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Abstract-one way of modeling the evolution in time of an age-structured population is to set 
up the evolution process as a partial differential equation in which time and age are the independent 
variables. The resulting equation, known as the McKendrick equation, has received attention recently 
from mathematicians. Some advantages of the PDE are that it can easily be adapted to include more 
detail in the model, including explicit time-dependence in the coefficients and even some nonlinear 
effects. The initial-boundary conditions for the McKendrick equation, imposed by the population 
model, are not the standard side conditions one sees in PDE theory for an evolution equation. In 
the simplest case, the problem reduces to a well-known model in demography, the Lotka integral 
equation. 

In this paper, we explain the solution of the McKendrick mode1 and compare the McKendrick equa- 
tion with other common models for age-structured populations (the Leslie matrix and Ihe difference 
equation, as well as the integral equation) in several ways. The approaches differ in their suitability 
for computation, their ease of generalization, and their adaptability to different demographic objec- 
tives and other biological applications. With small intervals of age and time all forms are identical, 
but if the intervals are finite, differences will appear in the numerical results. The structure of SD- 
lutions of the partial differential equation contributes to better understanding and computation of 
population models. 
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1. INTRODUCTION 

From any age a person can go on to the next age or die, and at certain ages a woman can give 

birth to a child aged zero. With nothing beyond these considerations as postulates, the essential 

features of deterministic population mathematics can be derived. Indeed models can be derived 

in many ways, of which the literature contains at least four. We will speak of the int,egral, 

difference, and partial differential equations, and of the projection matrix. In appearance these 

are grossly dissimilar, yet since they proceed from the same starting point and end at the same 

conclusion, they must somehow be equivalent. 

In the first part of the paper, we reproduce and compare these formulations. To keep the 

exposition as simple as possible, we consider the single-sex, female population model. The two- 

sex, female-dominated model can be derived from this in a straightforward way, which we omit. 

There are, of course, more complex reproductive models which make assumptions beyond those 

of our introductory sentence. Similar comparisons could be made for these. 
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The two postulates can be expressed as ‘life-table data’, in the form of quantities a(z), the 

probability of surviving from birth to age z, and m(z), the probability of a woman of age z 

giving birth in a unit of time. 

The simplest formulation of most models assumes that these quantities depend only on age 

and are invariant in time. In the concluding section, we discuss dropping this assumption. 

The history of the matrix formulation starts with Edwin Cannan [l] who traced lines of sur- 

vivorship and birth on a Lexis diagram, the two-dimensional representation of lifelines in a space 

with coordinate axes of age and time, Figure 1. His arithmetical formulation was used (appar- 

ently independently) by Whelpton [2]. Later, Bernardelli [3], Lewis [4], and especially Leslie [5] 

showed that it was linear and readily translatable into matrix terms. Their formulation permitted 

ready application of the theory of matrices with nonnegative elements, especially certain ergodic 

theorems, which had been developed early in the century. 

t 

Figure 1. Lexis diagram representing mortality and reproduction in a population. 

The matrix formulation concentrates on the relation between one horizontal line and the next 

one in time. The matrix operator premultiplies the age distribution at time t, to produce the age 

distribution at time t + 1. We write 

$t+l) = M@), 0) 

-_(t1 
representing the population as a (column) vector K whose jth entry is the number of women 

in the jth age group alive at time t. The entries of the projection matrix M are determined from 

the life-table e(z) and m(z) (see [6]). F or example, when the age interval is the same as the time 

interval, then the j + lst entry of xct+‘) consists precisely of the survivors of the jth age group 

in Kct), so each row of M, below the first, consists of a single nonzero entry to the left of the 

diagonal. Thus, defining 

1 

mj = s 1 

m(j + s) ds and Lj= s l(j + s) ds 
0 0 



McKendrick Partial Differential Equation 3 

as discrete approximations to the continuous quantities, one can write M = S + B, where S, the 

survivorship matrix, has nonzero entries 

Sj+l,j = $. 
3 1 

The first row of M is formed by considering births to women alive between time t and time 

t + 1. It is standard practice to approximate the number of births credited to the jth age group 

in z(t) by supposing the women in that group have birth rate mj for the first half of the time 

interval, and the survivors to the next age have birth rate mj+i for the second half. (We present 

a justification and some comments in the concluding section.) We thus have 

as the nonzero entries in the birth matrix. Equation (1) gives an explicit formula for advancing the 
,-_(tj 

population through a single time-step. Using matrix analysis, one solves (1) by expressing K 
in terms of invariants (eigenvalues and eigenvectors) of the matrix. 

The difference equation method, first published by Thompson (71 and applied by Cole [8], 

starts with the same part of the Lexis diagram-the relation of births at time t to those of the 

preceding generation. Now, iterating this relation to express all quantities in terms of the age 

zero cohort at earlier times, one can derive a difference equation whose order is the number of 

ages of mother recognized. This equation was originally solved by generating functions. In a 

sense, the method goes back to Leonardo of Pisa, known as Fibonacci, who in the year 1202 

discussed the birth of rabbits in an enclosure, starting with a single pair that produces a pair 

after a month and a second pair after a further month, with all generations having the same law 

of reproduction and no mortality for the first two months of life. The difference equation can be 

thought of as a method for solving the matrix equation. Fibonacci’s equation, apparently the 

earliest formulation of modern population dynamics, had to wait several centuries for a general 

solution in terms of generating functions. 

The first appearance of the integral equation in its demographic application seems to have been 

due to Sharpe and Lotka 191. The Lotka formulation focuses on a special part of the plane of 

the Lexis diagram: since we may assume that m(z) is zero except for z in an interval between (Y 

and ,0, say, we can connect the births at a time t with the births of the mothers of those children 

cx to p years earlier, doing so via the interval from age a to age ,f3 on the horizontal line for time t. 

Thus, if B(t) is the number of births at time t, then 

J 
/3 

B(t) = B(t - a)l(a)m(a) da + G(t). 
a 

(4) 

Here (in Lotka’s formulation), G(t) simply aggregates the births at time t due to women who 

were in the population at time zero. (We do not here attempt to sort out the priorities in the 

discovery; the interested reader may refer to a paper by Samuelson [IO].) 

Lotka’s expression of the relation between two successive generations of births is the homoge- 

neous integral equation, with G absent; in our notation 

B(0) = 
/ 

B 
B(t - a)l(a)m(a) da. 

a 

Sharpe and Lotka solved it by seeking roots of the characteristic equation, 

J 

P 
e-‘Y(a)m(a) da = 1, 

0 
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letussayri,rs,.... They show that only one of these roots can be real, all others being complex 
with negative real parts, so that their disappearance in the course of time is assured. They refer 

to the initial population, necessary if the process is to be completely specified, but in effect they 

dismiss it by pointing out that in the long run only the real root counts. This solution method 

is not determinate, since it does not provide for a start to the process. The function G(t) is one 
way of starting off the process; G(t) disappears in the course of the 50 or so years following, but 
its effect lingers on through later generations, only during the course of centuries of the given 

fixed rates descending close to its limiting value of zero. Ultimately Lotka [ll] evolved a way 
of solving the nonhomogeneous equation (4), starting with the homogeneous form, finding an 

answer that includes several arbitrary constants, and then showing how to assign the constants 
in such fashion that the result fits the nonhomogeneous form with G(t) added on the right. 

If one assumes G to be known, then Feller [12] showed that (4) could be solved with Laplace 

transforms. Once B(t) is known for all t, then the complete population distribution at any time 

can be found by using the survival rates. 

Historically, these competing methods enjoyed a measure of success; they are compared 
in [6,13]. Until recently, no one paid much attention to a fourth formulation of the problem, 

via a partial differential equation. In fact, however, the partial differential equation is the most 
detailed and explicit of the four ways of drawing out the consequences of the two postulates. It 

forms a good basis, in fact, for seeing why the different approaches give almost the same answers, 
and how they differ. We introduce the equation in the next section, and compare it with the first 

three approaches in the last section. 

2. A PARTIAL DIFFERENTIAL EQUATION 
FOR AGE-STRUCTURED POPULATIONS 

The partial differential equation, which we will call the McKendrick form, is written 

z + g + p(a)P = 0, 

where P = P(a, t), for a and t nonnegative, represents the density of the population of age a at 

time t. This equation can be seen as a representation of the local effects of population dynamics; 
it is derived from the fact that, since age and time are measured in the same units, the rate 
of change with respect to time of the size of the population of age a would exactly balance the 

derivative with respect to age, were it not for the force of mortality or or instantaneous death 
rate, ~(a) = -P(u)/!(a). Equation (5) is an exact representation of the dynamics in the interior 
of the Lexis diagram, if one assumes that the postulates are exact. The behavior along the 
coordinate axes is described by the boundary conditions, 

P(a, 0) = Q(a), at t = 0, a 2 0, (6) 

representing the initial population, and 

0 
P(0, t) = I P(x, t)m(x) dx = 

a J 
co 

P(x, t)m(x) dx, (7) 
0 

where m is zero outside [cr,p], representing the newborns at each t. The standard method for 
solving an equation of the type (5), a first-order, linear partial differential equation, is to note the 
existence of distinguished curves in the a-t plane, called characteristics, along which (5) reduces 
to an ordinary differential equation. That is, representing the curve parametrically as t = t(s), 
a = a(s), and representing P evaluated on the curve by 

P(s) = P(a(s), t(s)), 
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then 
dp 
- = -$P(a(s).t(s)) = g; + $$. 
ds 

Now, if we choose the curves t(s) and a(s) by the conditions 

dt 
da 1 z=l, z= 1 

then the right-hand side of (8) becomes the differential operator in (5), and so 

(8) 

(9) 

along the curves in (9). 

This general method 

g + p(a(s))P = 0 (10) 

works even if the coefficients in (5) are variable and even (with some 

modifications) if they depend on P. In the present case, it is clear that the significance of 

the solution curves of (9) is that they are the diagonal lines of the Lexis diagram. In fact, 

equation (5) was formulated by noting how the derivative of P in the direction of (9) contributes 

to the population balance. 

Now the solution of (5) is found using the method of characteristics as follows. 

If (ac, to) is any point in the first quadrant, and Ps the value of P there, then P is determined 

along the entire solution to (9), 

t = to + s; a = a0 + s, (11) 

(J 
.9 

F(s) = PO exp - 
0 

daO+o)dn) = POexp (-~~“d~)dp) 

=po Go + 4 

(12) 

Go) 

since 

e(z) =exp (-lzp(cx)dcx). 

Thus, we obtain a unique solution to (5) for all a 2 0 and t 2 0 if we specify the value of P along 

a noncharacteristic curve-a curve which intersects each diagonal line nontangentially exactly 

once. The positive a- and t-axes, taken together, constitute such a curve. 

To find P(a, t) below the diagonal t = a, we take to = 0, as 2 0, PO = &(a~) in (11) and (12), 

and obtain 

p(s) = P(ao + s, s) = Q(ao) 
[(a0 + s> 

%0) ’ 

and so, since t = s and a = as + s in (ll), we have 

P(a, t) = &(a - t)& , if t 5 a. 

Above the diagonal, we take t = to, a0 = 0, PO = P(O,to), and so (11) and (12) become 

(13) 

Pts) = PCS, to + 5) = fyo, to)e(s) 

or 

P(a, t) = P(0, t - a)e(a) , if t > a. (14) 
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We have not yet used the boundary condition (7). When we do so, we obtain 

I 
t 

t) = P(x, t)m(x) dx + s O” P(x, t)m(x) dx 
0 t 

J 
t = P(0, t - x)f(x)m(x) dx + 

0 J t ca &(x - t,&n+, dx, (15) 

substituting (14) and (13) for the two integrands. Now P(0, t) = B(t), the births at time t, and 

the second integral represents the births at time t to women who were in the population at time 

zero. This quantity is exactly what we called G(t) in (4). H ence (15) becomes (4), one of the 

forms of the Lotka integral equation. 

Thus we see that using the method of characteristics to solve the partial differential equa.- 

tion leads directly to the integral equation (4). Formulating the problem via the McKendrick 

equation is a conceptual, rather than a practical, advance. It contributes to the theory a more 

thoroughgoing rationale. The partial differential equation is more transparent in its derivation 

than the renewal equation, and lends itself easily to variations. For example, one could make p 

both time- and age-dependent, and one could consider the effect of migration with an equation 

similar to (5): 

g + g = +(a, tp + f(a, t), (16) 

and the same solution procedure as before would lead to an equation analogous to (4). As a 

consequence of this clarity and flexibility, the McKendrick equation is now becoming a basic tool 

of mathematical modeling of nonlinear phenomena in demography and epidemiology. The reader 

is referred to the monographs of Hoppensteadt [14] and Webb [15] for some of the realizations of 

this approach. 

3. COMPARISON OF THE APPROACHES 

The partial differential equation (5) is often referenced as von Foerster [16]. Yet, in fact, it 

is given by McKendrick [17] fully 30 years earlier. In the pioneering and little-known article, 

McKendrick considers various transitions important in epidemology, and the simple case, a ho 

mogeneous epidemic with nonrecovery, is one of several. Yet his equation [17, p. 1221 is our (5) 

virtually in the same notation. Unwitting rediscovery by those who have not read the literature 

is common in science, especially in fields where the literature is scattered through many unlikely 

sources. Few demographers regularly follow the Proceedings of the Edinburgh Mathematical So- 
ciety. J. E. Cohen is the scholar who first drew our attention to the McKendrick article. As 

mentioned in the previous section, mathematicians working on nonlinear population models have 

also rediscovered the McKendrick formulation and are using it as a springboard for generalizations 

to nonlinear, interacting or nonequilibrium populations [14,15]. 

It is possible to unify the different approaches along the following lines. We claim that, in the 

context of arguing from the initial two postulates, the partial differential equation approach is 

fundamental. Conceptually, it expresses exactly the local consequences of the first postulate and 

the global consequences of the second, while distinguishing between the nature of the two rather 

dramatically. The local postulate of population evolution at positive ages is expressed by (5), a 

standard ‘balance of mass’ or ‘kinematic’ equation, familiar to all mathematicians who work in 

continuum modeling. Integration by the method of characteristics is equally familiar. 

On the other hand, the boundary condition (7) is unusual for first-order hyperbolic equations, 

and that it would lead to (4) is somewhat surprising. (By contrast, the reduction of a partial 

differential equation to an integral equation on the boundary is a common solution feature for 

elliptic equations such as the potential equation.) 

In particular, the integral equation (4) involves a compact operator; as a consequence, it is 

characterized by a discrete spectrum of eigenvalues, and the solution can be expressed as a 
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superposition of eigenfunctions. In fact, this is a principal tool used in solving it. The fact that 
the problem given by (5), (6), and (7) is equivalent to (4) shows that it, too, involves a compact 
operator. Since this need not be the case for a partial differential equation on an unbounded 
region, the boundary condition (7) has the remarkable property of making the problem compact. 
This is not true of standard boundary conditions for hyperbolic partial differential equations. 
(One interesting consequence is that the inverse problem is not well-posed [18].) 

The projection and matrix problems also have discrete spectra; however, they are finite- 
dimensional, and all finite-dimensional problems have this property. The fact that they are 
approximations to a compact operator helps justify the observation that the spectra are related 
to each other. 

Aside from straightening out the fact that McKendrick’s work was rediscovered unknowingly 
by von Foerster and cited as his, we draw attention to the different formulations. If the two 
discrete forms are taken to limiting values ss the interval of time and age shrinks to zero, the four 
methods are identical. Suppose one thinks of the discrete models as approximations (numerical 
approximations, for example) to the McKendrick model. In this light, there is no reason to couple 
the ‘mesh spacings’ of age and time, or even to discretize both simultaneously. Although it is not 
in common use for age-structured single-sex models, a ‘semidiscrete’ model 

dK(t) 
dt 

= AZ(t) (17) 

can be derived from (5) by simply aggregating the age dependence of 
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Under our assumption that the McKendrick model is exact, one could classify these and other 

matrix and approximate integral solutions by their order of accuracy and direction of bias. 

Do the four different approaches serve different purposes in the empirical study of population, or 

do they merely exemplify different mathematical methods? On the evidence of current research, 

it rather appears that they do serve diverse purposes. The Thompson-Cole difference equation, 

which is the least flexible of the models presented here, is mostly applied to animal populations. 

The Lotka equation and the McKendrick approach differ mainly in their treatment of the initial 

data, which is not expressed conveniently in the Lotka model. However, for many kinds of 

theoretical analysis, concerning ergodicity for example, the exact form of the initial population is 

immaterial, and the Lotka equation is exact. It is not surprising that the Lotka equation is widely 

used for this sort of analysis. That the Leslie matrix is used for routine population forecasting is 

surely a consequence of the fact that it utilizes data in the form available from standard census 

figures. It offers some possibility of generalization to nonstationary rates because of the existing 

highly developed theory of positive matrices [19], but does not adapt well to replacing linear by 

nonlinear models. 

The McKendrick approach was virtually not used at all, except by von Foerster in connection 

with cell division, until quite recently, when it has become the model of choice for mathematicians 

working on population dynamics and epidemiology models. Its virtues in this regard are twofold: 

on the one hand, its accurate distinction between local (in age and time) and nonlocal (in age, 

though not in time) implications of survivorship and fertility make it a very flexible tool for 

exploring more general assumptions of time-changing rates or nonlinear influences. In addition, 

it has the attribute of being exact with regard to discretization, and hence can be used to deduce a 

variety of approximation schemes, tailored to fit the form of the data or the computational power 

of the engine. Fortunately for those interested in applications, the amount of theory required to 

understand the solution of the basic partial differential equation model is not great. One looks 

forward to seeing the McKendrick equation become part of standard undergraduate courses in 

applied mathematics and a standard tool of mathematical demography. 

APPENDIX 

USE OF THE MCKENDRICK EQUATION TO 
DERIVE NUMERICAL APPROXIMATIONS 

If one identifies the Leslie matrix as resulting from a ‘numerical approximation’ to the McK- 
endrick equation, then other approximations can be devised. Several principles govern this pro- 
cedure. The main questions are how to approximate the spatial derivative and how to replace 
the time derivative. The standard spatial discretization in the Leslie method is a forward differ- 
ence: xj is the population between ages j and j + 1. Suppose we retain this, for convenience, 
and then look at the McKendrick equation along the characteristics, (10). (We take advantage 
of the fact that we are really dealing with an ordinary differential equation here.) A ‘forward 
Euler’ approximation to (10) is 

I’(s + 1) - P(s) = -p(a(s))P(s) 

and since P(s + 1) = P(a(s + l)),t(s + 1)) = $:, we get a survivorship matrix S with 

subdiagonal elements (bj is the element in the jth column and j + lSt row) 

The Leslie matrix has Lj/Lj_1 here. In fact, /.~j would have to be approximated by numerical 
differentiation [20 p. 2271, so one does not have exactly the same expression. 

On the other hand, the improved Euler approximation is 

I’(s + 1) - F(s) = -i (p(a(s))P(s) + p(a(s + l))P(s + 1)) 
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l - Pj12 
bj = 1+ (pj+1)/2' 

In principle, this is second order accurate, while the original approximation is only first order. 
However, it may be awkward to have an expression involving derivatives of e(z), which are harder 
to calculate and more sensitive to inaccuracies in the data than the integrals Lj. 

Rather than replace (18) by yet higher order approximations which will suffer from the same 
instability, an alternative approach is to use methods such as cell averaging which look at (5) as an 
equation evolving the ‘cell’ of population between mesh points (endpoints of age cohorts). Such 
methods were originally devised for conservation laws; the McKendrick equation is an example 
of a conservation law with a source term. Current research in scientific computing is directed at 
devising higher-order methods of this type, see [21,22]. 
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