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1 Introduction

1.1 Equations and Assumptions

Consider the equations of nonthermal elasticity with no external forces,

Ut −∇xV = 0,
Vt − divx σ(U) = 0,

(1)

where (x, t) ∈ Rd × [0,+∞), d ≥ 2, U ∈ Rd×d
+ is the local deformation

gradient, and V ∈ Rd is the local velocity. Equation (1) is subject to the
constraints

curlx U = 0. (2)

In (1), σ = σ(U) denotes the first Piola–Kirchhoff stress and is supposed
to derive from a stored-energy density function W : Rd×d

+ → R as σ(U) =
∂W/∂U . System (1) is hyperbolic at U if W is rank-one convex at U [Ci88],
i.e., if the acoustic tensor N (U, ξ) := D2W (U)(ξ, ξ) is positive definite for all
ξ ∈ Rd. We are interested in the stability of subsonic phase boundaries, which
are weak solutions to (1) of form

(U, V )(x, t) =

{
(U−, V −), x ·N < st,

(U+, V +), x ·N > st,
(3)

with direction of propagationN ∈ Sd−1, and speed s satisfying the subsonicity
condition

0 ≤ s2 < min {eigenvalues of (N (U±, N))}. (4)

Note that s = 0 is included in definition (4). Configurations (3) are subject
to the classical Rankine–Hugoniot jump conditions

−s[U ]− [V ]⊗N = 0,
−s[V ]− [σ(U)]N = 0,

(5)
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expressing conservation across the front. In addition, solutions (3) are required
to satisfy an additional jump condition or kinetic rule

g((U−, V −), (U+, V +), s,N) = 0, (6)

where g is real-valued and continuously differentiable. We can assemble both
the Rankine–Hugoniot and the kinetic jump conditions into one vector relation
h((U−, V −), (U+, V +), s,N) = 0, where h takes values in Rd2+d+1.

Due to its importance for applications, we pay special attention to the
static configuration

(U, V )(x, t) =

{
(UA, 0), x ·N∗ < 0,

(UB, 0), x ·N∗ > 0,
(7)

again with N∗ ∈ Sd−1, and where UA 
= UB ∈ Rd×d
+ corresponds to marten-

sitic wells, local minima of W , and, by physical considerations [Mu99], rank
one connected: rank (UA − UB) = 1.

For applicability of the existing stability theory for subsonic undercompres-
sive shocks [Me90, Co03] we assume also the constant-multiplicity condition
of Métivier [Me00], namely, that the eigenvalues of N (U, ξ) are all semi-simple
and their multiplicities are independent of U and ξ, locally; and the nonde-
generacy of the jump relations, introduced by Coulombel [Co03], requiring the
matrix (d(U+,V +)h, d(U−,V −)h) to have full rank.

1.2 The Lopatinski Determinant

Thanks to the fundamental work of Majda and Métivier [Ma83, Me90, Me01],
the nonlinear stability of shock fronts like (3) is determined by the Lopatinski
conditions of linear hyperbolic problems [K71]. The Majda–Métivier theory
has been extended to general undercompressive shocks [F98, Co03], and sub-
sonic phase boundaries like (3) fit into this setting. The starting point of these
analyses is the Fourier decomposition in normal modes of the constant coef-
ficients linearized problem at the end states, leading to the analysis of the
so-called Lopatinski determinant. If A±

ξ =
∑
A±

j ξj denotes the linearization
of system (1) in direction ξ ∈ Rd at (U±, V ±), one may verify (see [F98]) that
for subsonic phase boundaries (3) with s 
= 0, the Lopatinski (or stability)
function [Ma83] takes the form of the (d2 + d+ 1)× (d2 + d+ 1) determinant

∆(λ, ξ) = det
(

Rs
− Q Ru

+

−(du−g)(A−
N − sI)−1Rs

− q (du+g)(A+
N − sI)−1Ru

+

)
, (8)

where (λ, ξ) ∈ ΓN := {Reλ ≥ 0, ξ · N = 0, |λ|2 + |ξ|2 = 1}; Q and q are
the “jump vector” fields associated to conditions (5) and (6), respectively (see
[FP05]); Rs,u

± (λ, ξ) denotes the right invariant stable/unstable subspaces of
A±(λ, ξ) = (λI + i

∑
ξjA

±
j )(A±

N − s)−1. In [FP05] we establish the following,



Normal Modes of Elastic Phase Boundaries 843

Theorem 1. For ((U+, V +), (U−, V −), s,N), g and W satisfying hyperbol-
icity, constant-multiplicity, and subsonicity assumptions, together with jump
conditions (5) and (6), the stability behavior of (3) is determined by the
stability function

∆̂(U−, U+) = det
(
R̂s

s,N (U−) Q̂ R̂u
s,N (U+))

p̂− q̂ p̂+

)
: ΓN → C, (9)

in which Q̂(λ, ξ) :=
(

[U ]N
−(λs[U ]N + i[σ(U)]ξ)

)
,

q̂(λ, ξ) := −λ(dsg) + i(ξ · dN )g,

p̂−(λ, ξ) := −(d(U−,V −)g)Ks,N (U−)R̂s
s,N (U−),

p̂+(λ, ξ) := (d(U+,V +)g)Ks,N (U+)R̂u
s,N (U+),

in the sense that if ∆̂ has no zero on ΓN , then (3) is nonlinearly stable; if ∆̂
vanishes for some (λ, ξ) ∈ ΓN with Reλ > 0, then (3) is strongly unstable;
and, if ∆̂ does not vanish on ΓN ∩ {Reλ > 0} then (3) is weakly stable. ∆̂
is a (2d+ 1)× (2d+ 1) determinant, in which R̂s and R̂u represent the right
stable and unstable spaces of a matrix field Ms,N (U) : ΓN → C2d×2d, and
Ks,N denotes a continuous mapping Ks,N : ΓN → C(d2+d)×2d. M and K are
given by explicit formulae in terms of the first and second derivatives of W .
Moreover, M, R̂s, R̂u and K depend continuously on (U, s,N) in their domains
of definition, which is given by

s2 < min {eigenvalues of N (U,N)}

(including s = 0).

Corollary 1. If W , g, UA, and UB satisfy the hypotheses of Theorem 1 for the
equilibrium configuration with s = 0, then the dynamic stability of the phase
boundary (7) is uniformly controlled by the static-case Lopatinski function

∆̂(UA, UB) : ΓN∗ → C,

in the sense detailed in Theorem 1.

Remark 1. Theorem1 states that it suffices to perform the normal modes anal-
ysis on a sub-bundle G of amplitudes. This simplifies the analysis greatly. In
particular, G is also regular in the characteristic limit s = 0, including static
configurations into the analysis. This last feature is highlighted in Corollary1
because of its importance. The theorem and the corollary offer a contribution
to the problem of modeling phase-boundary dynamics in real materials, in
the sense that any kinetic rule which does not satisfy such a multidimensional
stability condition can hardly be accepted as a mathematical description of
stably moving boundaries.
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2 The Normal Modes Analysis

Let us specify the notation used in [FP05]. Uj will denote the jth column
of U , and, accordingly, the stress tensor has columns σ(U)j = WUj . {ej}
denotes the canonical basis of Rd. We gather the second derivatives of W into
the following Rd×d matrices Bj

i (U) := ∂σj/∂Ui, whose (l, k)-component is
∂2W/∂Ulj∂Uki. Clearly, Bi

i is symmetric, and (Bi
j)

� = Bj
i . Then, the fluxes

and Jacobians of system (1) are expressed as,

fj(U, V ) := −

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
...
V
...
0

σ(U)j

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, Aj(U) = Dfj(U) = −

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
0

0
...
I
...
0

Bj
1(U) · · · Bj

d(U) 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Notice the high multiplicity characteristic zero mode. Under hyperbolicity
and symmetrizability with constant multiplicity, for any N ∈ Rd \ {0}, the
characteristic speeds of

∑
Aj(U)Nj are: a0(N,U) = 0 with constant algebraic

multiplicity α0 = d2 − d, and a±j (N,U) = ±
√
κj(N,U), j = 1, . . . ,m, where

κj are the m distinct semi-simple eigenvalues of N , m ≤ d, with constant
multiplicities αj , satisfying

∑
αj = d. Hence, the planar front corresponds

to an undercompressive shock with degree of undercompressivity l = 1 (see
[F95]).

2.1 The Space GGG

Without loss of generality assume N = e1. Suppose W is hyperbolic at U , s
subsonic with respect to (e1, U). The squares of the characteristic speeds are
therefore the positive eigenvalues of B1

1(U). The set of time–space frequencies
is thus Γ = {(λ, ξ̃) ∈ C× Rd−1 : Reλ ≥ 0, |λ|2 + |ξ̃|2 = 1}. We are interested
in the matrix field

A(U, s, λ, ξ̃) = C(s)−1(λI + i
∑
j �=1

ξjAj(U))(A1(U)− sI)−1C(s),

where

C(s) :=

⎛⎝Id sId2−d

Id

⎞⎠.
Denote B̂(s) := (s2−B1

1)
−1 (its invertibility is guaranteed by subsonicity, and

it is regular at s = 0). It is easy to verify that the matrix fields C(s)−1(A1−sI)
and (A1 − sI)−1C(s) are analytic for all subsonic s, including s = 0 [FP05].
Define on Γ the 2d-dimensional bundle

G(λ, ξ̃) :=
{
(λY, iξ2Y, . . . , iξdY, Z)� : Y, Z ∈ Cd

}
. (10)



Normal Modes of Elastic Phase Boundaries 845

Lemma 1 ([FP05]). For (λ, ξ̃) ∈ Γ and s subsonic, G is an invariant subspace
for A, and the 2d× 2d matrix field M(U, s, λ, ξ̃) =

(M1
1 M2

1
M1

2 M2
2

)
that expresses the

action of A on G has the d× d-block components

M1
1 := −B̂(λsI + i

∑
j �=1

ξjB
1
j ), M2

1 := B̂,

M1
2 := (λsI + i

∑
j �=1

ξjB
j
1)B̂(λsI + i

∑
j �=1

ξjB
1
j )− λ2I −

∑
i,j �=1

ξiξjB
i
j,

M2
2 := −(λsI + i

∑
j �=1

ξjB
j
1)B̂,

being M well defined and smooth for all subsonic s including 0. Moreover, the
eigenvalues −iµ of M(U, s, λ, ξ̃) satisfy det(N (U, µ, ξ̃)+(iµs−λ)2I) = 0, with
the property that for Reλ > 0, d of these eigenvalues (counting multiplicities)
have Imµ > 0, while the remaining d have Imµ < 0. Finally, (Y, Z)� ∈ C2d

is an eigenvector of M if and only if

Y ∈ ker(N (U, µ, ξ̃) + (iµs− λ)2I), Y 
= 0 and

Z =
(
s(λ − iµs)I + iµB1

1(U) + i
∑
j �=1

ξjB
1
j (U)

)
Y.

Remark 2. The restriction M = A|G has a unique analytic extension to s = 0,
even though A is not defined there. As a result, we only investigate the modes
of A(U, s, ·, ·) whose amplitudes lie in G. Another feature of M is the following.

Lemma 2 ([FP05]). The matrix M satisfies the block structure assumption of
Majda [Ma83].

Remark 3. The last lemma follows from adapting the results of Métivier
[Me00] to our setting. In [Cor93], Corli showed that A satisfies the block
structure condition for noncharacteristic speeds s, i. e. excluding s = 0. (This
is also a direct consequence of a later general theorem in [Me00].) Note that
A has a singular eigenvalue β∗ = −λ/s, and that the corresponding mode is
exactly what is avoided by our restriction to G.

The significance of Lemma 2 is that the restriction A|G satisfies the block
structure also in the characteristic limit s = 0, allowing the construction of
Kreiss’ symmetrizers [K71, Me90, Co03] for the static case.

Therefore, the stable/unstable bundles of M, namely R̂s,u(λ, ξ), have
dimension 2d each, and have continuous representations in all Γ (including
Reλ = 0), and for all subsonic s ≥ 0, as required in Theorem 1. The key point
regarding the case s = 0 now is the fact that thanks to the curl-free constraint
(2), the Fourier analysis can be performed on the 2d-dimensional bundle G.

Indeed, if (U, V )(x, t) = (Û(x1−st), V̂ (x1−st)) exp(iξ̃ · x̃+λt) are normal
modes solutions to (1) and (2) (where x = (x1, x̃), x̃ ∈ Rd−1 and (λ, ξ̃) ∈ Γ ),
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then necessarily, C(s)−1(A1 − sI)(Û(·), V̂ (·))� ∈ G (see [FP05]). One checks
that (9) represents (8) in the restriction to G. Then Theorem 1 and Corollary
1 follow from existing nonlinear theory [Co03, Me90, Ma83]. See [FP05] for
details.

3 An Example: Martensite Twins

As an illustration, consider a crystal in two dimensions which is described by
an energy function of form

W (U) = 1
8 (β1 − (1 + δ2))2 + (β2 − 1)2 + γ(β2

3 − δ2)2, (11)

with β1 := |U1|2, β2 := |U2|2, β3 := U�
1 U2, with γ > 0, δ 
= 0. W is rank-one

convex at the two rank-one connected (“martensitic”) wells

UA = I − δe2 ⊗ e1, UB = I + δe2 ⊗ e1.

(Family (11) is also used to model orthorhombic to monoclinic phase transfor-
mations [Lu96]. The interest here is in martensite–martensite phase bound-
aries, however.) Each such W satisfies all previous hypotheses, plus “material
frame-indifference”. In particular (11) has constant multiplicity near UA and
UB in an open nonempty set of the parameters (γ, δ) (see [FP06]). The choice
of the kinetic relation is crucial. Motivated by the classical Hugoniot rule of
fluid dynamics (see for example [W49] and, for use in connection with phase
boundaries [B98, B99]), we consider a generalized Hugoniot rule

g = [W (U)]−N�[U ]�〈σ(U)〉N.

This rule expresses conservation of energy across the front. Here 〈σ〉 = 1
2 (σ++

σ−). Also, we are interested in perturbations of the form g → g + g̃, where
g̃ ∈ C1 satisfies, (a) g̃ = 0 for s = 0; (b) g̃ > 0 for s < 0, g̃ < 0 for s > 0;
and (c) dsg̃ < 0. The family of perturbations is thus compatible with energy
considerations. As a paradigmatic (though artificial) example, we reckon g̃ =
−εs with ε > 0, as artificial energy dissipation at rate ε.

Using Lemma 1 to represent the stable/unstable bundles associated to the
static phase boundary, one can numerically compute the Lopatinski deter-
minant. As a first step in the stability analysis, we look at the mapping
λ �→ ∆̂(λ,±1) for an appropriately normalized version of ∆̂ of Corollary 1,
and λ along the imaginary axis. Figure 1 shows the computed values of ∆̂ for
(γ, δ) = (1, 1) and λ = iτ , τ ∈ [−2, 2]. The graph on the right shows the
values of ∆̂(iτ,+1), with dots for τ > 0, and with circles for τ < 0. It cor-
responds to conservation of energy as kinetic rule, depicting two zeroes along
the imaginary axis (weak stability). The graph on the right corresponds to
a perturbation of conservation of energy under g̃ = −εs with ε = 0.75, and
the zeroes are left out of the contour, suggesting strong stability. These obser-
vations (and the concurrent treatment in [FP06]) seem to indicate that in
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Fig. 1. Computed values of a normalized ∆̂(iτ, +1) for τ ∈ [−2, 2] under generalized
Hugoniot kinetics or conservation of energy (left), and corresponding values of ∆̂
under small perturbations of the kinetic rule (right)

the case of the generalized Hugoniot rule, the static boundary is dynamically
weakly stable, while it is strongly stable in the case of the above-mentioned
perturbations of the generalized Hugoniot rule. This is similar to the picture
for two-phase fluids [B98, B99]. Details will be provided in [FP06].
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