Modulational and spectral (in)stability of periodic traveling wave solutions to the nonlinear Klein-Gordon equation

Ramón G. Plaza

Institute of Applied Mathematics (IIMAS),
National Autonomous University of Mexico (UNAM)
Collaborators:

- Christopher K. R. T. Jones (Univ. of North Carolina, Chapel Hill)
- Robert Marangell (Univ. of Sydney)
- Peter D. Miller (Univ. of Michigan)
1 Introduction

2 Analysis of the monodromy map

3 Modulational instability index

4 Spectral (in)stability results
The nonlinear Klein-Gordon equation

Nonlinear Klein-Gordon with periodic potential:

\[u_{tt} - u_{xx} + V'(u) = 0. \] \hspace{1cm} (nKG)

for \((x, t) \in \mathbb{R} \times [0, +\infty), u\) scalar, \(V \in C^2\), periodic.

Sine-Gordon equation:

\[u_{tt} - u_{xx} + \sin u = 0. \] \hspace{1cm} (SG)

\[V(u) = 1 - \cos u. \]
The nonlinear Klein-Gordon equation

Nonlinear Klein-Gordon with periodic potential:

\[u_{tt} - u_{xx} + V'(u) = 0. \] \hspace{1cm} (nKG)

for \((x, t) \in \mathbb{R} \times [0, +\infty), u \text{ scalar}, \ V \in C^2, \text{ periodic}.\)

Sine-Gordon equation:

\[u_{tt} - u_{xx} + \sin u = 0. \] \hspace{1cm} (SG)

\[V(u) = 1 - \cos u. \]
Applications (sine-Gordon):

- Surfaces with negative Gaussian curvature (Eisenhart, 1909)
- Propagation of crystal dislocations (Frenkel and Kontorova, 1939)
- Elementary particles (Perring and Skyrme, 1962)
- Propagation of magnetic flux on a Josephson line (Scott, 1969)
- Dynamics of fermions in the Thirring model (Coleman, 1975)
- Oscillations of a rigid pendulum attached to a stretched rubber band (Drazin, 1983)
Assumptions on the potential:

(a) $V : \mathbb{R} \rightarrow \mathbb{R}$ is of class C^2 in all its domain and it is periodic with fundamental period P.

(b) V has only non-degenerate critical points.

(c) $V'(u)^4 \left(V(u)/V'(u)^2 \right)'' \geq 0$ for all u under consideration.

Assumption (c) implies monotonicity of the period map with respect to the energy.
Traveling waves

\[u(x, t) = f(x - ct), \quad z = x - ct, \text{ solution to the nonlinear pendulum equation:} \]

\[(c^2 - 1)f_{zz} + V'(f(z)) = 0, \]

Sine-Gordon case:

\[(c^2 - 1)f_{zz} + \sin(f(z)) = 0, \]

\[c \in \mathbb{R} \text{ (wave speed), } c^2 \neq 1. \]
Upon integration:

\[\frac{1}{2} (c^2 - 1) f_z^2 = E - V(f), \]

\(E = \text{constant (energy)} \). Under assumptions:

\(0 < E_0 = \max V(u) \)

Sine-Gordon case: \(V(u) = 1 - \cos u, \ E_0 = 2, \)

\[\frac{1}{2} (c^2 - 1) f_z^2 = E - 1 + \cos f(z). \]
Classification

First dichotomy (wave speed):

- **Subluminal** waves: \(c^2 < 1 \)
- **Superluminal** waves: \(c^2 > 1 \)

Second dichotomy (energy \(E \)):

- **Librational** wavetrain: \(f(z + T) = f(z) \). Closed trajectory inside the separatrix in the phase portrait.
- **Rotational** wavetrain: \(f(z + T) = f(z) \pm P \). Open trajectory outside the separatrix in the phase plane. Sign \(f_z \) is fixed.
Classification

First dichotomy (wave speed):

- **Subluminal** waves: $c^2 < 1$
- **Superluminal** waves: $c^2 > 1$

Second dichotomy (energy E):

- **Librational** wavetrain: $f(z + T) = f(z)$. Closed trajectory inside the separatrix in the phase portrait.
- **Rotational** wavetrain: $f(z + T) = f(z) \pm P$. Open trajectory outside the separatrix in the phase plane. Sign f_z is fixed.
Figure: Phase portrait: subluminal (left); superluminal (right).
Superluminal librational: \(c^2 > 1, \, 0 < E < E_0. \)

\(\mathcal{K}(E) = \{ u \in \mathbb{R} : (E - V(u))/(c^2 - 1) \geq 0 \} = \) disjoint union of intervals in \((0, P)\). In \((v_1, v_2)\), only one non-degenerate zero of \(V' \). Librational (closed) periodic orbit.

\[
f_z = \frac{\sqrt{2}}{\sqrt{c^2 - 1}} \sqrt{E - V(f)},
\]

where \(f \in (v_1, v_2) \subset \mathcal{K}(E) \).

\[
T = \sqrt{2} \sqrt{c^2 - 1} \int_{v_1}^{v_2} \frac{d\eta}{\sqrt{E - V(\eta)}}.
\]

Sine-Gordon: wave oscillates around \(f = 0 \), in \((v_1, v_2) = (-\arccos(-E + 1), \arccos(-E + 1))\)
Superluminal librational: \(c^2 > 1, 0 < E < E_0 \).

\(\mathcal{K}(E) = \{ u \in \mathbb{R} : (E - V(u))/(c^2 - 1) \geq 0 \} = \text{disjoint union of intervals in } (0, P). \) In \((v_1, v_2)\), only one non-degenerate zero of \(V' \). Librational (closed) periodic orbit.

\[
f_z = \frac{\sqrt{2}}{\sqrt{c^2 - 1}} \sqrt{E - V(f)},
\]

where \(f \in (v_1, v_2) \subset \mathcal{K}(E) \).

\[
T = \sqrt{2} \sqrt{c^2 - 1} \int_{v_1}^{v_2} \frac{d\eta}{\sqrt{E - V(\eta)}}.
\]

Sine-Gordon: wave oscillates around \(f = 0 \), in
\((v_1, v_2) = (-\text{Arc cos}(-E + 1), \text{Arc cos}(-E + 1))\)
Subluminal librational: $c^2 < 1, \ 0 < E < E_0$.

$\mathcal{K}(E) = \{u \in \mathbb{R} : (V(u) - E)/(1 - c^2) \geq 0\} = \text{disjoint union of intervals in } (0, P)$. In (ν_3, ν_4), only one non-degenerate zero of V'. Librational (closed) periodic orbit.

$$f_z = \frac{\sqrt{2}}{\sqrt{1 - c^2}} \sqrt{V(f) - E},$$

where $f \in (\nu_3, \nu_4) \subset \mathcal{K}(E)$.

$$T = \sqrt{2} \sqrt{1 - c^2} \int_{\nu_3}^{\nu_4} \frac{d\eta}{\sqrt{V(\eta) - E}}.$$

Sine-Gordon: wave oscillates around $f = \pi$, in $(\nu_3, \nu_4) = (-\arccos(-E + 1), 2\pi - \arccos(-E + 1))$
Subluminal librational: $c^2 < 1, \ 0 < E < E_0$.

$\mathcal{K}(E) = \{ u \in \mathbb{R} : (V(u) - E)/(1 - c^2) \geq 0 \} = \text{disjoint union of intervals in } (0, P)$. In (v_3, v_4), only one non-degenerate zero of V'. Librational (closed) periodic orbit.

$$f_z = \frac{\sqrt{2}}{\sqrt{1 - c^2}} \sqrt{V(f) - E},$$

where $f \in (v_3, v_4) \subset \mathcal{K}(E)$.

$$T = \sqrt{2} \sqrt{1 - c^2} \int_{v_3}^{v_4} \frac{d\eta}{\sqrt{V(\eta) - E}}.$$

Sine-Gordon: wave oscillates around $f = \pi$, in $(v_3, v_4) = (-\arccos(-E + 1), 2\pi - \arccos(-E + 1))$.
Superluminal rotational: $c^2 > 1$, $E > E_0$, $E - V(f) > 0$ and $\mathcal{K}(E) = \mathbb{R}$. Rotation, f_z has fixed sign. Orbit outside the separatrix and $f(z + T) = f(z) \pm P$ for all z.

$$f_z^2 = \frac{2(E - V(f))}{c^2 - 1} > 0,$$

$$T = \frac{\sqrt{c^2 - 1}}{\sqrt{2}} \int_0^P \frac{d\eta}{\sqrt{E - V(\eta)}}$$

Subluminal rotational: $c^2 < 1$, $E < 0$, $V(f) - E \geq 0$ and $\mathcal{K}(E) = \mathbb{R}$ with f_z has fixed sign. Orbit outside the separatrix and $f(z + T) = f(z) \pm P$ for all z.

$$T = \frac{\sqrt{1 - c^2}}{\sqrt{2}} \int_0^P \frac{d\eta}{\sqrt{V(\eta) - E}}$$
Superluminal rotational:

\[c^2 > 1, \quad E > E_0, \quad E - V(f) > 0 \]

and \(\mathcal{K}(E) = \mathbb{R} \). Rotation, \(f_z \) has fixed sign. Orbit outside the separatrix and \(f(z + T) = f(z) \pm P \) for all \(z \).

\[f_z^2 = \frac{2(E - V(f))}{c^2 - 1} > 0, \]

\[T = \frac{\sqrt{c^2 - 1}}{\sqrt{2}} \int_0^P \frac{d\eta}{\sqrt{E - V(\eta)}} \]

Subluminal rotational:

\[c^2 < 1, \quad E < 0, \quad V(f) - E \geq 0 \]

and \(\mathcal{K}(E) = \mathbb{R} \) with \(f_z \) has fixed sign. Orbit outside the separatrix and \(f(z + T) = f(z) \pm P \) for all \(z \).

\[T = \frac{\sqrt{1 - c^2}}{\sqrt{2}} \int_0^P \frac{d\eta}{\sqrt{V(\eta) - E}} \]
\(\mathcal{R}_1 = \{ c^2 < 1, 0 < E < E_0 \} \), (subluminal librational),
\(\mathcal{R}_2 = \{ c^2 < 1, E < 0 \} \), (subluminal rotational),
\(\mathcal{R}_3 = \{ c^2 > 1, 0 < E < E_0 \} \), (superluminal librational),
\(\mathcal{R}_4 = \{ c^2 > 1, E > E_0 \} \), (superluminal rotational),

\[(E, c) \in \mathcal{R} = \bigcup_{j=1}^{4} \mathcal{R}_j\]
Figure: Sketch of the open set $\mathcal{R} \subset \mathbb{R}^2$.
Spectral problem

Solution \(f(z) + u(z, t) \), with \(u = \) perturbation:

\[
u_{tt} - 2cu_{zt} + (c^2 - 1)u_{zz} + V'(u + f) - V'(f) = 0.\]

Linearized equation:

\[
u_{tt} - 2cu_{zt} + (c^2 - 1)u_{zz} + V''(f(z))u = 0.\]

\(u = w(z)e^{\lambda t}, \lambda \in \mathbb{C}, w \in X \) Banach:

\[
(c^2 - 1)w_{zz} - 2c\lambda w_z + (\lambda^2 + V''(f(z)))w = 0. \quad (P)
\]

Quadratic “pencil” in \(\lambda \).
Spectral problem

Solution $f(z) + u(z, t)$, with $u =$ perturbation:

$$u_{tt} - 2cu_{zt} + (c^2 - 1)u_{zz} + V'(u + f) - V'(f) = 0.$$

Linearized equation:

$$u_{tt} - 2cu_{zt} + (c^2 - 1)u_{zz} + V''(f(z))u = 0.$$

$u = w(z)e^{\lambda t}$, $\lambda \in \mathbb{C}$, $w \in X$ Banach:

$$(c^2 - 1)w_{zz} - 2c\lambda w_z + (\lambda^2 + V''(f(z)))w = 0. \quad (P)$$

Quadratic “pencil” in λ.

Slide 16/73
Floquet spectrum

\(\lambda \in \sigma_F \) is a Floquet eigenvalue if there exists a bounded solution \(w \) to (P).

We say the wave is *spectrally stable* if \(\sigma_F \subset \{ \text{Re} \, \lambda > 0 \} \). Otherwise it is *spectrally unstable*.
Floquet spectrum

$\lambda \in \sigma_F$ is a Floquet eigenvalue if there exists a bounded solution w to (P).

We say the wave is *spectrally stable* if $\sigma_F \subset \{ \text{Re} \lambda > 0 \}$. Otherwise it is *spectrally unstable*.
Previous results

- Forest, MacLaughlin (1982); Murakami (1986); Ercolani, Forest, McLaughlin (1990); Parkes (1991); etc. (abridged list).
Previous results

- Forest, MacLaughlin (1982); Murakami (1986); Ercolani, Forest, McLaughlin (1990); Parkes (1991); etc. (abridged list).
Previous results

- Forest, MacLaughlin (1982); Murakami (1986); Ercolani, Forest, McLaughlin (1990); Parkes (1991); etc. (abridged list).
Summary of stability results

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Subluminal rotational</td>
<td>stable</td>
<td>stable</td>
</tr>
<tr>
<td>Superluminal rotational</td>
<td>stable</td>
<td>unstable</td>
</tr>
<tr>
<td>Subluminal librational</td>
<td>unstable</td>
<td>unstable</td>
</tr>
<tr>
<td>Superluminal librational</td>
<td>unstable</td>
<td>unstable</td>
</tr>
</tbody>
</table>
Whitham (1965, 1974):
Modulation theory: well established (formal) physical method based on WKB expansions. Exact wave
\[f = f(x - ct) = \tilde{f}(kx - \omega t). \]
Allowing dependence
\[k = k(x, t), \omega = \omega(x, t), \]
under “slow modulations”, if the PDE system on \((k, \omega)\) is well-posed then the wave is “stable”.

Whitham (1965, 1974):

Modulation theory: well established (formal) physical method based on WKB expansions. Exact wave
\[f = f(x - ct) = \tilde{f}(kx - \omega t). \]

Allowing dependence \(k = k(x, t), \omega = \omega(x, t) \), under “slow modulations”, if the PDE system on \((k, \omega)\) is well-posed then the wave is “stable”.

Scott (1969):

\[y = \exp\left(\frac{-c\lambda z}{c^2 - 1} \right), \]

\[y_{zz} + \frac{V''(f(z))}{c^2 - 1} y = \left(\frac{\lambda}{c^2 - 1} \right)^2 y =: \nu y. \quad (H) \]

Hill’s equation with period \(T \). \(\nu \in \sigma_H \) (Floquet spectrum of (H)) if there is a bounded solution \(y \).

Scott assumed that the transformation is isospectral. This is not true. Actually:

Lemma (JMMP1)

If \(\lambda \in \sigma_H \cap \sigma_F \) then \(\lambda \in i\mathbb{R} \).
Scott (1969):

\[y = \exp \left(-\frac{c\lambda z}{c^2 - 1} \right), \]

\[y_{zz} + \frac{V''(f(z))}{c^2 - 1} y = \left(\frac{\lambda}{c^2 - 1} \right)^2 y =: vy. \quad (H) \]

Hill’s equation with period \(T \). \(\nu \in \sigma_H \) (Floquet spectrum of (H)) if there is a bounded solution \(y \).

Scott assumed that the transformation is \textit{isospectral}. This is not true. Actually:

Lemma (JMMP1)

\[\text{If } \lambda \in \sigma_H \cap \sigma_F \text{ then } \lambda \in i\mathbb{R}. \]
References:

1 Introduction

2 Analysis of the monodromy map

3 Modulational instability index

4 Spectral (in)stability results
Spectrum revisited. Evans function.

Problem (P) can be written as a first order system:

\[W_z = \mathbb{A}(z, \lambda) W, \]

\[W := \begin{pmatrix} w \\ w_z \end{pmatrix}, \]

\[\mathbb{A}(z, \lambda) := \begin{pmatrix} 0 & 1 \\ -\frac{(\lambda^2 + V''(f(z)))}{c^2 - 1} & \frac{2c\lambda}{c^2 - 1} \end{pmatrix}. \]
Family of closed, densely defined operators:

$$\mathcal{T}(\lambda) : \mathcal{D} \subset X \rightarrow X$$

$$\mathcal{T}(\lambda)W := W_z - A(z, \lambda)W.$$

E.g.:

$$\mathcal{D} = H^1(\mathbb{R}; \mathbb{C}^2), \quad X = L^2(\mathbb{R}; \mathbb{C}^2),$$

Spectral stability of periodic waves with respect to localized perturbations.
Family of closed, densely defined operators:

\[\mathcal{T}(\lambda) : \mathcal{D} \subset X \to X \]

\[\mathcal{T}(\lambda)W := W_z - A(z, \lambda)W. \]

E.g.:

\[\mathcal{D} = H^1(\mathbb{R}; \mathbb{C}^2), \quad X = L^2(\mathbb{R}; \mathbb{C}^2), \]

Spectral stability of periodic waves with respect to localized perturbations.
Definition (Sandstede (2002))

The *resolvent* ζ, the *point spectrum* σ_{pt} and the *essential spectrum* σ_{ess} of problem (P) are defined as

$$\zeta := \{ \lambda \in \mathbb{C} : T(\lambda) \text{ is one-to-one and onto, and } T(\lambda)^{-1} \text{ is bounded}\},$$

$$\sigma_{pt} := \{ \lambda \in \mathbb{C} : T(\lambda) \text{ is Fredholm with zero index and has a non-trivial kernel}\},$$

$$\sigma_{ess} := \{ \lambda \in \mathbb{C} : T(\lambda) \text{ is either not Fredholm or has index different from zero}\}.$$

The *spectrum* is $\sigma = \sigma_{ess} \cup \sigma_{pt}$. ($T(\lambda)$ closed $\Rightarrow \zeta = \mathbb{C}\setminus\sigma.$)
Lemma

All spectrum of problem \mathcal{P} is “continuous”, that is, $\sigma = \sigma_{\text{ess}}$ and σ_{pt} is empty.

Monodromy matrix:

$$\mathbb{M}(\lambda) := \Phi(T, \lambda)$$

$\Phi(z, \lambda) =$ fundamental solution with $\Phi(0, \lambda) = I$.

$$\mathbb{M}(\lambda)\Phi(z, \lambda) = \Phi(z + T, \lambda)$$
Lemma

All spectrum of problem (P) is “continuous”, that is, \(\sigma = \sigma_{ess} \) and \(\sigma_{pt} \) is empty.

Monodromy matrix:

\[
M(\lambda) := \Phi(T, \lambda)
\]

\(\Phi(z, \lambda) = \) fundamental solution with \(\Phi(0, \lambda) = I \).

\[
M(\lambda)\Phi(z, \lambda) = \Phi(z + T, \lambda)
\]
Floquet multipliers:
\(\lambda \in \sigma \) if and only if there exists at least one \(\mu \in \mathbb{C} \) (Floquet multiplier) with \(|\mu| = 1 \) such that

\[
\hat{D}(\lambda, \mu) := \det(\mathbb{M}(\lambda) - \mu \mathbb{I}) = 0.
\]

\(\mu = \mu(\lambda) = e^{i\theta(\lambda)} \) are the eigenvalues of \(\mathbb{M}(\lambda) \). \(\theta = \theta(\lambda) \) are called the Floquet exponents.
Periodic Evans function (Gardner, 1997):

Definition

The *periodic Evans function* $D : \mathbb{C} \times \mathbb{R} \to \mathbb{C}$ is

$$D(\lambda, \kappa) := \hat{D}(\lambda, e^{i\kappa T}) = \det(M(\lambda) - e^{i\kappa T} I),$$

for each $(\lambda, \kappa) \in \mathbb{C} \times \mathbb{R}$.
Properties: (Gardner 1997, 1998)

- \(\sigma \) is the set of all \(\lambda \in \mathbb{C} \) such that \(D(\lambda, \kappa) = 0 \) for some real \(\kappa \).
- \(D \) is analytic in \(\lambda \) and \(\kappa \).
- The order of the zero in \(\lambda \) is the multiplicity of the eigenvalue.
- \(\hat{D}(\lambda, 1) = D(\lambda, 0) \) detects spectra corresponding to perturbations which are \(T \)-periodic.
Floquet spectrum:
Boundary value problem of the form

\[(c^2 - 1)w_{zz} - 2c\lambda w_z + (\lambda^2 + V''(f(z)))w = 0,\]

\[
\begin{pmatrix}
 w(T) \\
 w_z(T)
\end{pmatrix}
= e^{i\theta}
\begin{pmatrix}
 w(0) \\
 w_z(0)
\end{pmatrix}, \quad \theta \in \mathbb{R}.
\]

For a given \(\theta \in \mathbb{R}\) we define \(\sigma_\theta \subset \mathbb{C}\) to be the set of complex \(\lambda\) for which there exists a nontrivial solution. The Floquet spectrum \(\sigma_F\) is defined then as the union over \(\theta\) of these sets:

\[
\sigma_F := \bigcup_{-P < \theta \leq P} \sigma_\theta.
\]

Clearly: \(\sigma = \sigma_F\).
Floquet spectrum:

Boundary value problem of the form

\[(c^2 - 1)w_{zz} - 2c\lambda w_z + (\lambda^2 + V''(f(z)))w = 0,\]

\[
\begin{pmatrix}
 w(T) \\
 w_z(T)
\end{pmatrix} = e^{i\theta} \begin{pmatrix}
 w(0) \\
 w_z(0)
\end{pmatrix}, \quad \theta \in \mathbb{R}.
\]

For a given \(\theta \in \mathbb{R}\) we define \(\sigma_\theta \subset \mathbb{C}\) to be the set of complex \(\lambda\) for which there exists a nontrivial solution. The Floquet spectrum \(\sigma_F\) is defined then as the union over \(\theta\) of these sets:

\[\sigma_F := \bigcup_{-P < \theta \leq P} \sigma_\theta.\]

Clearly: \(\sigma = \sigma_F\).
Solutions at $\lambda = 0$

\[f = f(z; E, c), \ (E, c) \in \mathcal{R}. \] Initial conditions:

\[u_0(E, c) = f(0; E, c) \]

\[= \begin{cases}
 f(T; E, c), & E \in (0, E_0), \quad \text{(lib)}, \\
 f(T; E, c) - P, & E \in (-\infty, 0) \cup (E_0, +\infty), \quad \text{(rot)},
\end{cases} \]

\[v_0(E, c) = f_z(0; E, c) = f_z(T; E, c) \]
System at $\lambda = 0$:

$$Y_z = A(z, 0) Y,$$

$$A(z, 0) = \begin{pmatrix} 0 & 1 \\ -V''(f(z))/(c^2 - 1) & 0 \end{pmatrix}.$$

Lemma

The two-dimensional vector space of solutions is spanned by

$$Y_0(z) = \begin{pmatrix} f_z \\ f_{zz} \end{pmatrix}, \quad \text{and} \quad Y_1(z) = \begin{pmatrix} f_E \\ f_{Ez} \end{pmatrix}.$$
System at $\lambda = 0$:

$$Y_z = A(z, 0)Y,$$

$$A(z, 0) = \begin{pmatrix} 0 & 1 \\ -V''(f(z))/(c^2 - 1) & 0 \end{pmatrix}. $$

Lemma

The two-dimensional vector space of solutions is spanned by

$$Y_0(z) = \begin{pmatrix} f_z \\ f_{zz} \end{pmatrix}, \quad \text{and} \quad Y_1(z) = \begin{pmatrix} f_E \\ f_{EZ} \end{pmatrix}. $$
\[\det(Y_0(z), Y_1(z)) = f_z f_{Ez} - f_E f_{zz} = \frac{1}{c^2 - 1} \neq 0 \]

Solution matrix:

\[Q(z, 0) := (Y_0(z), Y_1(z)) \]

\[\Phi(z, 0) = Q(z, 0) Q(0, 0)^{-1}. \]

\[M(0) = \Phi(T, 0) = Q(T, 0) Q(0, 0)^{-1} \]

\[Q(z, 0)^{-1} = (c^2 - 1) \begin{pmatrix} f_{Ez} & -f_E \\ -f_{zz} & f_z \end{pmatrix}. \]
\[\det(Y_0(z), Y_1(z)) = f_z f_{Ez} - f_E f_{zz} = \frac{1}{c^2 - 1} \neq 0 \]

Solution matrix:

\[Q(z, 0) := (Y_0(z), Y_1(z)) \]

\[\Phi(z, 0) = Q(z, 0) Q(0, 0)^{-1}. \]

\[M(0) = \Phi(T, 0) = Q(T, 0) Q(0, 0)^{-1} \]

\[Q(z, 0)^{-1} = (c^2 - 1) \begin{pmatrix} f_{Ez} & -f_E \\ -f_{zz} & f_z \end{pmatrix}. \]
Lemma

If $T_E \neq 0$, there exists a basis in \mathbb{R}^2 such that the monodromy map $\mathbb{M}(\lambda)$ at $\lambda = 0$ has the Jordan form:

$$\mathbb{M}(0) \sim \begin{pmatrix} 1 & -T_E \\ 0 & 1 \end{pmatrix}.$$

$Q(T,0) - Q(0,0)$ is a rank-one matrix provided that $T_E \neq 0$:

$$Q(T,0) = Q(0,0) + \begin{pmatrix} 0 & -T_E v_0(E,c) \\ 0 & -T_E \frac{V'(u_0(E,c))}{c^2-1} \end{pmatrix}.$$
Lemma

If \(T_E \neq 0 \), there exists a basis in \(\mathbb{R}^2 \) such that the monodromy map \(\mathbb{M}(\lambda) \) at \(\lambda = 0 \) has the Jordan form

\[
\mathbb{M}(0) \sim \begin{pmatrix} 1 & -T_E \\ 0 & 1 \end{pmatrix}.
\]

\(\mathbb{Q}(T, 0) - \mathbb{Q}(0, 0) \) is a rank-one matrix provided that \(T_E \neq 0 \):

\[
\mathbb{Q}(T, 0) = \mathbb{Q}(0, 0) + \begin{pmatrix} 0 & -T_E v_0(E, c) \\ 0 & -T_E \frac{v'(u_0(E, c))}{c^2 - 1} \end{pmatrix}
\]
Under Assumption (c), we have monotonicity of the period map (Chicone, 1987: criterion for planar Hamiltonian systems):

Lemma

Under assumptions there holds $T_E \neq 0$. More precisely we have:

(i) $T_E > 0$ in the rotational subluminal and librational superluminal cases.

(ii) $T_E < 0$ in the rotational superluminal and librational subluminal cases.
Lemma

If we define

\[\bar{\Delta} := -\frac{T_E}{c^2 - 1} \]

then

(a) \(\bar{\Delta} > 0 \) for rotational waves.
(b) \(\bar{\Delta} < 0 \) for librational waves.
Solutions series expansions

\[Q = Q(z, \lambda) \] solution to

\[\frac{dQ}{dz} = A(z, \lambda)Q. \]

\[Q(0, \lambda) = Q(0, 0) = (Y_0(0), Y_1(0)) \]

By analyticity, seek series expansion

\[Q(z, \lambda) = \sum_{n=0}^{+\infty} \lambda^n Q_n(z) \]
Solutions series expansions

\[\mathcal{Q} = \mathcal{Q}(z, \lambda) \] solution to

\[\frac{d\mathcal{Q}}{dz} = \mathcal{A}(z, \lambda) \mathcal{Q}. \]

\[\mathcal{Q}(0, \lambda) = \mathcal{Q}(0, 0) = (Y_0(0), Y_1(0)) \]

By analyticity, seek series expansion

\[\mathcal{Q}(z, \lambda) = \sum_{n=0}^{+\infty} \lambda^n \mathcal{Q}_n(z) \]
Collecting like powers of λ we obtain a hierarchy:

\[
(c^2 - 1) \frac{dQ_1}{dz} = A_0(z)Q_1 + A_1 Q_0
\]

\[
(c^2 - 1) \frac{dQ_n}{dz} = A_0(z)Q_n + A_1 Q_{n-1} + A_2 Q_{n-2}, \quad n = 2, 3, \ldots
\]

Solution by variation of parameters:

\[
Q_1(z) = \frac{Q_0(z)}{c^2 - 1} \int_0^z Q_0(y)^{-1} A_1 Q_0(y) \, dy
\]

\[
Q_n(z) = \frac{Q_0(z)}{c^2 - 1} \int_0^z Q_0(y)^{-1} (A_1 Q_{n-1}(y) + A_2 Q_{n-2}) \, dy, \quad n \geq 2
\]
Collecting like powers of λ we obtain a hierarchy:

$$(c^2 - 1) \frac{dQ_1}{dz} = A_0(z)Q_1 + A_1 Q_0$$

$$(c^2 - 1) \frac{dQ_n}{dz} = A_0(z)Q_n + A_1 Q_{n-1} + A_2 Q_{n-2}, \quad n = 2, 3, \ldots$$

Solution by variation of parameters:

$$Q_1(z) = \frac{Q_0(z)}{c^2 - 1} \int_0^z Q_0(y)^{-1} A_1 Q_0(y) dy$$

$$Q_n(z) = \frac{Q_0(z)}{c^2 - 1} \int_0^z Q_0(y)^{-1} (A_1 Q_{n-1}(y) + A_2 Q_{n-2}) dy, \quad n \geq 2$$
By Abel’s identity:

Lemma

For all $z \in \mathbb{R}$, $\lambda \in \mathbb{C}$, there holds

$$\det Q(z, \lambda) = \frac{\exp\left(\frac{2c\lambda z}{c^2 - 1}\right)}{c^2 - 1}.$$
After (tedious) computations:

Lemma

\[\text{tr } Q_0 (T) Q_0 (0)^{-1} = 2. \]

\[\text{tr } Q_1 (T) Q_0 (0)^{-1} = \frac{2cT}{c^2 - 1}. \]

\[\text{tr } Q_2 (T) Q_0 (0)^{-1} = \frac{c^2 T^2}{(c^2 - 1)^2} - \frac{T_E}{c^2 - 1} \int_0^T f_z (y)^2 \, dy. \]
Perturbation of the Jordan block

By analyticity of the monodromy map:

\[M(\lambda) = \sum_{n=0}^{+\infty} \frac{\lambda^n}{n!} \frac{d^n M}{d\lambda^n}(0). \]

(Standard perturbation theory, Kato.) In general, the Floquet multipliers bifurcate from \(\lambda = 0 \) in Pusieux series.

Fundamental matrix:

\[\Phi(z, \lambda) = Q(z, \lambda)Q_0(0)^{-1} = \sum_{n=0}^{+\infty} \lambda^n Q_n(z)Q_0^{-1} =: \sum_{n=0}^{+\infty} \lambda^n \Phi_n(z) \]
Perturbation of the Jordan block

By analyticity of the monodromy map:

\[\mathcal{M}(\lambda) = \sum_{n=0}^{\infty} \frac{\lambda^n}{n!} \frac{d^n \mathcal{M}}{d\lambda^n}(0). \]

(Standard perturbation theory, Kato.) In general, the Floquet multipliers bifurcate from \(\lambda = 0 \) in Pusieux series.

Fundamental matrix:

\[\Phi(z, \lambda) = Q(z, \lambda) Q_0(0)^{-1} = \sum_{n=0}^{\infty} \lambda^n Q_n(z) Q_0^{-1} = : \sum_{n=0}^{\infty} \lambda^n \Phi_n(z). \]
Lemma

We have convergent series expansions

\[M(\lambda) = \sum_{n=0}^{+\infty} \lambda^n Q_n(T) Q_0(0)^{-1}, \]

\[\text{tr} M(\lambda) = \sum_{n=0}^{+\infty} \lambda^n \text{tr} Q_n(T) Q_0(0)^{-1}, \]

and

\[\det M(\lambda) = \sum_{n=0}^{+\infty} \left(\frac{2cT}{c^2 - 1} \right)^n \frac{\lambda^n}{n!}. \]
Introduction

Analysis of the monodromy map

Modulational instability index

Spectral (in)stability results
Expansion of the Floquet multipliers

μ, solutions to:

$$\hat{D}(\lambda, \mu) = \det (M(\lambda) - \mu I) = \mu^2 - (\text{tr} M(\lambda))\mu + \det M(\lambda) = 0$$

$$\mu_{\pm}(\lambda) = \frac{1}{2} \left(\text{tr} M(\lambda) \pm \left((\text{tr} M(\lambda))^2 - 4 \det M(\lambda) \right)^{1/2} \right)$$
Expanding:

\[
\begin{align*}
\text{tr} \mathbb{M}(\lambda)^2 - 4 \det \mathbb{M}(\lambda) &= \\
&= \left(\text{tr} Q_0(T)Q_0(0)^{-1} + \lambda \text{tr} Q_1(T)Q_0(0)^{-1} + \lambda^2 \text{tr} Q_2(T)Q_0(0)^{-1} \right)^2 + \\
&\quad - 4 \left(1 + \frac{2cT}{c^2 - 1} \right) \lambda + \frac{2c^2 T^2}{(c^2 - 1)^2} \lambda^2 + O(\lambda^3) \\
&= 4 \Delta \lambda^2 + O(\lambda^3),
\end{align*}
\]

\[
\Delta := - \frac{T_E}{c^2 - 1} \int_0^T f_z(y)^2 \, dy
\]
The two Floquet multipliers are analytic functions of λ at $\lambda = 0$. Asymptotic form:

$$
\mu_{\pm}(\lambda) = 1 + \left(\frac{cT}{c^2 - 1} \pm \Delta^{1/2} \right) \lambda + O(\lambda^2)
$$

Definition

We define the modulational instability index to be the quantity

$$
\rho := \text{sgn} \Delta.
$$

Clearly $\text{sgn} \Delta = \text{sgn} \bar{\Delta}$.

The two Floquet multipliers are analytic functions of λ at $\lambda = 0$. Asymptotic form:

$$\mu_{\pm}(\lambda) = 1 + \left(\frac{cT}{c^2 - 1} \pm \Delta^{1/2} \right) \lambda + O(\lambda^2)$$

Definition

We define the *modulational instability index* to be the quantity

$$\rho := \text{sgn} \Delta.$$

Clearly $\text{sgn} \Delta = \text{sgn} \bar{\Delta}$.
Expansion of D near the origin

Lemma

The periodic Evans function $D(\lambda, \kappa)$, for $(\lambda, \kappa) \in \mathbb{C} \times \mathbb{R}$, has the following expansion in a neighborhood of $(\lambda, \kappa) = (0, 0)$,

$$D(\lambda, \kappa) = -\Delta \lambda^2 + \left(i\kappa - \frac{cT}{c^2 - 1} \lambda \right)^2 + O(3),$$

where $O(3)$ denotes terms of order three or higher in (λ, k).
Lemma

If $\rho = 1$ then the solutions to $D(\lambda, \kappa) = 0$ near $(\lambda, \kappa) = (0, 0)$ emerge from the origin tangentially to the imaginary axis in the complex λ-plane:

$$\lambda(\kappa) = -iv\kappa + O(\kappa^2),$$

with $v \in \mathbb{R}$, for $|\kappa| \ll 1$.

If $\rho = -1$ then the solutions emerge from the origin tangentially to two lines passing through the origin and forming non-zero angles with the imaginary axis:

$$\lambda(\kappa) = -(\alpha + i\beta)\kappa + O(\kappa^2),$$

with $\alpha, \beta \in \mathbb{R}$, $\alpha \neq 0$, for $|\kappa| \ll 1$.
Figure: Qualitative sketch of σ near the origin. $\rho = 1$ (left); $\rho = -1$ (right).
Theorem

Under assumptions (a), (b) and (c):

- $\rho = -1$ for librational waves. Spectrally unstable.
- $\rho = 1$ for rotational waves. The spectrum is tangent to the imaginary axis at $\lambda = 0$.

Theorem

Under the non-degeneracy condition $T_E \neq 0$ if the modulational instability index is $\rho = -1$ then the underlying periodic traveling wave is spectrally unstable.
Theorem

Under assumptions (a), (b) and (c):

- $\rho = -1$ for librational waves. Spectrally unstable.
- $\rho = 1$ for rotational waves. The spectrum is tangent to the imaginary axis at $\lambda = 0$.

Theorem

Under the non-degeneracy condition $T_E \neq 0$ if the modulational instability index is $\rho = -1$ then the underlying periodic traveling wave is spectrally unstable.
Relation to Whitham’s modulation theory

WKB approximations of the form:

\[u(x,t) = f\left(\frac{z(x,t)}{\xi}\right) + O(\varepsilon), \]

\(k, \omega\) are no longer constant (and hence, \(E\) and \(c\)). We have \(c = \omega/k\) and \(k = \theta_x, \omega = -\theta_t, \theta = kx - \omega t\). Conservation of fluxons:

\[k_t + \omega_x = 0 \]
Averaged Lagrangian

\[I[u] = \int \int L(u, u_x, u_t) \, dx \, dt, \]

\[L(u, u_x, u_t) = \frac{1}{2} u_t^2 - \frac{1}{2} u_x^2 - V(u). \]

In the wave \(u = f(x - ct) = \Phi(kx - \omega t) \):

\[L(u, u_x, u_t) = \frac{1}{2} (\omega^2 - k^2) \Phi_\theta(\theta)^2 - V(\Phi(\theta)) \]

Averaged Lagrangian:

\[\langle L \rangle = \frac{1}{kT} \int_0^{kT} \frac{1}{2} (\omega^2 - k^2) \Phi_\theta(\theta)^2 - V(\Phi(\theta)) \, d\theta = \tilde{L}(\omega, k, E). \]
Averaged Lagrangian variational principle

\[\delta \int \int \tilde{L}(\omega, k, E) \, dx \, dt = 0, \]

\[\tilde{L}_E = 0, \text{ dispersion relation} \]

\[k_t + \omega_x = 0 \]

\[(\tilde{L}_\omega)_t - (\tilde{L}_k)_x = 0. \] (*

If the last system (*) is hyperbolic (Cauchy problem well-posed) then the wave is \textit{stable under slow modulations} (Whitham, 1974).
Averaged Lagrangian variational principle

\[\delta \int \int \tilde{L}(\omega, k, E) \, dx \, dt = 0, \]

\[\tilde{L}_E = 0, \quad \text{dispersion relation} \]

\[k_t + \omega_x = 0 \]

\[(\tilde{L}_\omega)_t - (\tilde{L}_k)_x = 0. \] (*

If the last system (*) is hyperbolic (Cauchy problem well-posed) then the wave is stable under slow modulations (Whitham, 1974).
Equivalently (Whitha, 1965) we may express (*) in terms of E and c. Averaged Lagrangian:

$$\langle L \rangle = \frac{1}{T} \int_0^T \frac{1}{2} (c^2 - 1) f_z(z)^2 - V(f(z)) \, dz$$

$$= \frac{\sqrt{2}}{T} \int ((c^2 - 1)(E - V(\eta)))^{1/2} \, d\eta - E =: \mathcal{L}(E, c).$$
\[\mathcal{L}(E, c) = \frac{2\sqrt{2}}{T} \sqrt{c^2 - 1} \int_{v_1}^{v_2} \sqrt{E - V(\eta)} \, d\eta - E, \quad \text{(sup, lib)}, \]

\[\mathcal{L}(E, c) = -\frac{2\sqrt{2}}{T} \sqrt{1 - c^2} \int_{v_3}^{v_4} \sqrt{V(\eta) - E} \, d\eta - E, \quad \text{(sub, lib)}, \]

\[\mathcal{L}(E, c) = \frac{\sqrt{2}}{T} \sqrt{c^2 - 1} \int_{0}^{P} \sqrt{E - V(\eta)} \, d\eta - E, \quad \text{(sup, rot)}, \]

\[\mathcal{L}(E, c) = -\frac{\sqrt{2}}{T} \sqrt{1 - c^2} \int_{0}^{P} \sqrt{V(\eta) - E} \, d\eta - E, \quad \text{(sub, rot)}. \]
Define:

\[W(E, c) = \sqrt{2} \int ((c^2 - 1)(E - V(\eta)))^{1/2} d\eta, \]

\[W(E, c) := \text{sgn}(c^2 - 1)\sqrt{|c^2 - 1|J(E)}, \]

\[J(E) := \begin{cases} J_L(E), & \text{librations,} \\ J_R(E), & \text{rotations,} \end{cases} \]

\[J_R(E) := \sqrt{2} \int_0^P \sqrt{\text{sgn}(c^2 - 1)(E - V(\eta))} d\eta \]

\[J_L(E) := 2\sqrt{2} \int_{v_i}^{v_f} \sqrt{\text{sgn}(c^2 - 1)(E - V(\eta))} d\eta \]
Lemma

For each of the four cases under consideration (sub- or superluminal, libration or rotation) there hold

\[W_E = T, \]
\[W_c = \frac{cW}{c^2 - 1}. \]
Taking average of conservation of energy and momentum equations we can express the Whitham modulation system (*) as:

\[
\left(\frac{W_c}{T} \right)_t + \left(\frac{cW_c}{T} - E \right)_x = 0, \tag{**}
\]

\[
\left(\frac{1}{T} \right)_t + \left(\frac{c}{T} \right)_x = 0.
\]
Lemma

*Whitham's system of equations (**) is equivalent to the system:*

\[
\begin{pmatrix} E \\ c \end{pmatrix}_t + A(E, c) \begin{pmatrix} E \\ c \end{pmatrix}_x = 0, \quad \text{(Wh)}
\]

\[
A(E, c) = \frac{1}{N(E, c)} \begin{pmatrix} c(J(E)J''(E) + J'(E)^2) & -J(E)J'(E) \\ (c^2-1)^2J'(E)J''(E) & c(J(E)J''(E) + J'(E)^2) \end{pmatrix},
\]

\[
N(E, c) = J(E)J''(E) + c^2J'(E)^2.
\]
Lemma

Whitham system (Wh) is hyperbolic if and only if

\[J''(E) < 0. \]

Characteristic velocities:

\[
c(J(E)J''(E) + J'(E)^2) - s_{\pm} = \pm |c^2 - 1| \left(-J(E)J''(E)J'(E)^2 \right)^{1/2}.
\]
Proof of Whitham’s modulational instability

Lemma

\[\text{sgn} J''(E) = -\rho. \]

Proof:

\[T_E = W_{EE} = \text{sgn} (c^2 - 1) \sqrt{|c^2 - 1| J''(E)}. \]
Corollary

The quasilinear Whitham system (Wh) is hyperbolic if and only if $\rho = 1$. *In this case we say that the underlying periodic traveling wave is modulationally stable (otherwise we say it is modulationally unstable).*

Theorem (Proof of Whitham’s instability)

Under the non-degenerate condition $T_E \neq 0$, *if the periodic traveling wave is modulationally unstable in the sense defined by Whitham then it is spectrally unstable.*
Corollary

The quasilinear Whitham system (Wh) is hyperbolic if and only if $\rho = 1$. In this case we say that the underlying periodic traveling wave is modulationally stable (otherwise we say it is modulationally unstable).

Theorem (Proof of Whitham’s instability)

Under the non-degenerate condition $T_E \neq 0$, if the periodic traveling wave is modulationally unstable in the sense defined by Whitham then it is spectrally unstable.
Corollary

Under the non-degenerate condition $T_E \neq 0$, a necessary condition for the spectral stability of a periodic wave is that the modulational instability index is $\rho = 1$, or equivalently, that the Whitham modulation system is hyperbolic.

Finally we recover:

Theorem (Whitham, 1974)

- Both super- and subluminal rotational waves are modulationally stable,
- Both super- and subluminal librational waves are modulationally unstable (and whence, spectrally unstable).
Corollary

Under the non-degenerate condition $T_E \neq 0$, a necessary condition for the spectral stability of a periodic wave is that the modulational instability index is $\rho = 1$, or equivalently, that the Whitham modulation system is hyperbolic.

Finally we recover:

Theorem (Whitham, 1974)

- Both super- and subluminal rotational waves are modulationally stable,
- Both super- and subluminal librational waves are modulationally unstable (and whence, spectrally unstable).
1 Introduction

2 Analysis of the monodromy map

3 Modulational instability index

4 Spectral (in)stability results
(In)stability in the rotational case

Theorem

Under assumptions we have:

(A) *Superluminal rotational waves are spectrally unstable.*

(B) *Subluminal rotational waves are spectrally stable.*

That is: if \(\lambda \in \sigma \) then \(\lambda \) is purely imaginary.
Part (A):
Define $G : \mathbb{C} \to \mathbb{R}$ by

$$G(\lambda) = \log |\mu_+(\lambda)| \log |\mu_-(\lambda)|.$$

G continuous in \mathbb{R}^2 and $\lambda \in \sigma$ if and only if $G(\lambda) = 0$. Fact: if $\mu(\lambda) \in \sigma \mathbb{M}(\lambda)$ (Floquet mult. for (P) then
$\eta(\lambda) = \exp(-\lambda cT/(c^2 - 1)) \in \sigma \mathbb{M}_H(\lambda)$ (Floquet mult. for (H)). By Abel’s identity:

$$G(\lambda) = \left(\text{Re} \frac{c\lambda T}{c^2 - 1} \right)^2 - (\log |\eta_+(\lambda)|)^2$$

$$= \left(\text{Re} \frac{c\lambda T}{c^2 - 1} \right)^2 - (\log |\eta_-(\lambda)|)^2.$$

Slide 67/73
Thus, for $\lambda \in i\mathbb{R}$, $G \leq 0$. Moreover, $G(i\beta) = 0$ iff $i\beta \in \sigma \cap i\mathbb{R} = \sigma^H \cap i\mathbb{R}$. Thus,

Corollary

Suppose $\beta \in \mathbb{R}$ is such that \[
\left(\frac{i\beta}{c^2 - 1}\right)^2 \notin \sigma^H.
\] Then $G(i\beta) < 0$.
Moreover, we can show:

Lemma

For a superluminal rotational wave, \(G(\lambda) > 0 \) for \(\lambda \in \mathbb{R} \), \(\lambda \gg 1 \), and there is a \(i\beta_ \) in the spectral gap of \(\sigma_H \), that is, \(G(i\beta) < 0 \).*

By continuity, there must be an eigenvalue

\[
\lambda = \alpha_* t + i\beta_* (1 - t)
\]

for some \(t \in (0, 1) \), where \(G(\alpha_*) > 0 \), \(\alpha_* \) large and real, such that \(G(\lambda) = 0 \). Clearly, \(\text{Re} \lambda > 0 \).

This shows (A).
Moreover, we can show:

Lemma

For a superluminal rotational wave, \(G(\lambda) > 0 \) for \(\lambda \in \mathbb{R} \), \(\lambda \gg 1 \), and there is a \(i\beta_ \) in the spectral gap of \(\sigma_H \), that is, \(G(i\beta) < 0 \).*

By continuity, there must be an eigenvalue \(\lambda = \alpha_* t + i\beta_*(1 - t) \) for some \(t \in (0, 1) \), where \(G(\alpha_*) > 0 \), \(\alpha_* \) large and real, such that \(G(\lambda) = 0 \). Clearly, \(\text{Re} \, \lambda > 0 \). This shows (A).
Figure: Numerical plots of the Floquet spectrum $G(\lambda) = 0$ for sine-Gordon.
Part (B): Spectral stability of subluminal rotations.

By energy estimates: define the Hamiltonian operator $H = d^2/dz^2 + V''(f)/(c^2 - 1)$ so that the spectral equation (P) is:

$$(c^2 - 1)Hw(z) - 2c\lambda w_z(z) + \lambda^2 w(z) = 0$$

Lemma

The operator H is negative semidefinite in the case of a rotational wave. For librations, H is indefinite.
If $\lambda \in \sigma$, multiply eq. by w^* and integrate by parts on a fundamental period $[0, T]$:

$$(c^2 - 1)\langle w, Hw \rangle - 2im\lambda + \|w\|^2\lambda^2 = 0,$$

$$m := -ic \int_0^T w(z)^*w_z(z)\,dz \in \mathbb{R}$$

$m \in \mathbb{R}$ using the periodicity of w and integrating by parts. The roots of the quadratic are:

$$\lambda = \frac{1}{\|w\|^2} \left[im \pm \sqrt{-m^2 - (c^2 - 1)\|w\|^2 \langle w, Hw \rangle} \right].$$

$\lambda \in i\mathbb{R}$ whenever $c^2 < 1$. This shows (B).
If $\lambda \in \sigma$, multiply eq. by w^* and integrate by parts on a fundamental period $[0, T]$:

\[
(c^2 - 1) \langle w, Hw \rangle - 2im\lambda + \|w\|^2 \lambda^2 = 0,
\]

\[
m := -ic \int_0^T w(z)^* w_z(z) \, dz \in \mathbb{R}
\]

$m \in \mathbb{R}$ using the periodicity of w and integrating by parts. The roots of the quadratic are:

\[
\lambda = \frac{1}{\|w\|^2} \left[im \pm \sqrt{-m^2 - (c^2 - 1)\|w\|^2 \langle w, Hw \rangle} \right].
\]

$\lambda \in i\mathbb{R}$ whenever $c^2 < 1$. This shows (B).
Thank you!