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Abstract. This paper establishes the spectral stability in exponentially weighted

spaces of smooth traveling monotone fronts for reaction diffusion equations of
Fisher-KPP type with nonlinear degenerate diffusion coefficient. It is assumed

that the former is degenerate, that is, it vanishes at zero, which is one of

the equilibrium points of the reaction. A parabolic regularization technique is
introduced in order to locate a subset of the compression spectrum of the lin-

earized operator around the wave, whereas the point and approximate spectra

are proved to be stable with the use of energy estimates. Detailed asymp-
totic decay estimates of solutions to resolvent type equations are required in

order to close the energy estimates. It is shown that all fronts traveling with
speed above a threshold value are spectrally stable in an appropriately chosen

exponentially weighted L2-space.

1. Introduction

In this paper we study scalar reaction-diffusion equations of the form

ut = (D(u)ux)x + f(u), (1.1)

where u = u(x, t) ∈ R, x ∈ R, t > 0, and the diffusion coefficient D = D(u) is a
nonlinear, non-negative density dependent function which is degenerate at u = 0.
More precisely, it is assumed that D satisfies

D(0) = 0, D(u) > 0 for allu ∈ (0, 1],

D ∈ C2([0, 1];R) with D′(u) > 0 for all u ∈ [0, 1].
(1.2)

As an example we have the quadratic function

D(u) = u2 + bu, (1.3)

for some constant b > 0, as proposed by Shigesada et al. [51] to model dispersive
forces due to mutual interferences between individuals of an animal population.

The nonlinear reaction function is supposed to be of Fisher-KPP type [11, 23],
that is, f ∈ C2([0, 1];R) has one stable and one unstable equilibrium points in [0, 1];
more precisely,

f(0) = f(1) = 0,

f ′(0) > 0, f ′(1) < 0,

f(u) > 0 for all u ∈ (0, 1).

(1.4)
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An example of a reaction of Fisher-KPP type is the classical logistic function,

f(u) = u(1− u), (1.5)

which is used to model the dynamics of a population in an environment with limited
resources.

Nonlinear reaction-diffusion equations arise as models in several natural phe-
nomena, with applications to population dynamics, chemical reactions with diffu-
sion, fluid mechanics, action potential propagation, and flow in porous media (see
[12, 32, 33] and the references therein). The celebrated equation ut = uxx+u(1−u),
known as the Fisher-KPP reaction diffusion equation, was introduced in seminal
works by Fisher [11] and by Kolmogorov, Petrosky and Piskunov [23] as a model
to describe the spatial one-dimensional spreading when mutant individuals with
higher adaptability appear in populations. Since then, very intensive research has
been carried out to extend their model to take into account many other physical,
chemical or biological factors. The first reaction-diffusion models of the form (1.1)
considered constant diffusion coefficients D ≡ D0 > 0 (cf. [32, 52]). It is now
clear, however, that there are situations in which the diffusion coefficient must be
a function of the unknown u. For example, in the context of population biology it
has been reported (cf. [2, 15, 34]) that motility varies with the population density,
requiring density-dependent dispersal coefficients. Such feature has been incorpo-
rated into mathematical models in spatial ecology [51], and eukaryotic cell biology
[47], to mention a few. Density dependent diffusion functions seem to be particu-
larly important in bacterial aggregation, where motility appears as an increasing
function of bacterial density as well as of nutrients or other substrate substances (cf.
[4, 22, 24]). A significant example from a different field is the equation ut = ∆(um),
with m > 0, which is very well-known in chemical engineering for the description
of porous media [33].

An interesting phenomenon occurs when the nonlinearity in the diffusion coeffi-
cient is degenerate, meaning that diffusion approaches zero when the density does
also. Among the new mathematical features one finds that equations with degener-
ate diffusion possess finite speed of propagation of initial disturbances, in contrast
with the strictly parabolic case. Another property is the emergence of traveling
waves of “sharp” type (cf. [43, 48]). Reaction-diffusion models with degenerate
nonlinear diffusion are widely used nowadays to describe biological phenomena
(see, for example, [15, 32] and the references therein).

In all these models, one of the most important mathematical solution types is the
traveling front. Traveling fronts (or wave fronts) are solutions to equations (1.1),
of the form

u(x, t) = ϕ(x− ct),
where c ∈ R is the speed of the wave and ϕ : R→ R is the wave profile function. For
pattern formation problems it is natural to consider infinite domains and to neglect
the influence of boundary conditions. Thus, these fronts usually have asymptotic
limits, u± = limξ→±∞ ϕ(ξ), which are equilibrium points of the reaction function
under consideration, f(u±) = 0. They are widely used to model, for example,
invasions in theoretical ecology [16], the advancing edges of cell populations like
growing tumors [49], or the envelope fronts of certain bacterial colonies which extend
effectively as one-dimensional fronts [22, 24]. Since the classical work of Kolmogorov
et al. [23], which set the foundations of their existence theory, traveling waves
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solutions to equations of the from (1.1) have attracted a great deal of attention. The
existence of fronts for reaction-diffusion equations with degenerate diffusion was first
studied in particular cases (see, e.g., [3, 36, 37]). The first general existence results
for degenerate diffusions satisfying hypotheses (1.2), and generic reaction functions
of Fisher-KPP type satisfying (1.4), is due to Sanchez-Garduño and Maini [41, 42].
In these works, the authors prove the existence of a positive threshold speed c∗ > 0
such that: (i) there exist no traveling fronts with speed 0 < c < c∗; (ii) there exists
a traveling wave of sharp type traveling with speed c = c∗, with ϕ(−∞) = 1 and
ϕ(ξ) = 0 for all ξ ≥ ξ∗ with some ξ∗ ∈ R; and, (iii) there exists a family of smooth
monotone decreasing traveling fronts, each of which travels with speed c > c∗, and
is such that ϕ(−∞) = 1 and ϕ(+∞) = 0 (see Proposition 2.1 below). The present
paper pertains to the stability properties of monotone Fisher-KPP degenerate fronts
(case (iii) above).

The stability of traveling wave solutions is a fundamental issue. It has been ad-
dressed for strictly parabolic reaction-diffusion equations using methods that range
from comparison principles for super- and sub-solutions (see, e.g., the pioneer work
of Fife and McLeod [10]), linearization techniques and generation of stable semi-
groups [46], and dynamical systems techniques for PDEs [17], among others. The
modern stability theory of nonlinear waves links the functional analysis approach
with dynamical systems techniques, by setting a program leading to the spectral
stability properties (the analysis of the spectrum of the linearized differential oper-
ator around the wave) and their relation to the nonlinear (orbital) stability of the
waves under the dynamical viewpoint of the equations of evolution. The reader
is referred to the seminal paper by Alexander, Gardner and Jones [1], the review
article by Sandstede [45], and the recent book by Kapitula and Promislow [20] for
further information. A recent contribution by Meyries et al. [30] follows the same
methodology and presents rigorous results for quasi-linear systems with density-
dependent diffusion tensors which are strictly parabolic (non-degenerate).

In this paper we take a further step in this general stability program by consider-
ing degenerate diffusion coefficients. We start with the study of scalar equations and
specialize the analysis to the spectral stability of the fronts. The former property,
formally defined as the absence of spectra with positive real part of the linearized
differential operator around the wave (see Definition 3.3 below), can be seen as a
first step of the general program. The degeneracy of the diffusion coefficient in one
of the asymptotic limits poses some technical difficulties which are not present in
the standard parabolic case. As far as we know, this is the first time that the spec-
tral stability of a degenerate front is addressed in the literature. The contributions
of this paper can be summarized as follows.

- Due to the degeneracy of the diffusion at one of the equilibrium points of
the reaction, the hyperbolicity of the asymptotic coefficients at one of the
end points, which arise when the spectral problem is written in first order
form, is lost. This precludes a direct application of the standard methods
to locate the essential spectrum of the linearized operator around the front
(cf. [20, 30, 45]). To circumvent this difficulty, we propose an equivalent
(but ad hoc) partition of the spectrum of the linearized operator in the
form σ = σpt ∪ σδ ∪ σπ, where σpt is the point spectrum, σπ is a subset of
the approximate spectrum, and σδ is a subset of the compression spectrum
(see Definition 3.1 below for details).
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- With the use of energy estimates of solutions to resolvent type equations, we
control the point spectrum and the subset σπ of the approximate spectrum.
For that purpose, we introduce a suitable transformation that gets rid of
the advection terms, allowing us to close the energy estimate and to locate
these subsets of spectra along the non-positive real line. A detailed analysis
(included in the Appendix A) of the decay properties of the solutions to
resolvent equations is necessary to justify such transformation.

- In order to locate the subset σδ of the compression spectrum, we introduce a
regularization technique which circumvents the degeneracy of the diffusion
at one of the equilibrium points. It is shown that the family of regularized
operators converge, in the generalized sense, to the degenerate operator
as the regularization parameter tends to zero. This convergence allows
us, in turn, to relate the standard Fredholm properties of the regularized
operators to those of the original degenerate operator.

- As it is known from the parabolic Fisher-KPP case [17, 20], spectral sta-
bility of fronts holds only in exponentially weighted spaces. We thus show
that one can choose an appropriate weighted L2-space (provided that a
certain condition on the speed holds) in which degenerate-diffusion fronts
are spectrally stable. We profit from the invariance of the point and ap-
proximate spectra under conjugation, and from the particular technique to
locate σδ based on its Fredholm borders.

The main result of this paper can be expressed in the following

Theorem 1.1. For any monotone traveling front for Fisher-KPP reaction diffusion-
degenerate equations (1.1), under hypotheses (1.2) and (1.4), and traveling with
speed c ∈ R satisfying the condition

c > max
{
c∗,

f ′(0)
√
D(1)√

f ′(0)− f ′(1)

}
> 0,

there exists an exponentially weighted space L2
a(R;C), with a ∈ R, such that the

front is L2
a-spectrally stable. Here c∗ > 0 denotes the minimum threshold speed (the

velocity of the sharp wave).

There exist previous results on the stability of diffusion-degenerate fronts in
the literature. In an early paper, Hosono [18] addresses the convergence to trav-
eling fronts for reaction diffusion equations in the “porous medium” form, ut =
(um)xx + f(u), with m > 0 (that is, for D(u) = mum−1) and reaction function f
of Nagumo (or bistable type). His method is based on the construction of super-
and sub-solutions to the parabolic problem and the use of the comparison princi-
ple. Hosono establishes the asymptotic convergence of solutions to the nonlinear
equation to a translated front when the initial data is close to the stationary front
profile. We observe that the diffusion coefficient does not satisfy assumptions (1.2);
in addition, the method of proof relies heavily on the particular properties of so-
lutions to the porous medium equation. Hosono’s paper, however, warrants note
as the first work containing a rigorous proof of convergence to a traveling front
for reaction diffusion-degenerate equations. For the Fisher-KPP case, Sherratt and
Marchant [50] numerically studied the convergence to traveling fronts of solutions
with particular initial data in the case of diffusion given by D(u) = u. Biró [5]
and Medvedev et al. [29], for degenerate diffusions of porous medium type and for
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their generalizations, respectively, employed similar techniques to those introduced
by Hosono to show that solutions with compactly supported initial data evolve
towards the Fisher-KPP degenerate front with minimum speed c∗ > 0 (that is, to-
wards the sharp-front wave). These results were extended by Kamin and Rosenau
[19] to reaction functions of the form f(u) = u(1 − um), with the same porous
medium type of diffusion, and with initial data decaying sufficiently fast. So far,
no rigorous work on stability of smooth fronts is known.

Our paper differs from the aforementioned works in several ways. On one hand
our study focuses on the property of spectral stability, the first step in a general
stability program. Consequently, our analysis makes no use of parabolic PDE tech-
niques, pertains to the spectral theory of operators, and could be extrapolated to
the systems case. On the other hand, we study the stability of the whole family of
smooth fronts with speed c > c∗, unlike previous analyses which are restricted to
the sharp wave case with c = c∗. In addition, we consider the generic class of degen-
erate diffusion coefficients satisfying (1.2) and introduced by Sánchez-Garduño and
Maini. Finally, we conjecture that some of the ideas employed here at the spectral
level, and designed to deal with the degeneracy of the diffusion, could be applied
to more general situations (see section 7 below for a discussion on this point). This
paper is, thus, more related in spirit to the work by Meyries et al. [30], by extending
their agenda to the case of degenerate diffusions, and it is closer in methodology to
the program initiated in [1, 20, 45].

Plan of the paper. In section 2 we briefly review the existence theory of traveling
fronts due to Sánchez-Garduño and Maini [41, 40]. We focus on the main structural
properties of the waves, such as monotonicity, the lower bound of the speed, as well
as its asymptotic behavior. In section 3 we pose the stability problem and intro-
duce the partition of the spectrum suitable for our needs. Section 4 contains the
energy estimates which allow us to control the point spectrum and a subset of the
appproximate spectrum. Section 5 contains the definition of the (parabolic) regu-
larized operator and the proof of generalized convergence when the regularization
parameter tends to zero. In addition, we compute the Fredholm boundaries for the
regularized operators and link them to the location of the subset of the compression
spectrum for the degenerate operator. Section 6 contains the proof of Theorem 1.1,
by choosing appropriate exponentially weighted spaces in which spectral stability
does hold. In the last section 7, we make some final remarks. Appendix A contains
a detailed analysis of the decay of L2-solutions to resolvent type equations, which
is needed to justify the energy estimates of section 4.

2. Structure of Fisher-KPP diffusion-degenerate fronts

In this section we recall the traveling wave existence theory due to Sánchez-
Garduño and Maini [41, 42]. The latter is based on the analysis of the local and
global phase portraits of the associated ODE system; another approach, which
applies the Conley index to prove the existence of the waves, can be found in
[9, 44]. (For existence results for a more general class of equations with advection
terms, see Gilding and Kersner [14].)

Let us suppose that u(x, t) = ϕ(x− ct) is a traveling wave solution to (1.1) with
speed c ∈ R. Upon substitution, we find that the profile function ϕ : R→ R must
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be a solution to the equation

(D(ϕ)ϕξ)ξ + cϕξ + f(ϕ) = 0, (2.1)

where ξ = x − ct denotes the translation (Galilean) variable. Let us denote the
asymptotic limits of the traveling wave as

u± := ϕ(±∞) = lim
ξ→±∞

ϕ(ξ).

It is assumed that u+ and u− are equilibrium points of the reaction function under
consideration. Written as a first order system, equation (2.1) is recast as

dϕ

dξ
= v

D(ϕ)
dv

dξ
= −cv −D′(ϕ)v2 − f(ϕ).

(2.2)

Notice that, due to the degenerate diffusion, this system is degenerate at ϕ = 0.
Aronson [2] overcomes the singularity by introducing the parameter τ = τ(ξ), such
that

dτ

dξ
=

1

D(ϕ(ξ))
,

and, therefore, the system is transformed into

dϕ

dτ
= D(ϕ)v

dv

dτ
= −cv −D′(ϕ)v2 − f(ϕ).

(2.3)

Heteroclinic trajectories of both systems are equivalent, so the analysis focuses on
the study of the topological properties of equilibria for system (2.3), which depend
upon the reaction function f . The existence of monotone traveling wave solutions
is summarized in the following

Proposition 2.1 (monotone degenerate Fisher-KPP fronts [41]). If the function
D = D(u) satisfies (1.2) and f = f(u) is of Fisher-KPP type satisfying (1.4), then
there exists a unique speed value c∗ > 0 such that equation (1.1) has a monotone
decreasing traveling front for each c > c∗, with

u+ = ϕ(+∞) = 0, u− = ϕ(−∞) = 1,

and ϕξ < 0 for all ξ ∈ R. Each front is diffusion degenerate at u+ = 0, as ξ → +∞.

Notice that this is an infinite family of fronts parametrized by the speed c > c∗
connecting the equilibrium points u+ = 0 and u− = 1. The fronts are diffusion de-
generate in the sense that the diffusion coefficient vanishes at one of the equilibrium
points, in this case, at u+ = 0.

Remark 2.2. Theorem 2 in [41] guarantees the absence of traveling wave solutions
when 0 < c < c∗, as well as the existence of traveling waves of “sharp” type when
c = c∗. The latter are not considered in the present analysis. See [42, 43] for further
information.

As a by-product of the analysis in [41], one can explicitly determine the asymp-
totic behavior of the traveling fronts as ξ → ±∞. This information will be useful
later on.
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Lemma 2.3 (asymptotic decay). Let ϕ = ϕ(ξ) a monotone decreasing Fisher-KPP
degenerate front, traveling with speed c > c∗ > 0, and with u+ = 0, u− = 1. Then
ϕ behaves asymptotically as

|∂jξ(ϕ− u+)| = |∂jξϕ| = O(e−f
′(0)ξ/c), as ξ → +∞, j = 0, 1,

on the degenerate side; and as,

|∂jξ(ϕ− u−)| = |∂jξ(ϕ− 1)| = O(eηξ), as ξ → −∞, j = 0, 1,

on the non-degenerate side, with η = (2D(1))−1(−c+
√
c2 − 4D(1)f ′(1)) > 0.

Proof. To verify the exponential decay on the the non-degenerate side as ξ → −∞,
note that the end point u− = 1 is not diffusion-degenerate and, therefore, the
equilibrium point P1 = (1, 0) for system (2.2) is hyperbolic. Indeed, writing (2.2)
as ∂ξ(ϕ, v) = F (ϕ, v), then the linearization around P1 is given by

DF|(1,0) =

(
0 1

−f ′(1)/D(1) −c/D(1)

)
,

with positive eigenvalue η = (2D(1))−1(−c +
√
c2 − 4D(1)f ′(1)) > 0. The expo-

nential decay as ξ → −∞ follows by standard ODE estimates around a hyperbolic
rest point.

To verify the exponential decay on the degenerate side, notice that P0 = (0, 0)
is a non-hyperbolic point for system (2.3) for all admissible values of the speed
c > c∗, and we need higher order terms to approximate the trajectory along a
center manifold. Let us denote the latter as v = h(ϕ); after an application of the
center manifold theorem, we find that P0 is locally a saddle-node, and the center
manifold has the form

h(ϕ) = −f
′(0)

c
ϕ− 1

2c3
(
f ′′(0)c2 + 4D′(0)f ′(0)2

)
ϕ2 +O(ϕ3),

for ϕ ∼ 0 (see [41] for details). The trajectory leaves the saddle-node along the
center manifold for ϕ ∼ 0. Therefore, for ξ → +∞, the trajectory behaves as

ϕξ = h(ϕ) ≈ −f
′(0)

c
ϕ ≤ 0,

yielding

ϕ = O(e−f
′(0)ξ/c), as ξ → +∞.

This proves the result. �

Remark 2.4. We finish this section by observing that, due to their asymptotic
decay, the monotone fronts satisfy ϕξ ∈ L2(R) (ϕξ → 0 as ξ → ±∞ fast enough).
Upon substitution into system (2.2) and by a bootstrapping argument, it can be
verified that ϕξ ∈ H2(R) for all monotone fronts under consideration. We omit the
details.

3. The stability problem

3.1. Perturbation equations. Suppose that u(x, t) = ϕ(x − ct) is a monotone
traveling front solution to the diffusion degenerate Fisher-KPP equation (1.1), trav-
eling with speed c > c∗ > 0. With a slight abuse of notation we make the change of
variables x→ x− ct, where now x denotes the Galilean variable of translation. We
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shall keep this notation for the rest of the paper. In the new coordinates, equation
(1.1) reads

ut = (D(u)ux)x + cux + f(u), (3.1)

for which traveling fronts are stationary solutions, u(x, t) = ϕ(x), satisfying,

(D(ϕ)ϕx)x + cϕx + f(ϕ) = 0. (3.2)

The front connects asymptotic equilibrium points of the reaction: ϕ(x) → u± as
x→ ±∞, where u+ = 0, u− = 1, and the front is monotone decreasing ϕx < 0.

Let us consider solutions to (3.1) of the form ϕ(x)+u(x, t), where now u denotes
a perturbation. Substituting we obtain the nonlinear perturbation equation

ut = (D(ϕ+ u)(ϕ+ u)x)x + cux + cϕx + f(u+ ϕ).

Linearizing around the front and using the profile equation (3.2) we get

ut = (D(ϕ)u)xx + cux + f ′(ϕ)u. (3.3)

The right hand side of equation (3.3), regarded as a linear operator acting on an
appropriate Banach space X, naturally defines the spectral problem

λu = Lu, (3.4)

where λ ∈ C is the spectral parameter, and

L : D(L) ⊂ X → X,

Lu = (D(ϕ)u)xx + cux + f ′(ϕ)u,
(3.5)

is the linearized operator around the wave, acting on X with domain D(L) ⊂ X.
Formally, a necessary condition for the front to be stable is that there are no

solutions u ∈ X to equation (3.4) for Reλ ≥ 0 and λ 6= 0, precluding the existence
of solutions to the linear equation (3.3) of the form eλtu that grow exponentially
in time. This condition is known as spectral stability, which we define rigorously
below.

3.2. Resolvent and spectra. We shall define a particular partition of spectrum
suitable for our needs. Let X and Y be Banach spaces, and let C (X,Y ) and
B(X,Y ) denote the sets of all closed and bounded linear operators from X to Y ,
respectively. For any L ∈ C (X,Y ) we denote its domain as D(L) ⊆ X and its

range as R(L) := L(D(L)) ⊆ Y . We say L is densely defined if D(L) = X.

Definition 3.1. Let L ∈ C (X,Y ) be a closed, densely defined operator. Its re-
solvent ρ(L) is defined as the set of all complex numbers λ ∈ C such that L − λ
is injective, R(L − λ) = Y , and (L − λ)−1 is bounded. Its spectrum is defined as
σ(L) := C\ρ(L). Furthermore, we also define the following subsets of the complex
plane:

σpt(L) :={λ ∈ C : L − λ is not injective},
σδ(L) :={λ ∈ C : L − λ is injective, R(L − λ) is closed, and R(L − λ) 6= Y },
σπ(L) :={λ ∈ C : L − λ is injective, and R(L − λ) is not closed}.

The set σpt(L) is called the point spectrum and its elements, eigenvalues. Clearly,
λ ∈ σpt(L) if and only if there exists u ∈ D(L), u 6= 0, such that Lu = λu.
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Remark 3.2. First, notice that the sets σpt(L), σπ(L) and σδ(L) are clearly disjoint
and, since L is closed, that

σ(L) = σpt(L) ∪ σπ(L) ∪ σδ(L).

Indeed, in the general case it could happen that, for a certain λ ∈ C, L − λ is
invertible but (L − λ)−1 is not bounded. But this pathology never occurs if the
operator is closed: for any L ∈ C (X,Y ) with R(L) = Y , if L is invertible then
L−1 ∈ B(Y,X) (cf. [21], pg. 167).

There are different partitions of the spectrum for an unbounded operator besides
the classical definition of continuous, residual and point spectra (cf. [8]). For
instance, the set σπ(L) is contained in the approximate spectrum, defined as

σπ(L) ⊂ σapp(L) :={λ ∈ C : for each n ∈ N there exists un ∈ D(L) with ‖un‖ = 1

such that (L − λ)un → 0 in Y as n→ +∞}.
The inclusion follows from the fact that, for any λ ∈ σπ(L), the range of L − λ is
not closed and, therefore, there exists a singular sequence, un ∈ D(L), ‖un‖ = 1
such that (L−λ)un → 0, which contains no convergent subsequence (see Theorems
5.10 and 5.11 in Kato [21], pg. 233). We shall make use of this property of the set
σπ later on. It is clear that that σpt(L) ⊂ σapp(L), as well.

The set σδ(L) is clearly contained in what is often called the compression spec-
trum [39] (or surjective spectrum [31]):

σδ(L) ⊂ σcom(L) := {λ ∈ C : L − λ is injective, and R(L − λ) 6= Y }.

(Since R(L − λ) 6= Y it is said that the range has been compressed.)
Our partition of spectrum splits the classical residual and continuous spectra

into two disjoint components, making a distinction between points for which the
range of L − λ is closed and those for which it is not. These properties make
this partition suitable for analyzing the stability of the spectrum of the diffusion-
degenerate operator (3.5), as we shall see.

Definition 3.3. We say the traveling front ϕ is X-spectrally stable if

σ(L) ⊂ {λ ∈ C : Reλ ≤ 0}.
In this paper we shall consider X = L2(R;C) and D(L) = H2(R;C), so that

L is a closed, densely defined operator acting on L2. In this fashion, the stability
analysis of the operator L pertains to localized perturbations. In what follows, σ(L)
will denote the L2-spectrum of the linearized operator (3.5) with domain D = H2,
except where it is otherwise computed with respect to a space X and explicitly
denoted as σ(L)|X .

We recall that λ = 0 always belongs to the point spectrum (translation eigen-
value), inasmuch as

Lϕx = ∂x
(
(D(ϕ)ϕx)x + cϕx + f(ϕ)

)
= 0,

in view of the profile equation (3.2) and the fact that ϕx ∈ H2(R) = D(L). Thus,
ϕx is the eigenfunction associated to the eigenvalue λ = 0.

Finally, we remind the reader that an operator L ∈ C (X,Y ) is said to be Fred-
holm if its range R(L) is closed, and both its nullity, nulL = dim kerL, and its
deficiency, def L = codimR(L), are finite. L is said to be semi-Fredholm if R(L)
is closed and at least one of nulL and def L is finite. In both cases the index of L
is defined as indL = nulL − def L (cf. [21]).
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Remark 3.4. For nonlinear wave stability purposes (cf. [20]), the spectrum is often
partitioned into essential, σess, and point spectrum, σ̃pt, being the former the set
of complex numbers λ for which L−λ is either not Fredholm or has index different
from zero, whereas σ̃pt is defined as the set of complex numbers for which L− λ is
Fredholm with index zero and has a non-trivial kernel. Note that σ̃pt ⊂ σpt. This
definition is due to Weyl [53], making σess a large set but easy to compute, whereas
σ̃pt is a discrete set of isolated eigenvalues (see Remark 2.2.4 in [20]). In the present
context with degenerate diffusion, however, this partition is not particularly useful
due to the loss of hyperbolicity of the asymptotic coefficients of the operator.

4. Energy estimates and stability of approximate spectra

In this section we show that monotone diffusion-degenerate Fisher-KPP fronts
are point- and approximate-spectrally stable. For that purpose we employ energy
estimates and an appropriate change of variables. The monotonicity of the front
plays a key role.

4.1. The basic energy estimate. Let ϕ = ϕ(x) be any of these monotone fronts
and let L be the corresponding linearized operator around ϕ, acting on L2. Take
any fixed λ ∈ C, any g ∈ L2(R;C), and assume that there exists a solution u ∈
D(L) = H2(R;C) satisfying the resolvent equation (L − λ)u = g, which we write
down as

(L − λ)u = D(ϕ)uxx + (2D(ϕ)x + c)ux + (D(ϕ)xx + f ′(ϕ)− λ)u = g. (4.1)

Consider the change of variables

u(x) = w(x)eθ(x), (4.2)

where θ = θ(x) satisfies

θx = − c

2D(ϕ)
, for all x ∈ R.

Upon substitution we arrive at the equation

D(ϕ)wxx + 2D(ϕ)xwx +H(x)w − λw = e−θg, (4.3)

where

H(x) = D(ϕ)θ2x +D(ϕ)θxx + (2D(ϕ)x + c)θx +D(ϕ)xx + f ′(ϕ)

= − c
2

D(ϕ)x
D(ϕ)

− c2

4D(ϕ)
+D(ϕ)xx + f ′(ϕ).

Clearly, the function θ has the form

θ(x) = − c
2

∫ x

x0

ds

D(ϕ(s))
, (4.4)

for any fixed x0 ∈ R, and it is well defined for all x ∈ R. Note that e−θ(x) may
diverge as x→ +∞. It is true, however, that w ∈ H2 whenever u ∈ H2.

Lemma 4.1. If u ∈ H2(R;C) is a solution to the resolvent equation (L−λ)u = g,
for fixed λ ∈ C and g ∈ L2(R;C), then

w(x) = exp

(
c

2

∫ x

x0

ds

D(ϕ(s))

)
u(x),

belongs to H2(R;C). Here x0 ∈ R is fixed but arbitrary.
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Proof. See Appendix A. �

In view that ϕx ∈ kerL, substitute λ = 0 and g = 0 into (4.3) to obtain

D(ϕ)ψxx + 2D(ϕ)xψx +H(x)ψ = 0, (4.5)

where ψ := e−θϕx ∈ H2 (by Lemma 4.1). Multiply equations (4.3) and (4.5) by
D(ϕ) and rearrange the terms appropriately; the result is

(D(ϕ)2wx)x +D(ϕ)H(x)w − λD(ϕ)w = D(ϕ)e−θg,

(D(ϕ)2ψx)x +D(ϕ)H(x)ψ = 0.
(4.6)

Since the front is monotone, ϕx < 0, we have that ψ 6= 0 for all x ∈ R. Therefore,
we substitute

D(ϕ)H(x) = − (D(ϕ)2ψx)x
ψ

into the first equation in (4.6) to obtain

(D(ϕ)2wx)x −
(D(ϕ)2ψx)x

ψ
w − λD(ϕ)w = D(ϕ)e−θg. (4.7)

Take the L2-product of w with last equation, and integrate by parts. This yields,

λ

∫
R

D(ϕ)|w|2dx+

∫
R
D(ϕ)w∗e−θg dx =

∫
R

w∗(D(ϕ)2wx)xdx−
∫
R

ψ−1(D(ϕ)2ψx)x|w|2dx

= −
∫
R

D(ϕ)2|wx|2dx+

∫
R

D(ϕ)2ψx

(
|w|2

ψ

)
x

dx

=

∫
R

D(ϕ)2
(
ψx

(
|w|2

ψ

)
x

− |wx|2
)
dx.

Using the identity

ψ2

∣∣∣∣(wψ
)
x

∣∣∣∣2 = −
(
ψx

(
|w|2

ψ

)
x

− |wx|2
)
,

and substituting, we obtain the estimate

λ

∫
R

D(ϕ)|w|2dx+

∫
R
D(ϕ)w∗e−θg dx = −

∫
R

D(ϕ)2ψ2

∣∣∣∣(wψ
)
x

∣∣∣∣2 dx. (4.8)

Let us denote, according to custom, the standard L2-product as

〈u, v〉L2 =

∫
R
u∗v dx, ‖u‖2L2 = 〈u, u〉L2 .

Hence, we can write relation (4.8) as

λ〈D(ϕ)w,w〉L2 = −‖D(ϕ)ψ(w/ψ)x‖2L2 − 〈D(ϕ)we−θ, g〉L2 .

Remark 4.2. Notice that, thanks to Lemma 4.1, w ∈ H2, ψ ∈ H2, and by
monotonicity, ψ < 0, so that the L2-products of last equation are well-defined,
even the last product involving g. This last assertion holds because D(ϕ)we−θ

belongs to L2, in view of the exponential decay of w at +∞ as stated in Lemma
A.1 (see also Remark A.3).

We summarize these calculations into the following
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Proposition 4.3 (basic energy estimate). For any λ ∈ C and any g ∈ L2(R;C),
suppose that there exists a solution u ∈ H2(R;C) to the resolvent equation (L −
λ)u = g. Then there holds the energy estimate

λ〈D(ϕ)w,w〉L2 = −‖D(ϕ)ψ(w/ψ)x‖2L2 − 〈D(ϕ)we−θ, g〉L2 , (4.9)

where w = e−θu ∈ H2(R;C), ψ = e−θϕx ∈ H2(R) is a non-vanishing real function,
and θ = θ(x) is defined in (4.4).

Remark 4.4. It is to be observed that the monotonicity of the front is crucial to
obtain the resolvent type equation (4.7), and consequently, the basic estimate (4.9).
In addition, the transformation (4.2) is designed to eliminate the transport term
cux in (4.1), while keeping the term 2D(ϕ)xux. A transformation that eliminates
all the first order terms is not useful to close the energy estimate, as the dedicated
reader may verify.

4.2. Point spectral stability. The first application of the energy estimate is the
following

Theorem 4.5. All monotone fronts of diffusion degenerate Fisher-KPP equations
are point spectrally stable. More precisely,

σpt(L) ⊂ (−∞, 0] (4.10)

that is, the L2-point spectrum is real and non-positive.

Proof. Let ϕ = ϕ(x) be a degenerate Fisher-KPP monotone front, and let λ ∈
σpt(L). Therefore, there exists u ∈ H2(R;C) such that (L − λ)u = 0. Since
D(ϕ) ≥ 0 for all x ∈ R, the corresponding energy estimate (4.9) with g = 0,

λ〈D(ϕ)w,w〉L2 = −‖D(ϕ)ψ(w/ψ)x‖2L2 ≤ 0, (4.11)

shows that λ is real and non-positive. �

Corollary 4.6. λ = 0 has geometric multiplicity equal to one, that is, kerL =
span{ϕx}.

Proof. If we suppose that λ = 0, then estimate (4.11) yields(
w

ψ

)
x

= 0, a.e. in R,

that is, w = βψ for some scalar β, which implies, in turn, that u = βϕx. This
shows that λ = 0 has geometric multiplicity equal to one. �

4.3. Stability of the approximate spectrum. Next, we show that all elements
in σπ(L) are real and non-positive, as elements of the approximate spectrum.

Lemma 4.7. Let ϕ = ϕ(x) be a degenerate Fisher-KPP monotone front and L the
linearized operator around ϕ defined in (3.5). Then

σπ(L) ⊂ (−∞, 0].

Proof. Take λ ∈ σπ(L). Then by definition R(L− λ) is not closed. Since L2(R;C)
is a reflexive Hilbert space, then it is known (cf. Theorems 5.10 and 5.11 in [21],
pg. 233, and [8], pg. 415) that there exists a singular sequence un ∈ D(L) = H2,
n ∈ N, such that ‖un‖L2 = 1, un ⇀ 0 in L2, and

gn := (L − λ)un → 0, in L2.
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By Lemma 4.1, wn := e−θun belongs to H2, and by the basic energy estimate (4.9)
we have that

λ〈D(ϕ)wn, wn〉L2 = −‖D(ϕ)ψ(wn/ψ)x‖2L2 − 〈D(ϕ)wne
−θ, gn〉L2 , (4.12)

where ψ = e−θϕx as before.
We claim that there exists a uniform C0 > 0 such that

〈D(ϕ)wn, wn〉L2 ≥ C0 > 0,

for all n ∈ N. Since x0 ∈ R in the definition of θ is fixed but arbitrary, we set

δ0 := inf
x∈[−x0,x0]

D(ϕ(x)) = min
u∈I0

D(u) > 0.

Since ϕ is monotone, here I0 denotes the compact interval

I0 = [min{ϕ(x0), ϕ(−x0)},max{ϕ(x0), ϕ(−x0)}].
δ0 > 0 because D is strictly positive and of class C2 in any compact interval
I0 ⊂⊂ (0, 1). It is clear that we can fix x0 � 1, sufficiently large, such that
‖un‖2L2(−x0,x0)

≥ 1/2 for all n ∈ N (otherwise, if we suppose that for each R >

0 there exists N = N(R) ∈ N with ‖uN‖2L2(−R,R) < 1/2, then by taking the

limit when R → +∞ we obtain a contradiction with ‖un‖L2 = 1 for all n ∈ N).
Therefore, we can estimate

〈D(ϕ)wn, wn〉L2 =

∫
R
D(ϕ) exp

(
c

∫ x

x0

D(ϕ(y))−1 dy
)
|un(x)|2 dx

≥
∫ x0

−x0

D(ϕ) exp
(
− c

∫ x0

x

D(ϕ(y))−1 dy
)
|un(x)|2 dx

≥
∫ x0

−x0

D(ϕ)e−2cx0/δ0 |un(x)|2 dx

≥ δ0e−2cx0/δ0‖un‖2L2(−x0,x0)

≥ δ0
2
e−2cx0/δ0 =: C0 > 0,

as claimed.
Let us denote vn := D(ϕ)wne

−θ. It can be verified that, for each n ∈ N, vn ∈ L2

(see Remark 4.2). Since ‖un‖L2 = 1 for all n, we claim that there exists a uniform
constant C1 > 0 such that ‖vn‖L2 ≤ C1 for all n ∈ N. On the non-degenerate side,
as x→ −∞, there holds |vn| = |D(ϕ)une

−2θ| ≤ C|un| for all−∞ < x < −R < −x0,
R > |x0|, so that

‖vn‖L2(−∞,−R) ≤ C‖un‖L2(−∞,−R) ≤ C‖un‖L2 = C,

for some uniform C > 0 and all n. Also, we clearly have

‖vn‖L2(−R,R) ≤ C(R)‖un‖L2(−R,R) ≤ C(R)‖un‖L2 = C(R),

for all n. On the degenerate side, if we choose R� |x0| large enough then we know
that for x > R, un decays as |un(x)| ≤ Ceθ(x)ζ(x), where the decay of ζ is given
by (A.2) (see Appendix A) as x→ +∞. By Remark A.3,

|D(ϕ)wne
−θ| = C0|D(ϕ)ζe−θ| ≤ C̄e−f

′(0)x/2c → 0,

as x→ +∞, for uniform C0, C̄ > 0. Notice that ζ depends on n via gn and un. The
decay rate, however, is independent of n ∈ N, because the constant C̄ is of order
O(‖gn‖2L) (see (A.10) in the Appendix), which is uniformly bounded in n because
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gn → 0 in L2 as n → +∞, and because ‖un‖L2 = 1 by hypothesis. Therefore,
for R � |x0| sufficiently large, ‖vn‖L2(R,+∞) ≤ C, uniformly for all n ∈ N. We
conclude that there exists some uniform C1 > 0 such that

‖vn‖L2 ≤ C1, all n ∈ N.

We now take the real part of (4.12) to obtain

C0Reλ ≤ (Reλ)〈D(ϕ)wn, wn〉L2

= −‖D(ϕ)ψ(wn/ψ)x‖2L2 − Re 〈D(ϕ)wne
−θ, gn〉L2

≤ −Re 〈vn, gn〉L2

≤ C1‖gn‖L2 ,

Hence,

Reλ ≤ C1C
−1
0 ‖gn‖L2 .

Taking the limit when n→ +∞ we obtain Reλ ≤ 0. Likewise, take the imaginary
part of (4.12) to get

|Imλ|〈D(ϕ)wn, wn〉L2 = |Im 〈D(ϕ)wne
−θ, gn〉L2 | = |Im 〈vn, gn〉L2 | ≤ C1‖gn‖L2 .

This yields,

0 ≤ |Imλ| ≤ C1C
−1
0 ‖gn‖L2 → 0,

as n→ +∞. We conclude that λ ∈ R and λ ≤ 0. �

5. Parabolic regularization and location of σδ

In this section we introduce a regularization technique that allows us to locate the
subset of the compression spectrum, σδ, of the linearized operator around the wave.
The method relies on the convergence in the generalized sense of the regularized
operators.

5.1. The regularized operator. Let ϕ = ϕ(x) be a diffusion-degenerate mono-
tone Fisher-KPP front. Then, for any ε > 0, we introduce the following regulariza-
tion of the diffusion coefficient,

Dε(ϕ) := D(ϕ) + ε. (5.1)

Note that Dε(ϕ) > 0 for all x ∈ R. Likewise, we also define the following regularized
operator

Lε : D = H2(R;C) ⊂ L2(R;C) → L2(R;C),

Lεu := (Dε(ϕ)u)xx + cux + f ′(ϕ)u.
(5.2)

Notice that, for every ε > 0, Lε is a linear, closed, densely defined and strongly
elliptic operator acting on L2. Hence, multiplication by Dε(ϕ)−1 is an isomorphism
and the Fredholm properties of Lε − λ and those of the operator J ε(λ) : D →
L2(R;C), defined as

J ε(λ)u := Dε(ϕ)−1(Lε − λ)u

= uxx +Dε(ϕ)−1a1(x)ux +Dε(ϕ)−1(a0(x)− λ)u,
(5.3)

for all u ∈ H2 ⊂ L2, are the same. Here the coefficients a0 and a1 are given by

a1(x) = 2Dε(ϕ)x + c, a0(x) = Dε(ϕ)xx + f ′(ϕ).
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Following Alexander, Gardner and Jones [1], it is now customary to recast the
spectral problem (5.3) as a first order system of the form

Wx = Aε(x, λ)W, (5.4)

where

Aε(x, λ) =

(
0 1

Dε(ϕ)−1(λ− a0(x)) −Dε(ϕ)−1a1(x)

)
, W =

(
u
ux

)
∈ H1(R;C2).

It is a well-known fact [20, 45] that the associated first order operators

T ε(λ) = ∂x − Aε(·, λ), T ε(λ) : H1(R;C2) ⊂ L2(R;C2)→ L2(R;C),

are endowed with the same Fredholm properties as J ε(λ) and, consequently, as
Lε − λ; see, e.g., Theorem 3.2 in [30], as well as the references [20] and [45]. More-
over, these Fredholm properties depend upon the hyperbolicity of the asymptotic
matrices (cf. [45]),

Aε±(λ) = lim
x→±∞

Aε(x, λ) =

(
0 1

Dε(u±)−1(λ− f ′(u±)) −Dε(u±)−1c

)
.

For each fixed λ ∈ C, let us denote the characteristic polynomial of Aε±(λ) as
πε±(λ, z) := det(Aε±(λ)− zI). Then for each k ∈ R, the λ-roots of

πε±(λ, ik) = −k2 + ikcDε(u±)−1 +Dε(u±)−1(f ′(u±)− λ) = 0,

define algebraic curves in the complex plane parametrized by k ∈ R, more precisely,

λε±(k) := −Dε(u±)k2 + ick + f ′(u±), k ∈ R.
Consider the following open connected subset in the complex plane,

Ω := {λ ∈ C : Reλ > max{f ′(u+), f ′(u−)}}. (5.5)

This is called the region of consistent splitting. Finally, for each fixed λ ∈ C and
ε > 0, let us denote Sε±(λ) and U ε±(λ) as the stable and unstable eigenspaces of
Aε±(λ) in C2, respectively.

Lemma 5.1. For each λ ∈ Ω and all ε > 0, the coefficient matrices Aε±(λ) have
no center eigenspace and dimSε±(λ) = dimU ε±(λ) = 1.

Proof. Notice that
max
k∈R

Reλε±(k) = f ′(u±),

independently of ε > 0. Therefore, for each λ ∈ Ω it is clear that Aε±(λ) has no
center eigenspace, for all ε > 0. By continuity on λ and by connectedness of Ω,
the dimensions of Sε±(λ) and U ε±(λ) remain constant in Ω. To compute them, set
λ = η ∈ R, with η sufficiently large. The characteristic equation πε±(η, z) = 0 has
one positive and one negative root:

z1 = 1
2D

ε(u±)−1
(
− c−

√
c2 + 4Dε(u±)(η − f ′(u±))

)
< 0,

z2 = 1
2D

ε(u±)−1
(
− c+

√
c2 + 4Dε(u±)(η − f ′(u±))

)
> 0,

as long as η > 0 is large, say, η > max{|f ′(u±)|}. The conclusion follows. �

The following lemma characterizes the Fredholm properties of Lε − λ for λ in
the region of consistent splitting.

Lemma 5.2. For all ε > 0 and for each λ ∈ Ω, the operator Lε − λ is Fredholm
with index zero.
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Proof. Let λ ∈ Ω. Since the matrices Aε±(λ) are hyperbolic, by standard exponen-
tial dichotomies theory [7] (see also Theorem 3.3 in [45]), system (5.4) is endowed
with exponential dichotomies on both rays [0,+∞) and (−∞, 0], with Morse indices
i+(λ) = dimU ε+(λ) = 1 and i−(λ) = dimSε−(λ) = 1, respectively. Therefore, by
Theorem 3.2 in [45], we conclude that the operators T ε(λ) are Fredholm with index

ind T ε(λ) = i+(λ)− i−(λ) = 0,

showing that J ε(λ) and Lε − λ are Fredholm with index zero, as claimed. �

5.2. Generalized convergence. We are going to profit from the independence
of the Fredholm properties of Lε − λ with respect to ε > 0 in order to conclude
some useful information about the Fredholm properties of L − λ. First, we recall
the succeeding standard definitions (cf. Kato [21]): Let Z be a Banach space, and
let M and N be any two nontrivial closed subspaces of Z. Let SM be the unitary
sphere in M . Then we define

δ(M,N) = sup
u∈SM

dist(u,N),

δ̂(M,N) = max{δ(M,N), δ(N,M)}.

δ̂ is called the gap between M and N . (Here the funcion dist(u,M) is the usual

distance function from u to any closed manifold M .) Since in general δ̂(·, ·) does
not satisfy the triangle inequality, one defines

d(M,N) = sup
u∈SM

dist(u, SN ),

d̂(M,N) = max{d(M,N),d(N,M)}.

d̂(M,N) is called the distance between M and N , and satisfies the triangle inequal-
ity. Furthermore, there hold the inequalities [21],

δ(M,N) ≤ d(M,N) ≤ 2δ(M,N),

δ̂(M,N) ≤ d̂(M,N) ≤ 2δ̂(M,N),
(5.6)

for any closed manifolds M and N .

Definition 5.3. Let X,Y be Banach spaces. If T ,S ∈ C (X,Y ), then the graphs
G(T ), G(S) are closed subspaces of X × Y , and we set

d(T ,S) = d(G(T ), G(S)),

d̂(T ,S) = max{d(T ,S),d(S, T )}.

It is said that a sequence Tn ∈ C (X,Y ) converges in generalized sense to T ∈
C (X,Y ) provided that d̂(Tn, T )→ 0 as n→ +∞.

Remark 5.4. It follows from inequalities (5.6) that d̂(Tn, T )→ 0 is equivalent to

δ̂(Tn, T )→ 0

Lemma 5.5. For each fixed λ ∈ C, the operators Lε − λ converge in generalized
sense to L − λ as ε→ 0+.
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Proof. From the definition of d(·, ·) we have

d(Lε − λ,L − λ) = d(G(Lε − λ), G(L − λ)) = sup
v∈SG(Lε−λ)

(
inf

w∈SG(L−λ)
‖v − w‖

)
.

Let v ∈ SG(Lε−λ) be such that v = {p, (Lε − λ)p} for p ∈ D(Lε − λ) = H2, and

‖v‖2L2×L2 = ‖p‖2L2 + ‖(Lε − λ)p‖2L2 = 1.

Likewise, let w ∈ SG(L−λ) be such that w = {u, (L− λ)u}, for u ∈ D(L− λ) = H2

and
‖w‖2L2×L2 = ‖u‖2L2 + ‖(L − λ)u‖2L2 = 1.

Now, we find a upper bound for ‖v − w‖L2×L2 . Consider,

‖v − w‖2L2×L2 = ‖p− u‖2L2 + ‖(Lε − λ)p− (L − λ)u‖2L2 . (5.7)

If we keep v ∈ SG(Lε−λ) fixed, then it suffices to take w = {p, (L − λ)p}, inasmuch

as p ∈ H2 = D(L) = D(Lε). Note that (L − λ)p = (Lε − λ)p − εpxx. Therefore
expression (5.7) gets simplified:

‖v − w‖2L2×L2 = ‖(Lε − λ)p− (L − λ)p‖2L2 = ‖εpxx‖2L2 .

If we regard ∂2x as a closed, densely defined operator on L2(R;C), with domain
D = H2(R;C), then it follows from Remark 1.5 in [21, p. 191], that ∂2x is (Lε −
λ)−bounded, i.e., there exist a constant C > 0 such that

‖pxx‖L2 ≤ C(‖p‖L2 + ‖(Lε − λ)p‖L2),

for all p ∈ H2. Consequently

‖pxx‖2L2 ≤ C̄(‖p‖2L2 + ‖(Lε − λ)p‖2L2) = C̄,

for some other C̄ > 0 and for v = (p, (Lε−λ)p) ∈ SG(Lε−λ). This estimate implies,
in turn, that

‖v − w‖2L2×L2 = ε2‖pxx‖2L2 ≤ C̄ε2.
This yields,

d(Lε − λ,L − λ) ≤ C̄ε2.
In a similar fashion it can be proved that d(L− λ,Lε − λ) ≤ Cε2. This shows that

d̂(Lε − λ,L − λ)→ 0 as ε→ 0+, and the conclusion follows. �

For the reader’s convenience we state a result from functional analysis (cf. [21],
pg. 235), which will be helpful to relate the Fredholm properties of Lε − λ to
those of L− λ. First, we remind the reader the definition of the reduced minimum
modulus of a closed operator.

Definition 5.6. For any S ∈ C (X,Y ) we define γ = γ(S), as the greatest number
γ ∈ R such that

‖Su‖ ≥ γ dist(u, kerS),

for all u ∈ D(S).

Theorem 5.7 (Kato [21]). Let T ,S ∈ C (X,Y ) and let T be Fredholm (semi-
Fredholm). If

δ̂(S, T ) < γ(1 + γ2)−1/2,

where γ = γ(T ), then S is Fredholm (semi-Fredholm) and nulS ≤ nul T , def S ≤
def T . Furthermore, there exists δ > 0 such that δ̂(S, T ) < δ implies

indS = ind T .
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If X,Y are Hilbert spaces then we can take δ = γ(1 + γ2)−
1
2 .

5.3. Location of σδ. After these preparations, we are ready to state and prove
the main result of this section.

Theorem 5.8. Let ϕ = ϕ(x) be a diffusion-degenerate Fisher-KPP front, and let
L ∈ C (L2) be the linearized operator around ϕ defined in (3.5). Then,

σδ(L) ⊂ C\Ω.

Proof. First observe that

σδ(L) ⊂ {λ ∈ C : L − λ is semi-Fredholm with ind (L − λ) 6= 0}.

Indeed, by definition if λ ∈ σδ(L) then L − λ is injective, R(L − λ) is closed and
R(L−λ) $ Y = L2. Hence, nul (L−λ) = 0 and L−λ is semi-Fredholm. Moreover,
since def (L − λ) = codimR(L − λ) > 0, we have that ind (L − λ) 6= 0.

Now, let us suppose that λ ∈ σδ(L)∩Ω. Since L−λ is semi-Fredholm, R(L−λ)
is closed, and this implies that

γ := γ(L − λ) > 0,

(see Theorem 5.2 in [21], pg. 231). By Lemma 5.5, δ̂(Lε−λ,L−λ)→ 0 as ε→ 0+,
so we can find ε > 0 sufficiently small such that

δ̂(Lε − λ,L − λ) < γ(1 + γ2)1/2.

Since X = L2(R;C) is a Hilbert space, Theorem 5.7 implies that

ind (L − λ) = ind (Lε − λ) = 0,

in view of λ ∈ Ω and Lemma 5.2. This is a contradiction with ind (L− λ) 6= 0. We
conclude that σδ(L) ⊂ C\Ω, as claimed. �

Remark 5.9. We observe that the location of σδ(L) depends upon the sign of
f ′(u±), as it lies to the left of the region of consistent splitting Ω. Since f ′(0) > 0,
the subset σδ(L) of the compression spectrum is unstable. It is, however, sensitive
to changes at spatial infinity, and it is possible to find exponentially weighted spaces
where spectral stability does hold.

6. Spectral stability in exponentially weighted spaces

In this section we prove Theorem 1.1. The key ingredient is to find a suitable
exponentially weighted space in which the spectrum of the linearized operator,
computed with respect to the new space, is stable. This is accomplished provided
that certain conditions on the velocity hold.

6.1. Exponentially weighted spaces. It is well-known [20, 45] that the Fredholm
borders of the compression spectrum σδ(L) may move when the eigenvalue problem
is recast in an exponentially weighted space. We introduce, according to custom,
the function spaces

Hm
a (R;C) = {v : eaxv(x) ∈ Hm(R;C)},

for m ∈ Z, m ≥ 0, and any a ∈ R. The latter are Hilbert spaces endowed with the
inner product (and norm),

〈u, v〉Hma := 〈eaxu, eaxv〉Hm , ‖v‖2Hma := ‖eaxv‖2Hm = 〈v, v〉Hma .
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As usual, we denote L2
a(R;C) = H0

a(R;C). Clearly, the norms ‖ · ‖L2
a

for different

values of a are not equivalent. If we consider L as an operator acting on L2
a,

L : Da := H2
a(R;C) ⊂ L2

a(R;C) → L2
a(R;C),

and compute its spectrum with respect to the new space for an appropriate value
of a, then it is known [45] that the Fredholm borders move depending on the sign
of a (if a > 0, for example, then the ‖ · ‖L2

a
-norm penalizes perturbations at −∞

while it tolerates exponentially growing perturbations at +∞ at any rate less than
a > 0, shifting, in this fashion, the Fredholm borders to the left), whereas the point
spectrum is unmoved [20]. We shall prove that both the approximate spectrum
σπ(L) and the point spectrum σpt(L) remain unmoved under appropriate choices
of the weight a ≥ 0 (see Proposition 6.1 below).

Finally, it is well-known that the analysis of the spectrum of the operator L on
the space L2

a is equivalent to that of a conjugated operator,

La := eaxLe−ax : D = H2(R;C) ⊂ L2(R;C)→ L2(R;C),

acting on the original unweighted space. If ϕ is a traveling front and L is the associ-
ated linearized operator acting on L2 defined in (3.5), then after simple calculations
we find that, for any a ∈ R, the associated conjugated operator La is given by

La : D(La) := H2(R;C) ⊂ L2(R;C)→ L2(R : C),

Lau = D(ϕ)uxx +
(

2D(ϕ)x − 2aD(ϕ) + c
)
ux+

+
(
a2D(ϕ)− 2aD(ϕ)x − ac+D(ϕ)xx + f ′(ϕ)

)
u,

(6.1)

for all u ∈ H2. La is clearly a closed, densely defined operator in L2.

6.2. Calculation of the Fredholm curves. In order to analyze how the Fred-
holm borders limiting σδ move under the influence of the weight function eax, let us
consider the regularized conjugated operator Lεa acting on L2, for 0 < ε� 1, small
(which results from substituting D(ϕ) by Dε(ϕ) = D(ϕ) + ε in (6.1); see section
5.1). Thus, if for any λ ∈ C we define J εa (λ) := Dε(ϕ)−1(Lεa − λ), then its explicit
expression is

J εa (λ)u = uxx +Dε(ϕ)−1bε1,a(x)ux +Dε(ϕ)−1bε0,a(x)u,

with
bε1,a(x) := 2Dε(ϕ)x + c− 2aDε(ϕ),

bε0,a(x) := a2Dε(ϕ)− 2aDε(ϕ)x − ac+Dε(ϕ)xx + f ′(ϕ).

Like in section 5.1, we recast the spectral problem as a first order system of the
form

Wx = Aεa(x, λ)W,

where

W =

(
u
ux

)
∈ H2(R;C2), Aεa(x, λ) =

(
0 1

Dε(ϕ)−1(λ− bε0,a(x)) −Dε(ϕ)−1bε1,a(x)

)
.

Since,

lim
x→±∞

bε0,a(x) = a2Dε(u±)− ac+ f ′(u±) =: bε,±0,a ,

lim
x→±∞

bε1,a(x) = c− 2aDε(u±) =: bε,±1,a ,
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the constant coefficients of the asymptotic systems can be written as

Aε,±a (λ) =

(
0 1

Dε(u±)−1(λ− bε,±0,a ) −Dε(u±)−1bε,±1,a

)
.

Let us denote πε,±a (λ, z) = det(Aε,±a (λ)− zI), so that, for each k ∈ R

πε,±a (λ, ik) = −k2 + ik(cDε(u±)−1 − 2a) + a2 −Dε(u±)−1(λ+ ac− f ′(u±)).

Thus, the Fredholm borders, defined as the λ-roots of πε,±a (λ, ik) = 0, are given by

λε,±a (k) := Dε(u±)(a2 − k2)− ac+ f ′(u±) + ik(c− 2aDε(u±)), k ∈ R.

Notice that

max
k∈R

Reλε,±a (k) = Dε(u±)a2 − ac+ f ′(u±);

therefore we denote the region of consistent splitting for each a ∈ R and ε ≥ 0 as

Ω(a, ε) =
{
λ ∈ C : Reλ > max {Dε(u+)a2 − ac+ f ′(u+), Dε(u−)a2 − ac+ f ′(u−)}

}
.

By a similar argument as in section 5 (see Lemma 5.1), for each λ ∈ Ω(a, ε) the co-
efficient matrices Aε±a (λ) have no center eigenspace and dimSε,±a (λ) = dimU ε,±a (λ) =
1, where Sε,±a (λ) and U ε,±a (λ) denote the stable and unstable eigenspaces of Aε±a (λ),
respectively.

Moreover, by taking the limit as ε→ 0+, we claim that

σδ(La) = C\Ω(a), (6.2)

where Ω(a) := Ω(a, 0). Indeed, using the same arguments as in the proof of Lemma
5.2, we conclude that, for λ ∈ Ω(a, ε), Lεa − λ is Fredholm in L2 with index zero.
By keeping a ∈ R constant, one can verify that the operators Lεa − λ converge in
generalized sense to La − λ as ε → 0+ (see Lemma 5.5; we omit the details as the
proof is not only analogous, but the same). Furthermore, by the same arguments
as in the proof of Theorem 5.8, for 0 < ε � 1 sufficiently small the Fredholm
properties of Lεa − λ and La − λ are the same.

Suppose that λ ∈ σδ(La) ∩ Ω(a, ε), with 0 < ε � 1, small. Then, by following
the proof of Theorem 5.8, we find that ind(La − λ) = ind (Lεa − λ) = 0, and at the
same time, that ind(La − λ) 6= 0 because σδ(La) is contained in the set of complex
λ for which La − λ is semi-Fredholm with non-zero index. This is a contradiction,
which yields σδ(La) ⊂ C\Ω(a, ε) for all 0 < ε� 1 sufficiently small. By continuity,
taking the limit as ε→ 0+ we obtain

σδ(La) ⊂ C\Ω(a),

as claimed.
Henceforth, it suffices to choose a ∈ R appropriately in order to stabilize σδ(La),

and to show that the sets σpt(L) and σπ(L) remain stable under conjugation.

Proposition 6.1. Let ϕ be a monotone front and L the associated linearized op-
erator in L2. Then, for any appropriate weight a ≥ 0, we have:

(a) σpt(L) = σpt(La), and,
(b) σπ(La) ⊂ σπ(L).

(Here, both spectral sets, σpt(·) and σπ(·), are of course computed with respect to
the space L2(R;C).)
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Proof. Suppose λ ∈ σpt(L). Then there exists u ∈ D(L) = H2 such that Lu = λu.
For any appropriate weight a ≥ 0, let us assume that

v(x) = eaxu(x) ∈ H2. (6.3)

(This is equivalent to say that u ∈ H2
a for some apropriate a ≥ 0.) Then

Lav = eaxLe−axv = eaxLu = λeaxu = λv.

That is, λ ∈ σpt(La). This shows (a).
Now suppose that λ ∈ σπ(La), for some appropriate a ≥ 0. Assuming that

(L− λ)u = 0, for u ∈ H2, by the arguments above we have (La− λ)v = 0 provided
that v = eaxu ∈ H2. Since La − λ is injective, we have v = 0 a.e. and, therefore,
u = 0 a.e. We conclude that L − λ is injective.

To show that R(L− λ) is not closed we proceed by contradiction. Assume that
L− λ has closed range. This means that γ(L− λ) > 0 and ‖(L− λ)u‖L2 ≥ γ0 > 0
for some uniform γ0 > 0 and all u ∈ D(L) = H2 with ‖u‖L2 = 1. Since R(La − λ)
is not closed, then there exists vn ∈ D(La) = H2 such that ‖vn‖L2 = 1 and
gn = (La − λ)vn → 0 in L2. In view that they are localized functions and that the
energy L2-norm is invariant under translations, vn(·) → vn(· + y), we can assume
that

‖vn‖L2(0,+∞) > 0, for all n ∈ N.
Hence we define,

un(x) :=

{
e−axvn(x), x > 0

0, otherwise.

Clearly, un ∈ H2 and ‖un‖L2 > 0 for all n. Moreover,

0 ≤ ‖(L − λ)un‖L2 = ‖(L − λ)un‖L2(0,+∞)

= ‖e−ax(La − λ)vn‖L2(0,+∞)

≤ ‖(La − λ)vn‖L2 → 0,

as n→ +∞. Normalizing un, we obtain a sequence un ∈ H2 with ‖un‖L2 = 1 such
that (L − λ)un → 0 in L2. This yields a contradiction with ‖(L − λ)u‖L2 ≥ γ0 for
all ‖u‖L2 = 1. Therefore, R(L− λ) is not closed, and we conclude that λ ∈ σπ(L).
This shows (b). �

6.3. Choice of the weight a ≥ 0: proof of Theorem 1.1. In the Fisher-KPP
case, u+ = 0, u− = 1, with f ′(0) > 0 and f ′(1) < 0. The fronts travel with any
speed c > c∗ > 0. Under these conditions we have

Ω(a) = {λ ∈ C : Reλ > max{f ′(0)− ac, D(1)a2 − ac+ f ′(1)} },

for any a ∈ R. In order to have spectral stability we need to find a ∈ R such
that f ′(0) − ac < 0 and p(a) := D(1)a2 − ac + f ′(1) < 0, simultaneously. Since
p(0) = f ′(1) < 0 we have that p(a) < 0 for all a ∈ [0, a0), where a0 is the first
positive root of p(a) = 0, that is,

a0(c) = (2D(1))−1
(
c+

√
c2 − 4D(1)f ′(1)

)
.

We need to find a such that 0 < f ′(0)/c < a < a0(c). Thus, it is necessary and
sufficient that a0(c) > f ′(0)/c. (This imposes a condition on the speed c.) It is easy
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to verify that this is true provided that the front travels with speed c such that

c2 >
D(1)f ′(0)2

f ′(0)− f ′(1)
. (6.4)

If condition (6.4) holds then we can choose a ∈ R such that 0 < f ′(0)/c < a < a0(c),
and, consequently,

σδ(La) ⊂ C\Ω(a) ⊂ {λ ∈ C : Reλ < 0}.

Finally, to apply Proposition 6.1 we only have to verify that such a ∈ R is an
appropriate weight in the sense that condition (6.3) holds. By inspection of the
spectral equation Lu = λu, written as a first order system, it is easy to check
that any solution u ∈ H2 decays at order O(e−c|x|/δ0) at the non-degenerate side
as x → −∞, where D(ϕ) ≥ δ0 > 0 for all x ∈ (−∞,−x0], with x0 > 0 fixed.
Moreover, ux and uxx also decay at the same rate as x → −∞. This follows by
standard ODE estimates on the first order system linearized around hyperbolic rest
points (as the diffusion coefficient does not vanish in the limit). Thus,∫ −x0

−∞
e2ax|u(x)|2 dx ≤ C

∫ −x0

−∞
e2(a+c/δ0)x dx < +∞,

because a + c/δ0 > f ′(0)/c + c/δ0 > 0. Thus, v ∈ L2(−∞,−x0). Likewise, it can
be verified that vx, vxx ∈ L2(−∞, x0). Therefore, v ∈ H2(−∞, x0).

On the degenerate side, as x→ +∞, we have precise information on the decaying
behavior of solutions to resolvent type equations provided by Lemma A.1. If u is
an H2-solution of Lu = λu then for x > x0 � 1, u can be written in the form (A.1)
with ζ ∈ H2(x0,+∞). It is easy to verify that for all a > f ′(0)/c > 0 we have
ζeax ∈ H2(x0,+∞), thanks to the fast decay of ζ (see Appendix A). Therefore, v =
eaxu ∈ H2(x0,+∞). For x0 ∈ R fixed it is obvious that v = eaxu ∈ H2(−x0, x0)
whenever u ∈ H2. Hence, we conclude that v = eaxu ∈ H2(R;C), and condition
(6.3) holds.

Consequently, we can apply Proposition 6.1 (a), and together with Theorem 4.5,
we obtain σpt(La) ⊂ (−∞, 0]. Likewise, from Proposition 6.1 (b) and Lemma 4.7
we conclude that σπ(La) ⊂ (−∞, 0].

Thus, we have proved that for any diffusion-degenerate monotone Fisher-KPP
traveling front ϕ, traveling with speed

c > max
{
c∗,

f ′(0)
√
D(1)√

f ′(0)− f ′(1)

}
> 0, (6.5)

we can choose a ∈ R satisfying

0 <
f ′(0)

c
< a < (2D(1))−1

(
c+

√
c2 − 4D(1)f ′(1)

)
,

such that the front is L2
a-spectrally stable; more precisely,

σ(L)|L2
a

= σ(La)|L2 ⊂ {Reλ ≤ 0}.

This finishes the proof of the main Theorem 1.1

Remark 6.2. The theorem guarantees that all traveling fronts with speed sat-
isfying condition (6.5) are spectrally stable in an appropriate weighted space L2

a.
The condition depends on the choice of the reaction f and the density-dependent
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diffusion D under consideration. For example, in the particular case of the diffusion-
degenerate Fisher-KPP equation,

ut = (αuux)x + u(1− u), (6.6)

with α > 0, that is, the special case of (1.1) with D(u) = αu and f(u) = u(1− u),

it is known (see, e.g., [2, 13, 14]) that the threshold speed is given by c∗ =
√
α/2.

Thus, in this case,

f ′(0)
√
D(1)√

f ′(0)− f ′(1)
=

√
α√
2

= c∗,

and, by Theorem 1.1, all traveling waves for equation (6.6) with speed c > c∗ are
L2
a-spectrally stable for some a ≥ 0.
There might be choices of D and f for which the maximum in (6.5) is not c∗ and,

therefore, the waves traveling with speed c∗ < c < f ′(0)
√
D(1)/

√
f ′(0)− f ′(1) are

spectrally unstable in any weighted space. This case is associated to the presence
of absolute instabilities and the location of the leftmost limit of the Fredholm
borders as a varies (see [20], section 3.1, for further information). For example,
Sanchez-Garduño and Maini [40] calculate, for the choices D(u) = u + εu2 and

f(u) = u(1−u), with ε > 0 small, that the threshold velocity is c∗ = (1 + ε/5)/
√

2.
Therefore

max
{
c∗,

f ′(0)
√
D(1)√

f ′(0)− f ′(1)

}
= max

{ 1√
2

(1 + ε/5) ,

√
1 + ε√

2

}
=

√
1 + ε√

2
,

for all small ε > 0. Thus, stability holds for all fronts traveling with speed c >√
1 + ε/

√
2, whereas those which are slower are spectrally unstable in any weighted

space. This case covers the normalized Shigesada function (1.3) mentioned in the
introduction, with D(u) = ε(u2 + bu), and b = 1/ε > 0 large.

7. Discussion

In this paper we have shown that the spectrum of the linearized differential oper-
ator around any diffusion-degenerate Fisher-KPP traveling front with speed satisfy-
ing condition (6.5) is located in the stable complex half plane, {λ ∈ C : Reλ ≤ 0},
when it is computed with respect to an appropriate exponentially weighted L2-
space. In other words, if the front satisfies (6.5) then we can always find a local
energy space under which spectral stability holds. A few remarks, however, are
in order. First, it is important to notice that our main result does not imply the
existence of a “spectral gap”, that is, that σ ⊂ {Reλ ≤ −ω < 0} ∪ {0}, for some
ω > 0. This is a limitation of the technique used. Moreover, we have not proved
that there is accumulation of the continuous spectrum near Reλ = 0 either. The
seasoned reader might rightfully ask why the parabolic regularization technique (see
section 5) is not used to locate the whole Weyl’s essential spectrum. The answer
to that question is precisely that, due to the degeneracy, it might happen that the
reduced minimum modulus, γ(Lε − λ), tends to zero as ε → 0+, as it does for
points in σπ(L). Therefore, one must sort out the points for which L−λ is a closed
range operator. As a consequence, the set which must be controlled with the use
of energy estimates, namely σπ ∪ σpt, is much larger and not necessarily composed
of isolated points with finite multiplicity only, like in the standard approach for
strictly parabolic problems. The existence of a spectral gap is an important issue
to be resolved prior to studying the nonlinear (orbital) stability, inasmuch as it is
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well-known that the existence of a spectral gap simplifies the nonlinear study with
the use of standard exponentially decaying semigroup tools (see, e.g., [17, 20, 38, 45]
and the references therein).

In addition, we conjecture that the ideas introduced here to handle the degen-
eracy of the diffusion can be applied to other circumstances. For instance, it is
clear that other reaction functions might as well be taken into account, such as
the bistable (or Nagumo) type [28, 35]; this case will be addressed in a compan-
ion paper [25]. Another possible application is the case of traveling fronts with
doubly-degenerate diffusions, which arise naturally in bacterial aggregation models
[24], and whose existence has been already studied (cf. [26, 27]). We believe that
the analysis presented here can be applied to those situations as well, by taking
care of the points in the argumentation where monotonicity of D = D(·) should
be dropped, and by extending the methods to more orders of degeneracy. Finally,
the stability of traveling fronts for systems with degenerate diffusion tensors is an
important open problem whose investigation could profit from some of the ideas
developed in this paper.
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Appendix A. Proof of Lemma 4.1

In this section, we verify that for fixed λ ∈ C and g ∈ L2, if u ∈ H2 is a solution
to the resolvent equation (L − λ)u = g then

w(x) = exp

(
c

2

∫ x

x0

ds

D(ϕ(s))

)
u(x) = e−θ(x)u,

belongs to H2 as well. Here L is the linearized operator around a traveling front ϕ
for the Fisher-KPP equation (1.1), traveling with speed c > c∗ > 0, and x0 ∈ R is
fixed but arbitrary.

For Fisher-KPP diffusion-degenerate fronts one has u+ = 0, u− = 1, with f ′(0) >
0, f ′(1) < 0 and they are monotone decreasing with ϕx < 0. These fronts are
diffusion-degenerate as x→ +∞ in view that D(u+) = D(0) = 0.

On the non-degenerate side, as x→ −∞, notice that∫ x

x0

D(ϕ(s))−1 ds ≤ 0,

for all x ≤ x0. Therefore,

1 ≥ Θ(x) := exp

(
c

2

∫ x

x0

ds

D(ϕ(s))

)
,

This yields |w(x)| ≤ Θ(x)|u(x)| ≤ |u(x)| for x ∈ (−∞, x0) and, consequently,
w ∈ L2(−∞, x0). Now, for x0 ∈ R fixed, let

δ0 := inf
x∈(−∞,x0]

D(ϕ(x)) > 0.
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Then for all x < x0 we have

Θ(x) ≤ exp
(
− c

2δ0
|x− x0|

)
→ 0, as x→ −∞.

Also from monotonicity of D = D(·) we have

0 <
c

2

Θ(x)

D(1)
≤ Θx(x) =

c

2

Θ(x)

D(ϕ(x))
≤ c

2δ0
Θ(x)→ 0,

as x → −∞. We conclude that wx = Θxu + Θux ∈ L2(−∞, x0). Analogously, it
can be easily verified that wxx ∈ L2(−∞, x0) (we omit the details).

On the degenerate side, as x→ +∞, however, observe that
∫ x
x0
D(ϕ(s))−1 ds ≥ 0

for all x ≥ x0 and, thus, the analysis of the decay at +∞ of solutions to resolvent
type equations is more delicate. The details are provided by the following lemma.

Lemma A.1. Suppose that ϕ is a Fisher-KPP diffusion-degenerate front. Then,
for any fixed λ ∈ C and g ∈ L2(R;C), any H2-solution u to the resolvent equation
(L − λ)u = g can be written as

u(x) = C exp

(
− c

2

∫ x

x0

ds

D(ϕ(s))

)
ζ(x), (A.1)

for x > x0, x0 ∈ R fixed, x0 � 1 sufficiently large, with some constant C ∈ C, and
where ζ = ζ(x) ∈ H2(x0,+∞) decays to zero as x→ +∞ like

ζ(x) ∼ ef
′(0)x/2c exp

(
− c2

2D′(0)f ′(0)
ef
′(0)x/c

)
. (A.2)

In view of Lemma A.1, for x0 � 1 fixed we have w(x) = Cζ(x) ∈ H2(x0,+∞).
Therefore we conclude that w ∈ H2(R;C) as claimed. This finishes the proof of
Lemma 4.1. We are left to prove Lemma A.1.

Proof of Lemma A.1. Consider the change of variables u = ϕxv. Upon substitution
into the resolvent equation (L − λ)u = g and using Lϕx = 0, we obtain

vxx + ρ(x)vx −
λ

D(ϕ)
v = g̃,

where,

g̃ =
g

D(ϕ)ϕx
, ρ(x) =

2(D(ϕ)ϕx)x
D(ϕ)ϕx

+
c

D(ϕ)
.

Now, let us define

v(x) = exp

(
−1

2

∫ x

x0

ρ(s) ds

)
z(x).

Substituting we obtain the second order equation

zxx − F (x, λ)z = h, (A.3)

with

F (x, λ) =
λ

D(ϕ)
+

1

2
ρx +

1

4
ρ2, h(x) =

g(x)

D(ϕ)ϕx
exp

(
1

2

∫ x

x0

ρ(s) ds

)
.
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Now, it is to be noticed that

exp

(
−1

2

∫ x

x0

ρ(s) ds

)
=
|(D(ϕ)ϕx)(x0)|
|D(ϕ)ϕx|

exp

(
− c

2

∫ x

x0

ds

D(ϕ(s))
ds

)
= − C0

D(ϕ)ϕx
exp

(
− c

2

∫ x

x0

ds

D(ϕ(s))
ds

)
,

where C0 = |(D(ϕ)ϕx)(x0)| > 0, and in view of monotonicity, ϕx < 0. Let us now
define

Θ̃(x) := exp

(
− c

2

∫ x

x0

ds

D(ϕ(s))
ds

)
.

Observe that Θ̃→ 0 as x→ +∞, and also that

u = ϕxv = ϕx exp

(
−1

2

∫ x

x0

ρ(s) ds

)
z(x) = −C0

Θ̃(x)

D(ϕ)
z(x) =: C0ζ(x)Θ̃(x).

Here ζ = −z/D(ϕ) and z is the decaying solution to equation (A.3). Since by

definition w(x) = Θ̃(x)−1u(x), we arrive at

w(x) = C0ζ(x).

Thus, the goal is to show that ζ decays as x → +∞ fast enough, so that ζ ∈
L2(x0,+∞).

First we observe that, substituting the profile equation (3.2), we may write

ρ =
2(D(ϕ)ϕx)x
D(ϕ)ϕx

+
c

D(ϕ)
= − c

D(ϕ)
− 2f(ϕ)

D(ϕ)ϕx
.

By Lemma 2.3, the wave decays as ϕ = O(e−f
′(0)x/c) → 0 as x → +∞. Making

Taylor expansions near ϕ = 0 of the form

D(ϕ) = ϕ(D′(0) +O(ϕ)), D(ϕ)−1 = ϕ−1D′(0)−1 +O(1), (A.4)

we find that

ρ(x) =
c

D′(0)

1

ϕ(x)
+O(1)→ +∞, as x→ +∞.

Moreover,

1

4
ρ(x)2 =

c2

4D′(0)2
1

ϕ(x)2
→ +∞, λ

D(ϕ)
=

λ

D′(0)

1

ϕ(x)
+O(1),

as x → +∞. Notice that λ/D(ϕ) diverges at order O(1/|ϕ|) for λ fixed. Upon
differentiation of the expression for ρ and substitution of the Taylor expansions
around ϕ, one can show that

ρx =
3f ′(0)

D′(0)

1

ϕ
+O(1), ϕ ∼ 0+.

Thus, we reckon that

F (x, λ) =
λ

D(ϕ)
+

1

2
ρx +

1

4
ρ2 =

c2

4D′(0)2
ϕ−2 +

( λ

D′(0)
− 3f ′(0)

2D′(0)

)
ϕ−1 +O(1),

for ϕ ∼ 0 as x → +∞. The leading term is ϕ−2c2/(4D′(0)2) > 0, and since ϕ =

O(e−f
′(0)x/c), then F (x, λ) diverges at order O(e2f

′(0)x/c) as x → +∞. For fixed
λ ∈ C, the leading term does not depend on λ and has a definite sign. Therefore,
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by taking real and imaginary parts, we can assume, without loss of generality, that
z decays as the real solution to the equation

zxx − F (x)z = h, (A.5)

with

F (x) :=
c2

4D′(0)2
e2f
′(0)x/c.

We now apply the following theorem by Coppel (cf. [6], pg. 122):

Theorem A.2 (Coppel). Let F (x) > 0, F ∈ C2, be such that∫ x

x0

|F−3/2F ′′| dx < +∞.

Then the homogeneous equation

zxx − F (x)z = 0, (A.6)

has a fundamental system of solutions satisfying

z ∼ F (x)−1/4 exp

(
±
∫ x

x0

F (s)1/2 ds

)
,

zx ∼ F (x)1/4 exp

(
±
∫ x

x0

F (s)1/2 ds

)
.

(A.7)

In order to simplify the notation, let us define

β =
2f ′(0)

c
> 0,

so that ϕ = O(e−βx/2), as x → +∞. Since F > 0 diverges at order O(eβx), then
one can verify that F−3/2F ′′ ∼ e−βx/2 is integrable in (x0,+∞), if x0 � 1 is
chosen sufficiently large. Let z1(x) and z2(x) be two linearly independent solutions
in [x0,+∞) to the homogeneous equation (A.6), decaying and diverging at +∞,
respectively. Then, by Coppel’s theorem, z1(x) behaves like

z1(x) ∼ F (x)−1/4 exp

(
−
∫ x

x0

F (s)1/2 ds

)
=
(2D′(0)

c

)1/2
e−βx/4 exp

(
− c

2D′(0)

∫ x

x0

eβs/2 ds

)
≤
(2D′(0)

c

)1/2
e−βx/4 exp

(
− c

βD′(0)
eβx/2

)
,

that is,

z1(x) ∼ e−βx/4 exp

(
− c

βD′(0)
eβx/2

)
→ 0, (A.8)

as x→ +∞. Likewise, it is easy to check that

∂xz1(x) ∼ eβx/4 exp

(
− c

βD′(0)
eβx/2

)
→ 0, (A.9)

as x→ +∞. Upon normalization, any decaying solution z to the non-homogeneous
equation (A.5) can be written as

z(x) =

(
α1 −

∫ x

x0

z2(s)h(s) ds

)
z1(x),
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for some constant α1, where z2(x) satisfies

z2 ∼ F (x)−1/4 exp

(∫ x

x0

F (s)1/2 ds

)
, x→ +∞.

Since

h(s) =
g(s)

(D(ϕ)ϕx)(s)
exp

(
1

2

∫ s

x0

ρ(ξ) dξ

)
= −C0

g(s)

(D(ϕ)ϕx)(s)2
Θ̃(s),

we need to determine how Θ̃(x) decays to zero at +∞. Substitute the expansion
(A.4) to estimate ∫ x

x0

ds

D(ϕ(s))
=

2

β

1

D′(0)
eβ(x−x0)/2 + Ĉ(x− x0),

for x > x0 � 1, sufficiently large. This yields,

Θ̃(x) = exp

(
− c

βD′(0)
eβ(x−x0)/2 − Ĉ(x− x0)

)
≤ C1 exp

(
− c

βD′(0)
eβx/2

)
→ 0,

as x→ +∞, for some uniform C1 > 0. Let us denote

z̃(x) := z1(x)

∫ x

x0

z2(s)h(s) ds,

so that z(x) = α1z1(x)− z̃(x). By substitution of F (x)−1/4 = O(e−βx/4), together
with

|h(s)| = C0
|g(s)|

(D(ϕ)ϕx)(s)2
Θ̃(s)

≤ C0C1|g(s)|O(e2βs) exp

(
− c

βD′(0)
eβs/2

)
≤ C2|g(s)|e2βs exp

(
− c

βD′(0)
eβs/2

)
,

and with the asymptotic behavior of z2(s), we observe that, for x0 � 1 sufficiently
large,∫ x

x0

z2(s)h(s) ds ∼
∫ x

x0

F (s)−1/4 exp

(∫ s

x0

F (y)1/2 dy

)
ds

≤ C2

(2D′(0)

c

)1/2 ∫ x

x0

{
e−βs/4 exp

(
c

βD′(0)
eβ(s−x0)/2

)
|g(s)|×

×e2βs exp

(
− c

βD′(0)
eβs/2

)}
ds

= C3

∫ x

x0

|g(s)|e7βs/4 exp
(
−C4e

βs/2
)
ds,

where

C4 =
c

βD′(0)

(
1− e−βx0/2

)
> 0.

Since the function ω(s) = e7βs/4 exp(−C4e
βs/2) clearly belongs to L2(x0,+∞), we

notice that the term∫ x

x0

z2(s)h(s) ds ∼ Ĉ
∫ x

x0

ω(s)|g(s)| ds ≤ Ĉ‖ω‖L2(x0,+∞)‖g‖L2(x0,+∞)

≤ C‖g‖L2 = O(‖g‖L2),
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is bounded as x→ +∞. This shows, together with the decay of z1(x), (A.8), that

|z̃(x)| ≤ Cge−βx/4 exp

(
− c

βD′(0)
eβx/2

)
, (A.10)

with Cg = O(‖g‖L2). Therefore, the decaying solution to (A.5) (and, consequently,
the decaying solution to (A.3)), behaves like

z(x) ∼ e−βx/4 exp

(
− c

βD′(0)
eβx/2

)
, x→ +∞.

(It can be easily verified with the same arguments that the term of the from
z2(x)

∫ x
h(s)z1(s) ds is actually divergent as x→ +∞. We omit the details.) This

yields,

ζ(x) = − z(x)

D(ϕ(x))
∼ eβx/4 exp

(
− c

βD′(0)
eβx/2

)
∼ ef

′(0)x/2c exp

(
− c2

2D′(0)f ′(0)
ef
′(0)x/c

)
,

when x→ +∞, as claimed.
It can be shown, using the decay rate (A.7) for the derivatives of solutions

to the homogeneous equation, ∂xz1, that ζx ∈ L2(x0,+∞), with a decay of the

form ekx exp(−C̄ef ′(0)x/c), with k > 0, C̄ > 0. A similar procedure leads to ζxx ∈
L2(x0,+∞). The details are omitted as the proof is analogous (the rapidly decaying

term exp(−C̄ef ′(0)x/c) controls the possibly blowing up terms of form ekx, so that
derivatives remain in L2). This concludes the proof. �

Remark A.3. It is to be noticed that D(ϕ)ζe−θ decays as x→ +∞, inasmuch as

D(ϕ)|ζ|e−θ =
|z(x)|
Θ̃(x)

∼ e−f
′(0)x/2c exp

(
− c2

2D′(0)f ′(0)
ef
′(0)x/c

)
exp

(
c2

2D′(0)f ′(0)
ef
′(0)x/c

)
= O(1) e−f

′(0)x/2c.

(A.11)
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D.F. (Mexico)

E-mail address: plaza@mym.iimas.unam.mx


