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Introduction
Equations (non-thermal elasticity, no external forces):

Ut −∇xV = 0,

Vt − divx σ(U) = 0,

with

(x, t) ∈ R
d × [0,+∞), d ≥ 2

U ∈ R
d×d
+ − local deformation gradient,

V ∈ R
d − local velocity,

σ(U) − (First) Piola-Kirchhoff stress tensor,

σ(U) =
∂W

∂U
,

where

W : R
d×d → R

is an energy density function (hyperelastic material).



Physical constraint:

curlx U = 0.

Acoustic tensor:

N (ξ, U) = D2W (U)(ξ, ξ).

W is rank-one convex at U iff η⊤N (ξ, U)η > 0, for all η, ξ ∈ Rd. (Legendre-
Hadamard condition).

W rank-one convex in U =⇒ system is hyperbolic at U .



Subsonic phase-boundaries:

(U, V )(x, t) =

{

(U−, V −), x · N < st,

(U+, V +), x · N > st

N ∈ Sd−1, and s = shock speed, subsonic:

s2 < min{κj(N, U±) eigenvalues of N (N, U±)}.

Rankine-Hugoniot jump conditions:

−s[U ] − [V ] ⊗ N = 0,

−s[V ] − [σ(U)]N = 0

We require an additional kinetic rule of form

g((U−, V −), (U+, V +), s, N) = 0,

where g : Ω = (Rd×d
+ × Rd) × (Rd×d

+ × Rd) × R × Sd−1 → R. Summarize
RH conditions + kinetic rule as:

h((U−, V −), (U+, V +), s, N) = 0



Static configuration:

(U∗, V ∗)(x, t) =







(UA,0), x · N∗ < 0,

(UB,0), x · N∗ > 0

UA 6= UB local minima of W . E.g. double well potential, martensitic configu-
ration below critical temperature.

Motion: X : Ω × [0,+∞) → Rd (Ω = reference configuration), so that U =

∇xX, V = Xt for all (x, t) ∈ Ω × [0,+∞).

Continuity of tangential derivatives of X ⇒ UB = UA + v ⊗ BN∗ for some
v ∈ Rd (i. e. UA and UB are rank-one connected ).



Hypotheses:

(H1) W is rank-one convex at U (local hyperbolicity).

(H2) ∀Ũ ∼ U , ∀ξ ∈ Rd, ξ 6= 0, the eigenvalues of N (ξ, Ũ) are all semi-simple
and their multiplicity is independent of Ũ and ξ (symmetrizability constant
multiplicity –Métivier (2000)–).

(H3) h((U−, V −), (U+, V +), s, N) = 0, (RH jump + kinetic conditions)

(H4) The (d2 + d + 1) × 2(d2 + d) matrix
(

d(U+,V +)h , d(U−,V −)h
)

|
((U−,V −),(U+,V +),s,N)

has full rank (non-degeneracy condition – Coulombel (2003)–).



Assumptions on the equilibrium configuration:

(E1) ∃UA 6= UB in R
d×d
+ , local minima of W , rank-one connected. W is rank-

one convex both at UA and UB.

(E2) Symmetrizability with constant multiplicity holds at both UA and UB. More-
over, h = 0 and the non-degeneracy condition of h hold at
((UA,0), (UB,0),0, N∗).



Theorem 1 For every U ∈ R
d×d
+ satisfying hyperbolicity and any subsonic pair

(s, N) ∈ R × Sd−1, there exist continuous mappings (analytic for Re λ > 0)

R̂s
s,N(U) : ΓN → C

2d×d, R̂u
s,N(U) : ΓN → C

2d×d,

Ms,N(U) : ΓN → C
2d×2d, Ks,N(U) : ΓN → C

(d2+d)×2d,

on ΓN := {(λ, ξ) ∈ C×Rd−1 : Re λ ≥ 0, ξ ·N = 0, |λ|2+ |ξ|2 = 1} so that
the following holds: (i) For any subsonic phase boundary satisfying previous
hypotheses for U = U− and U = U+, the stability behaviour is controlled by
the Lopatinski function

∆̂(U−, U+) = det

(

R̂s
s,N(U−) Q̂(U−, U+) R̂u

s,N(U+))

p̂−(U−, U+) q̂(U−, U+) p̂+(U−, U+)

)

: ΓN → C,

Q̂(U−, U+)(λ, ξ) :=

(

[U ]N
−(λs[U ]N + i[σ(U)]ξ)

)

,

q̂(U−, U+)(λ, ξ) := −λ(dsg) + i(ξ · dN)g,

p̂−(U−, U+)(λ, ξ) := −(d(U−,V −)g)Ks,N(U−)R̂s
s,N(U−),

p̂+(U−, U+)(λ, ξ) := (d(U+,V +)g)Ks,N(U+)R̂u
s,N(U+) .



More precisely: (i)1 If ∆̂(U−, U+) has no zero on ΓN , then the phase bound-
ary is nonlinearly stable.
(i)2 If ∆̂(U−, U+) vanishes for some (λ, ξ) ∈ ΓN with Re λ > 0, then the
phase boundary is strongly unstable.

(ii) M and K are given by simple explicit formulae in terms of first and second
derivatives of W . R̂s and R̂u represent the left and right stable and unstable
spaces of M. In their whole domain of definition, given by

−κmin(N, U) < s < κmin(N, U),

Ms,N(U),Ks,N(U), R̂s
s,N(U), R̂u

s,N(U), depend continuously on (U, s, N).



Corollary 1 If W , UA and UB satisfy the hypotheses for the equilibrium con-
figuration, then the dynamic stability of the static phase boundary is uniformly
controlled by the static-case Lopatinski function

∆̂(UA, UB) : ΓN∗ → C,

in the sense that if ∆̂(UA, UB) has no zero on ΓN∗, then any phase boundary
with h = 0 and (U−, U+) sufficiently close to (UA, UB) is nonlinearly stable,
while if ∆̂(UA, UB) vanishes for some (λ, ξ) ∈ ΓN∗ with Re λ > 0, then any
such phase boundary is strongly unstable.



Theorem 2 Under the assumptions of Theorem 1, the left stable and the left
unstable spaces of Ms,N(U) are represented by mappings

L̂s
s,N(U) : ΓN → C

d×2d, L̂u
s,N(U) : ΓN → C

d×2d,

with the same regularity properties as the R̂s
s,N(U), R̂u

s,N(U). Moreover, we
can define (lower-order) (d + 1) × (d + 1) determinants in terms of the “left”
stable/unstable bundles Lu,s, namely ∆s,∆u, such that they are equivalent
to ∆̂(U−, U+),

∆̂(U−, U+) ∼ ∆̂u(U−, U+) ∼ ∆̂s(U−, U+),

in the sense that the three differ from each other only by non-vanishing factors.



Motivation:

• Studies of moving phase boundaries for two-phase fluids by S. Benzoni-
Gavage (Nonl. Anal. 1998, ARMA 1999, Phys. D. 2001), S. Benzoni-
Gavage and H. Freistühler (ARMA 2004).

• Static theory of two-phase elastic media, e.g. Müller (LN Springer 1999),
Ball, James.

• Nonlinear stability theory for planar shocks is available Majda (1983,1984)
and Métivier (1990,1999) (classical shocks), Freistühler (1998), Coulombel
(2003) (u.c. shocks).

Remark: Kinetic relation is prescribed a priori. Contribution provides a criterion
for modeling dynamics of phase boundaries.



Part 1: Normal modes analysis

Hyperbolic system of conservation laws

ut +
d
∑

j=1

fj(u)xj = 0,

A(ξ, u) :=
d
∑

j=1

ξjAj(u), Aj(u) := Dfj(u),

hyperbolic (diag. over R), a1(u; ξ) ≤ · · · ≤ an(u; ξ), fixed multiplicities
α1, . . . , αn.

Shock front:

u(x, t) =







u+, if x · N > st,

u−, if x · N < st,



Assume s non-characteristic. Counting “out-going modes”

aj(N, u−) < s < ak(N, u−) for all j ≤ o−, k > o−,

aj(N, u+) < s < ak(N, u+) for all j ≤ n − o+, k > n − o+,

for some o±, we can define

l := o+ + o− + 1 − n =







0 Lax shock,

> 0 u.c. shock

In the u.c. case we augment the RH conditions with l “kinetic conditions”

0 = h(u+, u−, s, N) :=

(

−s[u] + [f(u)]N

g(u+, u−, s, N)

)

,

g is a Rl valued function of its parameters.



Majda-Métivier theory: the nonlinear stability of shock fronts is controlled by
the Lopatinski conditions (Kreiss (1971), Sakamoto (1971)):

Uniformly stable: ∆(λ, ξ) 6= 0, for all (λ, ξ) ∈ ΓN ,
Weakly stable: ∆(λ, ξ) 6= 0, for all (λ, ξ) ∈ ΓN ∩ {Re λ > 0},

Strongly unstable: ∆(λ, ξ) = 0 for some (λ, ξ) ∈ ΓN ∩ {Re λ > 0}

where

ΓN := {(λ, ξ) ∈ C × R
d : Re λ ≥ 0, ξ · N = 0, |λ|2 + |ξ|2 = 1},

∆ = det

(

Rs
− Q Ru

+

−(du−g)(A−
N − sI)−1Rs

− q (du+g)(A+
N − sI)−1Ru

+

)

(Lopatinski determinant)



q = q(λ, ξ) = −λ(dsg) + i(dNg)ξ

Q = Q(λ, ξ) = λ[u] + i[f(u)]ξ

Columns of R
s,u
± (λ, ξ) span the stable/unstable spaces of

(λI + iA(ξ, u±))(A(N, u±) − sI)−1.

The analysis is performed by a Fourier decomposition of the constant coeffi-
cients linearized problem, and the theory of hyperbolic initial boundary value
problems (ala Kreiss).



Part 2: Hyperlasticity case and the space G

Notation:

Uj = j-th column of U .

Stress tensor:

σ(U)j = WUj

Second derivatives:

B
j
i (U) :=

∂σj

∂Ui
=









WU1jU1i
· · · WU1jUdi... ...

WUdjU1i
· · · WUdjUdi









∈ R
d×d.

Bi
i is symmetric, (Bi

j)
⊤ = B

j
i .



Then,

fj(U, V ) := −





















0
...
V
...
0

σ(U)j





















∈ R
d2+d, j = 1, . . . , d,

Aj(U) = dfj(U) = −





















0

0
...
I
...
0

B
j
1(U) · · · B

j
d(U) 0





















∈ R
(d2+d)×(d2+d)

Notice the 0 mode.



Under hyperbolicty and symmetrizability with constant multiplicity, for any N ∈

Rd \ {0}, the characteristic speeds of A(N, U) are

1. a0(N, U) = 0 with constant algebraic multiplicity α0 = d2 − d, and

2. a±j (N, U) = ±
√

κj(N, U), j = 1, . . . , m, where κj are the m distinct
semi-simple eigenvalues of N , m ≤ d, with constant multiplicities αj, and
with

∑

αj = d.

3. Assuming subsonicity, and denoting o−, o+, l as before, a phase bound-
ary of speed s > 0 (resp. s < 0) has

o− = d, o+ = d2, l = 1 (resp. o− = d2, o+ = d, l = 1).



W.l.o.g assume N = e1. Suppose W is hyperbolic at U , s subsonic with
respect to (e1, U).

Matrix field:

A(U, s, λ, ξ̃) = C(s)−1(λI + i
∑

j 6=1

ξjAj(U))(A1(U) − sI)−1C(s)

where

C(s) :=







Id 0 0
0 s Id2−d 0

0 0 Id





 ,

Time-space frequencies:

Γ = {(λ, ξ̃) ∈ C × R
d−1 : Re λ ≥ 0, |λ|2 + |ξ̃|2 = 1}

Here ξ = (0, ξ̃) ⊥ e1



Note

C(s)−1(A1 − sI) =

















−sI 0 · · · 0 −I

0 −I · · · 0 0
... ... . . . ... ...
0 0 · · · −I 0

−B1
1 −B1

2 · · · −B1
d −sI

















(A1 − sI)−1C(s) =

















−sB̂ −B̂B1
2 · · · −B̂B1

d B̂

0 −I · · · 0 0
... ... . . . ... ...
0 0 · · · −I 0

B̂B1
1 sB̂B1

2 · · · sB̂B1
d −sB̂

















,

where

B̂(s) := (s2 − B1
1)

−1

are analytic matrix-fields for all subsonic s, including s = 0.



Define on Γ the 2d dimensional bundle

G(λ, ξ̃) :=

{

















λY

iξ2Y
...

iξdY

Z

















: Y, Z ∈ C
d
}

Whence:

• G is invariant for A.

• dim G = 2d

• The action of A on G,

M(U, s, λ, ξ̃)

(

Y

Z

)

:=

(

M1
1 M2

1
M1

2 M2
2

)(

Y

Z

)

=

(

Ỹ

Z̃

)

,

has the d × d-block components:



M1
1 := −B̂(λsI + i

∑

j 6=1

ξjB
1
j ),

M2
1 := B̂,

M1
2 := (λsI + i

∑

j 6=1

ξjB
j
1)B̂(λsI + i

∑

j 6=1

ξjB
1
j ) − λ2I −

∑

i,j 6=1

ξiξjB
i
j,

M2
2 := −(λsI + i

∑

j 6=1

ξjB
j
1)B̂

M is well-defined and smooth for all subsonic s including 0.

The restriction A|G has a unique analytic extension to s = 0, even though A

is not defined there.



We investigate only those modes of A(U, s, ·, ·) the amplitudes of which lie in
G.

Lemma 1 For (λ, ξ̃) ∈ Γ and s subsonic, the eigenvalues −iµ of M(U, s, λ, ξ̃)

satisfy

det(Ñ (µ, ξ̃, U) + (iµs − λ)2I) = 0,

and (Y, Z)⊤ ∈ C2d is an eigenvector of M if and only if

Y ∈ ker(Ñ (µ, ξ̃) + (iµs − λ)2I), Y 6= 0, and

Z =

(

s(λ − iµs)I + iµB1
1 + i

∑

j 6=1

ξjB
1
j

)

Y.

Moreover, for Re λ > 0, d of these eigenvalues (counting multiplicities) have
Im µ > 0, while the remaining d of them have Im µ < 0.



Lemma 2 The matrix M satisfies the block structure assumption of Majda.

(This follows form the results of Métivier (2000)).

Consequence: the stable/unstable bundles can be extended continuously to
Re λ = 0.

Lemma 3 There exist continuous mappings (analytic for Re λ > 0)

R̂u
s(U) : Γ → C

2d×d, L̂u
s(U) : Γ → C

d×2d,

R̂s
s(U) : Γ → C

2d×d, L̂s
s(U) : Γ → C

d×2d,

with L̂u
s(U)R̂u

s(U) = Id, L̂
s
s(U)R̂s

s(U) = Id, spanning right and left invariant
spaces of M(U, s, λ, ξ̃), spaces that are unstable, respectively stable (at least)
for Re λ > 0. The matrix fields

R̂u
s(U), L̂u

s(U), R̂s
s(U), L̂s

s(U)

depend continuously on U and s ∈ (−
√

κmin(e1, U),
√

κmin(e1, U)).



The whole characteristic polynomial of A is

π(µ) = (iµs − λ)d2−d det(Ñ (µ, ξ̃) + (iµs − λ)2I).

Thus, there is also a Lopatinski frequency

β∗ = −iµ∗ = −
λ

s
,

that creates a bad singularity around s = 0.

However, thanks to the curl-free constraint, the Fourier analysis can be per-
formed on a 2d-dimensional space excluding the blowing-up Lopatinski fre-
quency µ∗. And this bundle is precisely G!



Lemma 4 If

(U, V )(x, t) = (Û(x1 − st), V̂ (x1 − st)) exp(iξ̃ · x̃ + λt),

are solutions to the equations and curl U = 0, where x = (x1, x̃), x̃ =

(x2, . . . , xd) ∈ Rd−1 and (λ, ξ̃) ∈ Γ, then, necessarily,

C(s)−1(A1 − sI)(Û(·), V̂ (·))⊤ ∈ G(λ, ξ̃).

We “cut down” the modes associated to the singular mode µ∗ in the original
expression of ∆, resulting into an equivalent uniform Lopatinski condition in
terms of a lower-dimensional determinant containing the representative modes
compatible with the constraint.



For all (λ, ξ) ∈ Γ there is an isomorphism J (λ, ξ̃) : C2d → G

J =

















λI 0
iξ2I 0

... ...
iξdI 0
0 I

















,

which translates between G to its natural coordinates.

The stable/unstable bundles of M “lift” to stable/unstable bundles of A

Řs(λ, ξ̃) := J (λ, ξ̃)R̂s(λ, ξ̃),

Řu(λ, ξ̃) := J (λ, ξ̃)R̂u(λ, ξ̃).

which are compatible with the constraint. It suffices to work with the R̂’s di-
rectly.



All the ingredients of the Lop. determinant have equivalent representations.

Q =

















λ[U1]
isξ2[U1]

...
isξd[U1]

−(λs[U1] + i
∑

j 6=1 ξj[σ(U)j])

















.

Q = C(s)J Q̂ with Q̂ =

(

[U1]
−(λs[U1] + i

∑

j 6=1 ξj[σ(U)j])

)

,

and we work directly with Q̂. The matrix field K(U±) of the theorem is defined,
consequently, as

K(U±) := (A1(U
±) − sI)−1C(s)J .

By existent nonlinear theory, this shows Theorem 1.



Part 3: An example

Dimension d = 2 (two-dimensional crystal lattice)

W (U) = 1
8(β1 − (1 + δ2))2 + (β2 − 1)2 + γ(β2

3 − δ2)2,

with

β1 := |U1|
2, β2 := |U2|

2, β3 := U⊤
1 U2,

Uj = j-th column of U , γ > 0, δ 6= 0.

W is rank-one convex at the two wells

UA =

(

1 0
−δ 1

)

, UB =

(

1 0
δ 1

)

,

rank-one connected.

This W satisfies all previous hypotheses, plus “frame-indifference”.



Kinetic relation: generalized Hugoniot rule (conservation of energy)

g = [W (U)] − N⊤[U ]⊤〈σ(U)〉N.

Here 〈f〉 denotes 1
2(f

+ + f−) for any f .

Perturbations of it:

g = [W (U)] − N⊤[U ]⊤〈σ(U)〉N + g̃,

where g̃ ∈ C1 satisfies,

g̃ = 0 for s = 0,

g̃ > 0 for s < 0, g̃ < 0 for s > 0,

and, dsg̃ < 0.

E.g. (artificial example): g̃ = −ǫs, with ǫ > 0.



We can compute numerically the mapping

λ 7→ ∆̂(λ,±1)

for a appropriately normalized version of ∆̂, and λ along a suff. large contour

Cρ = C+
ρ ∪ C0

ρ ,

with

C+
ρ := {λ ∈ C ; |λ| = ρ, Re λ > 0} (half circle),

C0
ρ := {λ ∈ C ; λ = iτ, τ ∈ [−ρ, ρ]} (imaginary axis),

for some ρ > 0.



−1.5 −1 −0.5 0 0.5 1 1.5 2
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−2

−1

0

1

2

3

Values of normalized ∆0 for λ ∈  i[−2,2]

Re ∆0

Im
 ∆

0
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4
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Curve ∆0 for λ in Cρ, ρ =2, δ = 1, γ = 1, ξ = +1

Re ∆0

Im
 ∆

0



−1.5 −1 −0.5 0 0.5 1 1.5 2
−5

−4

−3

−2

−1

0

1

2

3

4

5
Curve ∆ε for λ = iτ, τ ∈  [−2,2], ρ =2, ε = 0.75

Re ∆0
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 ∆

0
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0

2

4

6

8
Curve ∆ε for λ = iτ, τ ∈  [−2,2], ρ =2, ε = 0.75

Re ∆0

Im
 ∆

0



The end.
Thanks.



1. How to show that M satisfies the block structure of Majda. Have to check
(Métivier (2000)) the conditions:

(i) When η > 0, then det(iµI + M(z)) 6= 0, for all µ ∈ R.

(ii) When z ∈ R
d×d
+ ×R×Σ0, then for all µ ∈ R such that det(iµI+M(z)) =

0, there are a positive integer α ∈ Z+ and C∞ functions ν(µ, ξ̃, U, s) and
θ(z, µ) defined on neighborhoods of (µ, ξ̃, U, s) in C×Rd−1×R

d×d
+ ×R,

and (z, µ) ∈ O × C, respectively, holomorphic in µ and such that

det(iµI + M(z)) = θ(z, µ)(η + iτ + iν(µ, ξ̃, U, s))α.

Moreover, ν is real when µ is real, and θ(z, µ) 6= 0. In addition, there is a
C∞ matrix-valued function P(µ, ξ̃, U, s) on a neighborhhod of (µ, ξ̃, U, s),
holomorphic in µ, such that P is a projection of rank α and

ker(iµI + M̄(z)) = P(µ, ξ̃, U, s)C2d,

when η + iτ + iν(µ, ξ̃, U, s) = 0.



The appropriate projections are given by Πj : Cd → Cd, defined as

Πj(µ, ξ̃, U) := −
1

2πi

∫

|ζ−κj(µ,ξ̃,U)|≤ε
(N (µ, ξ̃, U) − ζ)−1 dζ,

with ε > 0 sufficiently small, is a projector of constant rank αj, C∞ function of
(µ, ξ̃, U), for (µ, ξ̃) 6= (0,0). Thus,

ker(N (µ, ξ̃, U) − (τ − µs)2I) = Πj(µ, ξ̃, U)Cd,

and define Pj(µ, ξ̃, U, s) : C2d → C2d as

Pj(µ, ξ̃, U, s) :=

(

Πj(µ, ξ̃, U) 0

i(s(τ − µs)I + µB1
1 +

∑

k 6=1 ξ
k
B1

k)Πj(µ, ξ̃, U) 0

)

and,

ker(iµI + M(z)) = Pj(µ, ξ̃, U, s)C2d.



2. How to decrease the order of Lopatinski determinants

∆ = det

(

Rs
− Q Ru

+

−(du−g)(A−
N − sI)−1Rs

− q (du+g)(A+
N − sI)−1Ru

+

)

First, if l > 0, multiplying the upper block from the left by (du−g)(A−
N − sI)−1

and subtracting from the lower l × (n + l) block, we get a matrix of form
(

Rs
− Q Ru

+
0 qu pu

)

.

Observing,






(Rs
−)⊤ 0

Lu
− 0

0 I







(

Rs
− Q Ru

+
0 qu pu

)

=







(Rs
−)⊤Rs

− ∗ ∗
0 Lu

−Q Lu
−Ru

+
0 qu pu





 ,

we get



∆u := det

(

Lu
−Q Lu

−Ru
+

qu pu

)

,

where

pu :=
(

(du+g)(A+
N − sI)−1 + (du−g)(A−

N − sI)−1
)

Ru
+,

qu := q + du−g (A−
N − sI)−1Q.

Same procedure for a reduction on the right column.


