Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas

Spectral and nonlinear stability of traveling fronts for a hyperbolic Allen-Cahn model with relaxation

Ramón G. Plaza Institute of Applied Mathematics (IIMAS), National Autonomous University of Mexico (UNAM)

Collaborators:

- Corrado Mascia (Univ. di Roma, 'La Sapienza')
- Corrado Lattanzio (Univ. dell'Aquila)
- Chiara Simeoni (Univ. of Nice, Sophia-Antipolis)

Reference: Lattanzio, Mascia, P, Simeoni, *Math. Models Methods Appl. Sci.* 26 (2016), 931-985.

Sponsors:

MIUR (Italy)

CONACyT (Mexico)

Ministero dell'Istruzione, dell'Università e della Ricerca

Joint project no. 146529

Allen-Cahn model with relaxation

Hyperbolic reaction-diffusion fronts

Stability

Numerical experiments

Ramón G. Plaza — Traveling fronts for Allen-Cahn model with relaxation — 10th IMACS International Conference in Nonlinear Waves. Athens, GA. March 29-31, 2017. Slide 3/62

IIMAS

Hyperbolic Allen-Cahn equation with relaxation

Particles or individuals react or interact according to a rate law f(u) and diffuse. Reaction-diffusion model with "relaxation": flux J relaxes to ∇u with relaxation time $\tau > 0$, small,

 $u_t + \operatorname{div} \boldsymbol{J} = f(\boldsymbol{u}),$ $\tau \boldsymbol{J}_t + \nabla \boldsymbol{u} = -\boldsymbol{J}.$

 $x \in \Omega \subset \mathbb{R}^n$, t > 0, u = u(x,t) scalar (population density), $J \in \mathbb{R}^n$ (flux function). Here diffusion coefficient is D = 1.

When $\tau \rightarrow 0^+$ one formally recovers the standard parabolic Allen-Cahn equation: $u_t = \Delta u + f(u)$

Allen-Cahn (bi-stable) reaction

 $f \in C^2([0,1])$ satisfies:

$$\begin{aligned} f(0) &= f(\alpha) = f(1), & f'(0), f'(1) < 0, \ f'(\alpha) > 0 \\ f(u) &> 0, \ u \in (0, 1), & f(u) < 0, \ u \in (-\infty, 0) \cup (1, +\infty) \end{aligned}$$

Bi-stable reaction:

Slide 5/62

u = 0, u = 1, stable, $u = \alpha \in (0, 1)$, unstable

e.g.
$$f(u) = u(1-u)(u-\alpha)$$
.

Figure : Bistable reaction f = f(u).

Ramón G. Plaza — Traveling fronts for Allen-Cahn model with relaxation — 10th IMACS International Conference in Nonlinear Waves. Athens, GA. March 29-31, 2017. Slide 6/62 Prototype for:

- phase separation (Cahn–Hilliard, Ginzburg–Landau)
- nerve conduction (Hogdkin-Huxley, Nagumo)
- kinetics of biomolecular reactions (Mikhailov, Murray)
- population dynamics (Allee effect)
- phase trasitions (Allen-Cahn)

Hyperbolic Allen-Cahn system in one dimension

Make $J = -v \in \mathbb{R}^1$, n = 1, $x \in \mathbb{R}$, t > 0:

$$u_t - v_x = f(u)$$

$$\tau v_t - u_x = -v.$$
 (HAC)

Hyperbolic system of equations for u, v, scalars.

Ramón G. Plaza — Traveling fronts for Allen-Cahn model with relaxation — 10th IMACS International Conference in Nonlinear Waves. Athens, GA. March 29-31, 2017. Slide 8/62

Motivation

• Hyperbolic theory of heat conduction: Fourier (Fick) empirical heat transfer law:

$$\boldsymbol{J} = -\kappa \nabla u$$

replaced by a heat transfer law of Cattaneo-Maxwell type:

$$\tau \boldsymbol{J}_t + \boldsymbol{J} = -\kappa \nabla u, \qquad 1 \gg \tau > 0$$

J. C. Maxwell, Trans. Soc. London 157 (1867); Cattaneo, "Sulla conduzione del calore", Atti. Sem. Mat.

Fis. Univ. Modena 3 (1948)

IIMAS

• Reaction correlated random walk (1d)

Taylor, Proc. London Math. Soc. (1920); Fürth, Z. Phys. (1920); Goldstein, Quart. J. Mech. Appl. Math. (1951);

Kac, Rocky Mountain J. Math. (1974).

Features:

- Particles or individuals take steps of length Δx and duration Δt
- Particles density: $u = u^+ + u^-$, right and left moving particles.
- Particles continue previous direction with probability $\alpha = 1 \mu \Delta t$, reverse direction with prob. $\beta = \mu \Delta t$; $\mu =$ frequency of "turns".
- Particles, in addition, react with each other: correlated random walk is Markovian, it is legitimate to add reaction terms.

• In the continuum limit

$$\gamma = \lim_{\Delta t, \Delta x \to 0} \frac{\Delta x}{\Delta t} = \text{constant}$$

Particles travel with speed γ

Reaction correlated random walk equations (Goldstein-Kac)

$$\begin{cases} \partial_t u^+ + \gamma \partial_x u^+ = \mu(u^- - u^+) + F_+(u^+, u^-) \\ \partial_t u^- - \gamma \partial_x u^- = \mu(u^+ - u^-) + F_-(u^+, u^-) \end{cases}$$

Isotropic reaction:

$$F_{+}(u^{+}, u^{-}) = F_{-}(u^{+}, u^{-}) = \frac{1}{2}F(u^{+} + u^{-}) = \frac{1}{2}F(u),$$

i.e. reaction does not depend on direction of motion. Substitute $u := u_+ + u_-$ (total mass), $v = \gamma(u^- - u^+)$ (particle flux). One recovers (HAC):

$$u_t - v_x = f(u)$$
$$\tau v_t - Du_x = -v.$$

with correlation time of particle turning process: $\tau = 1/2\mu$; diffusion coefficient $D = \gamma^2/(2\mu)$.

IIMAS

Kac's trick

Cross differentiate (HAC) to eliminate v:

$$\tau u_{tt} + (1 - \tau f'(u))u_t = u_{xx} + f(u).$$

Telegrapher's equation: Nonlinear wave equation with "damping" term $(1 - \tau f'(u))$. Condition:

$$0 < \tau < \frac{1}{\sup |f'(u)|}$$

Ramón G. Plaza — Traveling fronts for Allen-Cahn model with relaxation — 10th IMACS International Conference in Nonlinear Waves. Athens, GA. March 29-31, 2017. Slide 13/62

Allen-Cahn model with relaxation

Hyperbolic reaction-diffusion fronts

Stability

Numerical experiments

Ramón G. Plaza — Traveling fronts for Allen-Cahn model with relaxation — 10th IMACS International Conference in Nonlinear Waves. Athens, GA. March 29-31, 2017. Slide 14/62

Parabolic fronts

Bistable (Allen-Cahn) reaction $f \in C^2$. Parabolic equation $u_t = u_{xx} + f(u)$ underlies **traveling front solutions**:

$$u(x,t) = U(\xi), \qquad \xi = x - ct$$

$$U(+\infty) = 1, \qquad U(-\infty) = 0.$$

Features:

- Unique wave speed c_{AC}
- Profile unique up to translations
- U monotone increasing

IIMAS

IIMAS

Example: cubic nonlinearity $f(u) = u(1-u)(u-\alpha)$, $\alpha \in (0,1)$

$$U(\xi) = \frac{1}{2} \left(1 + \tanh\left(\frac{\xi}{2\sqrt{2}}\right) \right), \qquad c_{\rm AC} = \sqrt{2} \left(\alpha - \frac{1}{2} \right).$$

General case: phase plane analysis for (U, U').

Ramón G. Plaza — Traveling fronts for Allen-Cahn model with relaxation — 10th IMACS International Conference in Nonlinear Waves. Athens, GA. March 29-31, 2017. Slide 16/62

IIMAS

Hyperbolic Allen-Cahn fronts

$$u_t - v_x = f(u)$$

$$\tau v_t - u_x = -v.$$
(HAC)

Traveling wave solutions: $(U, V)(\xi)$, $\xi = x - ct$. Profile equations:

$$cU' + V' + F(U) = 0,$$
 $U' + c\tau V' - V = 0$

$$(U,V)(-\infty) = (0,0), \quad (U,V)(+\infty) = (1,0)$$

Theorem (Existence)

f bistable, let τ satisfy

$$0 < \tau < \tau_m := 1 / \sup_{u \in [0,1]} |f'(u)|.$$
 (SC)

Then, there exists a unique value $c_* \in (-1/\sqrt{\tau}, 1/\sqrt{\tau})$ for which system (HAC) possesses a traveling wave $(U, V)(\xi)$ connecting (0,0) with (1,0). Moreover,

- U is monotone increasing
- *U* and *V* are positive and converge to their asymptotic states exponentially fast
- c_* depends continuously on $\tau \in (0, \tau_m)$, converges to c_{AC} as $\tau \to 0^+$

Sketch of proof

• Assuming there is a tws: $\operatorname{sgn} c = -\operatorname{sgn} \int_0^1 f(u) du$ and

$$c^2 \tau < 1$$

(subcharacteristic condition, same interpretation as in HCL: equilibrium wave speed cannot exceed characteristic speed of the perturbed wave eqn.)

• Under $\xi \rightarrow (1 - c^2 \tau)^{-1} \xi$ study

$$U' = \phi(U, V) = c \tau f(U) + V, \quad V' = \psi(U, V) = -f(U) - cV$$

Saddle points (0,0), (1,0). For c² < 1/τ, U₀(c) = unstable manifold at 0, S₁(c) stable manifold at 1.

Shooting method: there exists a unique value c_{*} such that the graphs of U₀ and S₁ match: v₁(c_{*}) = v₀(c_{*})

Figure : $f(u) = u(1-u)(u-\alpha)(0.5+u)$, $\alpha = 0.4$, $\tau = 1$. Manifolds U_0 and S_1 are represented for different values of $c \in (-1, 1)$. (Monotonicity with respect to the parameter *c*.) For c = 0.229 the two curves intersect at $u = \alpha = 0.4$. Thin red lines = graphs of $\pm \sqrt{\tau}f$.

- Monotonicity by contradiction: U' never changes sign.
- By hyperbolicity of the end points, exponential decay:

$$\left|\frac{d^{j}}{d\xi^{j}}(U-U_{\pm},V)(\xi)\right| \leq C\exp(-\nu|\xi|) \quad \forall \xi \in \mathbb{R}$$

$$C > 0, j = 0, 1, 2.$$

• Continuity on τ : by implicit function theorem on $v_0(c,\tau) = v_1(c,\tau)$

Numerics of propagating speed

Graph of the function

 $\alpha \mapsto c_*$

for $\tau = 2$ (dashed), 4 (dots), 6 (line). Thin straight line: c_{AC} .

Graph of the function

$$\alpha \mapsto \frac{c_* - c_{\rm AC}}{c_{\rm AC}}$$

for $\tau = 2$ (dashed), 4 (dots), 6 (line).

Allen-Cahn model with relaxation

Hyperbolic reaction-diffusion fronts

Stability

Numerical experiments

Ramón G. Plaza — Traveling fronts for Allen-Cahn model with relaxation — 10th IMACS International Conference in Nonlinear Waves. Athens, GA. March 29-31, 2017. Slide 24/62

Main result: nonlinear (orbital) stability

Theorem (Stability)

Let $f \in C^3$ bistable, $\tau \in [0, \tau_m)$. Let (U, V) be a traveling wave of (HAC) with speed c_* . Then, there exists $\varepsilon > 0$ such that for any $(u_0, v_0) - (U, V) \in H^1(\mathbb{R})$ with $\|(u_0, v_0) - (U, V)\|_{H^1} < \varepsilon$, the solution (u, v) to the Cauchy problem for (HAC) satisfies

$$\begin{aligned} \|(u,v)(\cdot,t) - (U,V)(\cdot - c_*t + \delta)\|_{H^1} \\ &\leq C \|(u_0,v_0) - (U,V)\|_{H^1} e^{-\theta t} \end{aligned}$$

for some shift $\delta \in \mathbb{R}$ and constants $C, \theta > 0$.

Three step program:

- Spectral stability. Linearization around the wave. The associated operator is *spectrally stable* $\sigma(\mathcal{L}) \subset \{\text{Re } \lambda < 0\} \cup \{0\}$
- Semigroup and exponential decay. Resolvent estimates, generation of a *C*₀ semigroup and application of Gearhart-Prüss theorem
- Nonlinear (orbital) stability. Suff. small initial conditions, solutions to nonlinear eq. converge to δ-shifted profile

Spectral stability

Main idea: Analyze the problem as an asymptotic limit as $\tau \to 0^+.$

Linearized operator around the wave (U, V)(x), $x \rightarrow x - ct$ (Galilean coordinate):

$$\mathcal{L}^{\tau}w = -B^{-1}\left(A\frac{dw}{dx} + C(x)w\right), \qquad w = (u,v)^{\top} \in H^{1}$$
$$A = \begin{pmatrix} -c & -1\\ -1 & -c\tau \end{pmatrix}, \qquad B = \begin{pmatrix} 1 & 0\\ 0 & \tau \end{pmatrix}, \qquad C(x) = \begin{pmatrix} -a(x) & 0\\ 0 & 1 \end{pmatrix},$$
$$a(x) = f'(U)$$

Densely defined closed operator with domain $\mathcal{D} = H^1$ to L^2 . Stability under **localized** perturbations.

Ramón G. Plaza — Traveling fronts for Allen-Cahn model with relaxation — 10th IMACS International Conference in Nonlinear Waves. Athens, GA. March 29-31, 2017. Slide 27/62

Observation: The operator is singular when $\tau \rightarrow 0^+$. (It is not defined at $\tau = 0$.) In the limit, it formally converges to a scalar perturbation equation, the linearized operator around the parabolic front:

$$L_0 u = u_{xx} + cu_x + f'(u)u.$$

Theorem (Henry, Fife-Mcleod)

There exists $\omega_0 > 0$ such that the spectrum $\sigma(L_0)$ of the operator L_0 can be decomposed as $\sigma(L_0) = \{0\} \cup \sigma_-^{(0)}$, where $\lambda = 0$ is an (isolated) eigenvalue with algebraic multiplicity equal to one and eigenspace generated by $dU/dx \in L^2(\mathbb{R})$, and $\sigma_-^{(0)}$ is contained in the half-space $\{\lambda \in \mathbb{C} : \text{Re } \lambda \leq -\omega_0 < 0\}$.

Observation: The operator is singular when $\tau \rightarrow 0^+$. (It is not defined at $\tau = 0$.) In the limit, it formally converges to a scalar perturbation equation, the linearized operator around the parabolic front:

$$L_0 u = u_{xx} + cu_x + f'(u)u.$$

Theorem (Henry, Fife-Mcleod)

There exists $\omega_0 > 0$ such that the spectrum $\sigma(L_0)$ of the operator L_0 can be decomposed as $\sigma(L_0) = \{0\} \cup \sigma_-^{(0)}$, where $\lambda = 0$ is an (isolated) eigenvalue with algebraic multiplicity equal to one and eigenspace generated by $dU/dx \in L^2(\mathbb{R})$, and $\sigma_-^{(0)}$ is contained in the half-space $\{\lambda \in \mathbb{C} : \text{Re } \lambda \leq -\omega_0 < 0\}.$

Reformulation

Eigenvalue problem: $\mathcal{L}w = \lambda w$

$$cu' + v' + (a - \lambda)u = 0,$$

$$u' + c\tau v' - (1 + \tau\lambda)v = 0.$$

Apply (spectral) Kac's trick:

$$(1-c^{2}\tau)u''+c(1+\tau(2\lambda-a(x))u') + ((1+\tau\lambda)(a(x)-\lambda)-c\tau a'(x))u = 0$$

Spectral scalar quadratic pencil in $\lambda\in\mathbb{C}$

Ramón G. Plaza — Traveling fronts for Allen-Cahn model with relaxation — 10th IMACS International Conference in Nonlinear Waves. Athens, GA. March 29-31, 2017. Slide 29/62

Reformulation

Eigenvalue problem: $\mathcal{L}w = \lambda w$

$$cu' + v' + (a - \lambda)u = 0,$$

$$u' + c\tau v' - (1 + \tau\lambda)v = 0.$$

Apply (spectral) Kac's trick:

$$(1-c^{2}\tau)u''+c(1+\tau(2\lambda-a(x))u') + ((1+\tau\lambda)(a(x)-\lambda)-c\tau a'(x))u = 0$$

Spectral scalar quadratic pencil in $\lambda \in \mathbb{C}$

Alexander, Gardner, Jones (1990) Spectral problem can be written as a first order system:

$$W_x = \mathbb{A}^{\tau}(x,\lambda)W, \qquad W = (u,u')^{\top}$$

$$\begin{split} \mathbb{A}^{\tau}(x,\lambda) &= \frac{1}{1-c^{2}\tau} \begin{pmatrix} 0 & 1-c^{2}\tau \\ c\tau a' + (1+\tau\lambda)(\lambda-a) & c(\tau a - (1+2\tau\lambda)) \end{pmatrix} \\ &= A_{0}^{\tau}(x) + \lambda \mathbb{A}_{1}^{\tau}(x) + \lambda^{2} \mathbb{A}_{2}^{\tau}(x). \end{split}$$

Family of closed, densely defined operators:

$$\mathcal{T}^{\tau}(\lambda) : \mathcal{D} = H^2 \subset L^2 \to L^2$$
$$\mathcal{T}^{\tau}(\lambda)W = W_x - \mathbb{A}^{\tau}(x,\lambda)W.$$

Observation: Well defined for $\tau = 0$.

Ramón G. Plaza — Traveling fronts for Allen-Cahn model with relaxation — 10th IMACS International Conference in Nonlinear Waves. Athens, GA. March 29-31, 2017. Slide 30/62

Definition (cf. Sandstede (2002))

The resolvent ρ , the point spectrum σ_{pt} and the essential spectrum σ_{ess} are defined as:

$$\begin{split} \rho &= \{\lambda \in \mathbb{C} \ : \ \mathcal{T}^\tau(\lambda) \text{ is one-to-one and onto, and} \\ \mathcal{T}^\tau(\lambda)^{-1} \text{ is bounded} \}, \\ \sigma_{_{\text{pt}}} &= \{\lambda \in \mathbb{C} \ : \ \mathcal{T}^\tau(\lambda) \text{ is Fredholm with zero index} \\ \text{ and has a non-trivial kernel} \}, \\ \sigma_{_{\text{ess}}} &= \{\lambda \in \mathbb{C} \ : \ \mathcal{T}^\tau(\lambda) \text{ is either not Fredholm or} \\ \text{ has index different from zero} \}. \end{split}$$

 $\text{The } \textit{spectrum} \text{ is } \sigma = \sigma_{\text{\tiny ess}} \cup \sigma_{\text{\tiny pt}}. \ (\mathcal{T}^\tau(\lambda) \text{ closed} \Rightarrow \rho = \mathbb{C} \backslash \sigma.)$

Spectral Kac's transformation:

$$egin{aligned} &K: \ker(\mathcal{L}^{ au}-\lambda)\subset H^1 o \ker\mathcal{T}^{ au}(\lambda)\subset H^1,\ &K(u,v)=(u,u')^{ op}=W, \qquad ext{for each }(u,v)\in\ker(\mathcal{L}^{ au}-\lambda), \end{aligned}$$

Lemma

K is one-to-one and onto.

Lemma

K induces a one-to-one correspondence between Jordan chains with same block structure and length.

${\rm I~I~M~A~S}$

Spectral Kac's transformation:

$$K : \ker(\mathcal{L}^{\tau} - \lambda) \subset H^1 \to \ker \mathcal{T}^{\tau}(\lambda) \subset H^1,$$

 $K(u, v) = (u, u')^{\top} = W, \quad \text{ for each } (u, v) \in \ker(\mathcal{L}^{\tau} - \lambda),$

Lemma

K is one-to-one and onto.

Lemma

K induces a one-to-one correspondence between Jordan chains with same block structure and length.

Simple eigenvalue $\lambda = 0$

Lemma

For each $\tau \in [0, \tau_m)$, $\lambda = 0$ is a simple eigenvalue associated to (U', V').

Proof sketch:

By studying the adjoint equation

$$Y_x = -\mathbb{A}^{\tau}(x,0)^* Y,$$

has a unique bounded solution $Y_0 = (\zeta, \eta)^\top \in H^1$, and by computing the Melnikov-type integral

$$\Gamma := \langle Y_0, \mathbb{A}_1^{\tau}(x) W_0 \rangle_{L^2} = \int_{-\infty}^{+\infty} \begin{pmatrix} \zeta \\ \eta \end{pmatrix}^* \mathbb{A}_1^{\tau}(x) \begin{pmatrix} U_x \\ U_{xx} \end{pmatrix} dx,$$

 $W_0 = (U_x, U_{xx})^\top.$

Ramón G. Plaza — Traveling fronts for Allen-Cahn model with relaxation — 10th IMACS International Conference in Nonlinear Waves. Athens, GA. March 29-31, 2017. Slide 33/62
$$\Gamma = a_0^{-1} (1 + c^2 \tau a_0^{-1}) \int_{-\infty}^{+\infty} |1 - \tau a(x)| \exp\left(\int_0^x a_1(y)/a_0 \, dy\right) |U_x|^2 dx$$

> 0,

where

$$a_0 = 1 - c^2 \tau > 0, \quad a_1(x) = c(1 - \tau a(x)).$$

Ramón G. Plaza — Traveling fronts for Allen-Cahn model with relaxation — 10th IMACS International Conference in Nonlinear Waves. Athens, GA. March 29-31, 2017. Slide 34/62

IIMAS

No purely imaginary point spectrum

Lemma

For each $\tau \in [0, \tau_m)$: if λ is an eigenvalue and $\lambda \in i\mathbb{R}$, then $\lambda = 0$.

Proof sketch: Follows by energy estimates: make u(x) = w(x)z(x) with $z(x) = \exp(-\int^x b)$ and $b = -a_1/2a_0$,

$$w_{xx} + \alpha \lambda w_x - \beta(x, \lambda)w = 0,$$

with

$$\alpha = \frac{2c\tau}{1 - c^2\tau}$$

Ramón G. Plaza — Traveling fronts for Allen-Cahn model with relaxation — 10th IMACS International Conference in Nonlinear Waves. Athens, GA. March 29-31, 2017. Slide 35/62

$$\beta(x,\lambda) = \frac{1}{4a_0^2} \left(a_1(x)^2 - 4a_0a_2(x) - 2a_0a_1'(x) \right) \\ + \frac{(1 - \tau a(x))}{a_0^2} \lambda + \frac{\tau}{a_0} \lambda^2.$$

Multiply by \bar{w} , integrate in \mathbb{R} :

$$\int_{\mathbb{R}} \operatorname{Im} \lambda \big\{ 2c \tau (1 - c^2 \tau) \operatorname{Re} (w_x \bar{w}) + \big(1 - \tau a(x) \big) |w|^2 \big\} dx = 0.$$

(by assumption, $\lambda \in i\mathbb{R}$). For $\lambda \neq 0$, thanks to

$$\operatorname{\mathsf{Re}}\left(\bar{w}w_{x}\right) = \frac{1}{2}\left(|w|^{2}\right)_{x},$$

we conclude w = 0 a.e. since $1 - \tau a(x) > 0$.

Stability of $\sigma_{\scriptscriptstyle \! \! \mbox{\tiny ess}}$

Determined by asymptotic operators as $x \to \pm \infty$. Fredholm curves λ roots of

$$\det(i\xi - \mathbb{A}^{\tau}_{\pm}(\lambda)) = 0.$$

 $\mathbb{A}^{\tau}_{\pm} = \lim_{x \to \pm \infty} \mathbb{A}^{\tau}(x, \lambda).$

Lemma

For each $0 < \tau < \tau_m$, there exists a uniform

$$\chi_0=\frac{1}{2}\min\{\delta_+,\delta_-\}>0,$$

such that the algebraic curves $\lambda=\lambda_{1,2}^{\pm}(\xi),$ $\xi\in\mathbb{R},$ satisfy

$$\operatorname{Re}\lambda_{1,2}^{\pm}(\xi) < -\chi_0 < 0,$$

Ramón G. Plaza — Traveling fronts for Allen-Cahn model with relaxation — 10th IMACS International Conference in Nonlinear Waves. Athens, GA. March 29-31, 2017. Slide 37/62

Stability of $\sigma_{\scriptscriptstyle \! \! \mbox{\tiny ess}}$

Determined by asymptotic operators as $x \to \pm \infty$. Fredholm curves λ roots of

$$\det(i\xi - \mathbb{A}^{\tau}_{\pm}(\lambda)) = 0.$$

 $\mathbb{A}^{\tau}_{\pm} = \lim_{x \to \pm \infty} \mathbb{A}^{\tau}(x, \lambda).$

Lemma

For each $0 < \tau < \tau_m$, there exists a uniform

$$\chi_0=\frac{1}{2}\min\{\delta_+,\delta_-\}>0,$$

such that the algebraic curves $\lambda = \lambda_{1,2}^{\pm}(\xi)$, $\xi \in \mathbb{R}$, satisfy

$$\operatorname{Re} \lambda_{1,2}^{\pm}(\xi) < -\chi_0 < 0,$$

Ramón G. Plaza — Traveling fronts for Allen-Cahn model with relaxation — 10th IMACS International Conference in Nonlinear Waves. Athens, GA. March 29-31, 2017. Slide 37/62

$$\Omega = \{\lambda \in \mathbb{C} \, : \, \operatorname{\mathsf{Re}} \lambda > - \chi_0\}$$

Lemma

For all $0 < \tau < \tau_m$, and all $\lambda \in \Omega$, the coefficient matrices $\mathbb{A}^{\tau}_+(\lambda)$ have no center eigenspace and, moreover,

 $\dim S^{\mathsf{t}}_{\pm}(\lambda) = \dim U^{\mathsf{t}}_{\pm}(\lambda) = 1.$

Corollary (Stability of the essential spectrum)

For each $0 < \tau < \tau_m$, the essential spectrum is contained in the stable half-plane. More precisely,

$$\sigma_{\scriptscriptstyle ess} \subset \{\lambda \in \mathbb{C} \, : \, \textit{Re} \; \lambda \leq -\chi_0 < 0 \}.$$

Ramón G. Plaza — Traveling fronts for Allen-Cahn model with relaxation — 10th IMACS International Conference in Nonlinear Waves. Athens, GA. March 29-31, 2017. Slide 38/62

$$\Omega = \{\lambda \in \mathbb{C} \, : \, \operatorname{\mathsf{Re}} \lambda > -\chi_0\}$$

Lemma

For all $0 < \tau < \tau_m$, and all $\lambda \in \Omega$, the coefficient matrices $\mathbb{A}^{\tau}_+(\lambda)$ have no center eigenspace and, moreover,

$$\dim S^{\mathsf{t}}_{\pm}(\lambda) = \dim U^{\mathsf{t}}_{\pm}(\lambda) = 1.$$

Corollary (Stability of the essential spectrum)

For each $0 < \tau < \tau_m$, the essential spectrum is contained in the stable half-plane. More precisely,

$$\sigma_{\scriptscriptstyle ess} \subset \{\lambda \in \mathbb{C} \, : \, \textit{Re} \; \lambda \leq -\chi_0 < 0 \}.$$

IIMAS

Stability of $\sigma_{\mbox{\tiny pt}}$

Continuation argument gives

$$u'' + \left\{a(x) + \left(\tau a(x) - 1\right)\lambda - \tau \lambda^2\right\}u \approx u'' + \left\{a(x) - \lambda\right\}u$$

Based on Evans function: convergence of approximate flows leads to spectral description (small τ)

Evans function

$$\mathbb{S}_+^\tau = \text{span}\{w_+(\lambda)\}, \qquad \mathbb{U}_-^\tau = \text{span}\{w_-(\lambda)\},$$

Definition

$$D^{\tau}(\lambda) := \det(\mathbf{w}_{-}(\lambda), \mathbf{w}_{+}(\lambda)), \quad \lambda \in \Omega.$$

Properties:

- D^{τ} is analytic in $\lambda \in \Omega$;
- $D^{\tau}(\lambda) = 0$ if and only if $\lambda \in \sigma_{pt} \cap \Omega$; and,
- the order of λ as a zero of ${\it D}^{\tau}$ is equal to its algebraic multiplicity

(cf. AGJ (1990); Sandstede (2002))

Evans function

$$\mathbb{S}_+^\tau = \text{span}\{w_+(\lambda)\}, \qquad \mathbb{U}_-^\tau = \text{span}\{w_-(\lambda)\},$$

Definition

$$D^{\tau}(\lambda) := \det(\mathbf{w}_{-}(\lambda), \mathbf{w}_{+}(\lambda)), \quad \lambda \in \Omega.$$

Properties:

- D^{τ} is analytic in $\lambda \in \Omega$;
- $D^{\tau}(\lambda) = 0$ if and only if $\lambda \in \sigma_{_{pt}} \cap \Omega$; and,
- the order of λ as a zero of D^τ is equal to its algebraic multiplicity

(cf. AGJ (1990); Sandstede (2002))

Gap lemma: (Kapitula, Sandstede (1997); Gardner, Zumbrun (1997)) Exponential decay \Rightarrow def. of Evans function near σ_{ess} .

Evans function for $\tau = 0$, i.e. stability of the Nagumo front:

Corollary

 $D^0(\lambda) \neq 0$ for all Re $\lambda \ge 0$, $\lambda \neq 0$. Moreover, $\lambda = 0$ is a simple zero of $D^0(\cdot)$.

IIMAS

Gap lemma: (Kapitula, Sandstede (1997); Gardner, Zumbrun (1997)) Exponential decay \Rightarrow def. of Evans function near σ_{ess} .

Evans function for $\tau = 0$, i.e. stability of the Nagumo front:

Corollary

 $D^0(\lambda) \neq 0$ for all Re $\lambda \ge 0$, $\lambda \ne 0$. Moreover, $\lambda = 0$ is a simple zero of $D^0(\cdot)$.

Convergence of approximate flows (P, Zumbrun (2004)):

Theorem

Under suitable structural assumptions (exp. decay, limits of \mathbb{S}^{τ}_{\pm} and \mathbb{U}^{τ}_{\pm} along λ -rays, $\lambda = r\lambda_0$ as $r \to 0^+$, $\lambda_0 \in \Omega$, and

$$|(\mathbb{A}^{\tau} - \mathbb{A}^{\tau}_{\pm}) - (\mathbb{A}^{0} - \mathbb{A}^{0}_{\pm})| \le C_{1} \eta(\tau) e^{-\tilde{\mathbf{v}}|x|},$$

then the local Evans functions D^{τ} converge uniformly to D^0 :

$$|D^{\tau} - D^0| \le C\eta(\tau) \to 0,$$

locally in λ .

Point spectral stability:

Compact subset of Ω :

$$\Omega_R := \{\lambda \in \mathbb{C} \, : \, |\lambda| \leq R, \, \mathsf{Re} \, \, \lambda \geq - rac{1}{2} \chi_0 \}.$$

By approximation theorem, for τ small, in a Ω_R -neighborhood of λ , uniform convergence of $D^{\tau}(\lambda)$ to $D^0(\lambda)$ in a (possible smaller) neighborhood of λ as $\tau \to 0^+$ with rate

$$|D^{\tau}(\cdot) - D^{0}(\cdot)| = O(\eta(\tau)) = O(\tau + |\zeta(\tau)|) \to 0$$

Thus, $D^{\tau}(\lambda) \neq 0$ for $\lambda \in \Omega_R$, Re $\lambda \ge 0$, except only at $\lambda = 0$, and for each $0 \le \tau \ll 1$ sufficiently small. By continuity argument and no crossing of eigenvalues with fixed multiplicity of the imaginary axis, extends to $0 < \tau < \tau_m$.

Theorem (Spectral stability)

For each $\tau \in (0, \tau_m)$, there exists $\omega_0(\tau) > 0$ such that

 $\boldsymbol{\sigma}(\mathcal{L}^{\tau}) = \{0\} \cup \boldsymbol{\sigma}_{-}^{(\tau)}$

where $\lambda = 0$ is an (isolated) eigenvalue with algebraic multiplicity equal to one and eigenspace generated by $(dU/dx, dV/dx) \in H^1$, and $\sigma_-^{(0)}$ is contained in the half-space { $\lambda \in \mathbb{C} : \text{Re } \lambda \leq -\omega_0$ }.

Linear stability

The spectral mapping property $e^{t\sigma(\mathcal{L})} = \sigma(e^{\mathcal{L}t}) \setminus \{0\}$ is NOT always satisfied. Counterexamples can be produced using hyperbolic equation.

In the hyperbolic case, spectral stability *does not* imply linear stability!

Problems stem from the behavior of the resolvent kernel for large λ .

The Gearhart–Prüss Theorem states that, for $\Sigma_r = \{ \operatorname{Re} \lambda \ge 0, |\lambda| \ge r \},$

spectral stability $+ \sup_{\lambda \in \Sigma_r} |(\lambda - \mathcal{L})^{-1}| < +\infty \quad \Rightarrow \quad ext{linear stability}$

Linear stability

The spectral mapping property $e^{t\sigma(\mathcal{L})} = \sigma(e^{\mathcal{L}t}) \setminus \{0\}$ is NOT always satisfied. Counterexamples can be produced using hyperbolic equation.

In the hyperbolic case, spectral stability *does not* imply linear stability!

Problems stem from the behavior of the resolvent kernel for large λ .

The Gearhart-Prüss Theorem states that, for

$$\Sigma_r = \{ \operatorname{\mathsf{Re}} \lambda \ge 0, |\lambda| \ge r \},$$

 $\text{spectral stability} + \sup_{\lambda \in \Sigma_r} |(\lambda - \mathcal{L})^{-1}| < +\infty \quad \Rightarrow \quad \text{linear stability}$

Resolvent estimates

Technical lemma. Consider $Aw' + (\lambda B + C(x))w = \psi$; "large λ " means rapid oscillations, C = C(x) is "constant" at such scale:

Lemma

There exists M, r > 0 such that

$$|w(\cdot;\lambda)|_{H^m} \leq M |\psi|_{H^m}$$

for $|\lambda| \ge r$.

Based on an approximate diagonalization procedure (Mascia, Zumbrun (2002)).

Resolvent estimates

Technical lemma. Consider $Aw' + (\lambda B + C(x))w = \psi$; "large λ " means rapid oscillations, C = C(x) is "constant" at such scale:

Lemma

There exists M, r > 0 such that

$$|w(\cdot;\lambda)|_{H^m} \leq M |\psi|_{H^m}$$

for $|\lambda| \ge r$.

Based on an approximate diagonalization procedure (Mascia, Zumbrun (2002)).

IIMAS

By Hille-Yosida theorem:

Lemma

For each $\tau \in (0, \tau_m)$, the operator $\mathcal{L}^{\tau} : \mathcal{D} = H^1 \to L^2$ is the infinitesimal generator of a C_0 -semigroup of quasi-contractions $\{T(t)\}_{t \geq 0}$.

Linear stability

By resolvent estimates we project out the eigenspace spanned by (U', V'), direct application of Gearhart-Prüss theorem:

Theorem (Linear stability)

There exists a projection operator $\pi = I - P$ with one-dimensional range $\{\kappa(U', V') : \kappa \in \mathbb{R}\}$ such that for any t > 0

$$T(t)\pi = \pi T(t) = \pi$$
 and $||T(t)(I-\pi)|| \le Ce^{-\theta t}$

for some $C, \theta > 0$.

Nonlinear stability

General orbital stability result:

 \mathcal{W} - Banach space, norm $|\cdot|_{\mathcal{W}}$, $B_r(\overline{W})$ open ball. Fsmooth function, $F : \mathcal{D} \subset \mathcal{W} \to \mathcal{W}$ such that: $F(\overline{W}) = 0$ for some $\overline{W} \in \mathcal{D}$. Assume, for some r > 0:

$$\{W \in \mathbb{R}^n : F(W) = 0\} \cap \{|W - \overline{W}|_{\mathcal{W}} < r\} = \phi(I)$$

for some smooth function $\phi: I \to \mathbb{R}^n$, *I* open interval. W.I.o.g. we may assume $0 \in I$ and $\phi(0) = \overline{W}$.

Cauchy problem:

$$\frac{dW}{dt} = F(W) \qquad \qquad W(0) = W_0 \in \mathcal{Q}$$

Nonlinear stability

General orbital stability result:

 \mathcal{W} - Banach space, norm $|\cdot|_{\mathcal{W}}$, $B_r(\overline{W})$ open ball. Fsmooth function, $F : \mathcal{D} \subset \mathcal{W} \to \mathcal{W}$ such that: $F(\overline{W}) = 0$ for some $\overline{W} \in \mathcal{D}$. Assume, for some r > 0:

$$\{W \in \mathbb{R}^n : F(W) = 0\} \cap \{|W - \overline{W}|_{\mathcal{W}} < r\} = \phi(I)$$

for some smooth function $\phi : I \to \mathbb{R}^n$, *I* open interval. W.I.o.g. we may assume $0 \in I$ and $\phi(0) = \overline{W}$. Cauchy problem:

$$\frac{dW}{dt} = F(W) \qquad \qquad W(0) = W_0 \in \mathcal{D}$$

Ramón G. Plaza — Traveling fronts for Allen-Cahn model with relaxation — 10th IMACS International Conference in Nonlinear Waves. Athens, GA. March 29-31, 2017. Slide 49/62 The linearized problem at $\phi(\delta)$ is

$$\frac{dZ}{dt} = dF(\phi(\delta))Z \qquad \qquad Z(0) = Z_0 \in \mathcal{D}$$

Projection:

$$Q(\delta) = I - P(\delta)$$

associated to one-dim eigenspace spanned by $r(\delta)$, e-vector of $dF(\phi(\delta))$.

Ramón G. Plaza — Traveling fronts for Allen-Cahn model with relaxation — 10th IMACS International Conference in Nonlinear Waves. Athens, GA. March 29-31, 2017. Slide 50/62

General hypotheses:

H1. There exist $C, \theta > 0$ such that the solution $Z = Z(t; Z_0, \delta)$

 $|Q(\delta)Z(t;Z_0,\delta)| \le Ce^{-\Theta t}|Q(\delta)Z_0|$

for any $Z_0 \in \mathcal{D}$.

H2. ϕ is differentiable at $\delta = 0$ and there exist $C, \delta_0, \gamma > 0$:

$$\left|\phi(\delta) - \phi(0) - \phi'(0)\delta\right|_{\mathcal{W}} \leq C\delta^{1+\gamma},$$

for $|\delta| < \delta_0$.

H3. There exist $C, M, \delta_0, \gamma > 0$ such that F is differentiable at $\phi(\delta)$ for any $\delta \in (-\delta_0, \delta_0)$ and

 $\left|F(\phi(\delta)+W)-F(\phi(\delta))-dF(\phi(\delta))W\right|_{\mathcal{W}} \le C|W|_{\mathcal{W}}^{1+\gamma},$

for $|\delta| < \delta_0$ and $|W|_{_{\mathscr{W}}} \leq M$.

Theorem

Under H1, H2 and H3, there exists $\varepsilon > 0$ such that for any $W_0 \in B_{\varepsilon}(\bar{W})$ there exists $\delta \in I$ for which the solution $W(t; W_0)$ to the Cauchy problem satisfies

$$|W(t; W_0) - \phi(\delta)|_{\mathcal{W}} \leq C |W_0 - \overline{W}|_{\mathcal{W}} e^{-\Theta t}$$

for some $C, \theta > 0$

Orbital stability of fronts for (HAC) follows by verifying hypotheses (H2) and (H3), with

 $\mathcal{W} = H^1(\mathbb{R};\mathbb{R}^2), \quad \bar{W} = 0, \quad \phi(\delta) = (U,V)(\cdot + \delta) - (U,V)(\cdot).$

(H1) is implied by linear stability.

Ramón G. Plaza — Traveling fronts for Allen-Cahn model with relaxation — 10th IMACS International Conference in Nonlinear Waves. Athens, GA. March 29-31, 2017. Slide 52/62

Theorem

Under H1, H2 and H3, there exists $\varepsilon > 0$ such that for any $W_0 \in B_{\varepsilon}(\bar{W})$ there exists $\delta \in I$ for which the solution $W(t; W_0)$ to the Cauchy problem satisfies

$$|W(t; W_0) - \phi(\delta)|_{\mathcal{W}} \leq C |W_0 - \overline{W}|_{\mathcal{W}} e^{-\Theta t}$$

for some $C, \theta > 0$

Orbital stability of fronts for (HAC) follows by verifying hypotheses (H2) and (H3), with

$$\mathcal{W} = H^1(\mathbb{R}; \mathbb{R}^2), \quad \bar{W} = 0, \quad \phi(\delta) = (U, V)(\cdot + \delta) - (U, V)(\cdot).$$

(H1) is implied by linear stability.

Ramón G. Plaza — Traveling fronts for Allen-Cahn model with relaxation — 10th IMACS International Conference in Nonlinear Waves. Athens, GA. March 29-31, 2017. Slide 52/62

Allen-Cahn model with relaxation

Hyperbolic reaction-diffusion fronts

Stability

Numerical experiments

Ramón G. Plaza — Traveling fronts for Allen-Cahn model with relaxation — 10th IMACS International Conference in Nonlinear Waves. Athens, GA. March 29-31, 2017. Slide 53/62

IIMAS

Numerical scheme

Reactive Goldstein-Kac model correlated random walk:

$$\begin{cases} \partial_t u^+ + \gamma \partial_x u^+ = \frac{1}{2\tau}(u^- - u^+) + \frac{1}{2}f(u^+ + u^-), \\ \partial_t u^- - \gamma \partial_x u^- = \frac{1}{2\tau}(u^+ - u^-) + \frac{1}{2}f(u^+ + u^-). \end{cases}$$
with,

$$\gamma = \frac{1}{\sqrt{\tau}}, \quad u^- = \frac{1}{2}(u + \gamma^{-1}v), \quad u^+ = \frac{1}{2}(u - \gamma^{-1}v).$$

Ramón G. Plaza — Traveling fronts for Allen-Cahn model with relaxation — 10th IMACS International Conference in Nonlinear Waves. Athens, GA. March 29-31, 2017. Slide 54/62

Scheme

Mesh size: dx > 0. Discretize the space, upwind approximation of first order space derivatives, $r_j \approx u^-(j dx, t), s_j \approx u^+(j dx, t)$.

$$\begin{cases} \frac{dr_j}{dt} = \frac{\gamma}{dx} \left(r_{j+1} - r_j \right) + \frac{1}{2\tau} \left(-r_j + s_j \right) + \frac{1}{2} f(r_j + s_j), \\ \frac{ds_j}{dt} = -\frac{\gamma}{dx} \left(s_j - s_{j-1} \right) + \frac{1}{2\tau} \left(r_j - s_j \right) + \frac{1}{2} f(r_j + s_j). \end{cases}$$

Ramón G. Plaza — Traveling fronts for Allen-Cahn model with relaxation — 10th IMACS International Conference in Nonlinear Waves. Athens, GA. March 29-31, 2017. Slide 55/62 Time step dt > 0, discretize time derivative by implicit-explicit approach (discretize implicitly only linear terms):

$$\frac{r_j^{n+1} - r_j^n}{\mathrm{dt}} = \frac{\gamma}{\mathrm{dx}} (r_{j+1}^{n+1} - r_j^{n+1}) + \frac{1}{2\tau} (s_j^{n+1} - r_j^{n+1}) + \frac{1}{2} f(r_j^n + s_j^n)$$
$$\frac{s_j^{n+1} - s_j^n}{\mathrm{dt}} = -\frac{\gamma}{\mathrm{dx}} (s_{j-1}^{n+1} - s_j^{n+1}) + \frac{1}{2\tau} (r_j^{n+1} - s_j^{n+1}) + \frac{1}{2} f(r_j^n + s_j^n)$$

Set

$$\alpha = \gamma \frac{\mathrm{d}t}{\mathrm{d}x}, \quad \beta = \frac{\mathrm{d}t}{2\tau}, \quad f_j^n = f(r_j^n + s_j^n)$$

Ramón G. Plaza — Traveling fronts for Allen-Cahn model with relaxation — 10th IMACS International Conference in Nonlinear Waves. Athens, GA. March 29-31, 2017. Slide 56/62 Time step dt > 0, discretize time derivative by implicit-explicit approach (discretize implicitly only linear terms):

$$\frac{r_j^{n+1} - r_j^n}{\mathrm{dt}} = \frac{\gamma}{\mathrm{dx}} (r_{j+1}^{n+1} - r_j^{n+1}) + \frac{1}{2\tau} (s_j^{n+1} - r_j^{n+1}) + \frac{1}{2} f(r_j^n + s_j^n)$$
$$\frac{s_j^{n+1} - s_j^n}{\mathrm{dt}} = -\frac{\gamma}{\mathrm{dx}} (s_{j-1}^{n+1} - s_j^{n+1}) + \frac{1}{2\tau} (r_j^{n+1} - s_j^{n+1}) + \frac{1}{2} f(r_j^n + s_j^n)$$

Set

$$\alpha = \gamma \frac{\mathrm{d}t}{\mathrm{d}x}, \quad \beta = \frac{\mathrm{d}t}{2\tau}, \quad f_j^n = f(r_j^n + s_j^n)$$

Ramón G. Plaza — Traveling fronts for Allen-Cahn model with relaxation — 10th IMACS International Conference in Nonlinear Waves. Athens, GA. March 29-31, 2017. Slide 56/62 Algebraic manipulations furnish the explicit iterative algorithm

$$\begin{aligned} r^{n+1} &= (\mathbb{S} - \alpha^2 \mathbb{D}_- \mathbb{D}_+)^{-1} \Big\{ [(1+\beta)\mathbb{I} + \alpha \mathbb{D}_-]r^n + \beta s^n + \\ &+ \frac{1}{2} [(1+2\beta)\mathbb{I} + \alpha \mathbb{D}_-]f^n \mathrm{dt} \Big\} \\ s^{n+1} &= (\mathbb{S} - \alpha^2 \mathbb{D}_+ \mathbb{D}_-)^{-1} \Big\{ \beta r^n + [(1+\beta)\mathbb{I} - \alpha \mathbb{D}_+]s^n + \\ &+ \frac{1}{2} [(1+2\beta)\mathbb{I} - \alpha \mathbb{D}_+]f^n \mathrm{dt} \Big\} \end{aligned}$$

where $\mathbb{D}_- = (\delta_{i,j} - \delta_{i,j+1})$, $\mathbb{D}_+ = (\delta_{i+1,j} - \delta_{i,j})$ (discrete derivatives), and

$$\mathbb{S} := (1+2\beta)\mathbb{I} + \alpha(1+\beta)(\mathbb{D}_{-} - \mathbb{D}_{+})$$

S symmetric.

Ramón G. Plaza — Traveling fronts for Allen-Cahn model with relaxation — 10th IMACS International Conference in Nonlinear Waves. Athens, GA. March 29-31, 2017. Slide 57/62

The Riemann problem

Conjecture: any bounded initial data such that

$$\limsup_{x\to-\infty}u_0(x)<\alpha<\liminf_{x\to+\infty}u_0(x),$$

gives raise to a solution, asymptotically convergent to a member of the traveling fronts connecting equilibria u = 0 with u = 1.

Parameter values: $\tau = 4$, $\ell = 25$, dx = 0.125, dt = 0.01.

Riemann initial data: $u_0(x) = \chi_{(0,\ell)}(x)$, in $(-\ell, \ell)$, non-flux b.c. at $x = \pm \ell$.

Figure : Riemann problem with initial datum $\chi_{(0,\ell)}$ in $(-\ell, \ell)$, $\ell = 25$. Left: solution profiles zoomed in the interval (-5,5) at time t = 1 (dash-dot), t = 5 (dash), t = 15 (continuous), for comparison, solution to the parabolic Allen–Cahn equation at time t = 1 (dot). Right: Decay of the L^2 distance to the exact equilibrium solution for the hyperbolic (continuous) and parabolic (dot) Allen–Cahn equations.

Randomly perturbed initial data

Figure : Random initial data in $(-\ell, \ell)$, $\ell = 25$ (squares). Solution profiles for the **hyperbolic** Allen–Cahn equation with relaxation at time t = 0.5 (dot), t = 7.5 (dash), t = 15 (continuous).

Comparison to parabolic Allen–Cahn

Figure : Random initial data in $(-\ell, \ell)$, $\ell = 25$ (squares). Solution profiles for the **parabolic** Allen–Cahn equation at time t = 0.5 (dot), t = 7.5 (dash), t = 15 (continuous).

Thank you!

Ramón G. Plaza — Traveling fronts for Allen-Cahn model with relaxation — 10th IMACS International Conference in Nonlinear Waves. Athens, GA. March 29-31, 2017. Slide 62/62