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Abstract. The aim of this article is to show how continuous mathematical
models for tumor dynamics can be solved efficiently using commodity Graph-

ics Processing Units (GPUs) found in personal and portable computers. The

test set of equations models haptotaxis and heterogeneous anisotropic diffu-
sion of the cancer cells population. The numerical solution is obtained by

using a second order finite difference Euler scheme. It is proven that, as the

space resolution improves, the GPU implementation of the numerical scheme
shows an increasingly better performance than that of the Central Processing

Units (CPUs).

1. Introduction

Mathematical models for tumor invasion are often used to predict the behav-
ior of cancer evolution and can produce strikingly nontrivial patterns. Therefore,
their numerical solution demands high spatial resolution to capture the detailed
biophysical phenomena. As a consequence, long computational times are often
required when using a serial implementation of the numerical schemes. Paral-
lel computation can improve dramatically the time efficiency of some numerical
methods such as finite differences algorithms, which are relatively simple to imple-
ment and are easily applicable to continuous tumor invasion models. For clinical
practitioners and applied scientists involved in setting up realistic experiments,
the possibility of running fast comparative simulations using simple algorithms
implemented into affordable processors is of primary interest and that is where
Graphics Processing Units (GPUs) excel.

Parallel computing based on modern GPUs has the advantage of high per-
formance at a relatively low energy and monetary costs. In 2002, commodity
graphics cards started to outperform Central Processing Units (CPUs). As GPUs
grew faster and cheaper, the interest to harvest their power for applications others
than graphical display originated, around 2006, what is known as GPGPU (Gen-
eral Purpose GPU computation – http://gpgpu.org. By the year 2009, GPUs
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that could be bought out the shelf had a theoretical peak performance of more
than a thousand single precision GFLOPs (109 floating point operations per sec-
ond), almost ten times more than their multi-core CPU counterpart. Nowadays,
GPUs found in personal computers and laptops can perform double precision com-
putations with a ratio of speed over cost larger than any other parallel computing
architecture. Additionally, GPUs are also energetically efficient making them and
affordable and portable option for parallel computation.

The codes used to study the performance of GPUs presented in this article were
programmed using CUDA (Compute Unified Device Architecture). The CUDA
platform, introduced by NVIDIA c© in 2007, was designed to support GPU exe-
cution of programs and focuses on data parallelism [11]. With CUDA, graphics
cards can be programmed with a medium-level language, that can be seen as an
extension to C/C++, without requiring a great deal of hardware expertise. We
refer to Kirk and Hwu [9], as well as Sanders and Kandrot [14] for a comprehensive
introduction to GPU-based parallel computing, including details about the CUDA
programming model and the architecture of current generation NVIDIA c© GPUs.

In order to exemplify overall GPU performance in the context of efficient simu-
lation of continuous tumor invasion models, in this article we consider a system of
partial differential equations that models anisotropic and heterogeneous diffusion
of tumor cells. The equations are based on the mathematical system proposed
by Enderling et al. [6] to account for solid breast tumor growth (see also [2, 3]).
The system under consideration is a set of time-evolution parabolic equations of
reaction-diffusion type, which includes haptotaxis of tumor cells or directed move-
ment up the gradient of fixed chemicals, as well as the effect of degradation en-
zymes. We compute their numerical solutions considering spatial discretization by
centered finite differences and time integration through an explicit Euler method.
The choice of time-explicit algorithms is motivated by their greater ease of parallel
implementation and performance on GPU devices, despite the limitations related
to their reduced stability properties.

Plan of the article. In Section 2 we present the mathematical model of breast
tumor growth of Enderling et al. [6] with the incorporation of an anisotropic and
heterogeneous diffusion tensor. The numerical scheme and a set of numerical
experiments are illustrated in Section 3. Section 4 contains the comparative per-
formance evaluation between GPU and CPU implementations of the numerical
scheme. Finally, in Section 5 we propose a brief discussion of our results.

2. Modeling haptotaxis and anisotropic solid tumor growth

The mathematical model considered in this article mainly accounts for interac-
tions between the cancer cells population and the surrounding tissue, and neglects
the interaction between the tumor and the vascular system. It is based on three
dynamical variables: the tumor cells density represented by n, the Matrix Degra-
dation Enzymes (MDEs) represented by m, and the fibronectin molecules density
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bound to the Extracellular Matrix (ECM) represented by f . The ECM is the tis-
sue surrounding the tumor and typically degraded by the cancer cells. The ECM
is a complex mixture of macromolecules, some of which are believed to play struc-
tural roles while others are involved in cells adhesion, spreading and motility. The
MDEs are produced by the cancer cells and are able to digest the ECM, so that
enabling the migration of cancer cells through the tissue. In summary, the invasive
process is determined by the ability of the tumor to degrade the surrounding ECM
by production of the MDEs.

Another preeminent mechanism of tumor invasion is known as haptotaxis,
which is the movement towards gradients of chemicals which are fixed, that is, they
do not diffuse (in contrast to chemotaxis where there is diffusion of the chemo-
attractant). The present model assumes that the tumor cells move haptotactically
towards the gradients of fibronectin. Finally, the other contribution to the flux
of cancer cells is due to diffusion. In general, the motility flux takes the form
−D · ∇n , where D is a diffusion tensor which, in general, may depend on f and
m, and vary through space.

Our study focuses on the effects of anisotropic and heterogeneous diffusion
on tumor invasion. This is reflected in the fact that tumor cells exhibit altered
random motility depending on their localization and on preferred ECM directions.
The motivation for considering such a situation is precisely to understand the
qualitative behavior of tumor movement when migration between different types of
tissue occurs. We are not interested in how random motility increases or decreases
when the concentrations of ECM and MDEs change from region to region, but on
the intrinsic diffusion properties imposed by the geometry and/or the structure of
the environment. The heterogeneous rate of invasion of certain tumors on healthy
tissue is a widely reported phenomenon (see [12] and the references therein). The
anisotropy and heterogeneity of glioma invasion along brain structures is a good
example of the latter [7]. Aligned migration of tumor cells is thus determined
by the properties of the tissue itself (among other factors). Anisotropic diffusion
tensors for tumor cells density have been proposed to account for complex tissue
structures, which predict the rate and the directional movement of malign cells as
they infiltrate an healthy tissue. One of the first models of this kind is that of
Swanson et al. [17].

We consider the following model of tumor invasion with non-constant diffusion,

(2.1)


nt = ∇·

(
D · ∇n

)
− Γ∇·

(
n∇f

)
+ Λn

(
1− n

n0
− f

f0

)
ft = −Kmf

mt = Dm∆m+ Θn
(

1− m

m0

)
−Bm

.

These equations are defined on a two-dimensional domain Ω ⊂ R2, and t > 0. The
typical domain Ω is a square with sides of length L corresponding, for example,
to a Petri dish or any support where the in vitro experiments are performed (see
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Figure 1), and zero flux boundary conditions are imposed for n, m and f , namely

(2.2) n · ν̂ = 0 , f · ν̂ = 0 , m · ν̂ = 0 , on ∂Ω ,

where ν̂ is the outer unit normal at each point of the boundary ∂Ω .

Figure 1. A squared Petri dish for in vitro experiments.

The difference with the model proposed by Enderling et al. [6] lies on the
consideration of an anisotropic and heterogeneous diffusion tensor of the form

(2.3) D(x, y) =

(
a(x, y) b(x, y)
b(x, y) c(x, y)

)
,

where a, b and c are known functions of space. The constants Γ > 0 and Λ > 0
are the tumor cells haptotaxis and proliferation coefficients, respectively. The fi-
bronectin degradation coefficient is K > 0, while Dm , Θ and B are the (positive)
coefficients of diffusion, production and decay of enzymes, respectively. The con-
stants n0, f0 and m0 are characteristic concentrations of tumor cells, fibronectin
and enzymes, which are related to the initial experimental concentrations.
It is worthwhile remarking that a constant diffusion coefficient Dm in the MDEs
equation is biologically justified because of the ECM degradation carried out by
the enzymes, which can subsequently move over an unconstrained domain. More-
over, various dependencies of the parameters can easily be incorporated into the
model for reproducing more realistic experiments.

For the non-dimensionalization of the system, according to Enderling et al. [6]
we rescale distance with L, tumor cells density with n0, ECM density with f0,
MDEs concentration with m0 and the characteristic time with τ = 1 year, to
obtain the following non-dimensional system,

(2.4)


nt = ∇·

(
D · ∇n

)
− γ∇·

(
n∇f

)
+ λn

(
1− n− f

)
ft = −κmf
mt = dm∆m+ δ n

(
1−m

)
− β m

,
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further endowed with no flux boundary conditions (2.2). All variables are dimen-
sionless, including the diffusion tensor D rescaled with τ/L2. The other dimen-
sionless parameters are dm = τDm/L

2, δ = τΘn0/m0, β = τB, κ = τKm0,
γ = τf0 Γ/L2 and λ = τΛ, and all take positive values. In the next section, we
show a series of numerical solutions to (2.4) on the rescaled unit square Ω.

3. Numerical scheme and simulations

The set of equations (2.4) is solved numerically on the unit square Ω = (0, 1)×
(0, 1) discretized by a Cartesian grid

(
i∆x, j∆y

)
, i, j ∈ Z , where ∆x and ∆y

represent the space steps in each coordinate direction. The spatial derivatives are
approximated by centered finite differences and the time derivatives by an explicit
Euler method. The time variable takes discrete values tn = k∆t, where ∆t is the
constant time step and k ∈ N.

We denote the approximated values of the dynamical variables at the grid
points and discrete times as

Nk
i,j ≈ n(i∆x, j∆y, k∆t) ,

F k
i,j ≈ f(i∆x, j∆y, k∆t) ,

Mk
i,j ≈ m(i∆x, j∆y, k∆t) ,

and the numerical values of the entries of diffusion tensor (2.3) at the grid points
are likewise defined as

ai,j = a(i∆x, j∆y) ,

bi,j = b(i∆x, j∆y) ,

ci,j = c(i∆x, j∆y) ,

for each (i, j) and k. Then, the evolution of the system is computed through the
following numerical scheme,

(3.1)

Nk+1
i,j = Nk

i,j + ai,j
∆t

∆x2

(
Nk

i+1,j − 2Nk
i,j +Nk

i−1,j

)
+ ci,j

∆t

∆y2

(
Nk

i,j+1 − 2Nk
i,j +Nk

i,j−1

)
+ bi,j

∆t

2∆x∆y

(
Nk

i+1,j+1 −Nk
i+1,j−1 −Nk

i−1,j+1 +Nk
i−1,j−1

)
+

∆t

4∆x2

(
ai+1,j − ai−1,j

)(
Nk

i+1,j −Nk
i−1,j

)
+

∆t

4∆y2

(
ci,j+1 − ci,j−1

)(
Nk

i,j+1 −Nk
i,j−1

)
+

∆t

4∆x∆y

[(
bi+1,j − bi−1,j

)(
Nk

i,j+1 −Nk
i,j−1

)
+
(
bi,j+1 − bi,j−1

)(
Nk

i+1,j −Nk
i−1,j

)]
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+ γ
∆t

4∆x2

(
Nk

i+1,j −Nk
i−1,j

)(
F k
i+1,j − F k

i−1,j

)
+ γ

∆t

4∆y2

(
Nk

i,j+1 −Nk
i,j−1

)(
F k
i,j+1 − F k

i,j−1

)
+ γ

∆t

4∆x2
Nk

i,j

(
F k
i+1,j − 2F k

i,j + F k
i−1,j

)
+ γ

∆t

4∆y2
Nk

i,j

(
F k
i,j+1 − 2F k

i,j + F k
i,j−1

)
+ ∆t λNk

i,j

(
1−Nk

i,j − F k
i,j

)
,

(3.2) F k+1
i,j = F k

i,j

(
1−∆t κMk

i,j

)
,

(3.3)

Mk+1
i,j = Mk

i,j + dm
∆t

∆x2

(
Mk

i+1,j − 2Mk
i,j +Mk

i−1,j

)
+ dm

∆t

∆y2

(
Mk

i,j+1 − 2Mk
i,j +Mk

i,j−1

)
+ ∆t δ Nk

i,j

(
1−Mk

i,j

)
−∆t βMk

i,j .

The following proposition establishes an upper bound for the time step to ensure
numerical stability of the scheme (3.1)-(3.3). The validity of such bound is related
to the discrete maximum principle for the Beltrami color flow, which is typically
used in image processing (refer to [5, 4]).

Proposition 3.1. The numerical scheme given by (3.1)-(3.3) is stable provided
that

(3.4) ∆t < min
{1

8

max(∆x2,∆y2)

maxi,j

(
aij , cij

) , 1

2

max(∆x2,∆y2)

dm

}
.

Proof. The proof follows from Theorem 5.1 in [5]. Indeed, the central explicit
difference scheme in (3.1) exhibits the general form

Nk+1
i,j = Nk

i,j + r∆tOi,j(N
k, F k,Mk) ,

as the finite difference numerical operator of the Beltrami color flow considered
in [5] for equations of the form

Nt =
1
√
g
∇·
(
D∇N

)
,

with diffusion matrix given by the general expression (2.3), and where g is the
metric associated to the Laplace-Beltrami operator. In the present case of a flat
Euclidean space, the metric reduces to the identity with r = 1 (the ratio of color
and spatial distances, see [4]). Substitution of gki,j ≡ 1 and r = 1 into the for-
mula (5.5) in [5] yields the first term of the right hand side of (3.4). The second
term follows from the well-known stability estimate for standard reaction-diffusion
equations with diffusion coefficient dm (see [8], for instance). �
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Remark 3.2. As we mentioned in the introduction, explicit numerical schemes
usually require very small time steps in order to ensure their stability. The GPU
architecture, however, is very well-suited to execute finite difference calculations
for many data elements (grid points) simultaneously [11]. As a consequence, the
inconvenience of small time steps is overcome through parallelization techniques
which accomplish thousands of iterations in relatively small wall-clock running
times of simulation (a couple of hours). Nevertheless, the overall benefits of parallel
processing are slightly more complicated than just decreasing the running time of
some programs, as we shall discuss in Section 4.

In this section, we present the results of the numerical approximation of sys-
tem (2.4) obtained by applying the scheme (3.1)-(3.3). All simulations have been
performed using a NVIDIA c© GTX 670 graphics card with 1344 CUDA cores and
4 Gb of RAM, installed on a processor HP DL585G7 4 AMD Opteron 6128 with
8 cores, clock frequency 2.0 GHz, 64 Gb of RAM, operating system Linux centOS
5.5 amd64, compiler GNU gcc 4.4 and NVIDIA c© CUDA 6.5 linux 64 bit toolbox.
For comparison (see Section 4), the same numerical scheme and parameter values
have been implemented serially on one single processor in the HP DL585G7 4 AMD
Opteron 6128 CPU with 8 cores, but the graphical results are naturally omitted.
All numerical simulations in this articles have been realized on the Linux HPC
cluster Caliban – http://caliban.dm.univaq.it – located in the Laboratory of
High Performance Parallel Computing at the University of L’Aquila [13].

For consistency with the previous work by Enderling et al. [6], we consider the
parameter values used in their simulations, which are based on tumor invasion in
breast tissue. These parameter values can be found in Table 1.

Table 1. Non-dimensional parameters used for the simulations [6]

Description Symbol Value

Diffusion coefficient of tumor cells dn 0.0001

Haptotactic sensitivity γ
{

0, 0.00005
}

Proliferation rate of tumor cells λ 0.75

Degradation rate of ECM κ 10.0

Diffusion coefficient of MDEs dm 0.0005

Production rate of MDEs δ 0.1

Decay rate of MDEs β 0

Moreover, for the numerical computations we adopt a Cartesian grid of pro-
gressively increasing sizes of 128, 256, 512, 1024 and 2048 points, for which the time
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steps are correspondingly defined to satisfy the stability estimate (3.4). In the se-
quel, we only reproduce the graphical results with a grid size of 128 points, since
all simulations performed with finer grids are qualitatively the same.

3.1. Isotropic, homogeneous diffusion. As a first step, we consider the case
of isotropic and homogeneous diffusion tensors of the form

D = dn

(
1 0
0 1

)
,

in order to set a numerical experiment which is tantamount for reproducing the
results in [6]. The initial condition for n is taken as

(3.5) n0(x, y) = N0 exp
{
− ω0((x− 0.5)2 + (y − 0.5)2)

}
,

with N0 = 0.75 and ω0 = 0.005, thus simulating an initial radial tumor located at
the center of the domain. The initial conditions for MDEs and ECM densities are
taken, respectively, as

(3.6) m0(x, y) = 1
2n0(x, y) , f0(x, y) = 1− 1

2n0(x, y) .

In order to isolate the diffusion from the haptotactic effects, we first consider
the case when γ = 0 , and next we allow directed movement with haptotactic
sensitivity set as γ = 0.00005 .

Figure 2 shows the results of the first simulation with solely isotropic and homo-
geneous diffusion, in the absence of haptotaxis (γ = 0). As expected from previous
numerical observations in [6], the initial circular tumor diffuses symmetrically in
all radial directions.

Figure 3 shows the results of the second simulation with also haptotactic effects
(γ = 0.00005), again with isotropic and homogeneous diffusion. Because of the
directed movement toward the fibronectin molecules, tumor cells form a depression
in the center of the domain due to degradation of the former: this is sometimes
quoted as the volcano effect, which is well-known in chemotaxis (refer to [15]).

3.2. Anisotropic, homogeneous diffusion. Next, we focus on the effects of dif-
fusion anisotropy on the tumor invasion. For that purpose, we consider anisotropic
and homogeneous diffusion tensors of the form

D = dn

(
a 0
0 1

)
,

where a = {0.1, 0.01}, namely we allow the diffusion on the y direction to be 10
and 100 times greater than in the x direction, with |D| = O(dn) for consistency
with the measurements in [6]. Once again the constant diffusion coefficient for
cancer cells is dn = 0.0001 and the initial conditions are given by (3.5)-(3.6). We
analyze both the effects of the anisotropic diffusion alone, first by setting γ = 0 ,
and then the combined diffusion with directed movement due to haptotaxis, by
taking γ = 0.00005 .

Figure 4 shows the results of the simulation in the case of anisotropic and
homogeneous diffusion with a = 0.01 and no haptotaxis. The dynamics clearly
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(a) Tumor cells density

(b) Contour plot

Figure 2. The left panel (a) shows the numerical solution of
tumor cells density n after t = 1.0 second of simulation time in
the isotropic, homogeneous diffusion case (a = c = 1.0 , b = 0.0)
without haptotaxis (γ = 0.0). The right panel (b) shows the
contour plot (color online).
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(a) Tumor cells density

(b) Contour plot

Figure 3. The left panel (a) shows the numerical solution of
tumor cells density n after t = 1.0 second of simulation time in
the isotropic, homogeneous diffusion case (a = c = 1.0 , b = 0.0)
with weak haptotactic signal (γ = 0.00005). The right panel (b)
shows the contour plot (color online).
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shows enhanced diffusion in the direction y without formation of the depression in
the center of the domain, in view of the absence of haptotactic effects.

Figure 5 shows the results of the simulation in the case of anisotropic and ho-
mogeneous diffusion with a = 0.01 and haptotactic sensitivity value γ = 0.00005 ,
so that we notice the combined effects of enhanced diffusion in the direction y plus
the volcano effect already mentioned above.

3.3. Anisotropic, inhomogeneous diffusion. Finally, we consider the case of
an anisotropic and heterogeneous diffusion tensor (2.3). The heterogeneity is mod-
eled by splitting the spatial domain Ω into two regions: more precisely, we set

(3.7) D(x, y) = dn

(
a(x, y) 0

0 1

)
,

where

a(x, y) =

{
0.001 , x < 0.5 ,

0.005 , x ≥ 0.5 .

These simulations are cartoon-like simplifications of the behavior of cancer dynam-
ics related to tissues with heterogenous biological properties in different regions of
space (see [16] for a recent study in the case of brain tumors).

Figure 6 shows the results of the simulation in the case of anisotropic and
heterogeneous diffusion tensor (3.7) without haptotactic effects (γ = 0). We clearly
notice the effect of anisotropy and heterogeneity in the spatial distribution of the
tumor cells density.

Figure 7 shows the results of the simulation in the case of anisotropic and het-
erogeneous diffusion tensor (3.7) combined with haptotactic effects (γ = 0.00005).
We now notice the effect of anisotropy and heterogeneity in the spatial distribution
of the tumor cells density as well as the structural formation of the volcano effect
due to haptotaxis.

4. Performance evaluation

In this section, we analyze the performance of the parallel implementation of
the numerical scheme introduced in Section 3. For that purpose, we recall the
definition of two indices often used in parallel processing, the speed-up and the
efficiency [10]. The benefits of parallel processing can be affected by all parts of
the numerical code that cannot be actually parallelized. Indeed, every program
necessarily performs some sequential calculations such as Input/Output data man-
agement, for example, and one must always take into account such interactions.
Assuming that, when the program is compiled to produce a serial machine code,
its wall-clock running time is Ts seconds, and that the fraction of this work that
can be parallelized is P ∈ (0, 1) . Thus, the parallelizable part accounts for PTs
seconds, whereas the remaining serial part is (1−P )Ts seconds. Theoretically, once
the program has been parallelized, the corresponding reduction in running time is
PTs/η, where η is the ratio of serial to parallel running time for the parallelizable
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(a) tumor cells density

(b) Contour plot

Figure 4. The left panel (a) shows the numerical solution of
tumor cells density n after t = 1.0 second of simulation time in
the anisotropic, homogeneous diffusion case (a = 0.01, c = 1.0, b =
0.0) without haptotaxis (γ = 0.0). The right panel (b) shows the
contour plot (color online).
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(a) tumor cells density

(b) Contour plot

Figure 5. The left panel (a) shows the numerical solution of
tumor cells density cells n after t = 1.0 second of simulation time
in the anisotropic, homogeneous diffusion case (a = 0.01, c =
1.0, b = 0.0) with weak haptotactic signal (γ = 0.00005). The
right panel (b) shows the contour plot (color online).
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(a) tumor cells density

(b) Contour plot

Figure 6. The left panel (a) shows the numerical solution of
tumor cells density n after t = 1.0 second of simulation time in
the case of anisotropic, inhomogeneous diffusion tensor (3.7) and
without haptotaxis (γ = 0.0). The right panel (b) shows the
contour plot (color online).
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(a) tumor cells density

(b) Contour plot

Figure 7. The left panel (a) shows the numerical solution of
tumor cells density n after t = 1.0 second of simulation time in
the case of anisotropic, inhomogeneous diffusion tensor (3.7) and
with weak haptotactic signal (γ = 0.00005). The right panel (b)
shows the contour plot (color online).
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code parts, namely η is proportional to the number of processors (or cores). In
conclusion, the total running time gets modified to Tp = (1− P )Ts + PTs/η.

The speed-up is a very simple index that allows to assess how much the problem
solved in parallel mode is faster compared to the same problem solved purely in
serial mode. It is defined as

(4.1) Sp =
Ts
Tp

=
1

(1− P ) + P/η
≥ 1 ,

and its expression is independent of Ts , according to the Amdahl’s law [1, 10].
The theoretical upper bound for the speed-up is always equal to the number of
parallel processes to which a given problem is distributed: if the program is fully
parallelized, then P = 1 and the Amdahl’s law (4.1) yields Sp = η . However, it is
difficult to reach such a limit due to the various hardware bottlenecks associated
with the computing architectures. In particular, the memory access time and data
traffic usually degrade the performance compared to the ideal speed-up limit. The
lower bound for the speed-up, for instance, is reached when no part of the code
can be parallelized (P = 0 and Sp = 1).

In order to obtain an estimate of the effectiveness of a given computing ar-
chitecture, it is useful to define the efficiency parameter as the ratio between the
speed-up and the number of used processors, that is

(4.2) Ep =
Sp

η
,

where Sp is the speed-up as defined in (4.1) and η is the number of usable processors
(or cores). It is to be noticed that there exists a theoretical upper limit for the
efficiency (4.2) given by Ep ≤ 1 . In other words, we have the highest efficiency
when all available resources are actually employed. However, as mentioned above,
the difficulty to reach the theoretical maximum speed-up implies that, therefore,
the maximum efficiency is almost surely never reached.

Remark 4.1. In principle, it is not formally correct to effectuate performance
evaluations by directly comparing CPU and GPU execution times, because that
means to compare results related to two intrinsically different computing archi-
tectures (refer to [9, 11, 14]). For this reason, with the aim of homogenizing the
numerical results, we have introduced supplementary dedicated metrics to signifi-
cantly juxtapose serial and parallel computational times related to our problem.

To evaluate the effectiveness of the numerical simulations carried out to com-
pute approximated solutions to system (2.4), we define the program speed-up as

(4.3) Spt =
TCPUtot

TCPUser + TGPU
,

where TCPUtot is the total CPU execution time of the program running in serial
mode, TCPUser is the CPU execution time of the irreducible serial part of the
program and TGPU is the GPU execution time of the parallel part of the program
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(equal to the CUDA kernel(s) execution time(s) in the distributed environment).
Likewise, we define the kernel speed-up as

(4.4) Spk =
TCPUpar

TGPU
,

where TCPUpar is the CPU execution time of the parallel part of the program
running in serial mode. The corresponding efficiencies are defined as

(4.5) Ept =
Spt

η
, Epk =

Spk

η
,

with η = 1344 the number of CUDA cores used for our simulation (see Section 3).
We notice that TCPUtot = TCPUser + TCPUpar and elementary algebra allows to
infer that Spt < Spk, inasmuch as TGPU < TCPUpar (the GPU execution time for
the parallelizable part of the code is obviously smaller than the analogous CPU
execution time). Consequently, it holds that Epk > Ept as well.

Table 2 shows the performance expressed as execution time (in seconds) of the
global program with its parallel components implemented in serial or alternatively
parallel mode, in terms of the grid size, for the numerical simulations with strong
haptotaxis (γ = 0.005). It also contains the computed values of the program
speed-up Spt and its efficiency Ept. The results in the case without haptotactic
effects (γ = 0) are very similar (see Table 3), thus confirming the optimality of the
code implementation even in presence of spatially staggered coupling nonlinear
terms (for γ 6= 0) inside the numerical algorithm (3.1).

Table 2. Performance of the global program (with hapto-
taxis). Second and third columns (from left to right) contain the
computation time (in seconds) when employing serial and CUDA
kernels, respectively. Fourth and fifth columns contain the rela-
tive program speed-up (4.3) and efficiency (4.5).

Grid size Serial kernel CUDA kernel Speed-up Efficiency

128 × 128 37.06 0.42 89.56 0.066

256 × 256 247.89 1.38 180.01 0.134

512 × 512 2909.48 5.39 539.60 0.402

1024 × 1024 6395.32 21.30 300.30 0.223

2048 × 2048 17847.28 84.24 211.87 0.158

Table 4 shows the performance expressed as execution time (in seconds) of the
program parallel components executed by the CPU serial kernel or alternatively
the CUDA parallel kernel, in terms of the grid size, for the numerical simulations
with strong haptotaxis (γ = 0.005). It also contains the computed values of
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Table 3. Performance of the global program (without
haptotaxis). Second and third columns (from left to right) con-
tain the computation time (in seconds) when employing serial and
CUDA kernels, respectively. Fourth and fifth columns contain the
relative program speed-up (4.3) and efficiency (4.5).

Grid size Serial kernel CUDA kernel Speed-up Efficiency

128 × 128 36.97 0.42 89.19 0.066

256 × 256 247.67 1.38 189.80 0.134

512 × 512 2909.48 5.39 539.47 0.401

1024 × 1024 6298.98 21.30 295.79 0.220

2048 × 2048 16628.33 84.20 197.50 0.147

Table 4. Performance of the program kernels (with hap-
totaxis). Second and third columns (from left to right) contain
the computation time (in seconds) when employing serial and
CUDA kernels, respectively. Fourth and fifth columns contain
the relative kernel speed-up (4.4) and efficiency (4.5).

Grid size Serial kernel CUDA kernel Speed-up Efficiency

128 × 128 40.78 0.42 97.10 0.072

256 × 256 272.62 1.40 194.73 0.145

512 × 512 3199.90 5.41 591.48 0.440

1024 × 1024 11358.36 21.31 533.01 0.400

2048 × 2048 57109.48 84.23 678.02 0.504

the kernel speed-up Spk and its efficiency Epk. The results in the case without
haptotactic effects (γ = 0) are shown in Table 5.

Finally, Figure 8 shows the comparison between the global program speed-up
Spt in (4.3) and the kernel speed-up Spk in (4.4) as functions of the grid size.
Analogously, Figure 9 shows the program efficiency Ept versus the efficiency of the
parallel kernel Epk defined in (4.5) as functions of the grid size. It is to be observed
that Spk > Spt and Epk > Ept , as we have pointed out above. We also notice
that there is a threshold value around a grid size of 512 points from which both
speed-up and efficiency of the global program become significantly smaller than
the speed-up and efficiency of the CUDA parallel kernel, suggesting that the GPU
implementation of the numerical scheme enjoys an increasingly better performance
than that of the CPU implementation as the space resolution improves.
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Table 5. Performance of the program kernels (without
haptotaxis). Second and third columns (from left to right) con-
tain the computation time (in seconds) when employing serial and
CUDA kernels, respectively. Fourth and fifth columns contain the
relative kernel speed-up (4.4) and efficiency (4.5).

Grid size Serial kernel CUDA kernel Speed-up Efficiency

128 × 128 40.68 0.43 94.61 0.0704

256 × 256 272.39 1.40 194.56 0.145

512 × 512 3006.40 5.41 555.71 0.413

1024 × 1024 13415.00 21.31 629.51 0.468

2048 × 2048 52165.00 84.20 619.54 0.461

5. Discussion and conclusions

In this article, we have reported the results of the numerical simulation of
a system of partial differential equations modeling tumor growth. The system
is based on a previous reaction-diffusion model by Enderling et al. [6], with the
incorporation of an anisotropic and heterogeneous diffusion tensor for the dynamics
of the tumor cells over the spatial domain. The model is further endowed with
haptotaxis towards fibronectin molecules and extracellular matrix degradation by
means of enzymes. The purpose of our numerical experiments has been to compare
a parallel implementation on a GPU architecture of the numerical scheme with its
serial CPU counterpart.

The simulations convey some qualitative observations. For example, upon in-
spection of Figures 2 to 6, it emerges that cases with haptotaxis exhibit greater
directional movement of the tumor cells within the same time window. This behav-
ior suggests that the presence of haptotaxis may lead to faster metastasis growth
inside the tissue surrounding the tumor. Regarding the comparative performances
of the GPU and CPU implementations (see Figure 8 and Figure 9), we observe a
strong improvement on the execution time for each test, with a maximum speed-
up of almost 700 and an efficiency around 0.5 for increasing grid sizes. Moreover,
it is to be noticed that, as the space resolution improves, the GPU parallel imple-
mentation of the numerical scheme shows an increasingly better performance than
that of its CPU serial counterpart. We believe that our results confirm that GPU
architectures provide the user with high computational performance (at low cost).
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Figure 8. Speed-up of the global program Spt (blue line) and of
the CUDA parallel kernel Spk (green line) as functions of the grid
size, for the scheme (3.1)-(3.3) with haptotaxis (γ 6= 0).

Figure 9. Efficiency of the global program Ept (orange line) and
of the CUDA parallel kernel Epk (grey line) as functions of the
grid size, for the scheme (3.1)-(3.3) with haptotaxis (γ 6= 0).
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22 D. PERA, C. MÁLAGA, C. SIMEONI, AND R.G. PLAZA

(D. Pera) Dipartimento di Ingegneria e Scienze dell’Informazione e Matematica,
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