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Abstract This Chapter is divided into three Sections. The first one discusses dif-
ferent types of modeling reaction-diffusion phenomena, supporting the idea of the
advantages of a description based on hyperbolic equations. Also, three basic numer-
ical schemes are presented two of which can be applied for general hyperbolic sys-
tems, at the price of reduced performances when dealing with discontinuous initial
data. The kind of underlying mechanism prescribes that, in the long-run, also these
approaches are reliable. In the second Section, we focus on a class of 2×2 system
corresponding to second order partial differential equations in one space dimen-
sion, adapted for simplified modeling of reaction-diffusion equations and focus on
special traveling wave solutions, called propagating fronts. Special cases where the
speed of propagation can be explicitly computed are also provided. In the third (and
final) Section, we start with the presentation of the phase-plane algorithm which
bears a reliable approximation of the propagation speed, assessing its validity in the
case with damping where an explicit formula is available. Then, we propose two
PDE-based algorithms to approximate the propagation speed, named scout&spot
algorithm and the LeVeque–Yee formula and we attest their well-foundedness. We
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conclude by suggesting the second one as more efficient tool in the determination
of the velocity.

1 Models for reaction-diffusion phenomena

In this Section, we present different type of models useful for reaction-diffusion
phenomena, supporting the idea that a description which makes use of hyperbolic
equations is possible for both scalar equations and systems. The final Subsection
presents three different numerical schemes which can be easily implemented in or-
der to obtain reliable approximation of a reaction-diffusion model of hyperbolic
type.

1.1 Diffusion is not always a parabolic mechanism

The standard approach to heat conduction in a homogeneous medium is based on
the continuity relation linking the scalar unknown variable u with the vector-valued
flux function v, by means of the balance identity

d
dt

∫
Ω

u(x, t)dx+
∫

∂Ω

v ·ndσ =
∫

Ω

f dx,

where Ω is an arbitrarily chosen control region with dx corresponding volume ele-
ment, n is the outward normal to the smooth boundary ∂Ω with dσ boundary ele-
ment, and f is a volume contribution, to be considered, at first, as a given external
constraint.

Applying Divergence Theorem, we can consider its localized version

∂tu+divx v = f , (1)

where u and v describe respectively (heat) density and (heat) flux. The former is a
scalar quantity; the latter is a vector with same dimension of the space variable x.

To provide a closed system, equation (1) has to be coupled with some relation
between u and v. A frequent choice is the Fourier’s law

v =−agradxu (2)

for some non-negative proportionality parameter a. Relation (2) is also called Fick’s
law when considered in bio-mathematical settings, Ohm’s law in electromagnetism,
and Darcy’s law in porous media.

Coupling identity (1) with relation (2) gives raise to the balance law

∂tu = divx (agradxu)+ f . (3)



Analysis and numerics for hyperbolic reaction-diffusion models 3

The diffusion coefficient a may explicitly depend on space x and time t –as in the
case of heterogeneous media– and also on the density variable itself u and its deriva-
tives. Here, we focus mainly on the case a > 0.

While the continuity equation (1) can be considered reliable in general contexts,
equation (2) should be regarded as a single possible choice among many others. In
fact, quoting Lars Onsager (see [24]), Fourier’s law is an approximate description
of the process of conduction, which neglects the (short) relaxation time τ needed
for acceleration. For practical purposes the time-lag can be neglected in all cases
of heat conduction that are likely to be studied. Nevertheless, in many applications
–among others, for dealing with biological tissues– extensions of the Fourier’s law
are required, with the specific aim of providing a more robust model, including in
the picture both finite speed of propagation and inertial effects.

A first significant alternative to (2) is supported by the intuition that a delayed
version should hold in place of the instantaneous response. The fact that the system
requires a strictly positive amount of time τ to sense the gradient change translates
into an identity of the phase-lag relationship

v(x, t + τ) =−agradxu(x, t).

Unfortunately, as proved in [14], the phase-lag model is ill-posed in the sense of
Hadamard since it lacks of continuous dependence with respect to the initial data
(see also [12]).

Surprisingly enough, well-posedness can be restored by truncating the Taylor’s
expansion for the unknown v. Assuming τ to be small, we can consider the approx-
imation

v(x, t + τ) = v(x, t)+ τ∂tv(x, t)+o(τ)

≈ v(x, t)+ τ ∂tv(x, t),

giving raise to the Maxwell–Cattaneo’s law. Putting together with the balance law
(1), we obtain the (hyperbolic) reaction-diffusion system with relaxation{

∂tu+divxv = f ,

τ∂tv+agradxu =−v.
(4)

The Maxwell–Cattaneo’s law can be considered as a way for incorporating into the
diffusion modelling some additional physical terms arising in the framework of Ex-
tended Irreversible Thermodynamics, [9, 15]. Such law, to be considered as a con-
stitutive identity, has been originally proposed by Cattaneo [5, 6], following some
pioneering intuition of James Clerk Maxwell (among others, let us quote [22, 23]).
Sometimes, equation (4) is linked to Vernotte [25], and –more rarely– to Chester
[7]. Extensions has been recently proposed in [8].

Eliminating the unknown v in the coupled system (1) and (4), we obtain the one-
field equation, namely

τ∂ttu+∂t (u− τ f ) = divx (agradxu)+ f . (5)
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The focal idea is that the balance between the flux v and the gradient gradxu of
the density u is achieved only asymptotically in time, with decay described by the
relaxation time τ > 0. Such quantity can be regarded as the characteristic time for
the crossover between ballistic motion and the onset of diffusion.

The Maxwell–Cattaneo’s law furnishes the differential version of the delayed
response to a change in the gradient gradxu as described by a memory kernel given
by the exponential-rate law

v(x, t) = v0(x)e−t/τ − 1
τ

∫ t

0
e−(t−s)/τ agradxu(x,s)ds

which corresponds to the analogous formula in the context of viscoelasticity.
The main flaw is that equation (5) can violate the second law of thermodynamics,

admitting scenarios where heat appear to be moving from cold to hot (see [16]).
In this respect, correction to the notion of entropy have been proposed in order to
partially solve the problem (for the case with no source term, see [11]).

An alternative approach is based on the postulation that the usual continuity equa-
tion (1) should be replaced by a delayed identity

∂tu(x, t + τ)+divx v(x, t) = f (x, t).

Truncating again the Taylor’s expansion for u with respect to the second argument,
we end up with

τ ∂ttu+∂tu+divx v = f . (6)

Then, coupling with the standard Fourier’s law (2), (6) gives the so-called (hyper-
bolic) reaction-diffusion equation with damping

τ ∂ttu+∂tu = divx (agradxu)+ f . (7)

An alternative approach leading to a variation of (7) is proposed in [1]. In such a
case, the hyperbolic equation is obtained by starting from space–time duality of a
Minkowski space, and a simple Lorentz transformation, that are basic to the the-
ory of special relativity. The starting point is an adapted version of the continuity
equation, namely

∂tu+div(t,x) w = f (τ > 0),

where div(t,x) is the scalar product of the operator (i
√

τ ∂t ,∂x1 , . . . ,∂xn) against the
extended (n+1)−dimensional flux w. Assuming the extended Fourier’s relation

w =−agrad(t,x)u,

where grad(t,x) = (i
√

τ ∂t ,gradx), we infer

τ∂t(a∂tu)+∂tu = divx(agradxu)+ f ,

which coincides with (7) when a≡ 1.
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However, the latter equation give rise to significant conceptual issues that makes
the theory somewhat controversial. Among others, some quantities into play are
described by complex numbers, with values involving imaginary “densities”, which
are hard to be interpreted.

Finally, let us determine an intermediate form somewhat in between (7) and (5).
Let us denote by τ1 and τ2 the parameters for (6) and (4), respectively. Combining
the delayed version of the continuity equation and the Maxwell–Cattaneo’s law{

τ1∂ttu+∂tu+divx v = f ,

τ2∂tv+v+agradxu = 0.

Differentiating the first equation with respect to t, taking the divergence with respect
to x of the second equation and subtracting, we obtain the one-field equation for u

τ1τ2∂tttu+(τ1 + τ2)∂ttu+∂t (u− τ2 f ) = divx (agradxu)+ f .

Since the product τ1τ2 is smaller with respect to the other 0-th/1-st order terms in τ1
and τ2 the third order time derivative can be disregarded (if bounded), thus giving
raise to the hyperbolic equation

τ∂ttu+∂t (u−σ f ) = divx (agradxu)+ f .

where τ := τ1 + τ2 and σ := τ2.

1.2 Reaction-diffusion by means of PDE systems

Passing to vector-valued density function u ∈ Rp, some modifications have to be
taken into account. First of all, the vectorial form of the continuity equation becomes

∂tu+Divx V = f, (8)

where Div denotes the divergence operator applied to each row of the matrix V, and
f is some vector-valued function.

Again, some additional relations coupling the dynamical variables u and V are
required to close the system. As before, these could be of different nature. Denot-
ing by Gradx the jacobian operator and having in mind the Fourier’s law, we can
conceive a relation of the following form

V = linear functional applied to Gradxu
=−AGradxu.

for some (4th-order) tensor-valued function A. Coupling with (8), the above identity
gives the (parabolic) reaction-diffusion system



6 C. Lattanzio, C. Mascia, R.G. Plaza, C. Simeoni

∂tu = Divx (AGradxu)+ f, (9)

which can be regarded as the vectorial version of (3).
Considerations similar to the ones implemented in Subsection 1.1 support the

search for alternatives to the Fourier’s law, the first being the Maxwell–Cattaneo’s
law, which, in vectorial version, reads as

τ∂tV+V =−AGradxu.

Of course, the latter equality can be generalized to the (more realistic) case in which
any line of the flux matrix V has a different delay τ1, . . . ,τp. However, in what
follows, we will concentrate on the case of a single time-scale τ for the sake of
simplicity.

Coupling with the continuity equation (8), we end up with the (hyperbolic)
reaction-diffusion system with relaxation{

∂tu+DivxV = f,
τ∂tV+AGradxu =−V.

Differentiating by ∂t the first equation, applying Divx to the second equation, and
taking the difference, we deduce the one-field system

τ∂ttu+∂t (u− τf) = Divx (AGradxu)+ f. (10)

System (10) can be understood as the (hyperbolic) singular perturbation limit as
τ → 0+ of the (parabolic) system (9).

Alternatively, we can follow the strategy previously proposed considering a de-
layed continuity equality, which ends up in the (hyperbolic) reaction-diffusion sys-
tem with damping

τ∂ttu+∂tu = Divx
(
AGradxu

)
+ f. (11)

to be regarded as the vectorial version of (7).
In order to derive a sort of interpolation between (10) and (11), we follow the

strategy proposed for (1.1), that is considering delays in both continuity identity and
flux constitutive equality, with small relaxation times τ1 and τ2, so that the term with
the product τ1τ2 can be formally disregarded. In addition, restricting the attention to

A= constant and f = f(u),

we end up with the system

τ∂ttu+∂t {u−σ f(u)}= Divx {AGradxu}+ f(u), (12)

Later on, it will be transparent how the apparently harmless term σdf(u), negligible
for σ small, may affect the dynamics and plays a crucial role in the long run.

In the class described by system (12), there are a some significant limiting
regimes, with respect to the values of the parameters τ and σ ∈ [0,τ]:
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i. σ = τ = 0 (undelayed continuity/undelayed flux):

∂tu = Divx {AGradxu}+ f(u);

ii. σ = 0, τ > 0 (delayed continuity/undelayed flux):

τ∂ttu+∂tu = Divx {AGradxu}+ f(u);

iii.σ = τ > 0 (undelayed continuity/delayed flux):

τ∂ttu+∂t{u− τf(u)}= Divx {AGradxu}+ f(u).

Additional specifications can be required on the zero-th order term f to add struc-
ture to the over-all system. In the scalar case, any continuous function f has a
smooth primitive, producing a corresponding potential W (more details on such a
case, will be provided later on). Differently, when the dimension is strictly greater
than 1, additional constraints are needed in order to make this requirement to be
satisfied. Specifically, for smooth functions, a necessary condition for the existence
of a potential function W such that

graduW (u) =−f(u), (13)

is demanding that the jacobian matrix df of f is symmetric, that is

df(u)> = df(u). (14)

Such condition is sufficient if the domain is simply connected or star-shaped.
Incidentally, let us observe that, assuming the symmetry condition (14), system

(12) is endowed with a natural Lyapunov functional, i.e. a global function which is
not-increasing along any given trajectory. To simplify the formalism, we concentrate
on the one-dimensional spatial case, limiting ourselves to

τ∂ttu+∂t {u−σ f(u)}= A∂xxu+ f(u), (15)

For τ = σ = 0, we obtain the standard parabolic reaction-diffusion system

∂tu = A∂
2
x u+ f(u)

Property (13) –or (14)– guarantees the presence of a variational structure. Specifi-
cally, the functional E0 defined by

E0[u] :=
∫
R

{
1
2 A∂xu ·∂xu+W (u)

}
dx,

together with some appropriate integrability conditions at ±∞, is a Lyapunov func-
tional for the system (15). Indeed, there holds

d
dt

E0[u]+
∫
R
|∂tu|2 dx = 0,
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exhibiting a dissipative property for E0.
Similar considerations can be done also in the case (15), giving raise to a differ-

ential equality for the modified energy

Eτ [u] := 1
2 τ|∂tu|2 +E0[u].

Then, setting Qσ := I−σdf(u), there holds

d
dt

Eτ [u]+
∫
R

Qσ ∂tu ·∂tudx = 0.

Again, choosing σ ≥ 0 so that Qσ > 0, dissipation is transparent.

1.3 Three basic numerical schemes in one space dimension

For u ∈Rp and in one space dimension, the tensor A reduces now to a p× p matrix
A, that is A = A = (ai1

1`) since two of the four indeces are now fixed and equal to
1. For the sake of simplicity, we limit ourselves to the case A = aI for some a > 0.
Hence, we consider the system in one space-dimension

τ∂ttu+∂t {u−σ f(u)}= a∂xxu+ f(u). (16)

First-order reduction algorithm

System (16) has an immediate numerical description, obtained by rewriting it in
first-order form as {

∂tu = v,
τ ∂tv = a∂xxu+ f(u)−{I−σ df(u)}v.

(17)

Firstly, we discretize the spatial part, introducing a uniform mesh with uniform step
dx, obtaining

du j

dt
= v j

τ
dv j

dt
=

a
dx2

(
u j+1−2u j +u j−1

)
+ f(u j)−

{
I−σ df(u j)

}
v j

(18)

As a second step, we have to discretize with respect to the time variable. In order to
perform such a step, there are many different choices.

To start with, we choose an implicit-explicit scheme (IMEX), limiting the im-
plicit description to the linear part of the system, so that
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un+1

j −un
j

dt
= vn+1

j

τ
vn+1

j −vn
j

dt
=

a
dx2

(
un+1

j+1−2un+1
j +un+1

j−1

)
+ f(un

j)−vn+1
j +σdf(un

j)v
n
j

which gives the first-order reduction algorithm
un+1

j −dtvn+1
j = un

j

α

(
−un+1

j+1 +2un+1
j −un+1

j−1

)
+(1+β )vn+1

j = vn
j +β f(un

j)

+σβ df(un
j)v

n
j ,

(19)

where α := adt/τdx2, β := dt/τ . Solving such an implicit-explicit algorithm fur-
nishes the numerical approximation of the real solution(

un+1

vn+1

)
= A−1

(
un

vn +β f(un)+σβ df(un)vn dt

)
where A describes the coefficients of the left-hand side matrix in (19).

Liénard-type algorithm

A second type of algorithm is inspired by the so-called “Liénard second order equa-
tion” which is

τ
d2u
dt2 +g(u)

du
dt

+h(u) = 0.

for some given functions g and h. In such a case, the above equation can be rewritten
as a first order system by setting

τ
du
dt

= v−G(u),
dv
dt

=−h(u)

where G is a primitive of the function g. Applied to system (16), let us consider an
algorithm based on the decomposition of the system given by{

τ∂tu = v−u+σ f(u),
∂tv = a∂xxu+ f(u).

(20)

In what follows, we refer to such an approach a Liénard-type algorithm.
As before, discretizing the spatial part with respect to an uniform mesh with step

dx, we infer 
τ

du j

dt
= σ f(u j)−u j +v j

dv j

dt
=

a
dx2

(
u j+1−2u j +u j−1

)
+ f(u j).

(21)
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Let us observe that, at the continuous level, systems (17) and (20), and at semi-
discretized algorithm, systems (18) and (21), are completely equivalent, the differ-
ence being only in the choice of the variable v.

The crucial difference emerges in the subsequent step, where the time discretiza-
tion is taken into account and the difference between linear (implicit) vs nonlinear
(explicit) discretizations. On top of that, let us also incidentally observe that the
Liénard-type algorithm does not require an explicit computation of the jacobian
matrix d f at the value un

j .
Proceeding in the spirit of what we have done before, we infer

τ
un+1

j −un
j

dt
= σ f(un

j)−un+1
j +vn+1

j

vn+1
j −vn

j

dt
=

a
dx2

(
un+1

j+1−2un+1
j +un+1

j−1

)
+ f(un

j)

from which we obtain the IMEX linear system (1+β )un+1
j −βvn+1

j = un
j +βσ f(un

j)

α

(
−un+1

j+1 +2un+1
j −un+1

j−1

)
+vn+1

j = vn
j + f(un

j)dt
(22)

with α := adt/dx2 and β := dt/τ . The solution of such an iteration provides the
numerical approximation of the solution (u,v)(

un+1

vn+1

)
= A−1

(
un

j +βσ f(un
j)

vn
j + f(un

j)dt

)
where A describes the coefficients of the left-hand side matrix in (22).

Kinetic algorithm

A third viable algorithm is limited to the case σ = τ > 0. In such a situation, it
is possible to start back from the derivation of the model, i.e. the coupling of the
balance law together with the Maxwell–Cattaneo’s relation,

∂tu+∂xv = f(u), τ ∂tv+v =−a∂xu.

Here, τ and a can be considered as diagonal matrices with elements (τ1, . . . ,τn)
and (a1, . . . ,an), which are here considered possibly different one from the other.
Therefore, we end up with the system{

∂tui +∂xvi = fi(u1, . . . ,un),

τi ∂tvi +ai ∂xui =−vi.
(23)

The coupling is due to the presence in the first equation of the term f = ( f1, . . . , fn).
Differently, the second equation in (23) involves only the components ui and vi.
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The coefficients of the principal part of the differential operator in (23) are de-
scribed by the block-diagonal matrix A = blockdiag(A1, . . . ,An) with

Ai :=
(

0 1
ai/τi 0

)
i = 1, . . . ,n.

Thus, the eigenvalues of the 2n×2n matrix A, given by the roots of the polynomial

p(λ ) = det(A−λ I) =
n

∏
i=1

(
λ

2−ρ
2
i
)
,

where ρi :=
√

ai/τi, are λ =±ρi for i = 1, . . . ,n.
Introducing the diagonal variables (r,s) = (r1, . . . ,rn,s1, . . . ,sn), defined by

ri :=
1
2

(
ui−

vi

ρi

)
, si :=

1
2

(
ui +

vi

ρi

)
,

the system (23) becomes
∂tri−ρi∂xri =

1
2τi

(−ri + si)+
1
2

fi(r1 + s1, . . . ,rn + sn),

∂tsi +ρi∂xsi =
1

2τi
(+ri− si)+

1
2

fi(r1 + s1, . . . ,rn + sn).

As before, we firstly consider a discretization of the spatial part with a uniform mesh
described by the step dx, and taking into account the up-wind nature of the model;
we, thus, obtain

dri, j

dt
−ρi

ri, j+1− ri, j

dx
+

1
2τi

(+ri, j− si, j) =
1
2

fi(r1 + s1, . . . ,rn + sn),

dsi, j

dt
+ρi

si, j− si, j−1

dx
+

1
2τi

(−ri, j + si, j) =
1
2

fi(r1 + s1, . . . ,rn + sn).

Next, we follow the same strategy of the IMEX algorithm, that is we discretize
implicitly only the linear part of the system. Thus, we infer

rn+1
i, j − rn

i, j

dt
− ρ

dx
(
rn+1

i, j+1− rn+1
i, j
)
− 1

2τi

(
−rn+1

i, j + sn+1
i, j
)
=

1
2

fi(rn + sn),

sn+1
i, j − sn

i, j

dt
+

ρ

dx
(
sn+1

i, j − sn+1
i, j−1

)
− 1

2τi

(
rn+1

i, j − sn+1
i, j
)
=

1
2

fi(rn + sn),

that gives
(1+αi +βi)rn+1

i, j −αirn+1
i, j+1−βisn+1

i, j = rn
i, j +

1
2

fi(rn + sn)dt,

−βirn+1
i, j −αisn+1

i, j−1 +(1+αi +βi)sn+1
i, j = sn

i, j +
1
2

fi(rn + sn)dt,
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where αi = ρi dt/dx, βi = dt/2τi.
Again, denoting by A the coefficients’ matrix of the couple (r,s) in the above

system, we obtain the iteration formula(
rn+1

sn+1

)
= A−1

(
rn + f(rn + sn)dt/2
sn + f(rn + sn)dt/2

)
.

2 Some waves are better than others

We start this Section by presenting traveling wave solutions, which are supported
by hyperbolic reaction-diffusion system, using, as a prototypes, the case of monos-
table and bistable reaction terms. Next, we focus on a special class of waves, called
propagation fronts explored in details in the case of a bistable reaction term. Special
cases where the speed of propagation can be explicitly computed are also provided.

2.1 Traveling waves

Among the infinitely many solutions of a partial differential equations, some solu-
tions exhibits an augmented “stability”, due to the fact that they possess an addi-
tional amount of internal symmetry. A recurrent type of such kind of solutions are
the so-called traveling waves (with planar symmetry), i.e. solutions of the form

u(x, t) := φ(k ·x− ct) (24)

for some unitary vector k. Here φ is called the profile of the wave and c its propa-
gation speed.

For such kind of solutions, PDEs are reduced to ODEs, whose unknowns depend
on the scalar variable ξ := k ·x−ct with the value c to be determined together with
the function φ . As an example, inserting the ansatz (24) in (12) and noticing that

Gradxu =
dφ

dξ
⊗k,

Divx

{
A
(

dφ

dξ
⊗k
)}

= ADivx

(
dφ

dξ
⊗k
)
= A

(
d2φ

dξ 2 ⊗k
)
,

we end up with an ODE for the profile φ , parametrized by the velocity c,

A
(

d2φ

dξ 2 ⊗k
)
+ c2

τ
d2φ

dξ 2 + c{I−σdf(φ)} dφ

dξ
+ f(φ) = 0,

Since the above system is autonomous, the profile is determined up to translations.
This implies that the translation φ δ := φ(· − δ ) with δ ∈ R of a given traveling
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wave φ = φ(·) is itself a traveling wave solution for the same system. Such prop-
erties have an immediate consequence: the derivative of φ with respect to its argu-
ment is an eigenfunction for the corresponding linearized operator at φ relative to
the eigenvalue λ = 0. This influences the stability properties of the wave, dictating
the fact that, at most, orbital stability could be expected, meaning convergence of
(small) perturbations to the manifold {φ δ : δ ∈R}. Presence/absence of an asymp-
totic phase, viz. convergence to a definite element of the manifold, is the (natural)
subsequent issue.

Depending on specific properties of the profile function φ , different names are
associated to traveling waves:

i. if φ converges to some asymptotic states φ± (which are necessarily two distinct
equilibria of the model) with φ− 6= φ+, the solution is called a front;

ii. if φ converges to the same asymptotic state φ (which is necessarily an equilib-
rium of the model), the solution is said to be a pulse;

iii. if φ is periodic, the solution is a wave-train.

In the state space, the three configurations correspond, respectively, to the pres-
ence of a heteroclinic orbit, a homoclinic orbit or a cycle. From now on, we focus
on fronts; also, we restrict the attention to the spatial one-dimensional case.

A further reduction concerns with the size of the vector u which is, from the time
being, regarded as a scalar quantity (and denoted by u), thus restricting the attention
to the second-order scalar equation

τ ∂ttu+∂t {u−σ f (u)}= a∂xxu+ f (u). (25)

where f is an appropriate functions and τ,σ ,a are positive constants.

Monostable and bistable nonlinearities

Following [2, 3] (and descendants), we select here two types of nonlinearities.

i. Monostable. The function f is assumed to be smooth, strictly positive in some
fixed interval (0,1), negative in (−∞,0)∪ (1,+∞), with simple zeros;

ii. Bistable. The function f is assumed to be smooth, strictly positive in some fixed
interval (−∞,0)∪ (α,1), negative in (0,α)∪ (1,+∞), with simple zeros.

In both situations, we introduce the corresponding potential

W (u) :=−
∫ u

0
f (s)ds

The function W is decreasing for the monostable regime and it has a double-well
form for the bistable one.

The former case, whose prototype is f (u) ∝ u(1−u), corresponds to a logistic-
type reaction term and it is usually referred to as Fisher–KPP equation (using the
initials of the names Kolmogorov, Petrovskii and Piscounov). The potential corre-
sponding to f (u) = κ u(1−u) is
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W (u) = 1
6 κ
(
−3u2 +2u3) ,

drawn in Figure 1 (continuous line). Different kind of monostable reaction function

-0.2 0.2 0.4 0.6 0.8 1 1.2

-0.2

-0.1

0.1

Fig. 1 The potentials W relative to the functions f (u) = u(1− u) (monostable, continuous) and
f (u) = κu(1−u)(u−α) with κ = 7 and α = 0.4 (bistable, dashed).

f are the Gompertz term, i.e. f (u) = κ u lnu, and von Bertalanffy term, i.e. f (u) =
κ(uµ − u) with µ ∈ (0,1), corresponding potentials being W (u) = κu2(2ln |u| −
1)/4 and W (u) = κ

{
u2/2−uµ+1/(µ +1)

}
, respectively. The main difference is in

the location of the tangent line at u = 0 which is vertical in the last two cases and it
playes a crucial role in the statement of existence of propagating fronts.

The latter, whose behaviour is roughly given by the third order polynomial
f (u) ∝ u(u−α)(1−u) with α ∈ (0,1), is called Allen–Cahn equation (sometimes,
also bear the names of Nagumo and/or Ginzburg–Landau). The potential which cor-
responds to f (u) = u(u−α)(1−u) is

W (u) = 1
12 κ

{
6αu2−4(1+α)u3 +3u4} . (26)

The presence of the additional intermediate zero of the function f given by α

emerged in ecological context where it describes the so-called Allee-type effect,
needed in situation where some cooperation is required for survival (see [10] for
a detailed description of the topic).

2.2 Propagating fronts

Both monostable and bistable nolinearities share a common crucial feature: they
support existence of heteroclinic traveling waves.
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Definition 1. A propagating front is a traveling wave solution for a given PDE sys-
tem having the special form u(x, t) = φ(ξ ) where ξ := x− ct, connecting two dif-
ferent asymptotic states φ(±∞) = φ± with φ− 6= φ+.

In what follows, we assume for definiteness φ− = 1 and φ+ = 0.
The main goal stems in showing existence of a heteroclinic solution to the corre-

sponding second order differential equation

(a− τc2)
d2φ

dξ 2 + c
d

dξ

{
φ +σ

dW
du

(φ)

}
− dW

du
(φ) = 0, (27)

with boundary conditions φ(−∞) = 1, φ(+∞) = 0. Equivalentlly, the second order
differential equation (27) can be rewritten as

dφ

dξ
= ψ,

dψ

dξ
=

1
a− τc2

{
dW
du

(φ)− c
[

1+σ
d2W
du2 (φ)

]
ψ

}
Next, assume 1+σW ′′(s) > 0 for any s under consideration. Multiplying equation
(27) by dφ/dξ , we deduce the identity

d
dξ

{
1
2 (a− τc2)

(
dφ

dξ

)2

−W (φ)

}
+ c
(
1+σW ′′

)(dφ

dξ

)2

= 0.

Thus, integrating in R, we infer

c =
W (0)−W (1)∫

R (1+σW ′′)(φ ′)2 dx
(28)

From this relation, it is readily observed that the speed c is strictly positive if and
only if W (1) < W (0). In particular, in the monostable case, φ− = 0 is a maximum
point and φ+ = 1 is a minimum for W and thus c is strictly positive. Differently,
in the bistable case, W is a double-well potential and thus the speed is positive or
negative depending on the depth difference of the two wells W (0)−W (1).

The starting point in proving existence of propagation fronts is the stability anal-
ysis of the singular points of (27), i.e. constant values ū with the property f (ū) = 0,
with respect to the ordinary differential system obtained by considering the traveling
wave ansatz where the speed c is, for the moment, an external parameter.

Linearizing at ū the second order differential equation (27), we infer
dφ

dξ
= ψ,

dψ

dξ
=

1
a− τc2

{
W ′′(ū)φ − c

{
1+σW ′′(ū)

}
ψ
}
.

(29)
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The characteristic polynomial is

p(λ ; ū,c) :=
1

(a− τc2)

{
(a− τc2)λ 2 + c

(
1+σW ′′(ū)

)
λ −W ′′(ū)

}
; (30)

thus, setting

∆(ū,c) := c2{1+σW ′′(ū)
}2

+4(a− τc2)W ′′(ū)> 0, (31)

the two roots of p = p(·; ū,c) are

λ±(ū,c) =
−c(1+σW ′′(ū))±

√
∆(ū,c)

2(a− τc2)
. (32)

Since they have opposite signs if W ′′(ū) > 0, the singular point (ū,0) is a saddle
point for (29).

Differently, if W ′′(ū) < 0 (hence ū is unstable with respect to the PDE), the two
roots are either complex conjugates or both real with the same sign, thus they define
either a spiral or a node. Assuming 1+σW ′′(ū) > 0, the spiral and the node are
stable (or unstable, respectively) if c > 0 (or c < 0, resp.).

Hence, the heteroclinic orbit is a node/saddle connection in the case of Fisher–
KPP equation (monostable case) and a saddle/saddle connection in the case of the
Allen–Cahn equation (bistable case) for both the parabolic, obtained with the choice
τ = 0, and the hyperbolic equations, given by τ > 0, having a specific relevant
consequence in term of the multiplicity of the speeds.

To fix idea, let us give a closer look to traveling waves with a monotone de-
creasing profile, that is φ− := 1 > 0 =: φ+. The opposite case can be deduced by
straightforward symmetry arguments. For the node/saddle connection, the situation
is rather complicated; while in the case of the saddle/saddle connection, the picture
is somewhat easier.

In the former case, we have to restrict the attention to the regimes of the param-
eter c such that the critical point is an unstable node, hence, ruling out (stable and
unstable) spirals and stable nodes. As well-known, for W ′′(ū) < 0, there is a spe-
cific parameter ∆ discriminating whether the two roots of the polynomial p are real
or not. When ∆ , given in (31), is strictly positive it guarantees that such roots are
real and distinct: recalling the request σ ∈ [0,τ], positivity is readily checked. Next,
we search for intersection between the two-dimensional unstable manifold of the
critical point φ− = 1 at −∞ and the one-dimensional stable manifold at φ+ = 0 at
+∞. In term of dimensions, the situation is favourable and, thus, existence could be
provided for a whole half-line of values for the parameter c. For more details on the
monostable case, we refer to [13] in the parabolic case (i.e. σ = τ = 0) and to [4]
for the case σ = τ > 0.

In the latter case, the one-dimensional manifold of the steady state φ− = 1 has
to intersect at some point the stable manifold of the steady state φ+ = 0. Being the
system planar, the corresponding stable and unstable manifolds are one-dimensional
and thus the intersection of the two manifolds is non-generic, corresponding to the
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fact that the speed c has to be appropriately tuned. This translates into the existence
of a specific value of the speed for which the heteroclinic connection emerges.

From now on, we restrict the attention to the bistable case with W (1) ≤W (0)
so that c ≥ 0, with the exception of some minor deviations from the mainstream
dedicated to the monostable case. In particular, we may restrict the attention to the
sub-characteristic case a− τc2 > 0.

Introducing the variable ζ = ξ/
√

a− τc2, equation (27) becomes simpler, namely

d2φ

dζ 2 + γ
d

dζ

{
φ +σW ′(φ)

}
−W ′(φ) = 0, (33)

where
cτ :=

c√
a− τc2

. (34)

Equation (33) can be equivalently rewritten as the first order system
dφ

dζ
= ψ,

dψ

dζ
=W ′(φ)− cτ

(
1+σW ′′(φ)

)
ψ

(35)

with asymptotic conditions (φ ,ψ)(−∞) = (1,0) and (φ ,ψ)(+∞) = (0,0). A differ-
ent first order form for (33) is given by the Liénard form

dφ

dζ
=−cτ

{
φ +σW ′(φ)

}
+χ,

dχ

dζ
=W ′(φ),

(36)

with asymptotic conditions (φ ,χ)(−∞) = (1,0) and (φ ,χ)(+∞) = (0,0).
Such simplified form for the equation (27) is particularly convenient when pass-

ing from local to global analysis, using the rotated vector field property of system
(33). The final statement relative to existence of propagating front is reported here,
for readers’ convenience, as taken from [19].

Theorem 1. Let W be a double-well potential with local minima at 0 and 1. If τ > 0,
σ ∈ [0,τ] and 1+σW ′′(s)> 0 for any s∈ [0,1], then there exists a unique value c∗ ∈
R such that the equation (27) has a monotone increasing solution φ with asymptotic
states φ(−∞) = 1 and φ(+∞) = 0.

2.3 Special cases with explicit propagation speeds

Next, we focus on three special cases for which an explicit formula is available.
The first one concerns with the case of two wells of equal depth. Next, we pass to
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consider the specific case of a third order polynomial reaction term for which ex-
plicit formulas for both the standard parabolic equation and the hyperbolic equation
with damping can be determined. Finally, we discuss the case of a piecewise linear
reaction function with a jump located at the intermediate value α .

Two wells of equal depth

The case of a double-well potential W with wells of equal depth can be treated
separately, since (28) indicates that c? = 0, indipendently on the values of σ ≥ 0.

Proposition 1. Let τ ≥ 0 and σ ∈ [0,τ]. In addition, let f = −W ′ with W double-
well potential having wells located at 0 and 1 with W (0) = W (1). Then, equation
(25) supports monotone steady states connecting equilibria φ− = 1 and φ+ = 0.

Proof. We report here the standard proof for reader’s convenience. Substituting c =
0, equation (27) reduces to the equation

a
d2φ

dξ 2 −W ′(φ) = 0,

Multiplying by the derivative dφ/dξ , we end up with the conservative form

d
dξ

{
a
2

(
dφ

dξ

)2

−W (φ)

}
= 0,

which can be integrated. Then, we infer

dφ

dξ
=−

√
2
a
·
√

W (φ)−W (φ±), (37)

recalling that φ is monotone decreasing since φ+ < φ−. Hence, among other solu-
tions, equation (37) defines implicitly the steady profile φ = φ(ξ ) by

∫
φ(ξ )

φ(ξ0)

ds√
W (s)−W (φ±)

=

√
2
a
(ξ0−ξ )

connecting φ− to φ+ for any given ξ0 ∈ R. ut

As an example, let us consider the case f (u) = κ u(u− 1/2)(1− u). Since the
potential is given by W (u) = 1

4 κ u2(1−u)2, there holds

∫
φ(x)

1/2

2ds
s(1− s)

=

√
2κ

a
(x0− x)

that gives

ln
(

φ(x)
1−φ(x)

)
=

√
κ

2a
(x0− x).
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Expliciting the value φ = φ(x), we obtain

φ(x) =
1

1+ e
√

κ
2a (x−x0)

(x0 ∈ R). (38)

As stated at the beginning, the propagation speed is c = 0.

Third-order polynomial reaction function

Next, we focus on the case c? > 0, which occurs, again by formula (28), whenever
W (1)<W (0). In the cubic case

f (u) = κ u(u−α)(1−u) (39)

with κ > 0, this translates into the choice α ∈ (0,1/2).
To start with, let us focus on the limiting case σ = τ = 0, that is on the parabolic

reaction-diffusion equation

∂tu = a∂xxu+κu(u−α)(1−u). (40)

In such a case, there exist explicit formulas for both propagation speed c and front
profile φ . Indeed, let us set

dφ

dξ
=−Aφ(1−φ).

for some constant A > 0. Since

d2φ

dξ 2 =−A(1−2φ)
dφ

dξ
= A2

φ(1−φ)(1−2φ),

inserting in (27) with σ = τ = 0 and simplifying the factor φ(1−φ), we infer

(κ−2aA2)φ +aA2− cA−κα = 0

which gives A =
√

κ/(2a) and

c = c0 :=
√

2aκ
( 1

2 −α
)
. (41)

Thus, the corresponding profile φ solves the Bernoulli equation dφ/dη =−φ +φ 2

where η = (κ/2a)1/2 ξ , which is explictly given by

φ(ξ ) =
1

1+ e
√

κ
2a (ξ−ξ0)

(ξ0 ∈ R),

which, incidentally, coincide with (38) when ξ = x.
When dealing with propagation fronts for (25) with σ = 0, that is
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τ ∂ttu+∂tu = a∂xxu+ f (u), (42)

a formula, corresponding to (41), can be provided. Indeed, the equation (27) with
σ = 0 coincide with the traveling wave equation for (40) where a has been replaced
by a− τc2. Thus, adding the subscript τ to c to give evidence to dependency, there
holds

cτ =
√

2(a− τc2
τ)κ
( 1

2 −α
)
.

Squaring and rearranging, we infer{
1+2κτ

( 1
2 −α

)2
}

c2
τ = 2aκ

( 1
2 −α

)2
,

and thus
cτ =

c0√
1+ τc2

0/a2
. (43)

where c0 is given in (41). There is a strict connection between relation (43) and (34),
being one the inverse of the other in the case a = 1. Specifically, the relation (43)
goes beyond the special case of the cubic f , holding for general reaction function.
In particular, since 0≤ cτ < c0 for τ > 0, as shown by the inequality

cτ − c0

c0
=

1√
1+ τc2

0/a2
−1 < 0,

the propagation phenomena is always slowed down when pure damping is added,
inerta being limited to the deceleration effect of the front.

When dealing with hyperbolic reaction-diffusion equation (25) with σ ∈ (0,τ]
and cubic f , to our knowledge, there is no available extension of the explicit for-
mulas (41) and (43). In particular, as it will be shown later on, the addition of the
relaxation term, i.e. σ = τ , the situation is completely different in some regime of
the parameter α ∈ (0,1).

Piecewise affine reaction function with a bistable shape

Finally, following the approach in [21], we compute explicit traveling wave solu-
tions for a very specific form for the reaction function f of bistable type. Specifi-
cally, we concentrate on a piecewise affine function given by

f (u) =

{
−mu u < α,

m(1−u) u≥ α.
m > 0, α ∈ (0,1), (44)

(see Fig.2). In such a special case, it is possible to provide an explicit expression for
both the traveling wave profile (φ ,ψ) and of its speed c.

Let us go back to (35) and rewrite it as
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dφ

dξ
= ψ, (a− τc2)

dψ

dξ
= mφ − c(1+σm)ψ, (45)

to be matched at φ = α with

dφ

dξ
= ψ, (a− τc2)

dψ

dξ
= m(φ −1)− c(1+σm)ψ. (46)

Since the two singular points are saddles, the matching amounts in choosing the
critical value of the parameter c such that the unstable manifold of the singular
point (0,0) intersects, at φ = α , the stable manifold of (1,0).

The directions of the unstable/stable manifolds are described by the eigenvectors
of the corresponding linearized equation. Hence, denoted by (φ̃ , ψ̃) the perturbation
of the equilbrium state (φ̄ ,0), they are given by the eigendirection of the matrix

A :=
(

0 1
m/(a− τc2) −c(1+σm)/(a− τc2)

)
In particular, this means that (φ ,ψ) belongs to the unstable/stable manifold if and
only if ψ̃ = λ±φ̃ , where λ± denote the (positive/negative) roots of the characteristic
polynomial

p(λ ) = det(A−λ I) =
1

a− τc2

{
(a− τc2)λ 2 + c(1+σm)λ −m

}
.

Specifically, the explicit values for λ± are

p(λ±) = 0 ⇐⇒ λ = λ± :=
−c(1+σm)±

√
∆(c)

2(a− τc2)

where the discriminant ∆ is

Fig. 2 Graph of the function f
given in (44) with parameters
m = 1 and α = 0.25.
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∆(c) := c2(1+σm)2 +4(a− τc2)m

=
[
(1−σm)2−4(τ−σ)m

]
c2 +4am,

which is strictly positive in the regime c2 < a/τ .
Thus, the stable manifold of (0,0) and the unstable manifold at (1,0) are respec-

tively given by ψ̃ = λ+φ̃ and ψ̃ = λ−φ̃ , that is

ψ = λ−φ and ψ = λ+(φ −1).

The two graphs intersect at φ = α if and only if |λ−|α = λ+(1−α). Recalling the
explicit formulas for λ− and λ+, the latter equality can be rewritten as√

∆(cex)(1−2α) = cex(1+mσ).

After some straightforward algebraic manipulations, we end up with

cex =

{
ma

(1+mσ)2α(1−α)+mτ(2α−1)2

}1/2

(1−2α). (47)
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Fig. 3 Exact value of the speed, as in (47), with a = m = 1 and σ = τ = 0 (dotted), σ = 0, τ = 1
(dashed), σ = τ = 1 (continuous).

Comparing the speeds cex for a generic choice of σ and τ and c0 for σ = τ = 0
gives

cex

c0
=

{
α(1−α)

(1+σm)2α(1−α)+ τm(2α−1)2

}1/2

For σ ∈ [0,τ], since α(1−α)< 1/4 for α 6= 1/2, there holds
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α(1−α)

(1+mσ)2α(1−α)+mτ(2α−1)2 <
1

(1+mσ)2 +4mτ(2α−1)2 ≤ 1

with the equality holding if and only if τ = 0. hence, in the same regime, it follows

cex− c0

c0
=

{
α(1−α)

(1+mσ)2α(1−α)+mτ(2α−1)2

}1/2

−1 < 0.

In particular, the (hyperbolic) propagation speed cex is always smaller than the cor-
responding (parabolic) speed c0 for any choice of the couple σ and τ . This could be
also recognised, observing directly that the value of cex, regarded as a function of σ

and τ , is strictly decreasing with respect to both variables.
Let us remark that, in such a case, the function f is discontinuous (increasing) at

the value u = α and, thus, the first derivative of f is, lousely speaking, equal to +∞.
In particular, the dissipativity condition 1−σ f ′ > 0 is never satisfied at such a point
whenever σ > 0, with dramatic consequences to be explored in the next Section.

3 Numerical computation of the propagation speed

From now on, we restrict the attention to two main cases corresponding to the
choices: σ = 0, τ > 0 and σ = τ > 0, reported here for reader’s convenience,

τ∂ttu+∂tu = a∂xxu+ f (u) (damping)
τ∂ttu+∂t {u− τ f (u)}= a∂xxu+ f (u) (relaxation)

where f (u) = κ u(u−α)(1− u) with κ > 0 and α ∈ (0,1). Coherently with the
previous part of the paper, we focus on propagating waves connecting 1 at −∞

with 0 at +∞ in the case α ∈ (0,1/2], so that the speed cex is non-negative as a
consequence of the relation W (1)≤W (0), see identity (28).

3.1 Computation of the propagation speed

In the purely damped case, the explicit formula (43) for the propagation speed can
be used to assess the reliability of the so-called phase-plane algorithm, presented
in details in the next subsection. Differently, when relaxation is taken into account,
there is no explicit formula for the velocity. Thus, an approximated version of its
value should be considered as furnished by some algorithm. Based on the tests used
on the damping case, we will consider as “exact” speed cex the ones provided by the
phase-plane algorithm and use it to test the capability of two (dynamical) numerical
schemes to provide reliable predictions.
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Phase plane algorithm

As described in the paragraph Local analysis in Subsection 2.2, both the singular
points of the ODE system for traveling waves are saddles and, as a consequence,
both the corresponding unstable/stable manifold are one-dimensional. Therefore,
the existence of a heteroclinic connection is equivalent to the fact that, for an appro-
priately tuned parameter c = cex, the unstable curve exiting from the critical point
(1,0) intersects the stable curve entering the critical point (0,0). Based on the ro-
tated vector field property –see Global analysis in Subsection 2.2– we can perform
a shooting-type argument and transform the problem of the existence of a hetero-
clinic traveling wave into the the search of a zero of a given function. Such step
could be performed by preliminarly finding a reliable approximation to the solution
of an ordinary differential equation and then by means of a standard interval division
scheme, furnishing the exact value cex of the propagation speed.

To enter the details, we denote by v0 = v0(φ ,c), the stable manifold of (0,0) and
by v1 = v1(φ ,c) the unstable manifold of (1,0). Then, we look for two different
solution of the first order equation

∂v
∂φ

=
dψ/dξ

dφ/dξ

=
1

a− τc2

{
1
ψ

dW
du

(φ)− c
[

1+σ
d2W
du2 (φ)

]}
with initial conditions along the stable/unstable manifold of (0,0)/(0,1).

Curves v0 and v1 are determined approximately by choosing an initial datum on
the corresponding stable/unstable manifold as provided by the linearized operator
at the two critical points. Namely, at ū, we compute the eigenvectors relative to
the eigenvalues λ± = λ±(ū;c) as given by (32). Then, we compute the solutions
v0 = v0(·,c) and v1 = v1(·,c) corresponding to the initial data

v0(θ ,c) = λ−(0,c)θ and v1(1−θ ,c) =−λ+(1,c)(1−θ)

for θ small enough and solving forward/backward (3.1) for v0/v1, respectively.
Next, we evaluate the difference function h of the solutions v0 and v1 at u = α ,

h(c) := v0(α,c)− v1(α,c),

for c ∈ (−
√

a/τ,
√

a/τ). It can be readily seen that

h(−
√

a/τ)< 0 < h(
√

a/τ).

Moreover, thanks to the rotated vector field property, the function h is strictly in-
creasing in (−

√
a/τ,

√
a/τ) and, thus, it has a single zero, corresponding to the

value cex. The heteroclinic orbit corresponds to such a choice of the critical speed
cex such that h(cex) = 0, which is uniquely determined since the function h is strictly
monotone increasing,
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Heuristic validation of the phase-plane algorithm in the purely damped case

Next, we compare the exact formula (43) in the case σ = 0, a = κ = 1, recalled here
for reader’s convenience, viz.

cex =

√
2 (1/2−α)√

1+2τ (1/2−α)2
,

with the approximated value cdu provided by the phase-plane algorithm using the
value Edu as measure of the relative error, defined by

Edu :=
∣∣∣∣cdu− cex

cex

∣∣∣∣ (48)

To start with, we learn from Fig.4 that there is numerical evidence of a scheme of
order 1 in the case τ = 1. Different values of τ , a and κ fits into the same scenery.
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Fig. 4 Case τ = a = κ = 1: graphs of the values of Edu/du as a function of α ∈ (0,0.5) where the
relative error Edu is given in (48) for θ = 10−8 and discretization step equal to different choices of
du: 10−2 (dotted), 10−3 (dotted-dashed), 10−4 (dashed), 10−5 (continuous).

From this, we extrapolate the final (reliable) choices du = 10−5 and θ = 10−8.
The corresponding values for the exact formula cex, the approximated value cdu and
the relative error Edu, are reported in Table 1, for different values of the unstable
zero α , chosen as a value in (0,1/2).

In the case σ ∈ (0,τ] for some τ > 0, to our knowledge, there is no explicit for-
mula for the case of the double-well potential W , as in (26). Hence, we are forced to
use an appropriate approximation of the speed as provided by the phase-plane algo-
rithm with the values for du and θ previously detected. From now on, for simplicity,
we will denote cdu by cex and consider the relative errors with respect to such an
approximated value.
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Table 1 Case τ = a = κ = 1: values for cex, cdu and Edu relative to nine different choices of the
unstable zero α relative to the choices du = 10−5 and θ = 10−8.

α cex cdu Edu

0.05 0.5368950 0.5369038 1.64×10−5

0.10 0.4923660 0.4436135 1.53×10−5

0.15 0.4436070 0.4436135 1.48×10−5

0.20 0.3905667 0.3905724 1.45×10−5

0.25 0.3333333 0.3333382 1.45×10−5

0.30 0.2721655 0.2721695 1.46×10−5

0.35 0.2075143 0.2075174 1.47×10−5

0.40 0.1400280 0.1400300 1.45×10−5

0.45 0.0705346 0.0705356 1.43×10−5

To conclude, in Figure 5, we compare the values for the Allen–Cahn equation in
the standard parabolic case, in the hyerbolic case with damping, in the hyperbolic
case with relaxation. It is transparent that the role played in the latter is crucially
different and it exhibits values α where the role of inertia is purely dissipative and
others values for which sustained propagation is present.
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Fig. 5 Case τ = a= κ = 1: comparison of the graphs of the speeds: parabolic Allen–Cahn (dotted),
see (41)); hyperbolic Allen–Cahn with damping (dashed), see (43)); hyperbolic Allen–Cahn with
relaxation (continuous).
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3.2 PDE-based algorithms to approximate the propagation speed

The aim of this Subsection is to compare the capability of two different PDE-based
algorithms to recover the speed of a propagation front. The strategy is different
with respect to the one presented in Subsection 3.1, being of dynamical nature, i.e.
grounded on the preliminary determination of the numerical solution of the under-
lying differential equation. Entering the details, we choose a scheme for the PDE
and solve it in the space interval [0,L], with zero-flux boundary conditions, in the
time span [0,T ], corresponding to some initial datum.

Then, choosing two consecutive frames u(·,s) and u(·, t) with 0 < s < t, we look
for a strategy furnishing a scalar value c such that

u(x, t)−u(y,s)≈ φ(x− ct)−φ(y− cs).

The key point stems in reducing from two functions (i.e. the solution profiles) to a
single scalar value which should be able to describe, in principle, the overall propa-
gating characteristic of the solution.

As numerical schemes, we consider the three approaches described in Subsection
1.3 (with the kinetic algorithm limited to the relaxation case), freezing the data
relative to the two profiles u(·,s) and u(·, t) with 0 < s < t appropriately chosen,
and then determine an approximation of the propagation speed by means of some
appropriately chosen algorithm.

Two main tools can be used to provide an approximation of the propagation
speed, the scout & spot algorithm and the LeVeque–Yee formula, which we present
in details in the following paragraphs.

Scout & spot algorithm

The first determines the speed of propagation considering a fixed level curve, say
θ , taking into account the fact that, whenever the solution u converges to the prop-
agating front φ , the relation u(x, t)≈ φ(x− ct) holds asymptotically in time, i.e. as
t→+∞. Let φ− < φ+ and fix a value θ ∈ (φ−,φ+) and consider two different time
instants, denoted here by t and s, such that u(x(s),s) = u(x(t), t) = θ , then

x(t)− ct ≈ φ
−1(θ)≈ x(s)− cs.

Hence, we deduce the approximation formula

c≈ x(t)− x(s)
t− s

. (49)

Translating such approximated rule in a definite algorithm is based on the introduc-
tion of a specific space mesh J = {x1, . . . ,x j} = {dx,2dx, . . . , jdx}. Assuming that
the profile un

j is strictly monotone increasing with respect to j, the first step consists
in considering the first value where the threshold θ is trespassed for any given time
tn, that is
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n 7−→ jn(θ) := max{ j ∈ J : un
j < θ}.

Approximation formula (49) becomes

cn,p
s&s = cn,p

s&s(θ) =
jn+p(θ)− jn(θ)

tn+p− tn · dx

=
[

jn+p(θ)− jn(θ)
]
· dx

pdt

(50)

Such procedure corresponds to a piecewise constant interpolation of the states un
j

and un
j+1. Moreover, the above formula shows that the propagation speed of slow

waves provided by such a level curve algorithm is “quantized”, that is any candidate
as limiting speed is an integer multiple of the positive value by dx/(pdt).

Applying such an algorithm requires a number of choices, which can be matter
of criticism, starting from the fact that the profile is expected to be monotone in-
creasing. Here, we choose θ = α , p = T/(2dt) so that the speed is approximated up
to an error of order dx/(pdt) = 10−2 in the case T = 50 and dx = 10−1.

LeVeque–Yee formula

The second strategy, inspired by [20], makes use of a spatial average of the profile
and it does not require any monotone assumption on the solution. Anyway, it is still
needed that the two asymptotic states, φ− at−∞ and φ+ at +∞, are different, i.e. the
connection has to be heteroclinic.

Let φ be a differentiable function with asymptotic states φ(±∞) = φ±. The
LeVeque–Yee formula takes advantage from the exact relation∫

R
{φ(x+h)−φ(x)} dx = h [φ ]

where [φ ] := φ+−φ−. The above formula can be proved by observing that∫
R
{φ(x+h)−φ(x)} dx = h

∫
R

∫ 1

0

dφ

dx
(x+θh)dθ dx

= h
∫ 1

0

∫
R

dφ

dx
(x+θh)dxdθ

= h
∫
R

dφ

dx
(x+θh)dx = h [φ ] .

Considering h equal to −cdt and assuming [φ ] 6= 0, the equality becomes

c =
1

[φ ] dt

∫
R
{φ(x)−φ(x− ct)} dx.

Assuming that un
j is an approximation of φ(x j− ctn), we infer the estimate
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c≈ cn,1
LY :=

1 · (un−un+1)

[φ ]
· dx

dt
=

1
[φ ] ∑j

(un
j −un+1

j ) · dx
dt

, (51)

where 1 = (1, . . . ,1). The value cn can be then considered as a space averaged prop-
agation speed, which stabilizes when the approximation un converges to the given
profile φ with constant velocity c.

3.3 Numerical experiments

Next, we intend here to compare the results produced by the two algorithms. In this
respect, we have to specify the initial datum which will be chosen in the class of
Riemann type, i.e. corresponding to the discontinuous function

u0(x) =

{
1 x < 0,
0 x > 0,

with v0 determined by the corresponding values obtained by setting ∂tu(x,0) = 0 in
the corresponding algorithm. Such choice is very natural, since we are looking for a
solution converging to the traveling front connecting the two stable state.

We focus on the case of the cubic bistable nonlinearity f (u) = κ u(u−α)(1−u)
with α ∈ (0,1), with the goal of matching the values for the velocity c∗ as given
by comparing the values provided by the exact formula (43) in the case σ = 0 and
τ = 1 and the value provided by the shooting argument, as described in Subsection
3.1. For sakeness of simplicity, we limit ourselves to the case a = κ = 1.

We numerically solve the corresponding PDE in the space interval [0,L] –with
zero-flux boundary conditions– in the time span [0,T ], where we consider the case
L = 50, T = 20 with spatial mesh dx = 10−1 and time discretization dt = 10−3.

Finally, to quantify the error of the estimates we use the standard quantity

E∗ :=
∣∣∣∣cn,p
∗ − cex

cex

∣∣∣∣ ,
where ∗ ∈ {s&s,LY} and p = 1 if ∗= LY.

Allen–Cahn equation with damping

In this part, we compare the exact formula for the propagation speed (43) with the
approximated estimates obtained by applying in series one of the two scheme (first-
order and Liénard) and, after that, the scout&spot algorithm (50) and the LeVeque–
Yee formula (51). The results are summarized in Table 2, relatively to three different
choices of the intermediate (unstable) zero α .
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Table 2 Allen–Cahn equation with damping and polynomial reaction function, see (39): values of
α and cex = cex(α), together with the different numerical scheme, corresponding speed estimates
and relative errors.

α cex = cex(α) scheme s&s Es&s LY ELY

0.125 0.4685213 first-order 0.47 3.16×10−3 0.4682076 6.69×10−4

Liénard 0.46 1.82×10−2 0.4662342 4.88×10−3

0.250 0.3333333 first-order 0.34 2.00×10−2 0.3331151 6.55×10−4

Liénard 0.33 1.00×10−2 0.3310495 6.85×10−3

0.375 0.1740777 first-order 0.17 2.34×10−2 0.1739747 5.92×10−4

Liénard 0.17 2.34×10−2 0.1715496 1.45×10−3

It is transparent the higher precision of the LeVeque–Yee formula (51) which add
to the number of free parameters to be chosen in the scout&spot algorithm (such as
the level θ , the value of p...), making the use of the latter strategy less effective.

Next, we pass to analyze the Allen–Cahn equation with a piecewise linear reac-
tion function with a jump point located at u = α . In this case, the crucial problem
is, of course, the presence of a discontinuity in the source term. Thus, we compare
the capability of the scout&spot algorithm and the LeVeque–Yee formula. The re-
sults, obtained by using the same numerical data previously described, are reported
in Table 3. As can be appreciated from the values, the error is always of the order of
1%, which is largely acceptable.

Table 3 Allen–Cahn equation with damping and piecewise affine reaction function, see (44): Val-
ues of α and cex = cex(α), together with the different numerical scheme, corresponding speed
estimates and relative errors.

α cex = cex(α) scheme s&s Es&s LY ELY

0.125 0.9149914 first-order 0.90 1.64×10−2 0.9021793 1.40×10−2

Liénard 0.90 1.64×10−2 0.9006799 1.56×10−2

0.250 0.7559289 first-order 0.74 2.11×10−2 0.7496325 8.33×10−3

Liénard 0.74 2.11×10−2 0.7484820 9.85×10−3

0.375 0.4588315 first-order 0.45 1.92×10−2 0.4557922 6.62×10−3

Liénard 0.46 2.55×10−3 0.4554450 7.38×10−3

As shown by the numerical results, also the case of a discontinuous reaction func-
tion can be handled by both algorithms, with better error estimates for the LeVeque–
Yee formula (which is also very easy to implement).
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Allen–Cahn equation with relaxation

Finally, we consider the case of the hyperbolic Allen–Cahn equation with relaxation,
that is (25) with σ = τ > 0 (fixed equal to 1, for simplicity) for the third order
polynomial reaction function, given by (39). In such a case, in addition to the first-
order and Liénard schemes, we may also apply the kinetic scheme, also presented
in Subsection 1.3. A selection of the results are collected in Table 4 and confirm the
same conclusion as above: with the same space-time grid, the LeVeque-Yee formula
is to be preferred, since it guarantees greater precision in speed approximation.

Table 4 Values of α and cex = cex(α), together with the different numerical schemes, speed esti-
mates and relative errors.

α cex = cex(α) scheme s&s Es&s LY ELY

0.125 0.5342843 first-order 0.53 8.02×10−3 0.5335445 1.38×10−3

Liénard 0.53 8.02×10−3 0.5318317 4.59×10−3

kinetic 0.54 1.07×10−2 0.5347508 8.73×10−4

0.250 0.3754283 first-order 0.38 1.22×10−2 0.3750573 9.88×10−4

Liénard 0.37 1.45×10−2 0.3728276 6.93×10−3

kinetic 0.38 1.22×10−2 0.3758528 1.13×10−3

0.375 0.1941490 first-order 0.19 2.14×10−2 0.1940086 7.23×10−4

Liénard 0.19 2.14×10−2 0.1913620 1.44×10−3

kinetic 0.19 2.14×10−2 0.1943773 1.18×10−3

Other numerical experiments have been performed with different choices of p
and better precision for the estimate of the scout&spot algorithm, providing a cor-
risponding higher order of precision of the LeVeque–Yee formula, which appear
again as a more precise tool. Comparing the three types of scheme –first-order re-
duction, Liénard, kinetic– the first two have some very poor resolution of the equa-
tion for short time, in particular when considered in relation with the third one. Spure
oscillations are generated by both the schemes due to the presence of a discontinuity
in the initial datum. Differently, the kinetic algorithm is capable of reproducing the
correct behavior also in the short time (see [17, 18] for more numerical simulations).
Nevertheless, we stress that the latter is much slower with respect to the other two.
Thus, computing the propagation speed –which is a parameter relevant for the large-
time behavior– the short time behavior is of secondary importance with respect to
the capability of the scheme of being capable to reproduce the main features of the
model in the long run, once the evolution has already solved the initial problem of
the presence of a jump. This is particularly crucial because of the presence of the
reaction term which, in large part of the space, pushes the solutions to stay close to
stable solution of the underlying ODE.

The case of the piecewise affine reaction function, described in the last para-
graph of Subsection 2.3, is harder to be simulated, since the numerical schemes of
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Subsection 1.3 are not well-behaved in presence of discontinuos reaction function
due to the presence of the term τ f (u) differentiated with respect to time. Numeri-
cal deficiencies arise already when performing simulations of the PDE, inherited by
the jump of the reaction function f , probably due to the fact that the dissipativity
condition 1− τ f ′ > 0 is never satisfied at α whenever τ > 0, At the moment, we
are not aware of any numerical schemes which is capable of performing reliable
simulations also in presence of discontinuities of the reaction function.
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