Under suitable structural assumptions (exp. decay, limits of
Sτ
± and Uτ

± along λ-rays, λ = rλ0 as r→ 0+, λ0 ∈Ω, and

|(Aτ−Aτ
±)− (A0−A0

±)| ≤ C1η(τ)e−ν̃|x|,

then the local Evans functions Dτ converge uniformly to
D0:

|Dτ−D0| ≤ Cη(τ)→ 0,

locally in λ.
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Point spectral stability:
Compact subset of Ω:

ΩR := {λ ∈ C : |λ| ≤ R, Re λ≥−1
2χ0}.

By approximation theorem, for τ small, in a
ΩR-neighborhood of λ, uniform convergence of Dτ(λ) to
D0(λ) in a (possible smaller) neighborhood of λ as τ→ 0+

with rate

|Dτ(·)−D0(·)|= O(η(τ)) = O(τ+ |ζ(τ)|)→ 0

Thus, Dτ(λ) 6= 0 for λ ∈ΩR, Re λ≥ 0, except only at
λ = 0, and for each 0≤ τ� 1 sufficiently small.
By continuity argument and no crossing of eigenvalues
with fixed multiplicity of the imaginary axis, extends to
0 < τ < τm.
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Theorem (Spectral stability)
For each τ ∈ (0,τm), there exists ω0(τ)> 0 such that

σ(Lτ) = {0}∪σ
(τ)
−

where λ = 0 is an (isolated) eigenvalue with algebraic
multiplicity equal to one and eigenspace generated by
(dU/dx,dV/dx) ∈ H1, and σ

(0)
− is contained in the

half-space {λ ∈ C : Re λ≤−ω0}.
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Linear stability
The spectral mapping property etσ(L) = σ(eL t)\{0} is
NOT always satisfied. Counterexamples can be produced
using hyperbolic equation.

In the hyperbolic case, spectral stability does not imply linear
stability!
Problems stem from the behavior of the resolvent kernel for
large λ.
The Gearhart–Prüss Theorem states that, for
Σr = {Re λ≥ 0, |λ| ≥ r},

spectral stability+ sup
λ∈Σr

|(λ−L)−1|<+∞ ⇒ linear stability
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Resolvent estimates
Technical lemma. Consider Aw′+(λB+C(x))w = ψ;
“large λ” means rapid oscillations, C = C(x) is “constant”
at such scale:

Lemma
There exists M,r > 0 such that

|w(·;λ)|Hm ≤M|ψ|Hm

for |λ| ≥ r.

Based on an approximate diagonalization procedure
(Mascia, Zumbrun (2002)).
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By Hille-Yosida theorem:

Lemma
For each τ ∈ (0,τm), the operator Lτ : D = H1→ L2 is the
infinitesimal generator of a C0-semigroup of
quasi-contractions {T(t)}t≥0.
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Linear stability
By resolvent estimates we project out the eigenspace
spanned by (U′,V ′), direct application of Gearhart-Prüss
theorem:

Theorem (Linear stability)
There exists a projection operator π = I−P with
one-dimensional range {κ(U′,V ′) : κ ∈ R} such that for
any t > 0

T(t)π = πT(t) = π and ‖T(t)(I−π)‖ ≤ C e−θt

for some C,θ > 0.
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Nonlinear stability
General orbital stability result:
W - Banach space, norm | · |W , Br(W) open ball. F
smooth function, F : D ⊂W →W such that: F(W) = 0
for some W ∈D . Assume, for some r > 0:

{W ∈ Rn : F(W) = 0}∩{|W−W|W < r}= φ(I)

for some smooth function φ : I→ Rn, I open interval.
W.l.o.g. we may assume 0 ∈ I and φ(0) = W.

Cauchy problem:

dW
dt

= F(W) W(0) = W0 ∈D
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The linearized problem at φ(δ) is

dZ
dt

= dF(φ(δ))Z Z(0) = Z0 ∈D

Projection:

Q(δ) = I−P(δ)

associated to one-dim eigenspace spanned by r(δ),
e-vector of dF(φ(δ)).
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General hypotheses:
H1. There exist C,θ > 0 such that the solution
Z = Z(t;Z0,δ)

|Q(δ)Z(t;Z0,δ)| ≤ Ce−θt|Q(δ)Z0|

for any Z0 ∈D .

H2. φ is differentiable at δ = 0 and there exist C,δ0,γ > 0:

|φ(δ)−φ(0)−φ
′(0)δ|W ≤ Cδ

1+γ,

for |δ|< δ0.

H3. There exist C,M,δ0,γ > 0 such that F is differentiable
at φ(δ) for any δ ∈ (−δ0,δ0) and

|F(φ(δ)+W)−F(φ(δ))−dF(φ(δ))W|W ≤ C|W|1+γ

W
,

for |δ|< δ0 and |W|W ≤M.
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Theorem
Under H1, H2 and H3, there exists ε > 0 such that for any
W0 ∈ Bε(W̄) there exists δ ∈ I for which the solution
W(t;W0) to the Cauchy problem satisfies

|W(t;W0)−φ(δ)|W ≤ C|W0−W|W e−θ t

for some C,θ > 0

Orbital stability of fronts for (HAC) follows by verifying
hypotheses (H2) and (H3), with

W =H1(R;R2), W̄ = 0, φ(δ)= (U,V)(·+δ)−(U,V)(·).

(H1) is implied by linear stability.
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1 Allen-Cahn model with relaxation

2 Hyperbolic reaction-diffusion fronts

3 Stability

4 Numerical experiments

Ramón G. Plaza — Traveling fronts for Allen-Cahn model with relaxation — 10th IMACS International Conference in Nonlinear Waves. Athens, GA. March 29-31, 2017.
Slide 53/62



U N I V E R S I D A D N A C I O N A L A U T O N O M A D E M E X I C O I I M A S

Numerical scheme
Reactive Goldstein-Kac model correlated random
walk:{

∂tu++ γ∂xu+ = 1
2τ
(u−−u+)+ 1

2 f (u++u−),

∂tu−− γ∂xu− = 1
2τ
(u+−u−)+ 1

2 f (u++u−).

with,

γ =
1√
τ
, u− = 1

2(u+ γ
−1v), u+ = 1

2(u− γ
−1v).
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Scheme

Mesh size: dx > 0. Discretize the space, upwind
approximation of first order space derivatives,
rj ≈ u−(jdx, t), sj ≈ u+(jdx, t).


drj

dt
=

γ

dx
(
rj+1− rj

)
+

1
2τ

(−rj + sj)+
1
2

f (rj + sj),

dsj

dt
=− γ

dx
(
sj− sj−1

)
+

1
2τ

(rj− sj)+
1
2

f (rj + sj).
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Time step dt > 0, discretize time derivative by
implicit-explicit approach (discretize implicitly only linear
terms):

rn+1
j − rn

j

dt
=

γ

dx
(rn+1

j+1 − rn+1
j )+

1
2τ

(sn+1
j − rn+1

j )+
1
2

f (rn
j + sn

j )

sn+1
j − sn

j

dt
=− γ

dx
(sn+1

j−1 − sn+1
j )+

1
2τ

(rn+1
j − sn+1

j )+
1
2

f (rn
j + sn

j )

Set

α = γ
dt
dx

, β =
dt
2τ

, f n
j = f (rn

j + sn
j )
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Algebraic manipulations furnish the explicit iterative algorithm

rn+1 = (S−α
2D−D+)

−1
{
[(1+β)I+αD−]rn +βsn+

+ 1
2 [(1+2β)I+αD−] f ndt

}
sn+1 = (S−α

2D+D−)−1
{

βrn +[(1+β)I−αD+]sn+

+ 1
2 [(1+2β)I−αD+] f ndt

}
where D− = (δi,j−δi,j+1), D+ = (δi+1,j−δi,j) (discrete
derivatives), and

S := (1+2β)I+α(1+β)(D−−D+)

S symmetric.

Ramón G. Plaza — Traveling fronts for Allen-Cahn model with relaxation — 10th IMACS International Conference in Nonlinear Waves. Athens, GA. March 29-31, 2017.
Slide 57/62



U N I V E R S I D A D N A C I O N A L A U T O N O M A D E M E X I C O I I M A S

The Riemann problem
Conjecture: any bounded initial data such that

limsup
x→−∞

u0(x)< α < liminf
x→+∞

u0(x),

gives raise to a solution, asymptotically convergent to a
member of the traveling fronts connecting equilibria u = 0
with u = 1.

Parameter values: τ = 4, `= 25, dx = 0.125, dt = 0.01.

Riemann initial data: u0(x) = χ(0,`)(x), in (−`,`),
non-flux b.c. at x =±`.
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Figure : Riemann problem with initial datum χ
(0,`) in (−`,`),

`= 25. Left: solution profiles zoomed in the interval (−5,5) at
time t = 1 (dash-dot), t = 5 (dash), t = 15 (continuous), for
comparison, solution to the parabolic Allen–Cahn equation at
time t = 1 (dot). Right: Decay of the L2 distance to the exact
equilibrium solution for the hyperbolic (continuous) and parabolic
(dot) Allen–Cahn equations.
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Randomly perturbed initial data

Figure : Random initial data in (−`,`), `= 25 (squares). Solution
profiles for the hyperbolic Allen–Cahn equation with relaxation at time
t = 0.5 (dot), t = 7.5 (dash), t = 15 (continuous).
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Comparison to parabolic Allen–Cahn

Figure : Random initial data in (−`,`), `= 25 (squares). Solution
profiles for the parabolic Allen–Cahn equation at time t = 0.5 (dot),
t = 7.5 (dash), t = 15 (continuous).
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Thank you!
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