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Motivation



Bacterial (in vitro) dynamical patterns

• Bacterial colonies in vitro exhibit complex morphological aggregation

patterns

• Hostile environmental conditions: low nutrient level, hard agar,

presence of anti-biotics, etc.

• Adaptive survival strategies lead to complex spatio-temporal

patterns.

• Complex self-organization: micro-level (cell-cell), macro-level

(colony), chemical signalling, gene exchange, etc.
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Examples: Paenbacillus dendritiformis

• Species discovered by E. Ben-Jacob (Univ. Tel-Aviv)

• Motile in hard substrates

• T -morphotype: dentrite-type growth (tip growth formation),

inherited and transferred by each single cell

• Intermediate hard agar, high levels of nutrient (peptone): the

patterns are solid, compact colonies

• In stress conditions (low nutrient, presence of antibiotics): Complex

pattern formation
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Examples: Paenbacillus dendritiformis

Colony of Paenbacillus dendritiformis. Strain inoculated on 1.75% agar, 0.5

gl−1 concentration of peptone, presence of chloramphenicol. Courtesy: E.

Ben-Jacob (Uni. de Tel-Aviv). 4



Examples: Paenbacillus dendritiformis

Colony of Paenbacillus dendritiformis. Strain inoculated on 1.75% agar, 12

gl−1 concentration of peptone. No antibiotics. Courtesy: E. Ben-Jacob (Uni.

de Tel-Aviv).
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Examples: Pseudomonas aeruginosa

• P. aeruginosa pathogen, resistent to wide spectrum antibiotics;

ubiquitious. Associated to serious illnesses.

• M. LeRoux (M.I.T.) disovered a mechanism to kill its competitors

(other bacteria): secretion system type 6 (T6SS).

• Molecular syringe composed by proteins to inoculate toxins into

neighboring cells.

• P. aeruginosa detect death of its kind and launch a counterattack.
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Examples: Pseudomonas aeruginosa

Colony of Pseudomonas aeruginosa. Strain inoculated on 3.75% agar. Corteśıa:

M. LeRoux (M.I.T.).
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Examples: Bacillus subtilis

Bacillis subtilis strain on 0.75% of agar substrate. Fractal growth due to low

level of nutrient. Courtesy of: Fujikawa, Matsushita, J. Phys. Soc. Japan

(1989).
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Examples: Dictyostelium discoideum

Dictyostelium discoideum strain on 0.8% agar substrate. Courtesy of: Freie

Unversität Berlin.
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Examples: Paenibacillus vortex and Escherichia coli

• P. vortex, highly active strain but sensitive to Ampicillin

• E. coli can degradate Ampicillin but it is immotile in high agar

concentrations

• Two strains form a simbiotic colony: E. coli is transported by P.

vortex ; E. coli degrades the antibiotic
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Examples: Paenibacillus vortex and Escherichia coli

Ring pattern of a mixed colony of P. vortex and E. coli on a 14 cm agar plate

in the presence of Ampicillin. The rings represent different bacterial densities in

alternating patterns of construction/expansion. Source: Finkelshtein et al.

MBio, 6 (3), (2015).
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Mathematical modeling: Bacillus subtilis

• Gram positive bacterium, rod-shaped, aerobe.

• Protective endospore (tolerate extreme environmental conditions)

• Very flagellated
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In vitro experiments (cf. Ohgiwari et al., 1992)

• Strain of B. subtilis point inoculated in center of Petri dish

• Agar plate containing peptone as nutrient

• Average pore size of the agar smaller that size of bacteria, inducing

two-dimensional growth on agar surface
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Observations

• Low nutrient, hard agar: Diffusion limited aggregation (DLA).

Fractal patterns (Matsuyama and Matsushita (1993);

Ben-Jacob (1994)). (A)

• Semi-solid agar, low nutrient: Dense branch morphology (DBM).

Smooth colony envelope (Ohgiwari et al. (1992)). (E)

• Higher nutrient, soft agar: homogeneous colony, smooth boundary

envelope. (D)

• Hard agar, high nutrient: envelope with fractal boundary. (B)

• Rings: transition from (B) to (D).

Cn - concentration of nutrient; Ca - agar concentration (softness 1/Ca)

14



Morphological diagram

Rings (C) Fractal (A)

Disk (D) DBM (E) Cn vs. 1/Ca
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How to model the dynamics?

• Bacteria as discrete agents: Model bacteria as discrete

self-propelled particles. Move, interact with environment. Agents

consume nutrients, multiply, sporulate and die. Suitable to track the

internal state of bacteria.

• Bacteria as a continuous density: Describe the evolution of

bacterial concentration. Other constituents (nutrients, signaling

factors, etc.) are also densities.
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Experimental observations

Ohgiwari et al. (1992)

• In the DBM regime: movement of bacteria inactive in the inner

region with low nutrient levels; active at the periphery with high

nutrient

• Cells become inactive again at the outermost front of bacterial

colonies where cell density is apparently low
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Kawasaki’s model

Kawasaki et al. (1997): Non-linear PDE recation-cross-diffusion model

vt = Dv∆v − f (u,v)

ut = ∇ · (D(u,v)∇u) + θ f (u,v)
(K)

v - nutrient and u - bacterial concentrations, (x ,y) ∈ Ω⊂ R2, t > 0.

Diffusion coefficient: Dv > 0 constant.

D(u,v) = σuv . (1)

0 < σ ∼ 1/Ca. Consumption rate: f (u,v), θ > 0 -conversion rate factor.

Kinetics:

f (u,v) = uv

Plus: no-flux boundary conditions + initial conditions.

18



Features:

• Conveys immotility when either u or v are low. Models high activity

in the boundary only.

• Valid for the transition region E ↔ D

• Complex dense morphology

• Rich mathematical structure (Satnoianu, Maini and

Sánchez-Garduño (2001); Sherratt (2010)).
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Chemotaxis

• Movement of an organism in response to a chemical stimulus

• It can be of attractive or repulsive nature (chemoattractant vs.

chemorepellent)

• Ubiquituous in Nature: bacteria towards nutrients; endothelial cells

towards angiogenic factors (tumor angiogenesis); fungal zoospores in

the presence of metabolites or other chemorepellents (biocontrol)

• Macro and mesoscopic chemical phenomena: somatic cells, bacteria

and other single-cell or multicellular organisms direct their

movements according to certain chemicals
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Experimental observations

E. Ben-Jacob’s group (Univ. of Tel-Aviv):

• Ben-Jacob et al. (1994): Experimental evidence of chemotaxis of

B. subtilis towards amino acids (nutrients)

• Golding et al. (1997): Role of chemotaxis in the formation of

patterns; theoretical and experimental arguments

• Ben-Jacob et al. (2000): Identified three types of chemotactic

internal signalling:

• (Repulsive - Long range) By starving bacteria in the center.

• (Attractive - Short range) Bacteria in the front ask for help to

metabolize waste.

• Nutrient chemotaxis: Dominant signal. Attractive, short range.

• Proposed (Ben-Jacob et al., 2000), based on experiments, a

relation bet. diffusion and chemotaxis (certain nutrient regimes).
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Modelling chemotaxis

General form of chemotactic term of Keller-Segel (1971)-type: add a

term of form divJc , where

Jc = ζ (u,v)χ(v)∇v

χ = χ(v) ≷ 0 - chemotactic sensitivity function; ζ = ζ (u,v) - bacterial

response function to nutrient gradient.

Ben-Jacob’s experimental observation (Ben-Jacob et al. (2000)): In

semi-solid agar, low colony density,

|ζ (u,v)| ∝ uDu. (*)

Example: if the diffusion coefficient is constant, D > 0, then we recover the

classical Keller-Segel chemotactic flux, Jc =±χu∇v
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Chemotactic model with non-linear cross diffusion

• Leyva, Málaga, P, (2013). Model system in non-dimensional form:

vt = ∆v −uv ,

ut = ∇ · (σuv∇u) +uv −χ0∇ ·
(

σvu2

(1 + v)2
∇v

)
,

(RDC)

(x ,y) ∈ Ω⊂ R2, t ≥ 0.

• Non-linear degenerate cross-diffusion (Kawasaki):

Du = σuv ,

• Chemotactic sensitivity: Lapidus-Schiller (1976) receptor’s law

(attractive),

χ(v) =− χ0

(1 + v)2
, χ0 > 0.
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Chemotactic model with non-linear cross diffusion (ii)

• Bacterial response function:

ζ (u,v) = uDu = σu2v .

• No-flux boundary conditions:

(uv∇u−u2v∇v) · ν̂ = 0,

∇v · ν̂ = 0,
(x ,y) ∈ ∂ Ω, t > 0.

• Initial conditions:

u(x ,y ,0) = u0(x ,y), v(x ,y ,0) = v0(x ,y), (x ,y) ∈ Ω.
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Numerical simulations

• Square domain [0,1]× [0,1]. Grid of 2048 × 2048

• Finite difference, 2nd. order Runge-Kutta scheme

• Very small time steps to avoid instabilities (stiffness)

• Crudeness of the scheme compensated by parallel high performance

computations with Graphic Processing Units (GPUs)

• Millions of steps in a few hours.

• NVIDIA Tesla c© C2070 graphics card with 448 CUDA cores

• Initial conditions:

v(x ,y ,0)≡ v0, u(x ,y ,0) = 0.71e−(x2+y2)/6.25, (Kawasaki)

• Parameter values: σ = 4.0 (soft-medium agar); v0 = 0.71 (initial

constant nutrient concentration); chemotactic signal χ0 = 0,2.5,5.0.
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No chemotaxis: χ0 = 0

t ∼ 5min. t ∼ 10min. t ∼ 15min.
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χ0 = 2.5

t ∼ 5min. t ∼ 10min. t ∼ 15min.
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χ0 = 5.0

t ∼ 5min. t ∼ 10min. t ∼ 15min.
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Main results (i): Leyva, Málaga, P, (2013)

• Incorporation of a suitable chemotactic term to Kawasaki’s nonlinear

cross diffusion model, compatible with low-nutrient regime

experimental observations (Ben-Jacob)

• High resolution numerical simulations confirm enhancement of the

speed

• Numerical observation: In the low-nutrient, soft-agar regime: change

in morphology, patterns become smoother (less branches) in the

presence of chemotaxis

• Numerical estimation (one-d simulation) approximates well the

asymptotic speed calculation

• Under the conservation law approximation, the front equation

becomes a scalar reaction-diffusion equation with degenerate

diffusion

• Asymptotics show that the speed of the envelope front increases

with chemotaxis
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Main results (ii): Butanda, Málaga, P, (2017)

• The change in morphology in the DBM regime can be explained and

quantified

• Asymptotics: quantitative analysis shows that when the chemotactic

sensitivity is increased, the eigenvalues of the linearized operator

around the envelope front become “more stable”

• Energy estimates provide bounds for the eigenvalues of the linearized

operator around the front. These bounds decrease as functions of

the chemotactic sensitivity χ0 ≥ 0, suggesting that, the patterns

become more stable
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Velocity-jump stochastic

processes



Velocity-jump process

References:

Othmer, Dunbar, Alt (1988); Hillen and Othmer (200, 2002)

Features:

• Agents (particles, cells or microorganisms) make instantaneous

jumps in velocity space rather than in physical space

• Probability distribution of time between turning events is

exponential with mean 1/λ (mean run time)

• V ⊂ Rn subset of allowed velocities; symmetric with respect of the

origin, compact set

• T : V ×V → R, T (v ,v ′) is the probability density of turning from

velocity v ′ to velocity v , if reorientation occurs
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Forward Kolmogorov equation (i)

p = p(x , t,v) probability density function, population of agents at time

t > 0, position x ∈ Ω⊆ Rn with velocity v ∈ V . Ω⊆ Rn open domain.

The evolution of p is governed by the following transport or forward

Kolmogorov equation:

∂

∂ t
p(x , t,v)+v ·∇xp(x , t,v) =−λp(x , t,v)+λ

∫
V
T (v ,v ′)p(x , t,v ′)dv ′+G ,

G - reaction (production) term
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Forward Kolmogorov equation (ii)

Interpretation:

• v ·∇xp(x , t,v) - drift term, transport

• −λp - absorption term: agents leaving the “state” (x ,v)

• λ
∫
Tpdv ′ - agents jumping into the “state” (x ,v) after a

reorientation

Marginal density (zero-velocity moment)

ρ(x , t) =
∫
V
p(x , t,v)dv .

The derivation of the transport equation from first principles was derived

by Stroock (1974).
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Experimental observations

• Bacteria alternate two basic modes of motion:

• run, simple linear motion with constant speed

• tumble, reorientation of the cell; it spins around

• Duration of a tumble � duration of a run

• Speed of bacterium does not change from run to run

• Speed distribution of change in direction between the run preceding

a tumble and the one following is approximately the same from

tumble to tumble

• parameter that changes: duration of runs
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Stochastic model

Assumptions:

• the duration of a tumble is negligible: there is a direction of a

bacterium at a given instant

• the motion is Markovian in the state space: (x ,v) ∈ Ω×V ;

V = sSn−1, s - speed

• the direction (or velocity) is a Poisson-type process on V with

intensity λ > 0 (turning frequency or turning rate)

• In general λ : [0,+∞)×Ω×V → [0,+∞), so that the conditional

probability that a tumble has not occurred bet. t0 and t given that

at time t0 the bacterium was at x ∈ Ω with velocity v is

exp
[
−
∫ t

t0

λ (ξ ,x + ξv ,v)dξ

]
Exponentially distributed times with parameter λ
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Stochastic process (i)

• two-step process, both described by discontinuous jumps and

continuous motion

• state space: (x ,v) ∈ Ω×V ; V = sSn−1, s - speed

• process is piecewise deterministic with flow

f = v = sθ =
dx

dt
, θ ∈ Sn−1

• transition probability: T (v ,v ′), probability density of turning from

velocity v to v ′ during a tumble

• We call this process Φc (“chemotactic”)
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Stochastic process (ii)

It can be shown that:

• Φc is a piecewise deterministic time-homogeneous stochastic process

with the strong Markov property (Jacobsen (2006), Theorem

7.5.1) with flow f = v = sθ and

L := f ·∇x , L∗ =−∇x · f

• there exists an invariant probability measure for Φc (Meyn,

Tweedie (2009), Theorem 3.1)

P((x ,v),{x}×B) =
∫
B
Tx (v ′,v)ν(dv ′)

for B ⊂ V . Weak Feller process if mapping

(x ,v) 7→
∫
B
Tx (v ′,v)g(x ,v ′)ν(dv ′)

is bounded and continuous for g same. Thm. 3.1: Weak Feller

process and bounded in prob. on average ⇒ there exists a prob.

measure
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Stochastic process (iii)

• Φc is a semi-martingale with the strong Markov property (Jacobsen

(2006), Theorem 4.7.1). Ito’s formula with h ∈ C 2,

h(Φt) = h(Φ0) +
∫ t

0
(Lh)(Φs)ds + ∑

0<τk≤t
(h(Φτk

)−h(Φ−τk ))

τk - time of the k-th jump

• take expectation of Ito’s formula to obtain a generalized Dynkin

formula (Øksendal (2000), section 7.4)

(µt −µ0)h =
∫ t

0
µs(Lh)ds +

∫ t

0
λ (Q− I )ds,

where µt - law of Φt , λ (Φt) jump intensity rate at Φt , Q is

associated operator of the probability transition kernel

Q(y ,{x}×B) =
∫

Tx (v ′,v)ν(dv ′), y = (x ,v), B ⊂ V .
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Stochastic process (iv)

• upon differentiation

µ
′
t = L∗µt + λ (Q∗− I )

• this implies (Bect (2010), Theorem 13) that the probability

function p = p(x ,v , t) (prob. density that the process is at state

(x ,v) at time t) satisfies

∂p

∂ t
= L∗p−λp+Q∗(λp)

• since f = v does not depend on x we obtain the forward

Kolmogorov (transport) equation for p

∂p

∂ t
+v ·∇xp =−λp+

∫
V

λTx (v ,v ′)p(x , t,v ′)ν(dv ′)
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Diffusive limits: the method of

Hillen and Othmer



Method of Hillen and Othmer

Hillen and Othmer (2000, 2002): Method to obtain a mean-field

limiting system for first moments based on regular outer (or Hilbert)

expansions on p (asymptotic method from kinetic theory).

Assumptions:

• V ⊂ Rn is assumed to be symmetric with respect to the origin (that

is, v ∈ V ⇒−v ∈ V ) and compact.

• For fixed (x , t) ∈ Ω× (0,+∞) we regard

T p(v) :=
∫
V
T (v ,v ′)p(x , t,v ′)dv ′,

as an integral operator in L2(V )

• K := {f ∈ L2(V ) : f ≥ 0}.
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Assumptions on T

• The turning kernel is supposed to satisfy:

T (v ,v ′)≥ 0 for all (v ,v ′)∈V ×V ;
∫
V T (v ,v ′)dv =

1, for all v ′ ∈ V , and
∫
V

∫
V T (v ,v ′)2 dv dv ′ < +∞.

(T1)

There exist functions u0,φ ,ψ in K satisfying u0 6≡ 0,

φ ,ψ 6= 0 a.e., such that

u0(v)φ(v ′)≤ T (v ,v ′)≤ u0(v)ψ(v ′),

for all (v ,v ′) ∈ V ×V .

(T2)

‖T ‖〈1〉⊥→〈1〉⊥ < 1, where 〈1〉⊥ ⊂ L2(V ) is the or-

thogonal complement of constants in L2(V ).
(T3)

∫
V T (v ,v ′)dv ′ = 1, for all v ∈ V . (T4)
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The turning operator

For every given λ > 0, constant in v ∈ V , the turning operator,

L : L2(V )→ L2(V ), is defined as

L p(v) :=−λp(v) + λT p(v) =−λp(v) + λ

∫
V
T (v ,v ′)p(v ′)dv ′.
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Properties of the turning operator

Theorem (Hillen and Othmer, 2000, 2002)

Under (T1) - (T4):

(a) µ = 0 is a simple eigenvalue of L : L2(V )→ L2(V ) with

eigenfunction f (v)≡ 1.

(b) For all g ∈ 〈1〉⊥, 〈g ,L g〉L2 =
∫
V gL g dv ≤−µ2‖g‖2

L2(V )
, where

µ2 = λ (1−‖T ‖〈1〉⊥→〈1〉⊥).

(c) All non-zero eigenvalues µ of L satisfy the estimate

−2λ < Re µ ≤−µ2 < 0, and to within scalar multiples there is no

other positive eigenfunction.

(d) L restricted to 〈1〉⊥ ⊂ L2(V ) has a linear pseudo-inverse F with

norm

‖F‖〈1〉⊥→〈1〉⊥ ≤
1

µ2
.
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Parabolic scaling

Fundamental assumption: There exists a small parameter ε > 0 such that

the scaling

τ = ε
2t, ξ = εx ,

satisfies

τ, ξ = O(1), as ε → 0+.

• E. coli: characteristic speed, s ≈ 10 µm/sec.; mean run time of

1/λ ≈ 1 sec. (cf. Othmer, Xue, 2013).

• B. subtilis: charac. speed s ≈ 1 µm/sec. (cf. Hillesdon et al.,

1995); average run time of 1/λ ≈ 1 sec. (cf. Ito et al., 2005)

• Typical experimental scales L = 1 mm. (length), T = 104 sec.

(time) ⇒ ε = 10−2 (E. coli); ε = 10−1 (B. subtilis).
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Outer or Hilbert expansion

Kolmogorov equation in rescaled coordinates (ξ ,τ) (without kinetic

term):

ε
2 ∂

∂τ
p(ξ ,τ,v)+εv ·∇ξp(ξ ,τ,v) =−λp(ξ ,τ,v)+

∫
V

λT (v ,v ′)p(ξ ,τ,v ′)dv ′,

where (ξ ,τ) ∈ Ω̃× (0,+∞), Ω̃ := εΩ = {εx : x ∈ Ω}, v ∈ V .

Hilbert regular expansion: the population density underlies a regular

perturbation expansion of the form

p(ξ ,τ,v) = p0(ξ ,τ,v) + εp1(ξ ,τ,v) + ε
2p2(ξ ,τ,v) +O(ε

3).

Marginal density independent of ε > 0; thus, we assume∫
V
pj (ξ ,τ,v)dv = 0,

for all j ≥ 1 and all (ξ ,τ).
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Proposal: peturbed turning rate, unperturbed turning kernel

Perturbations of Schnitzer (1993) type: first order perturbation of a

certain turning frequency λ0 independent of v , together with an

unperturbed turning kernel T0 that depends only on (v ,v ′) ∈ V ×V :

T = T0(v ,v ′),

λ (v) = λ0 + ελ1(v).

Turning operator:

L0p(v) :=−λ0p(v)+λ0

∫
V
T0(v ,v ′)p(v ′)dv ′, L0 : L2(V )→ L2(V ).
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Interior parabolic limit

Proposition (interior parabolic limit with perturbed turning

rate; P, 2018)

Under the above assumptions, if p = p(ξ ,τ,v) is a solution to the scaled

transport equation, where the turning kernel admits a first order

perturbation of the form λ = λ0 + ελ1(v) (with λ0 independent of v),

then the leading order term p0 of a regular Hilbert expansion

p = p0 + εp1 + ε2p2 +O(ε3) satisfies

p0(ξ ,τ,v) = p̄0(ξ ,τ), ρ(ξ ,τ) =
∫
V
p(ξ ,τ,v)dv = |V |p̄0(ξ ,τ),

where p̄0 = p̄0(ξ ,τ) is a solution to the parabolic limit equation

∂ p̄0

∂τ
= divξ

(
D∇ξ p̄0

)
−divξ

(
p̄0w c

)
,

for ξ ∈ Ω̃δ := {ξ ∈ Ω̃ : dist(ξ ,∂ Ω)≥ δ > 0} ⊂ Ω̃ = εΩ, with some δ > 0

(away from the boundary), and τ > 0.
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The diffusion tensor D ∈ Rn×n and the chemotactic velocity w c ∈ Rn are

given by

D =− 1

|V |

∫
V

v ⊗ (F0v)dv ,

and

w c =− 1

|V |

∫
V

vF0

(
λ̄1(v)−λ1(v)

)
dv ,

respectively, where

λ̄1(v) =
∫
V

λ1(v ′)T0(v ,v ′)dv ′,

is the average bias. Here F0 denotes the pseudo-inverse of the operator

L0 restricted to the subspace 〈1〉⊥ ⊂ L2(V ).
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Proof sketch (i)

• Substitute Hilbert expansion and collect powers of ε. At order O(1),

0 = λ0p0(ξ ,τ,v) + λ0

∫
V
T0(v ,v ′)p0(ξ ,τ,v ′)dv ′ =: L0p0(ξ ,τ,v).

yielding p0(ξ ,τ,v) = p̄0(ξ ,τ) = |V |−1ρ(ξ ,τ). L0 has

pseudo-inverse F0 on 〈1〉⊥.

• This implies ∫
V

v ·∇ξ p̄0(ξ ,τ)dv = 0

(V is a symmetric set).

• Collecting powers of O(ε), O(ε2), we obtain a hierarchy of

equations for p1,p2, whose solvability conditions yield the interior

parabolic limit for p0
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Proof sketch (ii)

• Equation at order O(ε):

L0p1 = v ·∇ξ p̄0 + λ1(v)p̄0−
∫
V

λ1(v ′)T0(v ,v ′)p̄0 dv ′

• Solvability condition: µ = 0 is a simple eigenvalue of L ∗
0 with a

unique positive eigenfunction g(v)≡ 1 ∈ L2(V ); therefore,

〈1,L0p1〉L2(V ) = 〈L ∗
0 1 ,p1〉L2(V ) = 0,

as L0 is singular, yielding

0 =
∫
V

λ1(v)p̄0(ξ ,τ)dv −
∫
V

∫
V

λ1(v ′)T0(v ,v ′)p̄0(ξ ,τ)dv dv ′

trivially satisfied because of (T1).
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Proof sketch (iii)

• We can define a pseudo-inverse of L0 on 〈1〉⊥ ⊂ L2(V ):

F0 = (L0|〈1〉⊥)−1. Thus,

p1(ξ ,τ,v) = F0

(
R1(p̄0(ξ ,τ))

)
,

where

R1p(v) := v ·∇ξp(v) + λ1(v)p(v)−
∫
V

λ1(v ′)T0(v ,v ′)p(v ′)dv ′

• Equation at order O(ε2):

L0p2 =
∂

∂τ
p̄0 +v ·∇ξp1 + λ1(v)p1−

∫
V

λ1(v ′)T0(v ,v ′)p1(ξ ,τ,v ′)dv ′

=
∂

∂τ
p̄0 +R1

(
p1(ξ ,τ,v)

)
.
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Proof sketch (iv)

• Solvability condition (L2(V ) product of RHS with span{1} ⊂ L2(V )):

0 =
∫
V

[
∂

∂τ
p̄0(ξ ,τ) +R1

(
F0

(
R1(p̄0(ξ ,τ))

))]
dv

• Define the average bias as

λ̄1(v) :=
∫
V

λ1(v ′)T0(v ,v ′)dv ′

(average bias, over all incoming velocities, of the turning rate to v).

Thus,

p1(ξ ,τ,v) = F0

(
v ·∇ξ p̄0(ξ ,τ)

)
+F0

(
(λ1(v)− λ̄1(v))p̄0(ξ ,τ)

)
• Do the math:∫

V
v ·∇ξp1(ξ ,τ,v)dv =

∫
V

v ·∇ξ

(
F0

(
v ·∇ξ p̄0(ξ ,τ)

))
dv+

+
∫
V

v ·∇ξ

(
F0

(
(λ1(v)− λ̄1(v))p̄0(ξ ,τ)

))
dv .
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Proof sketch (v)

∫
V

v ·∇ξ

(
F0

(
v ·∇ξ p̄0(ξ ,τ)

))
dv =

∫
V

divξ

(
[v ⊗ (F0v)]∇ξ p̄0

)
dv

=−divξ

(
|V |D∇ξ p̄0(ξ ,τ)

)
,

Identity:
∫
V v ·∇ξ

(
β p̄0

)
dv = divξ

(
p̄0

∫
V βv dv

)
, for any scalar

β = β (ξ ,τ,v); thus,∫
V

v ·∇ξ

(
F0

(
(λ1(v , Ŝ)− λ̄1(v , Ŝ))p̄0(ξ ,τ)

))
dv = divξ

(
|V |p̄0(ξ ,τ)w c

)

where

D =− 1

|V |

∫
V

v ⊗ (F0v)dv , w c =− 1

|V |

∫
V

vF0

(
λ̄1(v)−λ1(v)

)
dv ,

are the diffusion tensor and chemotactic velocity.
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Proof sketch (v)

∫
V

v ·∇ξ
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Proof sketch (vi)

• The solvability condition reads:

0 = |V | ∂

∂τ
p̄0−divξ

(
|V |D∇ξ p̄0

)
+ divξ

(
|V |p̄0w c

)
+

+
∫
V

λ1(v)F0

(
v ·∇ξ p̄0 + (λ1(v)− λ̄1(v))p̄0

)
dv+

−
∫
V

∫
V

λ1(v ′)T0(v ,v ′)F0

(
v ′ ·∇ξ p̄0+(λ1(v ′)−λ̄1(v ′))p̄0

)
dv ′dv

But the last two integrals cancel each other because of (T1). Result:

∂ p̄0

∂τ
= divξ

(
D∇ξ p̄0

)
−divξ

(
p̄0w c

)
.
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Boundary conditions

Boundary conditions of the limiting equation for ρ depend on boundary

conditions of the transport equation. In this case, the latter depend only

on the no normal mass flux nature of the former.

Ω⊂ Rn, bounded domain with piecewise smooth oriented boundary. For

each ξ ∈ ∂ Ω̃ = εΩ, ν̂(ξ ) is the normal unit vector. Boundary of the

phase space:

∂ Ω̃×V = Γ+∪Γ−∪Γ0,

Γ± := {(ξ ,v)∈ ∂ Ω̃×V : ±v · ν̂(ξ )> 0}, Γ0 := {(ξ ,v)∈ ∂ Ω̃×V : v · ν̂(ξ ) = 0}.

Assume Γ0 is of zero measure with respect to dγξdv , where dγξ is the

Lebesgue measure on ∂ Ω̃
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Traces

Trace spaces:

Lp± := Lp(Γ±; |v · ν̂(ξ )|dγξdv}, 1≤ p < +∞.

p|Γ± ∈ Lp± denotes the trace of p ∈W 1,p(Ω̃×V ) on Γ±, for fixed τ > 0.

Assume enough regularity so that the traces are well defined. If p is

smooth enough, then

p|∂ Ω̃×V (ξ ,τ,v) = lim
ξ̃∈Ω̃

ξ̃→ξ

p(ξ̃ ,τ,v), for each ξ ∈ ∂ Ω̃

If for each ξ ∈ ∂ Ω̃,

V± := {v ∈ V : ±v · ν̂(ξ ) > 0},

then we may as well define

p|∂ Ω̃×V (ξ ,τ,v) =:

{
p|Γ+

(ξ ,τ,v), ifv ∈ V+,

p|Γ−(ξ ,τ,v), ifv ∈ V−.
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The biological no-flux condition

General form of boundary conditions for the transport equation:

p|Γ−(ξ ,τ,v) = (Bp|Γ+
)(ξ ,v ,τ), (ξ ,v) ∈ Γ−, τ > 0,

incoming flux of cells, p|Γ− , is related to the outgoing one, p|Γ+
, through

a linear bounded operator B : Lp+→ Lp−.

The boundary operator satisfies the biological no-flux condition condition

if ∫
V
p(ξ ,τ,v)(v · ν̂(ξ ))dv = 0, ξ ∈ ∂ Ω̃, τ > 0. (BFC)

p = p(ξ ,τ,v) = p|Γ+
(ξ ,τ,v) + (Bp|Γ+

)(ξ ,τ,v) is the trace of the

solution to the transport equation p = p(ξ ,τ,v) on ∂ Ω̃×V for each

fixed τ > 0. No agents (cells or particles) move across the boundary.
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Regular reflection boundary operator

Definition (Palczewski, 1992)

B ∈L (Lp+,L
p
−) is a regular reflection boundary operator if there exists a

C 1-piecewise mapping V : Γ−→ Rn satisfying:

(a) If (ξ ,v) ∈ Γ− then (ξ ,V (ξ ,v)) ∈ Γ+.

(b) (Bp)(ξ ,v) = p(ξ ,V (ξ ,v)), for all (ξ ,v) ∈ Γ−, p ∈ Lp+.

(c) |V (ξ ,v)|= |v | for any (ξ ,v) ∈ Γ−.

(d) |ν̂(ξ ) ·v |= |ν̂(ξ ) ·V (ξ ,v)||det∂V /∂v |, for all (ξ ,v) ∈ Γ−.

(e) V (ξ ,βv) = βV (ξ ,v) for any β > 0, (ξ ,v) ∈ Γ−.
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Example 1: Bounce back reflection boundary condition

V (ξ ,v) =−v , (ξ ,v) ∈ Γ−. An agent (particle or cell) hits the boundary

and bounces back with the same velocity but with opposite direction
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Example 2: Specular reflection boundary condition

V (ξ ,v) = v −2(v · ν̂(ξ ))ν̂(ξ ), (ξ ,v) ∈ Γ−. An agent bounces back

making the same angle with respect to the tangent to the boundary
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Non-local (in velocity) boundary conditions

Definition

K ∈L (L2
+,L

2
−) is a (non-local in velocity) diffusive boundary operator if

for all (ξ ,v) ∈ Γ−,

(K p|Γ+
)(ξ ,τ,v) =

∫
V+

h(ξ ,v ,v ′)p|Γ+
(ξ ,τ,v ′) |v ′ · ν̂(ξ )|dv ′

where h = h(ξ ,v ,v ′)≥ 0 is a measurable function called the Gaussian

equilibrium and normalized such that∫
V−

h(ξ ,v ,v ′) |v · ν̂(ξ )|dv = 1.

A linear combination of a regular reflection with a diffusive boundary

operator is called a Maxwell-type boundary operator, H ∈L (L2
+,L

2
−),

where H = α(ξ )R + (1−α(ξ ))K for some α(·) ∈ L∞(∂ Ω̃), 0≤ α ≤ 1.

K is called the diffusive part of H and R is a reflection.
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Maxwell-type boundary operators have no normal flux

Lemma

Any Maxwell-type boundary operator satisfies the biological no-flux

condition.

Proof: Follows from straightforward calculations.
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No flux boundary conditions in the parabolic limit

Proposition (P, 2018)

Under the assumptions above, let us suppose that ∂ Ω is piecewise

smooth, that the regular Hilbert expansion of the solution to the

transport equation is smooth enough, and that the kinetic boundary

conditions imposed on p satisfy the no normal mass flux across the

boundary condition. Then the leading term ρ(ξ ,τ) = |V |p̄0(ξ ,τ) of the

Hilbert expansion satisfies the following no normal flux boundary

condition at ∂ Ω̃,(
D∇ξ ρ(ξ ,τ)−ρ(ξ ,τ)w c

)
· ν̂(ξ ) = 0, ξ ∈ ∂ Ω̃, τ > 0,

whereupon the diffusion tensor D and the chemotactic velocity w c are

defined as before.
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Note: The no normal mass flux condition could be satisfied by other

boundary conditions that could include, for instance, boundary operators

of Maxwell type (reflection and diffusion effects are combined), or

non-local boundary conditions (see Beals and Protopopescu, 1987;

Lods, 2005).
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Proof sketch (i)

• Substituting the Hilbert expansion, the no normal mass flux

condition is∫
V

(
p0(ξ ,τ,v)+εp1(ξ ,τ,v)+O(ε

2)
)
(v · ν̂(ξ ))dv = 0, ξ ∈ ∂ Ω̃, τ > 0.

and independent of ε > 0. Thus, w.l.o.g.,∫
V
pj (ξ ,τ,v)(v · ν̂(ξ ))dv = 0, ∀ j ≥ 0, ξ ∈ ∂ Ω̃, τ > 0

• The condition for j = 0 is trivially satisfied,∫
V
p0(ξ ,τ,v)(v · ν̂(ξ ))dv = p̄0(ξ ,τ)

(∫
V

v dv
)
· ν̂(ξ ) = 0,

p0 is independent of v and V is symmetric.

• The condition for j = 1 reads∫
V

(
F0

(
v ·∇ξ p̄0(ξ ,τ)

)
+F0

(
(λ1(v)− λ̄1(v))p̄0(ξ ,τ)

))
(v · ν̂(ξ ))dv = 0.
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Proof sketch (ii)

• We can show that∫
V

F0

((
v ·∇ξ p̄0

))
(v · ν̂(ξ ))dv =

∫
V

(
v(F0v)>∇ξ p̄0

)
· ν̂(ξ )dv

=

[(∫
V

v(F0v)> dv
)

∇ξ p̄0

]
· ν̂(ξ )

=−|V |
(
D∇ξ p̄0

)
· ν̂(ξ ).

• Also, ∫
V

F0

(
(λ1(v)− λ̄1(v))p̄0

)
(v · ν̂(ξ ))dv

=
(∫

V
F0(λ1(v)− λ̄1(v))v dv

)
· ν̂(ξ )p̄0

= |V |(w c · ν̂(ξ ))p̄0.

• This yields the result.
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Modeling density-dependent

cross-diffusion



Choice of the turning kernel and velocity space

Modeling: S = S(ξ ,τ) concentration of a chemical signal

(chemoattractant). The perturbed turning frequency λ0 might be a

function of (ξ ,τ) through S = S(ξ ,τ) or the density ρ = ρ(ξ ,τ), but

constant in v . λ1 may depend on v and on S ,∇S etc. Notation:

λ1 = λ1(v , Ŝ).

• Turning kernel: unperturbed (in ε) from a uniform reorientation in

velocity space,

T = T0(v ,v ′) :=
1

|V |
;

satisfies (T1) - (T4)

• Choice of V : Uniform distribution of velocities in all directions with

constant magnitude s > 0,

V := sSn−1 := {sv : |v |= 1,v ∈ Rn}.
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Choice of the turning frequency

• Experimental observations: tumbling time is low when the

concentration of the chemoattractant is low for B. Subtilis (cf.

Menolascina et al., 2017)

• To model aggregation, λ must be a decreasing function of ρ

(Othmer et al., 1988; Méndez, et al., 2012).

• First order perturbation of Schnitzer (1993) type:

λ (v , Ŝ) = λ0(ξ ,τ) + ελ1(v , Ŝ)

:=
µ0

ρ(ξ ,τ)S(ξ ,τ)
+ εκ(S(ξ ,τ))(v ·∇ξS(ξ ,τ))

µ0 > 0 is a constant with units of square moles over time

([M]2/[T ]). κ = κ(S) is a scalar function with units 1/[M].
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Resulting diffusion tensor

The pseudo-inverse, F0 : 〈1〉⊥ ⊂ L2(V )→ L2(V ) reduces to

multiplication by −λ
−1
0 . Therefore, the diffusion tensor is

D =− 1

|V |

∫
V

v ⊗ (F0v)dv =
λ
−1
0

|V |

∫
V

v ⊗v dv .

Since |V |= sn−1|Sn−1|=: sn−1ωn and∫
V

v ⊗v dv =
∫
Sn−1

s2
η⊗ηsn−1 dSη = sn+1 ωn

n
In,

then D = (λ0s
2/n)In, that is,

D = (λ0s
2/n)In =

(
s2

µ0n

)
ρS In.

Observation: The scalar quantity D(ρ,S) :=
(

s2

µ0n

)
ρS has units of square

length over time ([L]2/[T ]), effective diffusion coefficient. The parameter

σ = s2/µ0n measures the hardness of the agar: hard medium means s is low,

and the turning frequency per unit mass µ0 should be large; lower values of σ

indicate harder substrates.
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Resulting chemotactic term (i)

The average bias vanishes,

λ1(v) =
∫
V

λ1(v ′)T0(v ,v ′)dv ′ =
1

|V |

∫
V

κ(S)(v ′ ·∇ξS)dv ′

=
κ(S)

|V |

(∫
V

v dv
)
·∇ξS = 0,

thus,

w c =
1

|V |

∫
V

vF0

(
λ1(v , Ŝ)

)
dv =− λ

−1
0

|V |

∫
V

vκ(S)(v ·∇ξS)dv =−X∇ξS ,

where

X :=
κ(S)

λ0|V |

∫
V

vv> dv =
κ(S)

λ0|V |

∫
V

v ⊗v dv ,

is the chemotactic sensitivity tensor.
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Resulting chemotactic term (ii)

The chemotactic velocity is:

w c =−
(

s2

µ0n

)
κ(S)ρS∇ξS .

Diffusion and chemotaxis terms are related: model underlies the

experimental observation by Ben-Jacob: the chemotactic flux is

Jc :=
( s2

λ0n

)
κ(S)ρ

2S∇S ,

then Jc = ζ (ρ,S)κ(S)∇S , where the “bacterial response” function ζ

satisfies

ζ (ρ,S) =
( s2

λ0n

)
ρ

2S = ρD(ρ,S).
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Choice of the chemotactic sensitivity function

Receptor law (Lapidus-Schiller, 1976):

κ(S) =
χ0Kd

(Kd +S)2
,

where χ0 > 0 is a dimensionless constant measuring the strength of the

chemotaxis, and Kd > 0 is the receptor-ligand binding dissociation

constant. Kd has nutrient concentration units [M], it has a unique value,

determined experimentally. Meaning: for very high concentrations of the

chemical signal, the chemotactic response of bacteria vanishes due to

saturation of the receptors.
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Resulting equation

Upon substitution:

Mean-field equation for the marginal density ρ = |V |p̄0:

∂ρ

∂τ
= divξ

(( s2

µ0n

)
ρ S ∇ξ ρ

)
−divξ

(( s2

µ0n

)
ρ

2S
χ0Kd

(Kd +S)2
∇ξS

)
for ξ ∈ Ω̃, τ > 0.

Boundary conditions:(
ρS∇ξ ρ− χ0

Kd
ρ

2S∇ξS
)
· ν̂(ξ ) = 0, ξ ∈ ∂ Ω̃, τ > 0.
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Adding a reaction term (i)

• Main observation: the “velocity jump” process is Markovian, the

probability that agents reach the position x at time t does not

depend on previous times, t−T , with T > 0. (There is no history

dependence.) It is legitimate to add production/consumption terms.

• Let G̃ (p,S) = consumption rate of the nutrient by the bacteria; then

the growth rate of bacteria is θ G̃ (p,S), where θ > 0 is a

(dimensionless) conversion constant. Choice: Michaelis-Menten rule,

G̃ (p,S) =
kpS

1 + γS
,

k > 0 is the intrinsic consumption rate, and γ > 0 is a saturation

constant (k/γ is the maximum consumption rate by one single cell.)

This function can be approximated by

G̃ (p,S) = kpS ,

valid for low nutrient concentrations.
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Adding a reaction term (ii)

• Important assumption: the number of directional changes

outnumber the birth events. Thus, the pure movement “velocity

jump” process occurs on a much faster scale than the production

events due to kinetics. Since t = fast time variable, τ = slow time

scale, then the pure kinetics are governed by an equation of the form

pτ = G̃ (p,S), that is, pt = ε2G̃ (p,S). Hence we define,

G (p,S) := ε
2G̃ (p,S) = ε

2kpS .

The resulting scaled “velocity jump” process equation with reaction

term reads

ε
2 ∂

∂τ
p(ξ ,τ,v) + εv ·∇ξp(ξ ,τ,v)

=−λp(ξ ,τ,v) +
∫
V

λT (v ,v ′)p(ξ ,τ,v ′)dv ′+ ε
2kp(ξ ,τ,v)S(ξ ,τ).
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Adding a reaction term (iii)

• The kinetic term appears at order O(ε2), the procedure gets

unaffected up to order two. The resulting mean field equation is

∂ρ

∂τ
= divξ

(( s2

µ0n

)
ρ S ∇ξ ρ

)
−divξ

(( s2

µ0n

)
ρ

2S
χ0Kd

(Kd +S)2
∇ξS

)
+kθρS .
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Equation for the chemical signal

The dynamics of the chemical (nutrient) concentration S = S(ξ ,τ) is

governed by a standard reaction-diffusion equation (diffusive limit of a

stochastic positional jump process)

∂S

∂τ
= DS∆ξS−kρS , ξ ∈ Ω̃, τ > 0,

subject to Neumann (no-flux) boundary conditions

∇ξS · ν̂(ξ ) = 0, ξ ∈ ∂ Ω̃, τ > 0.

DS > 0 is the diffusion constant associated to the nutrient concentration

and −kρS is the consumption rate of the nutrient by the bacteria.

Initial conditions:

ρ(ξ ,0) = ρ0(ξ ), S(ξ ,0) = S0(ξ ), ξ ∈ Ω̃,

being ρ0,S0, known functions.
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Non-dimensionalization

Scaled, dimensionless quantities:

x :=

(
θKdk

DS

)1/2

ξ , t := θkKdτ, v :=
S

Kd
, u :=

ρ

θKd
, σ0 =

(
θK 2

d

DS

)
σ

Resulting equations:

ut = σ0∇ · (uv∇u)−σ0χ0∇ · (u2v∇v) +uv ,

vt = ∆v −uv ,
x ∈ Ω, t > 0,

(uv∇u−χ0u
2v∇v) · ν̂ = 0,

∇v · ν̂ = 0,
x ∈ ∂ Ω, t > 0,

u(x ,0) = u0(x), v(x ,0) = v0(x), x ∈ Ω,

where now Ω denotes the rescaled bounded, open domain in the new

non-dimensional variables.
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Kinetic derivation of cross-diffusion chemotactic model

Theorem (P, 2018)

Let Ω⊂ Rn be an open, bounded domain, with piecewise smooth

boundary ∂ Ω. Then the above system of equations, constitute the formal

diffusive limit when ε → 0+ of the solutions to a velocity jump process

governed by a transport equation for a non-dimensional agent

distribution q = q(x , t,v), of the form

ε
2qt + εv ·∇q =−λq+

∫
V

λT0(v ,v ′)qdv ′+ ε
2qv ,

and a reaction diffusion equation

vt = ∆v −uv ,

for the (non-dimensional) chemical signal concentration v = v(x , t),

where

u(x , t) =
∫
V
q(x ,y ,v)dv ,

is the zero velocity moment or marginal density. 79



Kinetic derivation of cross-diffusion chemotactic model

Theorem (continued)

Here V = s̃ Sn−1 := {s̃ v : |v |= 1,v ∈ Rn} is the uniform set of

non-dimensional velocities, the turning kernel and turning frequency

admit asymptotic expansions of the form

T0(v ,v ′) =
1

|V |
, λ =

1

u(x , t)v(x , t)
+ εχ0(v ·∇v),

and subject to boundary conditions of no normal mass flux type for q

satisfying ∫
V
q(x , t,v)(v · ν̂(x))dv = 0, x ∈ ∂ Ω, t > 0,

together with Neumann boundary conditions for the chemical

concentration

∇v · ν̂(x) = 0, x ∈ ∂ Ω, t > 0.
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Kinetic derivation of cross-diffusion chemotactic model

Theorem (continued)

Here ε > 0 is a dimensionless small parameter associated to the “velocity

jump” process in the diffusion regime. The limiting process is taken in

the following sense: if q admits a formal Hilbert expansion of the form

q = q0 + εq1 +O(ε2) for 0 < ε � 1 small, then the leading order term or

marginal density u = |V |q0 and the concentration v satisfy the limiting

system of mean-field equations, where v0(x) := v(x ,0) denotes the initial

nutrient concentration, and

u0(x) := u(x ,0) =
∫
V
q(x ,0,v)dv ,

is the initial distribution of agents for all possible velocities.

Reference: P, J. Math. Biol. (2018), to appear. arXiv:1711.03015
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Theorem (continued)
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Conclusions

• Formal macroscopic limit (parabolic regime) of a stochastic “velocity

jump” process in order to arrive at system with a doubly degenerate

cross-diffusion term and a nutrient taxis drift term.

• Both fluxes (the diffusive and the chemotactic) are

density-dependent, degenerate, and related to each other.

• Derivation makes precise the microscopic interpretation of the

phenomenological bacterial response function introduced by

Ben-Jacob.

• Helpful to understand the interplay of the microscopic description of

both diffusion and taxis.

• Incorporates microscopic parameters into the modeling process.

• The bacterium B. subtilis is used as a prototype, but the method

and results apply in more generality.
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Thanks!

83


	Motivation
	Velocity-jump stochastic processes
	Diffusive limits: the method of Hillen and Othmer
	Modeling density-dependent cross-diffusion

