Ramón G. Plaza

Introduction

Viscous shock profiles

Spectral problem Two Evans functions Pointwise bounds fo the Green operator

Hyperbolic elliptic systems Hypothesis Results

Spectral stability (systems) Spectral probler Kawashima-type estimate

estimate

On the stability of radiative shock profiles*

Ramón G. Plaza

Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas Universidad Nacional Autónoma de México

SIAM Conference on Nonlinear Waves and Coherent Structures - NW10 Philadelphia, PA. August, 2010.

*Collaborators: C. Lattanzio, C. Mascia, T. Nguyen, K. Zumbrun. Partially supported by DGAPA-UNAM. Grant PAPIIT IN-109008.

Ramón G. Plaza

Introduction

Viscous shock profiles

Scalar case Spectral problem Two Evans functions Pointwise bounds for the Green operator Nonlinear analysis

Hyperbolic elliptic systems Hypothesis Results

Spectral stability (systems)

Spectral problem Kawashima-type estimate Goodman-type estimate

Introduction

Viscous shock profiles: (unabridged) history

Radiative shock profiles: scalar case Spectral problem Two Evans functions Pointwise bounds for the Green operator Nonlinear analysis

Hyperbolic-elliptic systems Hypothesis Results

Spectral estability for systems case Spectral problem Kawashima-type estimate Goodman-type estimate

Ramón G. Plaza

Introduction

Viscous shock profiles

Scalar case Spectral problem Two Evans functions Pointwise bounds for the Green operator Nonlinear analysis

Hyperbolic elliptic systems Hypothesis Results

Spectral stability (systems)

Spectral problem

estimate Goodman-type

• W. G. VINCENTI AND C. H. KRUGER, *Introduction to Physical Gas Dynamics*, Wiley & Sons, New York, 1965.

Euler-Poisson system (d = 1):

$$\rho_t + (\rho u)_x = 0,$$

$$(\rho u)_t + (\rho u^2 + p)_x = 0,$$

$$(\rho(e + \frac{1}{2}u^2))_t + (\rho u(e + \frac{1}{2}u^2) + pu)_x = -q_x,$$

$$-q_{xx} + aq + b(\theta^4)_x = 0,$$

(EP)

Radiative hydrodynamics

Ramón G. Plaza

Introduction

Viscous shock profiles

Scalar case Spectral problem Two Evans functions Pointwise bounds for the Green operator Nonlinear analysis

Hyperbolic elliptic systems Hypothesis Results

Spectral stability (systems)

Spectral problem Kawashima-type

Goodman-type estimate

W. G. VINCENTI AND C. H. KRUGER, *Introduction to Physical Gas Dynamics*, Wiley & Sons, New York, 1965. Euler-Poisson system (d = 1):

$$\rho_t + (\rho u)_x = 0,$$

$$(\rho u)_t + (\rho u^2 + p)_x = 0,$$

$$(\rho(e + \frac{1}{2}u^2))_t + (\rho u(e + \frac{1}{2}u^2) + pu)_x = -q_x,$$

$$-q_{xx} + aq + b(\theta^4)_x = 0,$$

(EP)

Radiative hydrodynamics

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Ramón G. Plaza

Introduction

Viscous shock profiles

Scalar case

Spectral problem Two Evans functions Pointwise bounds for the Green operator Nonlinear analysis

Hyperbolic elliptic systems Hypothesis Results

Spectral stability (systems)

Spectral problem Kawashima-type estimate Goodman-type estimate

- $\rho = mass density,$
- u = velocity,
- p =pressure,
- e = internal energy density,
- $\theta =$ temperature.

$$p=p(
ho, heta), \ e=e(
ho, heta): \quad p_
ho>0, \ p_ heta\neq 0, \ e_ heta>0.$$

 $q = \rho \chi_x$, radiative heat flux, $\chi =$ radiation energy density. a, b > 0: Absortion coefficient α ; Stefan-Boltzmann constant σ : $a = 3\alpha^2$, $b = 4\alpha\sigma$.

Ramón G. Plaza

Introduction

Viscous shock profiles

Scalar case

Spectral problem Two Evans functions Pointwise bounds for the Green operator Nonlinear analysis

Hyperbolicelliptic systems Hypothesis Results

Spectral stability (systems)

Spectral problem Kawashima-type estimate Goodman-type estimate

- $\rho = mass density,$
- u = velocity,
- p =pressure,
- e = internal energy density,
- $\theta =$ temperature.

$$p=p(
ho, heta),\,e=e(
ho, heta):\quad p_
ho>0,\,p_ heta
eq 0,\,e_ heta>0.$$

 $q = \rho \chi_x$, radiative heat flux, $\chi =$ radiation energy density. a, b > 0: Absortion coefficient α ; Stefan-Boltzmann constant σ : $a = 3\alpha^2$, $b = 4\alpha\sigma$.

Hamer's model

・ロット (雪) (日) (日) (日)

Introduction

On the stability of radiative

shocks Ramón G. Plaza

Viscous shock profiles

Scalar case Spectral problem Two Evans functions Pointwise bounds for the Green operator Nonlinear analysis

Hyperbolic elliptic systems Hypothesis Results

Spectral stability (systems)

Spectral problem

estimate Goodman-type estimate

• K. HAMER, Quart. J. Mech. Appl. Math. 24 (1971).

 $u_t + \frac{1}{2}(u^2)_x = -q_x,$ $-q_{xx} + q = -u_x,$

(H)

 $q, u \in \mathbb{R}, (x, t) \in \mathbb{R} \times [0, +\infty)$. Burgers' flux function: $f(u) = \frac{1}{2}u^2$.

It approximates (EP).

Hamer's model

Introduction

On the stability of radiative

shocks Ramón G. Plaza

Viscous shock profiles

Scalar case Spectral problem Two Evans functions Pointwise bounds for the Green operator Nonlinear analysis

Hyperbolic elliptic systems Hypothesis Results

Spectral stability (systems) Spectral problem

Kawashima-typi estimate

Goodman-type estimate

• K. HAMER, Quart. J. Mech. Appl. Math. 24 (1971).

$$u_t + \frac{1}{2}(u^2)_x = -q_x, -q_{xx} + q = -u_x,$$
(H)

 $q, u \in \mathbb{R}, (x, t) \in \mathbb{R} \times [0, +\infty)$. Burgers' flux function: $f(u) = \frac{1}{2}u^2$.

It approximates (EP).

Hamer's model

Introduction

On the stability of radiative

shocks Ramón G. Plaza

Viscous shock profiles

Scalar case Spectral problem Two Evans functions Pointwise bounds for the Green operator Nonlinear analysis

Hyperbolic elliptic systems Hypothesis Results

Spectral stability (systems) Spectral problem

estimate Goodman-type estimate

• K. HAMER, Quart. J. Mech. Appl. Math. 24 (1971).

$$u_t + \frac{1}{2}(u^2)_x = -q_x, -q_{xx} + q = -u_x,$$
(H)

 $q, u \in \mathbb{R}, (x, t) \in \mathbb{R} \times [0, +\infty)$. Burgers' flux function: $f(u) = \frac{1}{2}u^2$.

It approximates (EP).

Ramón G. Plaza

Introduction

Viscous shock profiles

Scalar case Spectral problem Two Evans functions Pointwise bounds for the Green operator Nonlinear analysis

Hyperbolic elliptic systems Hypothesis Results

Spectral stability (systems)

Spectral problem Kawashima-type estimate Goodman-type

Radiative shock profiles

Trveling wave solution

 $(u,q)(x,t)=(\bar{U},\bar{Q})(x-st), \quad (\bar{U},\bar{Q})(\xi)\to (U_{\pm},0), \ \xi\to\pm\infty,$

 (U_+, U_-, s) = classical shock front of the underlying hyperbolic system

Ramón G. Plaza

Introduction

- Viscous shock profiles
- Scalar case Spectral problem Two Evans functions Pointwise bounds for the Green operator
- Hyperbolicelliptic systems Hypothesis Results

Spectral stability (systems)

Spectral problem Kawashima-type estimate Goodman-type

- Hydrodynamics and transport determine wave propagation and wave structure.
- *Non-equilibrium diffusion regime:* Radiation and gas have different temperature ($\theta \neq q^{1/4}$); gas interacts with radiation via energy exchanges.
- Radiation is described by an stationary diffusion process.
- *Gray non-equilibrium diffusion hypothesis*: All photons have the same frequency (LOWRIE, EDWARDS, *Shock waves* **18** (2008)).

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ◆ ○ ○

Regularization

- 10

Hamer's model:

$$q = -(1 - \partial_x)^{-1}u_x =: -\mathcal{K}u_x$$
$$\mathcal{K}f(x) = \frac{1}{2} \int_{-\infty}^{+\infty} e^{-|x-y|} f(y) \, dy = K * f, \quad K = \frac{1}{2} e^{-|x|},$$
$$q_x = u - \mathcal{K}u,$$

 $u_t + uu_x = -u + \mathcal{K}u,$

Rosenau's regularization (ROSENAU, Phys. Rev. A 40 (1989); SCHOCHET, TADMOR, Arch. Ration. Mech. Anal. 119 (1992)):

Regularization (truncation of the Chapman-Enskog expansion).

shocks Ramón G. Plaza

On the stability of radiative

Introduction

Viscous shock profiles

Spectral problem Two Evans functions Pointwise bounds for

Hyperbolic elliptic systems Hypothesis Results

Spectral stability (systems)

Spectral problem Kawashima-type estimate Goodman-type estimate

Regularization

Hamer's model:

$$q = -(1 - \partial_x)^{-1}u_x =: -\mathcal{K}u_x$$
$$\mathcal{K}f(x) = \frac{1}{2} \int_{-\infty}^{+\infty} e^{-|x-y|} f(y) \, dy = K * f, \quad K = \frac{1}{2} e^{-|x|},$$
$$q_x = u - \mathcal{K}u,$$

 $u_t + uu_x = -u + \mathcal{K}u,$

Rosenau's regularization (ROSENAU, Phys. Rev. A 40 (1989); SCHOCHET, TADMOR, Arch. Ration. Mech. Anal. 119 (1992)):

Regularization (truncation of the Chapman-Enskog expansion).

shocks Ramón G. Plaza

On the stability of radiative

Introduction

Viscous shock profiles

Spectral problem Two Evans functions Pointwise bounds for the Green operator

Hyperbolic elliptic systems Hypothesis Results

stability (systems) Spectral problem

estimate Goodman-type estimate

Ramón G. Plaza

Introduction

Viscous shock profiles

Scalar case

Spectral problem Two Evans functions Pointwise bounds for the Green operator Nonlinear analysis

Hyperbolic elliptic systems Hypothesis Results

Spectral stability (systems) Spectral problem

Kawashima-type estimate Goodman-type

Symmetric and normal forms

Conserved variables:

$$U := \left(\rho, \, \rho u, \, \rho \left(e + \frac{1}{2}u^2\right)\right)^\top$$

Euler-Poisson (EP):

$$U_t + f(U)_x = -Lq_x,$$

 $-q_{xx} + Rq + \nu(U)g(U)_x = 0,$
 $f(U) = (\rho u, \rho u^2 + p, \rho u(e + \frac{1}{2}u^2) + pu)^{\top},$
 $L = (0, 0, 1)^{\top},$
 $R = a \equiv 1,$
 $0 < \nu(U) = 4b\theta^5,$
 $g(U) = -1/\theta$

Ramón G. Plaza

Introduction

Viscous shock profiles

Scalar case

Spectral problem Two Evans functions Pointwise bounds for the Green operator Nonlinear analysis

Hyperbolic elliptic systems Hypothesis Results

Spectral stability (systems)

Spectral problem

estimate Goodman-type estimate

Entropy (mathematical):

 $\eta = -\rho s$,

$$W := (D_U \eta)^\top = \left(-\rho + \left(e - \frac{1}{2}u^2 + p\rho^{-1}\right)/\theta, u/\theta, -1/\theta\right)^\top,$$

$$D_U W = D_U^2 \eta > 0$$

 $U\mapsto W$

Ramón G. Plaza

Introduction

Viscous shock profiles

Scalar case

Spectral problem Two Evans functions Pointwise bounds for the Green operator Nonlinear analysis

Hyperbolic elliptic systems Hypothesis Results

Spectral stability (systems)

Spectral problem Kawashima-type estimate

Goodman-type estimate

Symmetrization:

$$A_0(W)W_t + A(W)W_x + Lq_x = 0,$$

$$-q_{xx} + q + \tilde{\nu}(W)W_x = 0,$$

 $egin{aligned} &A_0(W) = (D_W U)(W) = (D_U^2 \eta)^{-1} \ &A(W) = D_W(f(U(W))) = (D_U f)(D_U^2 \eta)^{-1} \end{aligned}$

◆ロト ◆御 ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ● の々で

Ramón G. Plaza

Introduction

Viscous shock profiles

Scalar case

Spectral problem Two Evans functions Pointwise bounds for the Green operator Nonlinear analysis

Hyperbolic elliptic systems Hypothesis Results

Spectral stability (systems)

Spectral problem Kawashima-type estimate

Goodman-type estimate

Symmetrization:

$$A_0(W)W_t + A(W)W_x + Lq_x = 0,$$

$$-q_{xx} + q + \tilde{\nu}(W)W_x = 0,$$

$$egin{aligned} &A_0(W) = (D_W U)(W) = (D_U^2 \eta)^{-1} \ &A(W) = D_W(f(U(W))) = (D_U f)(D_U^2 \eta)^{-1} \end{aligned}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Ramón G. Plaza

Introduction

Viscous shock profiles

Spectral problem Two Evans functions Pointwise bounds for the Green operator Nonlinear analysis

Hyperbolic elliptic systems Hypothesis Results

Spectral stability (systems)

Spectral problem Kawashima-type estimate Goodman-type estimate

Normal form:

$$W \mapsto V := (\rho, u, \theta)^\top$$

Mult. by $(D_V W)^{\top}$:

$$ar{A}_0(V)V_t+ar{A}(V)V_x+ar{L}(V)q_x=0, \ -q_{xx}+q+ar{
u}(V)ar{L}(V)^ op V_x=0,$$

$$\begin{split} \bar{A}_0(V) &= (D_V W)^\top A_0(W) D_V W = (D_V W)^\top D_V U, \\ \bar{A}(V) &= (D_V W)^\top A(W) D_V W = (D_V W)^\top D_V f(U), \\ \bar{L}(V) &= (D_V W)^\top L = (D_V W)^\top (0,0,1)^\top = (0,0,1)^\top / \theta^2, \\ \bar{\nu}(V) &= \nu(U(W(V))) = 4b\theta^5 > 0, \end{split}$$

Ramón G. Plaza

Introduction

Viscous shock profiles

Spectral problem Two Evans functions Pointwise bounds for the Green operator Nonlinear analysis

Hyperbolic elliptic systems Hypothesis Results

Spectral stability (systems)

Spectral problem Kawashima-type estimate Goodman-type estimate

Normal form:

$$W \mapsto V := (\rho, u, \theta)^\top$$

Mult. by
$$(D_V W)^{\top}$$
:

$$ar{A}_0(V)V_t+ar{A}(V)V_x+ar{L}(V)q_x=0, \ -q_{xx}+q+ar{
u}(V)ar{L}(V)^ op V_x=0,$$

$$\begin{split} \bar{A}_0(V) &= (D_V W)^\top A_0(W) D_V W = (D_V W)^\top D_V U, \\ \bar{A}(V) &= (D_V W)^\top A(W) D_V W = (D_V W)^\top D_V f(U), \\ \bar{L}(V) &= (D_V W)^\top L = (D_V W)^\top (0, 0, 1)^\top = (0, 0, 1)^\top / \theta^2, \\ \bar{\nu}(V) &= \nu(U(W(V))) = 4b\theta^5 > 0, \end{split}$$

Ramón G. Plaza

Introduction

Viscous shock profiles

Scalar case Spectral problem Two Evans functions Pointwise bounds for the Green operator Nonlinear analysis

Hyperbolic elliptic systems Hypothesis Results

Spectral stability (systems)

Spectral problem Kawashima-type estimate

estimate

$$\bar{A}(V) = \frac{1}{\theta} \begin{pmatrix} p_{\rho}u/\rho & p_{\rho} & 0\\ p_{\rho} & \rho u & p_{\theta}\\ 0 & p_{\theta} & p e_{\theta}u/\theta \end{pmatrix}$$

$$\bar{\nu}(V)\bar{L}(V)V_x = 4b\theta^3(0,0,\theta_x)^\top =: b\bar{g}(V)_x$$

 $\bar{g}(V) = (0, 0, \theta^4),$

General hyperbolic-elliptic system:

 $V_t + f(V)_x + Lq_x = 0,$ $-q_{xx} + q + g(V)_x = 0.$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Ramón G. Plaza

Introduction

Viscous shock profiles

Spectral problem Two Evans functions Pointwise bounds for the Green operator Nonlinear analysis

Hyperbolic elliptic systems Hypothesis Results

Spectral stability (systems) Spectral problem

Kawashima-type estimate

estimate

$$ar{A}(V) = rac{1}{ heta} egin{pmatrix} p_
ho u /
ho & p_
ho & 0 \ p_
ho &
ho u & p_ heta \ 0 & p_ heta & p_ heta u / heta \end{pmatrix}$$

$$ar{
u}(V)ar{L}(V)V_x = 4b heta^3(0,0, heta_x)^ op =: bar{g}(V)_x$$
 $ar{g}(V) = (0,0, heta^4),$

General hyperbolic-elliptic system:

 $V_t + f(V)_x + Lq_x = 0,$ $-q_{xx} + q + g(V)_x = 0.$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Ramón G. Plaza

Introduction

Viscous shock profiles

Scalar case Spectral problem Two Evans functions Pointwise bounds for the Green operator Nonlinear analysis

Hyperbolic elliptic systems Hypothesis Results

Spectral stability (systems) Spectral problem Kawashima-type

Goodman-type estimate

$$ar{A}(V) = rac{1}{ heta} egin{pmatrix} p_
ho u /
ho & p_
ho & 0 \ p_
ho &
ho u & p_ heta \ 0 & p_ heta & p_ heta u / heta \end{pmatrix}$$

$$\bar{\nu}(V)\bar{L}(V)V_x = 4b\theta^3(0,0,\theta_x)^\top =: b\bar{g}(V)_x$$

 $\bar{g}(V) = (0, 0, \theta^4),$

General hyperbolic-elliptic system:

 $V_t + f(V)_x + Lq_x = 0,$ $-q_{xx} + q + g(V)_x = 0.$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Ramón G. Plaza

Introduction

Viscous shock profiles

Spectral problem Two Evans functions Pointwise bounds for the Green operator Nonlinear analysis

Hyperbolic elliptic systems Hypothesis Results

Spectral stability (systems)

Spectral problem Kawashima-type estimate

estimate

Positive "diffusion"

Eigenvector (characteristic field p = 1):

$$\bar{A}r_1 = (u+c)\bar{A}_0r_1, \quad l_1\bar{A} = (u+c)l_1\bar{A}_0$$

$$r_1^{\top} = l_1 = (\rho, c, (c^2 - p_{\rho})\rho/p_{\theta}) = (\rho, c, z_*)$$

 $B(V) := (D_V \bar{g})^{\top} = (0, 0, 4\theta^3)^{\top}$

Ramón G. Plaza

Introduction

Viscous shock profiles

Spectral problem Two Evans functions Pointwise bounds for the Green operator Nonlinear analysis

Hyperbolic elliptic systems Hypothesis Results

Spectral stability (systems)

Spectral problem Kawashima-type estimate

Goodman-typ estimate

Positive "diffusion"

Eigenvector (characteristic field p = 1):

$$\bar{A}r_1 = (u+c)\bar{A}_0r_1, \quad l_1\bar{A} = (u+c)l_1\bar{A}_0$$

$$r_1^{\top} = l_1 = (\rho, c, (c^2 - p_{\rho})\rho/p_{\theta}) = (\rho, c, z_*)$$

$$B(V) := (D_V \overline{g})^\top = (0, 0, 4\theta^3)$$

Ramón G. Plaza

Introduction

Viscous shock profiles

Scalar case

Spectral problem Two Evans functions Pointwise bounds for the Green operator Nonlinear analysis

Hyperbolic elliptic systems Hypothesis Results

Spectral stability (systems)

Spectral problem Kawashima-type estimate

estimate

$$l_1 LBr_1 = (\rho, c, z_*)(0, 0, 1)^\top (0, 0, 4\theta^3)(\rho, c, z_*)^\top = z_*^2 4\theta^3 > 0$$

Positive diffusion coefficient in the characteristic direction p = 1in the Chapman-Enskog expansion.

Ramón G. Plaza

Introduction

Viscous shock profiles

Scalar case Spectral problem Two Evans functions Pointwise bounds for the Green operator

Hyperbolic elliptic systems Hypothesis Results

Spectral stability (systems)

Spectral problem Kawashima-type

Goodman-type estimate

$$l_1 LBr_1 = (\rho, c, z_*)(0, 0, 1)^\top (0, 0, 4\theta^3)(\rho, c, z_*)^\top = z_*^2 4\theta^3 > 0$$

Positive diffusion coefficient in the characteristic direction p = 1in the Chapman-Enskog expansion.

Ramón G. Plaza

Introduction

Viscous shock profiles

Scalar case Spectral problem Two Evans functions Pointwise bounds for the Green operator Nonlinear analysis

Hyperbolicelliptic systems Hypothesis Results

Spectral stability (systems)

Spectral problem Kawashima-type estimate Goodman-type

Chapman-Enskog expansion:

 $\mathbf{u}_{t} + \nabla p = \sum_{0}^{\infty} \varepsilon^{2n+1} \Delta^{n} (\mu_{n} \Delta \mathbf{u} + \alpha_{n} \nabla (\nabla \cdot \mathbf{u})) + \text{other terms},$ $= \varepsilon \mu_{0} \Delta \mathbf{u} + \varepsilon^{3} \mu_{1} \Delta^{2} \mathbf{u} + \dots$

 $\mu = \varepsilon \mu_0 \ll 1$, kinematic viscosity coefficient (non-dimensional)

 $\varepsilon^3 \mu_1$, – Burnett's coefficient

Ramón G. Plaza

Introduction

Viscous shock profiles

Scalar case Spectral problem Two Evans functions Pointwise bounds for the Green operator Nonlinear analysis

Hyperbolic elliptic systems Hypothesis Results

Spectral stability (systems)

Spectral problem Kawashima-type estimate Goodman-type estimate

Rosenau's model:

$$\sum_{0}^{\infty} \varepsilon^{2n+1} \Delta^{n}(\mu_{n} \Delta u) \sim \frac{\mu}{1 - \varepsilon^{2} m^{2} \Delta} \Delta u, \quad m = \mu_{1}/\mu_{0} > 0.$$

$$\mu_* = \frac{\mu}{1 - \varepsilon^2 m^2 \Delta}, \qquad \hat{\mu}_*(k) = \frac{\mu}{1 + \varepsilon^2 m^2 k^2}$$

Scalar model:

-

$$u_t + (\frac{1}{2}u)_x = \varepsilon \partial_x^2 \left(\frac{1}{1+m^2\varepsilon^2k^2}\hat{u}(k)\right)^{\vee}(x) = -u + \mathcal{K}u$$

$$\mathcal{K}f(x) = \frac{1}{2} \int_{-\infty}^{+\infty} e^{-|x-y|} f(y) \, dy = K * f, \quad K = \frac{1}{2} e^{-|x|},$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Ramón G. Plaza

Introduction

Viscous shock profiles

Scalar case Spectral problem Two Evans functions Pointwise bounds for the Green operator Nonlinear analysis

Hyperbolic elliptic systems Hypothesis Results

Spectral stability (systems)

Spectral problem Kawashima-type estimate Goodman-type

estimate

Rosenau's model:

$$\sum_{0}^{\infty} \varepsilon^{2n+1} \Delta^{n}(\mu_{n} \Delta u) \sim \frac{\mu}{1 - \varepsilon^{2} m^{2} \Delta} \Delta u, \quad m = \mu_{1}/\mu_{0} > 0.$$

$$\mu_* = rac{\mu}{1 - arepsilon^2 m^2 \Delta}, \qquad \hat{\mu}_*(k) = rac{\mu}{1 + arepsilon^2 m^2 k^2}$$

Scalar model:

$$u_t + (\frac{1}{2}u)_x = \varepsilon \partial_x^2 (\frac{1}{1+m^2 \varepsilon^2 k^2} \hat{u}(k))^{\vee}(x) = -u + \mathcal{K}u$$

$$\mathcal{K}f(x) = \frac{1}{2} \int_{-\infty}^{+\infty} e^{-|x-y|} f(y) \, dy = K * f, \quad K = \frac{1}{2} e^{-|x|},$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Ramón G. Plaza

Introduction

Viscous shock profiles

Scalar case

Spectral problem Two Evans functions Pointwise bounds for the Green operator Nonlinear analysis

Hyperbolic elliptic systems Hypothesis Results

Spectral stability (systems)

Spectral problem Kawashima-type estimate

Goodman-type estimate

For systems:

$$\mathbb{L}A\mathbb{R} = \begin{pmatrix} A_1 & & \\ & a_p & \\ & & A_2 \end{pmatrix},$$

$$v = \mathbb{L}u$$

$$\mathbb{L}(LB(u)u_x)_x = (\mathbb{L}LB\mathbb{R})u_{xx} + \ldots,$$

Principal part:

 $(l_p LBr_p)(v_p)_{xx} + \ldots$

・ロット (雪) (日) (日) (日)

Ramón G. Plaza

Introduction

Viscous shock profiles

Scalar case

Spectral problem Two Evans functions Pointwise bounds for the Green operator Nonlinear analysis

Hyperbolic elliptic systems Hypothesis Results

Spectral stability (systems) Spectral problem

Kawashima-typ estimate

Goodman-type estimate

For systems:

$$\mathbb{L}A\mathbb{R} = \begin{pmatrix} A_1 & & \\ & a_p & \\ & & A_2 \end{pmatrix},$$
$$v = \mathbb{L}u$$

 $\mathbb{L}(LB(u)u_x)_x = (\mathbb{L}LB\mathbb{R})u_{xx} + \ldots,$

Principal part:

 $(l_p LBr_p)(v_p)_{xx} + \ldots$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Previous work

Existence of profiles:

- SCHOCHET, TADMOR, Arch. Ration. Mech. Anal. **119** (1992). Small-amplitude profiles, Hamer's model only.
- KAWASHIMA, NISHIBATA, SIAM J. Math. Anal. **30** (1998). Hamer's model. Bounded amplitude.
- LIN, COULOMBEL, GOUDON Phys. D **218** (2006). Small-amplitude, Euler-Poisson system, ideal gas $\rho = (\gamma - 1)\rho e$.
- LATTANZIO, MASCIA, SERRE, *Indiana Univ. Math. J.* **56** (2007). General model, *f* general, linear coupling. Systems case problem reduces to a scalar one (!).
- LATTANZIO, MASCIA, SERRE, Proc. HYP2006, Springer (2008). Nonlinear coupling, most general result.

Pointwise bounds for the Green operator Nonlinear analysis

On the stability of radiative

shocks Ramón G. Plaza

Introduction

Hyperboli elliptic systems Hypothesis Basulta

Spectral stability (systems)

Spectral problem Kawashima-type estimate Goodman-type

Ramón G. Plaza

Introduction

Viscous shock profiles

Scalar case Spectral problem Two Evans functions Pointwise bounds for the Green operator Nonlinear analysis

Hyperbolicelliptic systems Hypothesis Results

Spectral stability (systems)

Spectral problem

estimate Goodman-type estimate

Miscellaneous (Cauchy problem, $t \rightarrow +\infty$, well-posedness):

- KAWASHIMA, NISHIBATA, Math. Mod. Meth. Appl. Sci. 9 (1999). Cauchy problem, Hamer's model.
- SERRE, Comm. Math. Sci. 1 (2003). Stability of constants in *L*¹, Hamer's model.
- KAWASHIMA, TANAKA, Kyushu J. Math. **58** (2004): Stability of rerafecation waves (Hamer).
- KAWASHIMA, NIKKUNI, NISHIBATA, Monogr. Surv. Pure Appl. Math. **99** (1999). Cauchy problem. general hyperbolic-elliptic systems.
- KAWASHIMA, NIKKUNI, NISHIBATA, Arch. Ration. Mech. Anal. **170** (2003). Asymptotic behaviour of solutions when $t \rightarrow +\infty$.
- LOWRIE, EDWARDS, *Shock Waves* **18** (2008). Numerical computation of profiles, Euler-Poisson (ideal gases).

Ramón G. Plaza

Introduction

Viscous shock profiles

Scalar case Spectral problem Two Evans functions Pointwise bounds for the Green operator Nonlinear analysis

Hyperbolic elliptic systems Hypothesis Results

Spectral stability (systems)

Spectral problem Kawashima-type estimate Goodman-type

estimate

Stability of radiative shock profiles:

- KAWASHIMA, NISHIBATA, SIAM J. Math. Anal. **30** (1998). L^2 stability, Hamer's (escalar) model, linear coupling.
- LIN, COULOMBEL, GOUDON, *C. R. Math. Acad. Sci. Paris* **345** (2007): Stability under zero-mass perturbations, ideal gas: $p = (\gamma - 1)\rho e$. Energy estimates of Goodman-Matsumura-Nishihara type.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆ ○ ◆

Ramón G. Plaza

Introduction

Viscous shock profiles

Scalar case

Spectral problem Two Evans functions Pointwise bounds for the Green operator Nonlinear analysis

Hyperbolic elliptic systems Hypothesis Results

Spectral stability (systems)

Spectral problem Kawashima-type estimate Goodman-type estimate

New results:

- Stability of radiative shock profiles in the general scalar case (general flux function *f*, nonlinear coupling):
 C. LATTANZIO, C. MASCIA, T. NGUYEN, R. G. P,
 K. ZUMBRUN, *SIAM J. Math. Anal.* 41, no. 6 (2009).
- Stability of radiative profiles for general hyperbolic-elliptic systems (small-amplitude): T. NGUYEN, R. G. P, K. ZUMBRUN, *Phys. D* **239**, no. 8 (2010).

(日) (四) (日) (日) (日) (日) (日)

Ramón G. Plaza

Introduction

Viscous shock profiles

Scalar case

Spectral problem Two Evans functions Pointwise bounds for the Green operator Nonlinear analysis

Hyperbolic elliptic systems Hypothesis Results

Spectral stability (systems)

Spectral problem Kawashima-type estimate Goodman-type

New results:

- Stability of radiative shock profiles in the general scalar case (general flux function *f*, nonlinear coupling):
 C. LATTANZIO, C. MASCIA, T. NGUYEN, R. G. P,
 K. ZUMBRUN, *SIAM J. Math. Anal.* 41, no. 6 (2009).
- Stability of radiative profiles for general hyperbolic-elliptic systems (small-amplitude): T. NGUYEN, R. G. P, K. ZUMBRUN, *Phys. D* **239**, no. 8 (2010).

(日) (四) (日) (日) (日) (日) (日)
Ramón G. Plaza

Introduction

Viscous shock profiles

Scalar case

Spectral problem Two Evans functions Pointwise bounds for the Green operator Nonlinear analysis

Hyperbolic elliptic systems Hypothesis Results

Spectral stability (systems)

Spectral problem Kawashima-type estimate Goodman-type estimate

Introduction

2 Viscous shock profiles: (unabridged) history

Radiative shock profiles: scalar case Spectral problem Two Evans functions Pointwise bounds for the Green operator Nonlinear analysis

Hyperbolic-elliptic systems Hypothesis Results

Spectral estability for systems case Spectral problem Kawashima-type estimate Goodman-type estimate

Ramón G. Plaza

Introduction

Viscous shock profiles

Scalar case

Spectral problem Two Evans functions Pointwise bounds for the Green operator Nonlinear analysis

Hyperbolic elliptic systems Hypothesis Results

Spectral stability (systems) Spectral problem

Kawashima-type estimate Goodman-type estimate

Viscous shock profiles

$$u_t+f(u)_x=(B(u)u_x)_x,$$

$u \in \mathbb{R}^n$, $n \ge 1$, $B(u) \equiv I$ identity viscosity; B(u) degenerate (Navier-Stokes).

Viscous shock profile: traveling wave solution $u(x,t) = \overline{U}(x - st), \ \overline{U}(x) \to u_{\pm}$. Here (u_+, u_-, s) is a classical shock front of the hyperbolic system of conservation laws.

Ramón G. Plaza

Introduction

Viscous shock profiles

Scalar case

Spectral problem Two Evans functions Pointwise bounds for the Green operator Nonlinear analysis

Hyperbolic elliptic systems Hypothesis Results

Spectral stability (systems) Spectral problem Kawashima-type setimate

Goodman-typ estimate

Viscous shock profiles

$$u_t+f(u)_x=(B(u)u_x)_x,$$

 $u \in \mathbb{R}^n$, $n \ge 1$, $B(u) \equiv I$ identity viscosity; B(u) degenerate (Navier-Stokes).

Viscous shock profile: traveling wave solution $u(x,t) = \overline{U}(x - st), \ \overline{U}(x) \rightarrow u_{\pm}$. Here (u_+, u_-, s) is a classical shock front of the hyperbolic system of conservation laws.

Introduction

On the stability of radiative

shocks Ramón G. Plaza

Viscous shock profiles

Scalar case

Spectral problem Two Evans functions Pointwise bounds for the Green operator Nonlinear analysis

Hyperbolic elliptic systems Hypothesis Results

Spectral stability (systems)

Spectral problem Kawashima-type estimate Goodman-type estimate

• Viscous shock profiles *scalar case*: ILIN, OLEINIK; SATTINGER.

- Systems: GOODMAN, Arch. Ration. Mech. Anal. **95** (1986). Identity viscosity B = I, zero-mass perturbations. Energy estimates, diagonalization of the hyperbolic part.
- MATSUMURA, NISHIHARA, Japan J. Appl. Math. 2 (1985). Same approcah for Euler system, ideal gases.

Introduction

On the stability of radiative

shocks Ramón G. Plaza

Viscous shock profiles

- Scalar case
- Spectral problem Two Evans functions Pointwise bounds for the Green operator Nonlinear analysis
- Hyperbolic elliptic systems Hypothesis Results

Spectral stability (systems)

Spectral problem Kawashima-type estimate Goodman-type estimate

- Viscous shock profiles *scalar case*: ILIN, OLEINIK; SATTINGER.
- Systems: GOODMAN, Arch. Ration. Mech. Anal. **95** (1986). Identity viscosity B = I, zero-mass perturbations. Energy estimates, diagonalization of the hyperbolic part.
- MATSUMURA, NISHIHARA, Japan J. Appl. Math. 2 (1985). Same approcah for Euler system, ideal gases.

Introduction

On the stability of radiative

shocks Ramón G. Plaza

Viscous shock profiles

- Scalar case
- Spectral problem Two Evans functions Pointwise bounds for the Green operator Nonlinear analysis
- Hyperbolic elliptic systems Hypothesis Results

Spectral stability (systems)

Spectral problem Kawashima-type estimate Goodman-type estimate

- Viscous shock profiles *scalar case*: ILIN, OLEINIK; SATTINGER.
- Systems: GOODMAN, Arch. Ration. Mech. Anal. **95** (1986). Identity viscosity B = I, zero-mass perturbations. Energy estimates, diagonalization of the hyperbolic part.
- MATSUMURA, NISHIHARA, Japan J. Appl. Math. 2 (1985). Same approcah for Euler system, ideal gases.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆ ○ ◆

Introduction

On the stability of radiative

shocks Ramón G. Plaza

Viscous shock profiles

- Scalar case
- Spectral problem Two Evans functions Pointwise bounds for the Green operator Nonlinear analysis
- Hyperbolic elliptic systems Hypothesis Results

Spectral stability (systems) Spectral problem

Kawashima-type estimate Goodman-type estimate

- Viscous shock profiles *scalar case*: ILIN, OLEINIK; SATTINGER.
- Systems: GOODMAN, Arch. Ration. Mech. Anal. **95** (1986). Identity viscosity B = I, zero-mass perturbations. Energy estimates, diagonalization of the hyperbolic part.
- MATSUMURA, NISHIHARA, Japan J. Appl. Math. 2 (1985). Same approcah for Euler system, ideal gases.

Ramón G. Plaza

Introduction

Viscous shock profiles

- Scalar case
- Spectral problem Two Evans functions Pointwise bounds for the Green operator Nonlinear analysis
- Hyperbolic elliptic systems Hypothesis Results

Spectral stability (systems)

Spectral problem Kawashima-type estimate Goodman-type estimate

Pointwise Green function bound method:

- LIU, CPAM 50 (1997): (Approximate) Green function of linearized operator.
- ZUMBRUN, HOWARD (1999) Under spectral stability assumption, resolvent kernel bounds; ponitwise bounds for the Green function.
- ZUMBRUN, MASCIA (2002-2004) degenerate viscosity.

Other cases: relaxation systems, multi-d, boundary layes, undercompressive shocks, etc.

Basic idea: Spectral stability \Rightarrow *nonlinear stability.*

Ramón G. Plaza

Introduction

Viscous shock profiles

- Scalar case
- Spectral problem Two Evans functions Pointwise bounds for the Green operator Nonlinear analysis
- Hyperbolic elliptic systems Hypothesis Results

Spectral stability (systems)

Spectral problem Kawashima-type estimate Goodman-type estimate

Pointwise Green function bound method:

- LIU, CPAM 50 (1997): (Approximate) Green function of linearized operator.
- ZUMBRUN, HOWARD (1999) Under spectral stability assumption, resolvent kernel bounds; ponitwise bounds for the Green function.
- ZUMBRUN, MASCIA (2002-2004) degenerate viscosity.

Other cases: relaxation systems, multi-d, boundary layes, undercompressive shocks, etc.

Basic idea: Spectral stability \Rightarrow *nonlinear stability.*

Ramón G. Plaza

Introduction

Viscous shock profiles

- Scalar case
- Spectral problem Two Evans functions Pointwise bounds for the Green operator Nonlinear analysis
- Hyperbolic elliptic systems Hypothesis Results

Spectral stability (systems)

Spectral problem Kawashima-type estimate Goodman-type estimate

Pointwise Green function bound method:

- LIU, CPAM 50 (1997): (Approximate) Green function of linearized operator.
- ZUMBRUN, HOWARD (1999) Under spectral stability assumption, resolvent kernel bounds; ponitwise bounds for the Green function.
- ZUMBRUN, MASCIA (2002-2004) degenerate viscosity.

Other cases: relaxation systems, multi-d, boundary layes, undercompressive shocks, etc.

Basic idea: Spectral stability \Rightarrow *nonlinear stability.*

Ramón G. Plaza

Introduction

Viscous shock profiles

- Scalar case
- Spectral problem Two Evans functions Pointwise bounds for the Green operator Nonlinear analysis
- Hyperbolic elliptic systems Hypothesis Results

Spectral stability (systems) Spectral prob

Kawashima-type estimate Goodman-type estimate

Pointwise Green function bound method:

- LIU, CPAM 50 (1997): (Approximate) Green function of linearized operator.
- ZUMBRUN, HOWARD (1999) Under spectral stability assumption, resolvent kernel bounds; ponitwise bounds for the Green function.
- ZUMBRUN, MASCIA (2002-2004) degenerate viscosity.

Other cases: relaxation systems, multi-d, boundary layes, undercompressive shocks, etc.

Basic idea: Spectral stability \Rightarrow *nonlinear stability.*

Ramón G. Plaza

Introduction

3

Viscous shock profiles

Scalar case

Spectral problem Two Evans functions Pointwise bounds for the Green operator Nonlinear analysis

Hyperbolic elliptic systems Hypothesis Results

Spectral stability (systems)

Spectral problem Kawashima-type estimate Goodman-type estimate

Introduction

Viscous shock profiles: (unabridged) history

Radiative shock profiles: scalar case Spectral problem Two Evans functions Pointwise bounds for the Green operator Nonlinear analysis

Hyperbolic-elliptic systems Hypothesis Results

Spectral estability for systems case Spectral problem Kawashima-type estimate Goodman-type estimate

Scalar model

Introduction

On the stability of radiative

shocks Ramón G. Plaza

Viscous shock profiles

Scalar case

Spectral problem Two Evans function Pointwise bounds for the Green operator Nonlinear analysis

Hyperbolic elliptic systems Hypothesis Results

Spectral stability (systems)

Spectral problem Kawashima-type estimate Goodman-type estimate $u_t + f(u)_x + Lq_x = 0,$ $-q_{xx} + q + M(u)_x = 0,$

$u, q \in \mathbb{R}, M, f : \mathbb{R} \to \mathbb{R}, L \in \mathbb{R}$ (constant).

Traveling waves:

 $(u,q)(x,t) = (U,Q)(x-st), \quad (U,Q)(\pm \infty) = (u_{\pm},0),$

 $u_+ \neq u_-$. W.l.o.g. s = 0.

Scalar model

(日) (四) (日) (日) (日) (日) (日)

Introduction

On the stability of radiative

shocks Ramón G. Plaza

Viscous shock profiles

Scalar case

Spectral problem Two Evans function Pointwise bounds for the Green operator Nonlinear analysis

Hyperbolic elliptic systems Hypothesis Results

Spectral stability (systems) Spectral problem

Kawashima-type estimate Goodman-type estimate $u_t + f(u)_x + Lq_x = 0,$ $-q_{xx} + q + M(u)_x = 0,$

$$u, q \in \mathbb{R}, M, f : \mathbb{R} \to \mathbb{R}, L \in \mathbb{R}$$
 (constant).

Traveling waves:

 $(u,q)(x,t) = (U,Q)(x-st), \quad (U,Q)(\pm \infty) = (u_{\pm},0),$

 $u_+ \neq u_-$. W.l.o.g. s = 0.

Ramón G. Plaza

Introduction

Viscous shock profiles

Scalar case

Spectral problem Two Evans functions Pointwise bounds for the Green operator Nonlinear analysis

Hyperbolic elliptic systems Hypothesis Results

Spectral stability (systems)

Spectral problem Kawashima-type estimate Goodman-type $f, M \in C^5,$ $f''(u) > 0, \ u \in [u_+, u_-]$ $f(u_-) = f(u_+),$

Hypotheses:

 $u_+ < u_-,$ $LM'(u) > 0, \ u \in [u_+, u_-]$ (regularity), (A0) (genuine nonlinearity), (A1) (Rankine-Hugoniot condition), (A2)

(Lax's entropy condition), (A3) (positive diffusion), (A4)

・ロット (雪) (日) (日)

Ramón G. Plaza

Introduction

Viscous shock profiles

Scalar case

Spectral problem Two Evans functions Pointwise bounds for the Green operator Nonlinear analysis

Hyperbolic elliptic systems Hypothesis Results

Spectral stability (systems)

Spectral problem Kawashima-type estimate

Goodman-type estimate

$$a(x) := f'(U), \quad b(x) := M'(U).$$

 $Lb(0) + (k + \frac{1}{2})a'(0) > 0, \qquad k = 1, 2, 3, 4.$ (A5_k)

Ramón G. Plaza

Introduction

Viscous shock profiles

Scalar case

Spectral problem Two Evans functions Pointwise bounds for the Green operator Nonlinear analysis

Hyperbolic elliptic systems Hypothesis Results

Spectral stability (systems) Spectral problem

Kawashima-type estimate Goodman-type

Structure of profiles

(日) (四) (日) (日) (日) (日) (日)

Traveling wave equations:

f(U)' + LQ' = 0,-Q'' + Q + M(U)' = 0,

$(U,Q)(\pm\infty)=(u_{\pm},0).$

Existence theory: LATTANZIO, MASCIA, SERRE, *Indiana Univ. Math. J.* **56** (2007); Proc. HYP2006, Springer (2008).

Ramón G. Plaza

Introduction

Viscous shock profiles

Scalar case

Spectral problem Two Evans functions Pointwise bounds for the Green operator Nonlinear analysis

Hyperbolic elliptic systems Hypothesis Results

Spectral stability (systems) Spectral problem

Kawashima-type estimate Goodman-type estimate

Structure of profiles

Traveling wave equations:

f(U)' + LQ' = 0,-Q'' + Q + M(U)' = 0,

 $(U,Q)(\pm\infty)=(u_{\pm},0).$

Existence theory: LATTANZIO, MASCIA, SERRE, *Indiana Univ. Math. J.* **56** (2007); Proc. HYP2006, Springer (2008).

Ramón G. Plaza

Introduction

Viscous shock profiles

Scalar case

Spectral problem Two Evans functions Pointwise bounds for the Green operator Nonlinear analysis

Hyperbolic elliptic systems Hypothesis Results

Spectral stability (systems) Spectral proble Kawashima-typ estimate

Goodman-typ estimate

Proposition [LMS]

Under (A0) - (A4) there exists a unique (up to translations) traveling wave (U, Q)(x). Moreover, the velocity profile U is C^2 except, at most, in one single point where it has an entropic jumo satisfying Rankine-Hugoniot and Lax conditions. U is monotone decreasing $U_x < 0$, function a(x) = f'(U(x)) is C^1 a.e., it is zero only at one point which we take w.l.o.g. as x = 0:

a(0)=0.

If the amplitude is sufficiently small, then the profile is of class C^2 .

Ramón G. Plaza

Introduction

Viscous shock profiles

Scalar case

Spectral problem Two Evans functions Pointwise bounds for the Green operator Nonlinear analysis

Hyperbolic elliptic systems Hypothesis Results

Spectral stability (systems)

Spectral problem Kawashima-type estimate Goodman-type estimate

Consequences:

$$a'(x) < 0 \qquad \forall x \in \mathbb{R}, \qquad x a(x) < 0 \qquad \forall x \neq 0.$$

Integrating:

$$LQ = f(u_{\pm}) - f(U) > 0,$$

(a'(x) + L b(x))U' = -LQ - a(x)U'',

In x = 0, U monotone:

a'(0) + Lb(0) > 0. (P)

 $(A5_1)$ implies (P).

Ramón G. Plaza

Introduction

Viscous shock profiles

Scalar case

Spectral problem Two Evans functions Pointwise bounds for the Green operator Nonlinear analysis

Hyperbolic elliptic systems Hypothesis Results

Spectral stability (systems)

Spectral problem Kawashima-type estimate Goodman-type

estimate

Consequences:

$$a'(x) < 0 \qquad \forall x \in \mathbb{R}, \qquad x a(x) < 0 \qquad \forall x \neq 0.$$

Integrating:

$$LQ = f(u_{\pm}) - f(U) > 0,$$

(a'(x) + L b(x))U' = -LQ - a(x)U'',

In x = 0, U monotone:

$$a'(0) + Lb(0) > 0.$$
 (P)

 $(A5_1)$ implies (P).

Ramón G. Plaza

Introduction

Viscous shock profiles

Scalar case

Spectral problem Two Evans functions Pointwise bounds for the Green operator Nonlinear analysis

Hyperbolic elliptic systems Hypothesis Results

Spectral stability (systems)

Spectral problem

estimate Goodman-type

Exponential decay

$$\left|(d/dx)^k(U-u_\pm,Q)
ight|\leq Ce^{-\eta|x|},\quad k=0,...,4,$$

as $|x| \to +\infty$, for some $\eta > 0$.

Ramón G. Plaza

Introduction

Viscous shock profiles

Scalar case

Spectral problem

Two Evans functions Pointwise bounds for the Green operator Nonlinear analysis

Hyperbolic elliptic systems Hypothesis Results

Spectral stability (systems)

Spectral problem Kawashima-type estimate

Goodman-type estimate

Eigenvalue equations

$$\lambda u + (a(x)u)' + Lq' = 0,$$

 $-q'' + q + (b(x)u)' = 0.$

 $' = d/dx, u, q \in L^2(\mathbb{R})$ perturbations.

(SP)

Ramón G. Plaza

Introduction

Viscous shock profiles

Scalar case

Spectral problem

Two Evans functions Pointwise bounds for the Green operator Nonlinear analysis

Hyperbolic elliptic systems Hypothesis Results

Spectral stability (systems)

Spectral problem Kawashima-type estimate

Goodman-type estimate

Spectral stability (scalar case)

Zero-mass conditions:

$$\int u = 0, \qquad \int q = 0,$$

Integrating (SP):

 $\lambda u + a(x) u' + Lq' = 0,$ -q'' + q + b(x) u' = 0.

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Ramón G. Plaza

Introduction

Viscous shock profiles

Scalar case

Spectral problem

Two Evans functions Pointwise bounds for the Green operator Nonlinear analysis

Hyperbolic elliptic systems Hypothesis Results

Spectral stability (systems)

Spectral problem Kawashima-type estimate Goodman-type estimate

Lemma (Spectral stability)

Let (u, q) be an eigenfuction, with $\lambda \in \mathbb{C}$ eigenvalue. Then Re $\lambda < 0$ if one of the following conditions hold:

(i) b is constant (linear coupling), or,

(ii) $|u_+ - u_-|$ is sufficiently small.

Proof (via energy estimates):

Re
$$\lambda |b^{1/2}u|_{L^2}^2 \leq \langle a'bu, u \rangle - \frac{L}{2} ||q||_{H^1}^2 + C \langle (|a| + |b'|)|b'|u, u \rangle.$$

$$Lb > 0$$
, w.l.o.g. $b \ge \theta > 0$ $(q \to -q)$. $a' > 0$,
 $a', b' = \mathcal{O}(|u_+ - u_-|)$.

Ramón G. Plaza

Introduction

Viscous shock profiles

Scalar case

Spectral problem

Two Evans functions Pointwise bounds for the Green operator Nonlinear analysis

Hyperbolic elliptic systems Hypothesis Results

Spectral stability (systems) Spectral probl

Kawashima-type estimate Goodman-type estimate

Lemma (Spectral stability)

Let (u, q) be an eigenfuction, with $\lambda \in \mathbb{C}$ eigenvalue. Then Re $\lambda < 0$ if one of the following conditions hold:

(i) b is constant (linear coupling), or,

(ii) $|u_+ - u_-|$ is sufficiently small.

Proof (via energy estimates):

$$\operatorname{Re} \lambda |b^{1/2}u|_{L^2}^2 \leq \langle a'bu, u \rangle - \frac{L}{2} ||q||_{H^1}^2 + C \langle (|a| + |b'|)|b'|u, u \rangle.$$

$$\begin{split} Lb > 0, \text{ w.l.o.g. } b \geq \theta > 0 \ (q \rightarrow -q). \ a' > 0, \\ a', b' = \mathcal{O}\bigl(|u_+ - u_-|\bigr). \end{split}$$

Ramón G. Plaza

Introduction

Viscous shock profiles

Scalar case

Spectral problem

Two Evans functions Pointwise bounds for the Green operator Nonlinear analysis

Hyperbolic elliptic systems Hypothesis Results

Spectral stability (systems)

Spectral problem

estimate Goodman-type estimate

First order formulations

Specral problem:
$$p := b(x)u - q'$$
.

$$a(x)u' = -(\lambda + a'(x) + Lb(x))u + Lp,$$

$$q' = b(x)u - p,$$

$$p' = -q.$$
(SP2)

◆□ > ◆□ > ◆豆 > ◆豆 > 「豆 - 釣�(♡

Ramón G. Plaza

Introduction

Viscous shock profiles

Scalar case

Spectral problem

Two Evans functions Pointwise bounds for the Green operator Nonlinear analysis

Hyperbolic elliptic systems Hypothesis Results

Spectral stability (systems)

Spectral problem Kawashima-type estimate Goodman-type

Regularity near x = 0.

Lemma

Given $\lambda \in \mathbb{C}$, $\nu := (Re \ \lambda + a'(0) + Lb(0))/|a'(0)|$. Under (A0) -(A4), Re $\lambda > -Lb(0)$, every solution to (SP2) satisfies 1. $|u(x)| \leq C |x|^{\nu}$ for $x \sim 0$, some C > 0; 2. q is A.C., p is C^1 (for $x \sim 0$), In particular, $u \in L^1_{loc}$ (for $x \sim 0$), and $a(x)u(x) \to 0$ if $x \to 0$.

Ramón G. Plaza

Introduction

Viscous shock profiles

Scalar case

Spectral problem

Two Evans functions Pointwise bounds for the Green operator Nonlinear analysis

Hyperbolic elliptic systems Hypothesis Results

Spectral stability (systems)

Spectral problem Kawashima-type estimate Goodman-type

estimate

Construction of the resolvent kernel

Fisrt order system

 $(\Theta(x)W)' = \mathbb{A}(x,\lambda)W,$

$$\Theta(x) := egin{pmatrix} a(x) & 0 \\ 0 & I_2 \end{pmatrix}, \qquad \mathbb{A}(x,\lambda) := egin{pmatrix} -(\lambda+Lb(x)) & 0 & L \\ b(x) & 0 & -1 \\ 0 & -1 & 0 \end{pmatrix}$$

 Θ is singular at x = 0.

・ロト・日本・日本・日本・日本・日本

Ramón G. Plaza

Introduction

Viscous shock profiles

Scalar case

Spectral problem

Two Evans functions Pointwise bounds for the Green operator Nonlinear analysis

Hyperbolic elliptic systems Hypothesis Results

Spectral stability (systems)

Spectral problem Kawashima-type estimate

estimate

Construction of the resolvent kernel

Fisrt order system

$$(\Theta(x)W)' = \mathbb{A}(x,\lambda)W,$$

$$\Theta(x) := \begin{pmatrix} a(x) & 0 \\ 0 & I_2 \end{pmatrix}, \qquad \mathbb{A}(x,\lambda) := \begin{pmatrix} -(\lambda + Lb(x)) & 0 & L \\ b(x) & 0 & -1 \\ 0 & -1 & 0 \end{pmatrix}$$

 Θ is singular at x = 0.

Ramón G. Plaza

Introduction

Viscous shock profiles

Scalar case

Spectral problem

Two Evans functions Pointwise bounds for the Green operator Nonlinear analysis

Hyperbolic elliptic systems Hypothesis Results

Spectral stability (systems)

Spectral problem Kawashima-type

estimate Goodman-type

Solutions to:

$$\partial_x \left(\Theta(x) \mathcal{G}_\lambda\right) - \mathbb{A}(x,\lambda) \mathcal{G}_\lambda = \delta_y(x) I,$$

$$\partial_x \left(\Theta(x) \mathcal{G}_\lambda\right) - \mathbb{A}(x,\lambda) \mathcal{G}_\lambda = 0, \quad \text{if } x \neq y,$$

+ jump conditions at x = y.

The resolvent kernel is $G_\lambda=(\mathcal{G}_\lambda)_{11}.$

Ramón G. Plaza

Introduction

Viscous shock profiles

Scalar case

Spectral problem

Two Evans functions Pointwise bounds for the Green operator Nonlinear analysis

Hyperbolic elliptic systems Hypothesis Results

Spectral stability (systems)

Spectral problem Kawashima-type estimate

Goodman-type estimate

Solutions to:

$$\partial_x \left(\Theta(x) \mathcal{G}_\lambda\right) - \mathbb{A}(x,\lambda) \mathcal{G}_\lambda = \delta_y(x) I,$$

$$\partial_x (\Theta(x) \mathcal{G}_\lambda) - \mathbb{A}(x, \lambda) \mathcal{G}_\lambda = 0, \quad \text{if } x \neq y,$$

+ jump conditions at x = y.

The resolvent kernel is $G_{\lambda} = (\mathcal{G}_{\lambda})_{11}$.

Ramón G. Plaza

Introduction

Viscous shock profiles

Scalar case

Spectral problem

Two Evans functions Pointwise bounds for the Green operator Nonlinear analysis

Hyperbolic elliptic systems Hypothesis Results

Spectral stability (systems)

Spectral problem Kawashima-type estimate

estimate

Asymptotic systems

 $\Theta_{\pm}W'=\mathbb{A}_{\pm}(\lambda)W,$

$$\Theta_\pm:=egin{pmatrix} a_\pm & 0\ 0 & I_2 \end{pmatrix}, \qquad \mathbb{A}_\pm(\lambda):=egin{pmatrix} -(\lambda+Lb_\pm) & 0 & L\ b_\pm & 0 & -1\ 0 & -1 & 0 \end{pmatrix},$$

$$a_{\pm} := \lim_{x \to \pm \infty} a(x) = f'(u_{\pm}), \qquad b_{\pm} := \lim_{x \to \pm \infty} b(x) = M'(u_{\pm}).$$

 $a_{\pm} < 0 < a_{\pm}.$

Ramón G. Plaza

Introduction

Viscous shock profiles

Scalar case

Spectral problem

Two Evans functions Pointwise bounds for the Green operator Nonlinear analysis

Hyperbolic elliptic systems Hypothesis Results

Spectral stability (systems)

Spectral problem Kawashima-type estimate Goodman-type

Dispersion relation

$$|\mu I - \Theta_{\pm}^{-1} \mathbb{A}_{\pm}(\lambda)| = \mu^3 + a_{\pm}^{-1} (\lambda + Lb_{\pm}) \mu^2 - \mu - a_{\pm}^{-1} \lambda,$$

For $\lambda \in \mathbb{R}_+, \lambda \to +\infty$: 2 positive, 1 negative root for π_+ . 2 negative, 1 positive for π_- .

For each Re $\lambda > 0$: dim $U^+(\lambda) = 2$, dim $S^+(\lambda) = 1$, dim $U^-(\lambda) = 1$, dim $S^-(\lambda) = 2$.

Dimensions are not equal.

 ${\rm Re \ }\lambda > 0\} \subset \Lambda = {\rm region \ to \ the \ left \ of \ the \ dispersion \ curves}$

Ramón G. Plaza

Introduction

Viscous shock profiles

Scalar case

Spectral problem

Two Evans functions Pointwise bounds for the Green operator Nonlinear analysis

Hyperbolic elliptic systems Hypothesis Results

Spectral stability (systems)

Kawashima-type estimate Goodman-type

Dispersion relation

$$|\mu I - \Theta_{\pm}^{-1} \mathbb{A}_{\pm}(\lambda)| = \mu^3 + a_{\pm}^{-1} (\lambda + Lb_{\pm}) \mu^2 - \mu - a_{\pm}^{-1} \lambda,$$

For $\lambda \in \mathbb{R}_+$, $\lambda \to +\infty$: 2 positive, 1 negative root for π_+ . 2 negative, 1 positive for π_- .

For each Re $\lambda > 0$ *:*

 $\dim U^+(\lambda) = 2, \qquad \dim S^+(\lambda) = 1, \\ \dim U^-(\lambda) = 1, \qquad \dim S^-(\lambda) = 2.$

Dimensions are not equal.

 ${\rm Re } \lambda > 0\} \subset \Lambda = {\rm region to the left of the dispersion curves}$

Region of (not so) consistent splitting

Ramón G. Plaza

Introduction

Viscous shock profiles

Scalar case

Spectral problem

Two Evans functions Pointwise bounds for the Green operator Nonlinear analysis

Hyperbolic elliptic systems Hypothesis Results

Spectral stability (systems)

Kawashima-type estimate Goodman-type

Dispersion relation

$$|\mu I - \Theta_{\pm}^{-1} \mathbb{A}_{\pm}(\lambda)| = \mu^3 + a_{\pm}^{-1} (\lambda + Lb_{\pm}) \mu^2 - \mu - a_{\pm}^{-1} \lambda,$$

For $\lambda \in \mathbb{R}_+$, $\lambda \to +\infty$: 2 positive, 1 negative root for π_+ . 2 negative, 1 positive for π_- .

For each Re $\lambda > 0$ *:*

 $\dim U^+(\lambda) = 2, \qquad \dim S^+(\lambda) = 1, \\ \dim U^-(\lambda) = 1, \qquad \dim S^-(\lambda) = 2.$

Dimensions are not equal.

 ${\rm Re \ }\lambda > 0\} \subset \Lambda = {\rm region}$ to the left of the dispersion curves

Region of (not so) consistent splitting
Ramón G. Plaza

Introduction

Viscous shock profiles

Scalar case

Spectral problem

Two Evans functions Pointwise bounds for the Green operator Nonlinear analysis

Hyperbolic elliptic systems Hypothesis Results

Spectral stability (systems) Spectral proble

Kawashima-type estimate Goodman-type

Dispersion relation

$$|\mu I - \Theta_{\pm}^{-1} \mathbb{A}_{\pm}(\lambda)| = \mu^3 + a_{\pm}^{-1} (\lambda + Lb_{\pm}) \mu^2 - \mu - a_{\pm}^{-1} \lambda,$$

For $\lambda \in \mathbb{R}_+$, $\lambda \to +\infty$: 2 positive, 1 negative root for π_+ . 2 negative, 1 positive for π_- .

For each Re $\lambda > 0$ *:*

 $\dim U^+(\lambda) = 2, \qquad \dim S^+(\lambda) = 1, \\ \dim U^-(\lambda) = 1, \qquad \dim S^-(\lambda) = 2.$

Dimensions are not equal.

 $\{\operatorname{Re} \lambda > 0\} \subset \Lambda = \operatorname{region}$ to the left of the dispersion curves

Region of (not so) consistent splitting

Ramón G. Plaza

Introduction

Viscous shock profiles

Scalar case

Spectral problem

Two Evans functions Pointwise bounds for the Green operator Nonlinear analysis

Hyperbolic elliptic systems Hypothesis Results

Spectral stability (systems)

Spectral problem

estimate Goodman-type

estimate

Small frequencies: $\lambda \sim 0$

Eigenvalues of $\Theta_{+}^{-1}\mathbb{A}_{+}(\lambda)$:

 $\mu_2^{\pm}(\lambda) = -\frac{\lambda}{a_{\pm}} + \mathcal{O}(|\lambda|^2),$ $\mu_1^{\pm}(\lambda) = \pm \theta_1^{\pm} + \mathcal{O}(|\lambda|),$ $\mu_3^{\pm}(\lambda) = \mp \theta_3^{\pm} + \mathcal{O}(|\lambda|),$

$$\begin{split} \mu_2^{\pm}(0) &= 0, \\ \mu_1^{-}(0) &= -\theta_1^{-} < 0 < \theta_1^{+} = \mu_1^{+}(0), \\ \mu_3^{+}(0) &= -\theta_3^{+} < 0 < \theta_3^{-} = \mu_3^{-}(0) \;. \end{split}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ ● ●

Ramón G. Plaza

Introduction

Viscous shock profiles

Scalar case

Spectral problem

Two Evans functions Pointwise bounds for the Green operator Nonlinear analysis

Hyperbolic elliptic systems Hypothesis Results

Spectral stability (systems)

Spectral problem

estimate Goodman-type

estimate

Eigenvectors:

$$V_{j}^{\pm} = \begin{pmatrix} b_{\pm}^{-1}(1-\mu_{j}^{\pm}(\lambda)^{2}) \\ -\mu_{j}^{\pm}(\lambda) \\ 1 \end{pmatrix}.$$

$$V_2^{\pm}(\lambda) = \begin{pmatrix} \mathcal{O}(1) \\ \mathcal{O}(\lambda) \\ \mathcal{O}(1) \end{pmatrix}, \qquad V_j^{\pm}(\lambda)$$

$$V_j^{\pm}(\lambda) = \mathcal{O}(1), \quad j = 1, 3.$$

Ramón G. Plaza

Introduction

Viscous shock profiles

Scalar case

Spectral problem

Two Evans functions Pointwise bounds for the Green operator Nonlinear analysis

Hyperbolic elliptic systems Hypothesis Results

Spectral stability (systems)

Kawashima-type estimate Goodman-type

Lemma

For each $\lambda \in \Lambda$, the asymptotic systems has solutions

$$e^{\mu_j^{\pm}(\lambda)x}V_j^{\pm}(\lambda), \quad x \gtrless 0, \, j=1,2,3.$$

For $|\lambda| \sim 0$, it is possible to find analytic representations for μ_j^{\pm} and V_i^{\pm} , namely, two "slow" modes

$$\mu_2^{\pm}(\lambda) = -a_{\pm}^{-1}\lambda + \mathcal{O}(\lambda^2),$$

and four "fast" modes:

$$\mu_1^{\pm}(\lambda) = \pm \theta_1^{\pm} + \mathcal{O}(\lambda), \qquad \mu_3^{\pm}(\lambda) = \mp \theta_3^{\pm} + \mathcal{O}(\lambda),$$

Ramón G. Plaza

Introduction

Viscous shock profiles

Scalar case

Spectral problem

Two Evans functions Pointwise bounds for the Green operator Nonlinear analysis

Hyperbolic elliptic systems Hypothesis Results

Spectral stability (systems)

Kawashima-type estimate Goodman-type estimate Solutions to the system $\Theta W' = \mathbb{A}(x, \lambda)W$

Thanks to Conjugation Lemma (MASCIA, ZUMBRUN, *Indiana* Univ. Math. J. **51** (2002): exponential decay of the waves in the hyperbolic region implies the existence of projections $P_{\pm}(x, \lambda) = I + \Phi_{\pm}$, uniformly bounded, which relate the solutions Z to the asymptotic system, with the solutions W to the variable coefficient system, $W = P_{\pm}Z$. Moreover, $|\partial_{\lambda}^{j}\partial_{x}^{k}\Phi_{\pm}| \leq e^{-\eta|x|}$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ◆ ○ ○

Ramón G. Plaza

Introduction

Viscous shock profiles

Scalar case

Spectral problem

Two Evans functions Pointwise bounds for the Green operator Nonlinear analysis

Hyperbolic elliptic systems Hypothesis Results

Spectral stability (systems)

Kawashima-type estimate

estimate

Lemma

For $|\lambda| \sim 0$ there exist $\psi_j^{\pm}(x, \lambda)$, j = 1, 2, explosive modes, and $\phi_3^{\pm}(x, \lambda)$ decaying modes, in $x \ge 0$, of class C^1 in x, analytic in λ , such that

$$\psi_j^{\pm}(x,\lambda) = e^{\mu_j^{\pm}(\lambda)x} V_j^{\pm}(\lambda) (I + \mathcal{O}(e^{-\eta|x|})), \quad j = 1, 2,$$

$$\phi_3^{\pm}(x,\lambda) = e^{\mu_3^{\pm}(\lambda)x} V_3^{\pm}(\lambda) (I + \mathcal{O}(e^{-\eta|x|})),$$

where $\eta > 0$ is the rate of exponential decay of the profiles.

Ramón G. Plaza

Introduction

Viscous shock profiles

Scalar case

Spectral problem

Two Evans functions Pointwise bounds for the Green operator Nonlinear analysis

Hyperbolic elliptic systems Hypothesis Results

Spectral stability (systems)

Spectral problem Kawashima-type estimate Goodman-type estimate

Summary: solutions for $\lambda \sim 0, x \gtrless 0$

In
$$x \ge x_0 > 0$$
:

 $\psi_1^+(x,\lambda) = e^{(\theta_1^+ + \mathcal{O}(|\lambda|))x} V_1^+(\lambda) (I + \mathcal{O}(e^{-\eta|x|})), \quad \text{(fast growing)},$ $\psi_2^+(x,\lambda) = e^{(-\lambda/a_+ + \mathcal{O}(|\lambda|^2))x} V_2^+(\lambda) (I + \mathcal{O}(e^{-\eta|x|})), \quad \text{(slowly growing)},$ $\phi_3^+(x,\lambda) = e^{(-\theta_3^+ + \mathcal{O}(|\lambda|))x} V_3^+(\lambda) (I + \mathcal{O}(e^{-\eta|x|})), \quad \text{(fast decaying)},$

In
$$x \leq x_0 < 0$$
:

 $\psi_1^-(x,\lambda) = e^{(-\theta_1^- + \mathcal{O}(|\lambda|))x} V_1^-(\lambda) (I + \mathcal{O}(e^{-\eta|x|})), \quad \text{(fast growing)},$ $\psi_2^-(x,\lambda) = e^{(-\lambda/a_- + \mathcal{O}(|\lambda|^2))x} V_2^-(\lambda) (I + \mathcal{O}(e^{-\eta|x|})), \quad \text{(slowly growing)},$ $\phi_3^-(x,\lambda) = e^{(\theta_3^- + \mathcal{O}(|\lambda|))x} V_3^-(\lambda) (I + \mathcal{O}(e^{-\eta|x|})), \quad \text{(fast decaying)},$

◆ロト→舂▶→車×→車> 車 の40

Ramón G. Plaza

Introduction

Viscous shock profiles

Scalar case

Spectral problem

Two Evans functions Pointwise bounds for the Green operator Nonlinear analysis

Hyperbolic elliptic systems Hypothesis Results

Spectral stability (systems) Spectral problem

Kawashima-type estimate Goodman-type

estimate

Solutions for $x \sim 0$

$$\xi = \int_{\epsilon_0}^x \frac{dz}{a(z)},$$

$$\xi(\epsilon_0) = 0, \, \xi \to +\infty ext{ if } x \to 0^+.$$

$$u' = \frac{du}{dx} = \frac{1}{a(x)}\frac{du}{d\xi} = \frac{1}{a(x)}\dot{u},$$

 $d = d/d\xi.$

Ramón G. Plaza

Introduction

Viscous shock profiles

Scalar case

Spectral problem

Two Evans functions Pointwise bounds for the Green operator Nonlinear analysis

Hyperbolic elliptic systems Hypothesis Results

Spectral stability (systems) Spectral problem

estimate Goodman-type estimate

$$\dot{W} = \tilde{\mathbb{A}}(\xi,\lambda) W \quad ext{where} \quad \tilde{\mathbb{A}}(\xi,\lambda) := egin{pmatrix} -\omega & 0 & L \ ilde{a} \, ilde{b} & 0 & - ilde{a} \ 0 & - ilde{a} & 0 \end{pmatrix},$$

 $\omega(\xi) := \lambda + a'(x(\xi)) + L b(x(\xi)), \quad \tilde{a}(\xi) := a(x(\xi)), \quad \tilde{b}(\xi) := b(x(\xi))$

For $\lambda \sim 0, 0 < \epsilon_0 \ll 1$

Re $\omega(\xi) \sim \text{Re } \omega(0) = \eta := \text{Re } \lambda + a'(0) + L b(0) > 0$, for $\xi \in [0, +\infty)$.

Ramón G. Plaza

Introduction

Viscous shock profiles

Scalar case

Spectral problem

Two Evans functions Pointwise bounds for the Green operator Nonlinear analysis

Hyperbolic elliptic systems Hypothesis Results

Spectral stability (systems)

Spectral problem Kawashima-type estimate Goodman-type

tresis Its ctral

$$Z_1 \rightarrow 0 \ \xi \rightarrow +\infty^*$$

$$e^{-\int_0^{\xi} \omega(z) dz} \lesssim e^{-(\operatorname{Re} \lambda + \frac{1}{2}\eta)\xi} \to 0$$

Block diagonalization:

$$\dot{Z} = \begin{pmatrix} -\omega & 0 \\ 0 & 0 \end{pmatrix} Z + \tilde{a} \,\hat{\Theta}(\xi) Z,$$

$$\hat{\Theta} = egin{pmatrix} 0 & L/\omega & L(a''+Lb')/\omega^2 \ ilde{b} & 0 & -1+L ilde{b}/\omega \ 0 & -1 & 0 \end{pmatrix}$$

"Fast" and "slow" coordinates

$$\dot{Z}_1 = -\omega Z_1 + \mathcal{O}(\tilde{a})Z_1,$$

 $\dot{Z}_2 = \mathcal{O}(\tilde{a})Z_2.$

◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ● のへで

Ramón G. Plaza

Introduction

Viscous shock profiles

Scalar case

Spectral problem

Two Evans functions Pointwise bounds for the Green operator Nonlinear analysis

Hyperbolic elliptic systems Hypothesis Results

Spectral stability (systems) Spectral problem

Kawashima-type estimate

Goodman-type estimate

Block diagonalization:

$$\dot{Z} = \begin{pmatrix} -\omega & 0 \\ 0 & 0 \end{pmatrix} Z + \tilde{a} \,\hat{\Theta}(\xi) Z,$$

$$\hat{\Theta} = \begin{pmatrix} 0 & L/\omega & L(a'' + Lb')/\omega^2 \\ \tilde{b} & 0 & -1 + L\tilde{b}/\omega \\ 0 & -1 & 0 \end{pmatrix}$$

"Fast" and "slow" coordinates

$$\dot{Z}_1 = -\omega Z_1 + \mathcal{O}(\tilde{a})Z_1,$$

 $\dot{Z}_2 = \mathcal{O}(\tilde{a})Z_2.$

$$Z_1 \rightarrow 0, \xi \rightarrow +\infty$$
:

$$e^{-\int_0^{\xi}\omega(z)\,dz} \lesssim e^{-(\operatorname{Re}\lambda+\frac{1}{2}\eta)\xi} \to 0,$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Ramón G. Plaza

Introduction

Viscous shock profiles

Scalar case

Spectral problem

Two Evans functions Pointwise bounds for the Green operator Nonlinear analysis

Hyperbolic elliptic systems Hypothesis Results

Spectral stability (systems)

Spectral problem Kawashima-type estimate Goodman-type estimate

Lemma (Solutions near x = 0).

Under (A0) - (A4) y (A5₂), there exist $0 < \epsilon_0 \ll 1$ small such that, for $\lambda \sim 0$, the solutions in $(-\epsilon_0, 0) \cup (0, \epsilon_0)$ are generated by "fast" modes,

$$w_2^{\pm}(x,\lambda) = \begin{pmatrix} u_2^{\pm} \\ q_2^{\pm} \\ p_2^{\pm} \end{pmatrix} = \begin{pmatrix} Z_1(x) \\ 0 \\ 0 \end{pmatrix} (1 + \mathcal{O}(a(x))), \qquad \pm \epsilon_0 \ge x \ge 0,$$

and "slow" modes,

$$z_j^{\pm}(x,\lambda) = egin{pmatrix} u_j^{\pm} \ q_j^{\pm} \ p_j^{\pm} \end{pmatrix}, \qquad \pm \epsilon_0 \gtrless x \gtrless 0, \quad j=1,3,$$

bounded as $x \to 0^{\pm}$. moreover, the fast modes decay as

$$u_2^\pm \sim |x|^
u o 0, \qquad egin{pmatrix} q_2^\pm \ p_2^\pm \end{pmatrix} \sim \mathcal{O}(|x|^
u a(x)) o 0,$$

when $x \to 0^{\pm}$, where $\nu := (Re \ \lambda + a'(0) + Lb(0))/|a'(0)|$,

Decaying modes

Introduction

On the stability of radiative

shocks Ramón G. Plaza

Viscous shock profiles

Scalar case Spectral problem

Two Evans functions Pointwise bounds for the Green operator Nonlinear analysis

Hyperbolic elliptic systems Hypothesis Results

Spectral stability (systems)

Spectral problem Kawashima-type estimate Goodman-type estimate Resolvent kernel construction: complete set of decaying modes Let $\epsilon_0 > 0$, small. Objective: two decaying modes in $+\infty$, W_j^+ , j = 1, 2; one decaying in $-\infty$, W_3^- .

$$W_3^-(x,\lambda) := egin{cases} \phi_3^-(x,\lambda), & x < -\epsilon_0, \ (\gamma_1 z_1^- + \gamma_3 z_3^- + \gamma_2 w_2^-)(x,\lambda), & -\epsilon_0 < x < 0. \end{cases}$$

Ramón G. Plaza

Introduction

Viscous shock profiles W_1^+

Scalar case

Two Evans functions Pointwise bounds for

Nonlinear analysis

Hyperbolic elliptic systems Hypothesis Results

Spectral stability (systems)

Spectral problem Kawashima-type estimate Goodman-type estimate

$$(x,\lambda) := \begin{cases} \phi_3^+(x,\lambda), & x > \epsilon_0, \\ (\alpha_1 z_1^+ + \alpha_3 z_3^+ + \alpha_2 w_2^+)(x,\lambda), & 0 < x < \epsilon_0, \\ (\beta_1 z_1^- + \beta_3 z_3^- + \beta_2 w_2^-)(x,\lambda), & -\epsilon_0 < x < 0 \\ (\delta_1 \psi_1^- + \delta_2 \psi_2^- + \delta_3 \phi_3^-)(x,\lambda), & x < -\epsilon_0. \end{cases}$$

$$W_2^+(x,\lambda) := \begin{cases} 0, & x > 0, \\ w_2^-(x,\lambda), & -\epsilon_0 < x < 0, \\ (\kappa_1\psi_1^- + \kappa_2\psi_2^- + \kappa_3\phi_3^-)(x,\lambda), & x < -\epsilon_0. \end{cases}$$

 w_2^- is the fast decaying mode at $x \to 0^-$.

・ロット (雪) (日) (日) (日)

Ramón G. Plaza

Introduction

Viscous shock profiles W_1^+

Scalar case

Two Evans functions

Pointwise bounds for the Green operator Nonlinear analysis

Hyperbolic elliptic systems Hypothesis Results

Spectral stability (systems)

Spectral problem Kawashima-type estimate Goodman-type estimate

$$(x,\lambda) := \begin{cases} \phi_3^+(x,\lambda), & x > \epsilon_0, \\ (\alpha_1 z_1^+ + \alpha_3 z_3^+ + \alpha_2 w_2^+)(x,\lambda), & 0 < x < \epsilon_0, \\ (\beta_1 z_1^- + \beta_3 z_3^- + \beta_2 w_2^-)(x,\lambda), & -\epsilon_0 < x < 0 \\ (\delta_1 \psi_1^- + \delta_2 \psi_2^- + \delta_3 \phi_3^-)(x,\lambda), & x < -\epsilon_0. \end{cases}$$

$$W_2^+(x,\lambda) := \begin{cases} 0, & x > 0, \\ w_2^-(x,\lambda), & -\epsilon_0 < x < 0, \\ (\kappa_1\psi_1^- + \kappa_2\psi_2^- + \kappa_3\phi_3^-)(x,\lambda), & x < -\epsilon_0. \end{cases}$$

 w_2^- is the fast decaying mode at $x \to 0^-$.

Figura: Two Evans function: D_+ for y > 0, and D_- for y < 0.

х

х

Ramón G. Plaza

Introduction

Viscous shock profiles

Scalar case

Two Evans functions Pointwise bounds for the Green operator Nonlinear analysis

Hyperbolic elliptic systems Hypothesis Results

Spectral stability (systems)

Spectral problem Kawashima-type estimate

estimate

Analogously we select two modes W_2^- , W_3^- decaying at $-\infty$, and one W_1^+ , decaying at $+\infty$.

We define *two* Evans functions:

 $D_{\pm}(y,\lambda) := \det \left(W_1^+ \ W_2^{\mp} \ W_3^- \right)(y,\lambda), \qquad \text{for } y \ge 0,$

Ramón G. Plaza

Introduction

Viscous shock profiles

Scalar case Spectral problem Two Evans functions

Pointwise bounds for the Green operator Nonlinear analysis

Hyperbolic elliptic systems Hypothesis Results

Spectral stability (systems)

Spectral problem Kawashima-type estimate

estimate

Analogously we select two modes W_2^-, W_3^- decaying at $-\infty$, and one W_1^+ , decaying at $+\infty$.

We define *two* Evans functions:

$$D_{\pm}(y,\lambda) := \det \left(W_1^+ \ W_2^{\mp} \ W_3^- \right)(y,\lambda), \qquad \text{for } y \gtrless 0,$$

Properties

Introduction

On the stability of radiative

shocks Ramón G. Plaza

Viscous shock profiles

Scalar case Spectral problem Two Evans functions

Pointwise bounds for the Green operator Nonlinear analysis

Hyperbolic elliptic systems Hypothesis Results

Spectral stability (systems) Spectral problem Kawashima-type estimate Goodman-type

(i) For $\lambda \sim 0$

$$D_{\pm}(y,\lambda) = -a(y)^{-1}\lambda[u]\det\begin{pmatrix} q_1^+ & q_2^{\mp} \\ p_1^+ & p_2^{\mp} \end{pmatrix}|_{\lambda=0} + \mathcal{O}(|\lambda|^2),$$

where $[u] = u_{+} - u_{-}$.

ii) We define

$$D_{\pm}(\lambda) := D_{\pm}(\pm 1, \lambda).$$

Then, $D_+(\lambda) = mD_-(\lambda) + \mathcal{O}(|\lambda|^2)$, where $m \neq 0$.

(iii) $D_{\pm}(\lambda)$ is analytic in λ ; $D_{\pm} = 0$ iff λ is an eigenvalue.

Properties

Introduction

On the stability of radiative shocks

Ramón G. Plaza

Viscous shock profiles

Scalar case Spectral problem Two Evans functions

Pointwise bounds for the Green operator Nonlinear analysis

Hyperbolic elliptic systems Hypothesis Results

Spectral stability (systems) Spectral problem Kawashima-type

Goodman-type estimate

(i) For $\lambda \sim 0$

$$D_{\pm}(y,\lambda) = -a(y)^{-1}\lambda[u]\det\begin{pmatrix} q_1^+ & q_2^+\\ p_1^+ & p_2^+ \end{pmatrix}|_{\lambda=0} + \mathcal{O}(|\lambda|^2),$$

where $[u] = u_{+} - u_{-}$.

(ii) We define

 $D_{\pm}(\lambda) := D_{\pm}(\pm 1, \lambda).$

Then, $D_+(\lambda) = mD_-(\lambda) + \mathcal{O}(|\lambda|^2)$, where $m \neq 0$.

(iii) $D_{\pm}(\lambda)$ is analytic in λ ; $D_{\pm} = 0$ iff λ is an eigenvalue.

Properties

Introduction

On the stability of radiative shocks

Ramón G. Plaza

Viscous shock profiles

Scalar case Spectral problem Two Evans functions

Pointwise bounds for the Green operator Nonlinear analysis

Hyperbolic elliptic systems Hypothesis Results

Spectral stability (systems) Spectral problem Kawashima-type estimate Goodman-type (i) For $\lambda \sim 0$

$$D_{\pm}(y,\lambda) = -a(y)^{-1}\lambda[u] \det \begin{pmatrix} q_1^+ & q_2^+ \\ p_1^+ & p_2^+ \end{pmatrix}_{|\lambda=0} + \mathcal{O}(|\lambda|^2),$$

where $[u] = u_{+} - u_{-}$.

(ii) We define

$$D_{\pm}(\lambda) := D_{\pm}(\pm 1, \lambda).$$

Then, $D_+(\lambda) = mD_-(\lambda) + \mathcal{O}(|\lambda|^2)$, where $m \neq 0$.

(iii) $D_{\pm}(\lambda)$ is analytic in λ ; $D_{\pm} = 0$ iff λ is an eigenvalue.

Ramón G. Plaza

Introduction

Viscous shock profiles

Scalar case

Two Evans functions Pointwise bounds for the Green operator

Hyperbolic elliptic systems Hypothesis Results

Spectral stability (systems)

Spectral problem Kawashima-type estimate

Goodman-type estimate

Resolvent kernel bounds for $\lambda \sim 0$

W.l.o.g. y < 0. Jump conditions in x = y:

$$[\mathcal{G}_{\lambda}(\cdot, y)] = \begin{pmatrix} a(y)^{-1} & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{pmatrix}$$

x(x, y) is constructed in terms of decaying solutions:

 $P_{\lambda}(x,y) = \begin{cases} W_{1}^{+}(x,\lambda)C_{1}^{+}(y,\lambda) + W_{2}^{+}(x,\lambda)C_{2}^{+}(y,\lambda), & x > y, \\ -W_{3}^{-}(x,\lambda)C_{3}^{-}(y,\lambda), & x < y \end{cases}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ ● ●

Ramón G. Plaza

Introduction

Viscous shock profiles

Scalar case

Two Evans functions Pointwise bounds for the Green operator

Hyperbolic elliptic systems Hypothesis Results

Spectral stability (systems)

Spectral problem Kawashima-type estimate (

Goodman-type estimate

Resolvent kernel bounds for $\lambda \sim 0$

W.l.o.g. y < 0. Jump conditions in x = y:

$$[\mathcal{G}_{\lambda}(\cdot, y)] = \begin{pmatrix} a(y)^{-1} & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{pmatrix}$$

 $\mathcal{G}_{\lambda}(x, y)$ is constructed in terms of decaying solutions:

$$\mathcal{G}_{\lambda}(x,y) = \begin{cases} W_1^+(x,\lambda)C_1^+(y,\lambda) + W_2^+(x,\lambda)C_2^+(y,\lambda), & x > y, \\ -W_3^-(x,\lambda)C_3^-(y,\lambda), & x < y \end{cases}$$

Ramón G. Plaza

Introduction

Viscous shock profiles

Scalar case

Spectral problem

Two Evans functions Pointwise bounds for the Green operator Nonlinear analysis

Hyperbolic elliptic systems Hypothesis Results

Spectral stability (systems) Spectral problem Kawashima-type

estimate Goodman-type estimate

By Cramer's rule:

$$C_{11}^{+}(y,\lambda) = a(y)^{-1}D_{-}(y,\lambda)^{-1} \begin{vmatrix} q_{2}^{+} & q_{3}^{-} \\ p_{2}^{+} & p_{3}^{-} \end{vmatrix} (y,\lambda),$$

$$C_{21}^{+}(y,\lambda) = a(y)^{-1}D_{-}(y,\lambda)^{-1} \begin{vmatrix} q_{3}^{-} & q_{1}^{+} \\ p_{3}^{-} & p_{1}^{+} \end{vmatrix} (y,\lambda),$$

$$C_{31}^{-}(y,\lambda) = a(y)^{-1}D_{-}(y,\lambda)^{-1} \begin{vmatrix} q_{1}^{+} & q_{2}^{+} \\ p_{1}^{+} & p_{2}^{+} \end{vmatrix} (y,\lambda).$$

The only coefficients with possible jumps are in the first column.

Ramón G. Plaza

Introduction

Viscous shock profiles

Scalar case

Two Evans functions Pointwise bounds for the Green operator Nonlinear analysis

Hyperbolic elliptic systems Hypothesis Results

Spectral stability (systems) Spectral problem Kawashima-type estimate

estimate

Bounds for $y \sim 0$. Lemma

(*i*) For $y \sim 0$

$$C_1^+(y,\lambda) = \frac{1}{\lambda} [u]^{-1}(1, -L, 0) + \mathcal{O}(1),$$

$$C_3^-(y,\lambda) = -\frac{1}{\lambda} [u]^{-1}(1, -L, 0) + \mathcal{O}(1),$$

$$C_2^+(y,\lambda) = a(y)^{-1} |y|^{-\nu} \mathcal{O}(1).$$

(ii) Under (A0) - (A5_k), y < 0, near zero, $\mathcal{G}_{\lambda}(x, y) = \lambda^{-1} [u]^{-1} \overline{W}'(1, -L, 0) + \mathcal{O}(e^{-\eta |x|}), \quad y < 0 < x,$

$$\mathcal{G}_{\lambda}(x,y) = \lambda^{-1}[u]^{-1} \bar{W}'(1, -L, 0) + \mathcal{O}(1) \left(1 + \frac{|x|^{\nu}}{a(y)|y|^{\nu}} \right), \quad y < x < 0$$

$$\mathcal{G}_{\lambda}(x,y) = \lambda^{-1}[u]^{-1} \overline{W}'(1, -L, 0) + \mathcal{O}(e^{-\eta |x|}), \ x < y < 0,$$

for some $\eta > 0$. The y > 0 case is analogous. $\overline{W}' =$ derivative of the profile.

Ramón G. Plaza

Introduction

Viscous shock profiles

Scalar case

Two Evans functions Pointwise bounds for the Green operator

Hyperbolic elliptic systems Hypothesis Results

Spectral stability (systems) Spectral problem

Kawashima-type estimate Goodman-type estimate

Bounds for $y \to -\infty$. **Lemma** *Under (A0) - (A5_k), y < 0, for* |y| *large,*

$$\begin{aligned} \mathcal{G}_{\lambda}(x,y) &= \lambda^{-1} [u]^{-1} e^{-\mu_{2}^{-} y} \bar{W}'(1, -L, 0) \\ &+ \mathcal{O}((e^{-\mu_{2}^{-} y} + e^{-\mu_{1}^{-} y}) e^{\mu_{3}^{+} x}), \ y < 0 < x, \end{aligned}$$

$$\begin{aligned} \mathcal{G}_{\lambda}(x,y) &= \lambda^{-1} [u]^{-1} e^{-\mu_{2}^{-} y} \bar{W}'(1, -L, 0) \\ &+ \mathcal{O}(e^{\mu_{1}^{-}(x-y)}) + \mathcal{O}(e^{\mu_{2}^{-}(x-y)}) + \mathcal{O}(e^{-\mu_{2}^{-} y} e^{\mu_{3}^{-} x}), \ y < x < 0, \\ \mathcal{G}_{\lambda}(x,y) &= -\lambda^{-1} [u]^{-1} e^{-\mu_{2}^{-} y} \bar{W}'(1, -L, 0) \\ &+ \mathcal{O}(e^{-\mu_{2}^{-} y} e^{\mu_{3}^{-} x}) + \mathcal{O}(e^{\mu_{3}^{-}(x-y)}), \ x < y < 0. \end{aligned}$$

The y > 0 case is analogous.

Ramón G. Plaza

Introduction

Viscous shock profiles

Scalar case Spectral problem Two Evans functions

Pointwise bounds for the Green operator

Hyperbolic elliptic systems Hypothesis Results

Spectral stability (systems) Spectral problem

estimate Goodman-type

Low frequency estimates

"Low frequency" Green function

$$G^{I}(x,t;y) := rac{1}{2\pi i} \int_{\Gamma \cap \{|\lambda| \leq r\}} e^{\lambda t} \mathcal{G}_{\lambda}(x,y) d\lambda$$

 Γ = contour near λ = 0, away from essential spectrum, 0 < $r \ll 1$ small such that the bounds for G_{λ} hold.

Ramón G. Plaza

Pointwise bounds for the Green operator

Spectral problem

Lemma

Under (A0) - (A5_k), we have the decomposition for y < 0,

$$G^{I}(x,t;y) = E + \widetilde{G}^{I} + R,$$

$$E(x,t;y) := \bar{U}_x(x)[u]^{-1}e(y,t),$$

$$e(y,t) := \left(\operatorname{errfn}\left(\frac{y+a_{-t}}{\sqrt{4Lb_{-t}}}\right) - \operatorname{errfn}\left(\frac{y-a_{-t}}{\sqrt{4Lb_{-t}}}\right)\right);$$

$$|\partial_x^{\kappa}\partial_y^{\beta}\widetilde{G}^I(x,t;y)| \le C_1 t^{-(|\beta|+|\kappa|)/2-1/2}e^{-(x-y-a_{-t})^2/C_2 t},$$

$$R(x,t;y) = \mathcal{O}(e^{-\eta(|x-y|+t)}) + \mathcal{O}(e^{-\eta t})\chi(x,y)\left[1 + \frac{1}{a(y)}(x/y)^{\nu}\right],$$
for some η , C_1 , $C_2 > 0$, where β , $\kappa = 0, 1$ and $\nu = \frac{Lb(0)+a'(0)}{|a'(0)|}$ and
$$\chi(x,y) = \begin{cases} 1 & -1 < y < x < 0\\ 0 & \text{otherwise.} \end{cases}$$

otherwise.

Symmetric bounds for y > 0.

Ramón G. Plaza

Introduction

Viscous shock profiles

Scalar case Spectral problem Two Evans functions Pointwise bounds for

Pointwise bounds for the Green operator Nonlinear analysis

Hyperbolic elliptic systems Hypothesis Results

Spectral stability (systems)

Spectral problem Kawashima-type estimate

estimate

With this decomposition and bounds we prove:

Lemma

Under (A0) - (A5_k), for $1 \le q \le p \le +\infty$,

$$\int_{-\infty}^{+\infty} \partial_y^\beta \widetilde{G}^I(\cdot,t;y) f(y) dy \Big|_{L^p} \leq C(1+t)^{-\frac{1}{2}(1/q-1/p)-|\beta|/2} |f|_{L^q},$$

$$egin{aligned} |e_y(\cdot,t)|_{L^p}, |e_t(\cdot,t)|_{L^p}, &\leq Ct^{-rac{1}{2}(1-1/p)}, \ |e_{yt}(\cdot,t)|_{L^p} &\leq Ct^{-rac{1}{2}(1-1/p)-1/2}, \ t>0, C>0, p\geq 1. \ &\left|\int_{-\infty}^{+\infty} R(\cdot,t;y)f(y)dy
ight|_{L^p} &\leq Ce^{-\eta t}(|f|_{L^p}+|f|_{L^\infty}), \end{aligned}$$

Ramón G. Plaza

Introduction

Viscous shock profiles

Scalar case Spectral problem Two Evans function

Pointwise bounds for the Green operator Nonlinear analysis

Hyperbolic elliptic systems Hypothesis Results

Spectral stability (systems) Spectral problem

Kawashima-type estimate Goodman-type estimate

High frequencies

$$\mathcal{S}_{2}(t) = \frac{1}{2\pi i} \int_{-\gamma_{1}-i\infty}^{-\gamma_{1}+i\infty} \chi_{\{|\operatorname{Im}\lambda| \geq \gamma_{2}\}} e^{\lambda t} (\lambda - \mathcal{L})^{-1} d\lambda,$$

Small constants $\gamma_1, \gamma_2 > 0, \chi_I$ = characteristic function. Linear problem

$$u_t + (a(x)u)_x + Lq_x = \varphi,$$

-q_{xx} + q + (b(x)u)_x = \psi,

is recast as

$$u_t + (a(x)u)_x + \mathcal{J}u = \varphi - L \partial_x \left(\mathcal{K} \psi\right),$$
$$u(x, 0) = u_0(x)$$

 $\mathcal{J} u := -L \partial_x \mathcal{K} \partial_x (b(x)u), \quad \mathcal{L} := -(a(x)u)_x - \mathcal{J}u.$

Ramón G. Plaza

Introduction

Viscous shock profiles

Scalar case Spectral problem Two Evans functions Pointwise bounds for the Green operator

Hyperbolic elliptic systems Hypothesis Results

Spectral stability (systems) Spectral problem Kawashima-type estimate

Goodman-type estimate

High frequencies

$$\mathcal{S}_{2}(t) = \frac{1}{2\pi i} \int_{-\gamma_{1}-i\infty}^{-\gamma_{1}+i\infty} \chi_{\{|\operatorname{Im}\lambda| \geq \gamma_{2}\}} e^{\lambda t} (\lambda - \mathcal{L})^{-1} d\lambda,$$

Small constants $\gamma_1, \gamma_2 > 0, \chi_I$ = characteristic function. Linear problem

$$u_t + (a(x)u)_x + Lq_x = \varphi,$$

-q_{xx} + q + (b(x)u)_x = \psi,

is recast as

$$u_t + (a(x)u)_x + \mathcal{J}u = \varphi - L \partial_x \left(\mathcal{K} \psi\right),$$
$$u(x, 0) = u_0(x)$$

 $\mathcal{J} u := -L \partial_x \mathcal{K} \partial_x (b(x)u), \quad \mathcal{L} := -(a(x)u)_x - \mathcal{J} u.$

Ramón G. Plaza

Introduction

Viscous shock profiles

Scalar case Spectral problem Two Evans functions Pointwise bounds for the Green operator

Hyperbolic elliptic systems Hypothesis Results

Spectral stability (systems) Spectral problem Kawashima-type estimate

Goodman-type estimate

High frequencies

$$\mathcal{S}_{2}(t) = \frac{1}{2\pi i} \int_{-\gamma_{1}-i\infty}^{-\gamma_{1}+i\infty} \chi_{\{|\operatorname{Im}\lambda| \geq \gamma_{2}\}} e^{\lambda t} (\lambda - \mathcal{L})^{-1} d\lambda,$$

Small constants $\gamma_1, \gamma_2 > 0, \chi_I$ = characteristic function. Linear problem

$$u_t + (a(x)u)_x + Lq_x = \varphi,$$

-q_{xx} + q + (b(x)u)_x = \psi,

is recast as

$$u_t + (a(x)u)_x + \mathcal{J}u = \varphi - L \partial_x (\mathcal{K}\psi),$$

$$u(x,0) = u_0(x)$$

 $\mathcal{J} u := -L \partial_x \mathcal{K} \partial_x (b(x)u), \quad \mathcal{L} := -(a(x)u)_x - \mathcal{J}u.$

Ramón G. Plaza

Introduction

Viscous shock profiles

Scalar case Spectral problem Two Evans functions Pointwise bounds for the Green operator

Hyperbolic elliptic systems Hypothesis Results

Spectral stability (systems) Spectral problem Kawashima-type

Goodman-typ estimate

High frequency bounds

$$egin{aligned} &|(\lambda-\mathcal{L})^{-1}(arphi-L\partial_x(\mathcal{K}\psi))|_{H^1}\leq C\Big(|arphi|_{H^1}^2+|\psi|_{L^2}^2\Big),\ &|(\lambda-\mathcal{L})^{-1}(arphi-L\partial_x(\mathcal{K}\psi))|_{L^2}\leq rac{C}{|\lambda|^{1/2}}\Big(|arphi|_{H^1}^2+|\psi|_{L^2}^2\Big), \end{aligned}$$

under (A0) - (A5_k), R, C > 0 large, $\gamma > 0$ small, and for all $|\lambda| > R$, $Re \ \lambda \ge -\gamma$.

Mid-frequency bounds

 $|(\lambda-\mathcal{L})^{-1}arphi|_{L^2}\leq C\,|arphi|_{H^1} \quad ext{ for } \ R^{-1}\leq |\lambda|\leq R ext{ and } ext{Re }\lambda\geq -\gamma,$

R and C = C(R) large, and $\gamma = \gamma(R)$ small.

Ramón G. Plaza

Introduction

Viscous shock profiles

Scalar case Spectral problem Two Evans functions Pointwise bounds for the Green operator

Hyperbolic elliptic systems Hypothesis Results

Spectral stability (systems) Spectral problem Kawashima-type estimate Goodman-type

estimate

High frequency bounds

$$egin{aligned} &|(\lambda-\mathcal{L})^{-1}(arphi-L\partial_x(\mathcal{K}\psi))|_{H^1}\leq C\Big(|arphi|_{H^1}^2+|\psi|_{L^2}^2\Big),\ &|(\lambda-\mathcal{L})^{-1}(arphi-L\partial_x(\mathcal{K}\psi))|_{L^2}\leq rac{C}{|\lambda|^{1/2}}\Big(|arphi|_{H^1}^2+|\psi|_{L^2}^2\Big), \end{aligned}$$

under (A0) - (A5_k), R, C > 0 large, $\gamma > 0$ small, and for all $|\lambda| > R$, $Re \ \lambda \ge -\gamma$.

Mid-frequency bounds

 $|(\lambda - \mathcal{L})^{-1}\varphi|_{L^2} \le C |\varphi|_{H^1}$ for $R^{-1} \le |\lambda| \le R$ and $\operatorname{Re} \lambda \ge -\gamma$,

R and C = C(R) large, and $\gamma = \gamma(R)$ small.

Ramón G. Plaza

Introduction

Viscous shock profiles

Scalar case Spectral problem Two Evans functions Pointwise bounds for the Green operator

Nonlinear analysis

Hyperbolic elliptic systems Hypothesis Results

Spectral stability (systems)

Spectral problem Kawashima-type

Goodman-type estimate

Lemma

Under (A0) - $(A5_k)$, we have the bounds

 $|\partial_x^\kappa \mathcal{S}_2(t)(arphi - L\,\partial_x(\mathcal{K}\psi))|_{L^2} \leq C e^{-\eta_1 t} \Big(|\psi|_{H^{\kappa+2}} + |arphi|_{H^{\kappa+2}}\Big), \; \kappa = 0,1,$

for some $\eta > 0$.

Ramón G. Plaza

Introduction

Viscous shock profiles

Scalar case Spectral problem Two Evans functions Pointwise bounds for the Green operator

Nonlinear analysis

Hyperboli elliptic systems Hypothesis Results

Spectral stability (systems)

Spectral problem Kawashima-type estimate

estimate

Nonlinear perturbation

$$\begin{pmatrix} u \\ q \end{pmatrix}(x,t) := \begin{pmatrix} \tilde{u} \\ \tilde{q} \end{pmatrix}(x+\alpha(t),t) - \begin{pmatrix} U \\ Q \end{pmatrix}(x),$$

 $u_t + (a(x)u)_x + Lq_x = N_1(u)_x + \dot{\alpha}(t)(u_x + U_x),$ $-q_{xx} + q + (b(x)u)_x = N_2(u)_x,$

 $N_j(u) = O(|u|^2)$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへの
Ramón G. Plaza

Introduction

Viscous shock profiles

Scalar case Spectral problem Two Evans functions Pointwise bounds for

Nonlinear analysis

Hyperboli elliptic systems Hypothesis Results

Spectral stability (systems)

Spectral problem Kawashima-type estimate Goodman-type

estimate

Nonlinear perturbation

$$\begin{pmatrix} u \\ q \end{pmatrix}(x,t) := \begin{pmatrix} \tilde{u} \\ \tilde{q} \end{pmatrix}(x+\alpha(t),t) - \begin{pmatrix} U \\ Q \end{pmatrix}(x),$$

 $u_t + (a(x)u)_x + Lq_x = N_1(u)_x + \dot{\alpha}(t)(u_x + U_x),$ $-q_{xx} + q + (b(x)u)_x = N_2(u)_x,$

 $N_j(u) = O(|u|^2)$

Ramón G. Plaza

Auxiliar estimate

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ◆ ○ ○

Introduction

Viscous shock profiles

Scalar case Spectral problem Two Evans functions Pointwise bounds for the Green operator

Nonlinear analysis

Hyperbolic elliptic systems Hypothesis Results

Spectral stability (systems)

Kawashima-type estimate Goodman-type

Under (A0) - (A5_k), if $|u|_{W^{2,\infty}} y |\dot{\alpha}|$ remain small, $|u|_{H^k}^2(t) \le Ce^{-\eta t} |u|_{H^k}^2(0) + C \int_0^t e^{-\eta(t-s)} (|u|_{L^2}^2 + |\dot{\alpha}|^2)(s) ds, \quad \eta > 0,$

for k = 1, ..., 4.

Lemma

Crucial: Lb > 0, uniformly. For systems it is not trivial!

Ramón G. Plaza

Auxiliar estimate

Introduction

Viscous shock profiles

Scalar case Spectral problem Two Evans functions Pointwise bounds for the Green operator Nonlinear analysis

Hyperbolicelliptic

Hypothesis Results

Spectral stability (systems) Spectral problem

Goodman-type estimate

Lemma

Under (A0) - (A5_k), if $|u|_{W^{2,\infty}} y |\dot{\alpha}|$ remain small,

$$|u|_{H^k}^2(t) \leq Ce^{-\eta t}|u|_{H^k}^2(0) + C\int_0^t e^{-\eta(t-s)}(|u|_{L^2}^2 + |\dot{\alpha}|^2)(s)\,ds, \ \eta > 0,$$

for
$$k = 1, ..., 4$$
.

Crucial: Lb > 0, uniformly. For systems it is not trivial!

Ramón G. Plaza

Introduction

Viscous shock profiles

Scalar case Spectral problem Two Evans functions Pointwise bounds for the Green operator

Nonlinear analysis

Hyperboli elliptic systems Hypothesis Results

Spectral stability (systems) Spectral problem

Kawashima-type estimate Goodman-type

estimate

Green function decomposition

$$G(x, t; y) = GI(x, t; y) + GII(x, t; y)$$

$$\widetilde{G}^{I}(x,t;y) = G^{I}(x,t;y) - E(x,t;y) - R(x,t;y)$$

 $\widetilde{G}^{II}(x,t;y) = G^{II}(x,t;y) + R(x,t;y).$

・ロト・西ト・ヨト ・ヨー シック・

Ramón G. Plaza

Introduction

Viscous shock profiles

Scalar case

Spectral problem Two Evans functions Pointwise bounds for the Green operator Nonlinear analysis

Hyperbolic

Hypothesis Results

Spectral stability (systems)

Spectral problem Kawashima-type estimate

estimate

From previous estimates:

$$\Big|\int_{-\infty}^{+\infty}\partial_y^\beta \widetilde{G}^I(\cdot,t;y)f(y)dy\Big|_{L^p} \leq C(1+t)^{-\frac{1}{2}(1/q-1/p)-|\beta|/2}|f|_{L^q},$$

for
$$1 \le q \le p, \beta = 0, 1$$
,

$$\left|\int_{-\infty}^{+\infty}\widetilde{G}^{II}(x,t;y)f(y)dy\right|_{L^p}\leq Ce^{-\eta t}|f|_{H^3},$$

for
$$2 \leq p \leq \infty$$
.

Duhamel principle

Plaza Introduction

On the stability of radiative

shocks Ramón G.

Viscous shock profiles

Scalar case Spectral problem Two Evans functions Pointwise bounds for the Green operator Nonlinear analysis

Hyperboli elliptic systems Hypothesis Results

Spectral stability (systems)

Kawashima-type estimate Goodman-type estimate

Integral representation for the perturbation:

 $u(x,t) = \int_{-\infty}^{+\infty} (\widetilde{G}^I + \widetilde{G}^{II})(x,t;y)u_0(y)dy$ - $\int_0^t \int_{-\infty}^{+\infty} \widetilde{G}^I_y(x,t-s;y) \Big(N_1(u) - L\mathcal{K} \,\partial_y N_2(u) + \dot{\alpha} \, u \Big)(y,s) \, dy \, ds$ + $\int_0^t \int_{-\infty}^{+\infty} \widetilde{G}^{II}(x,t-s;y) \Big(N_1(u) - L\mathcal{K} \,\partial_y N_2(u) + \dot{\alpha} \, u \Big)_y(y,s) \, dy \, ds$ $q(x,t) = (\mathcal{K}\partial_x)(N_2(u) - b \, u)(x,t),$

Ramón G. Plaza

Introduction

Viscous shock profiles

Scalar case Spectral problem Two Evans functions Pointwise bounds for the Green operator

Nonlinear analysis

Hyperboli elliptic systems Hypothesis Results

Spectral stability (systems)

Spectral problem

Kawashima-type estimate

Goodman-typ estimate

$$\begin{aligned} \alpha(t) &= -\int_{-\infty}^{+\infty} e(y,t)u_0(y)dy \\ &+ \int_0^t \int_{-\infty}^{+\infty} e_y(y,t-s) \Big(N_1(u) - L\mathcal{K}\,\partial_y N_2(u) + \dot{\alpha}\,u \Big)(y,s)\,dy \end{aligned}$$

$$\dot{\alpha}(t) = -\int_{-\infty}^{+\infty} e_t(y,t)u_0(y)dy + \int_0^t \int_{-\infty}^{+\infty} e_{yt}(y,t-s) \Big(N_1(u) - L\mathcal{K}\,\partial_y N_2(u) + \dot{\alpha}\,u\Big)(y,s)\,dy$$

Ramón G. Plaza

Introduction

Viscous shock profiles

Scalar case Spectral problem Two Evans functions Pointwise bounds fo the Green operator

Nonlinear analysis

Hyperboli elliptic systems Hypothesis Results

Spectral stability (systems)

Kawashima-type estimate Goodman-type

estimate

Theorem

Under $(A0) - (A5_k)$, and spectral stability assumption, the profile (U, Q) is asymptotically orbitally stable. The solution to the nonlinear problem with initial data \tilde{u}_0 satisfies

$$egin{aligned} &| ilde{u}(x,t)-U(x-lpha(t))|_{L^p} \leq C(1+t)^{-rac{1}{2}(1-1/p)}|u_0|_{L^1\cap H^4} \ &| ilde{u}(x,t)-U(x-lpha(t))|_{H^4} \leq C(1+t)^{-1/4}|u_0|_{L^1\cap H^4} \end{aligned}$$

 $u_0 := \tilde{u}_0 - U$ sufficiently small in $L^1 \cap H^4$, $p \ge 2$, with $\alpha(t)$ such that $\alpha(0) = 0$

 $|\alpha(t)| \leq C |u_0|_{L^1 \cap H^4}, \qquad |\dot{\alpha}(t)| \leq C (1+t)^{-1/2} |u_0|_{L^1 \cap H^4}.$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ◆ ○ ○

Ramón G. Plaza

Introduction

Viscous shock profiles

Scalar case Spectral problem Two Evans functions Pointwise bounds for the Green operator Nonlinear analysis

Hyperbolic elliptic systems Hypothesis Results

Spectral stability (systems)

Spectral problem

estimate Goodman-type

More details in:

C. LATTANZIO, C. MASCIA, T. NGUYEN, R. G. P, K. ZUMBRUN, *SIAM J. Math. Anal.* **41**, no. 6 (2009).

Ramón G. Plaza

Introduction

Viscous shock profiles

Scalar case Spectral problem Two Evans functions Pointwise bounds for the Green operator Nonlinear analysis

Hyperbolicelliptic systems Hypothesis

Spectral stability (systems)

Kawashima-type estimate Goodman-type estimate Introduction

Viscous shock profiles: (unabridged) history

Radiative shock profiles: scalar case Spectral problem Two Evans functions Pointwise bounds for the Green operator Nonlinear analysis

 4 Hyperbolic-elliptic systems Hypothesis Results

Spectral estability for systems case Spectral problem Kawashima-type estimate Goodman-type estimate

Ramón G. Plaza

Introduction

Viscous shock profiles

Scalar case Spectral problem Two Evans functions Pointwise bounds for the Green operator

Hyperbolicelliptic systems

Results

Spectral stability (systems)

Spectral probler Kawashima-typ

Goodman-type

Hyperbolic-elliptic systems

$$u_t + f(u)_x + Lq_x = 0,$$

 $-q_{xx} + q + g(u)_x = 0,$ $(x,t) \in \mathbb{R} \times [0,+\infty),$ (HE)

 $\mathbb{R}^{n} \supseteq \mathcal{U} \ni u - \text{state variables, } n \ge 1,$ $\mathbb{R} \ni q - \text{general heat flux function},$ $\mathbb{R}^{n \times 1} \ni L - \text{constant vector (column)},$ $F \in C^{2}(\mathcal{U}; \mathbb{R}^{n}) - \text{flux function},$ $g \in C^{2}(\mathcal{U}; \mathbb{R}) - \text{non-linear coupling}.$

・ロト・西ト・ヨト ・ヨー シック・

Ramón G. Plaza

Introduction

Viscous shock profiles

Scalar case Spectral problem Two Evans functions Pointwise bounds fo the Green operator

Hyperbolicelliptic systems Hypothesis

Results

Spectral stability (systems)

Spectral problem Kawashima-type estimate

Goodman-type estimate

Hyperbolic-elliptic systems

$$u_t + f(u)_x + Lq_x = 0,$$

 $-q_{xx} + q + g(u)_x = 0,$ $(x,t) \in \mathbb{R} \times [0, +\infty),$ (HE)

 $\mathbb{R}^{n} \supseteq \mathcal{U} \ni u - \text{state variables, } n \ge 1,$ $\mathbb{R} \ni q - \text{general heat flux function,}$ $\mathbb{R}^{n \times 1} \ni L - \text{constant vector (column),}$ $f \in C^{2}(\mathcal{U}; \mathbb{R}^{n}) - \text{flux function,}$ $g \in C^{2}(\mathcal{U}; \mathbb{R}) - \text{non-linear coupling.}$

・ロト・西ト・ヨト ・ヨー シック・

Ramón G. Plaza

Introduction

Viscous shock profiles

Scalar case Spectral problem Two Evans functions Pointwise bounds for the Green operator Nonlinear analysis

Hyperbolicelliptic systems

Hypothesis Results

Spectral stability (systems)

Spectral problem Kawashima-type

Goodman-type

 $A(u) := Df(u) \in \mathbb{R}^{n \times n},$ $B(u) := Dg(u) \in \mathbb{R}^{1 \times n}, \qquad u \in \mathcal{U}.$

Hyperbolicity: eigenvalues of A, real, semi-simple,

 $a_1 \leq \cdots \leq a_n$.

Eigenvectors associated to a_j ,

 $Ar_j = a_j r_j, \qquad l_j A_j = a_j l_j.$

・ロト・西ト・ヨト・ヨー シック・

Ramón G. Plaza

Introduction

Viscous shock profiles

Scalar case

Spectral problem Two Evans functions Pointwise bounds for the Green operator Nonlinear analysis

Hyperbolic elliptic systems

Hypothesis Results

Spectral stability (systems)

Kawashima-type estimate Goodman-type estimate

Structural hypotheses

 $f,g \in C^2$ (regularity), (S0)

For each $u \in U$ there exists A_0 symmetric, positive definite, such that A_0A symmetric, A_0LB symmetric, positive semi-definite of rank one. Moreover, principal eigenvalue a_p of A, $1 \le p \le n$, is simple.

(S1)

No eigenvector of *A* lies in ker *LB* (genuine coupling).

(S2)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ◆ ○ ○

Ramón G. Plaza

Introduction

Viscous shock profiles

Scalar case Spectral problem Two Evans functions Pointwise bounds for the Green operator Nonlinear analysis

Hyperbolic elliptic systems

Hypothesis Results

Spectral stability (systems)

Spectral problem Kawashima-type

estimate Goodman-type

Theorem (Kawashima-Shizuta)

Under (S0) y (S1), condition (S2) is equivalent to the existence of a skew-symmetrix $K : U \to \mathbb{R}^{n \times n}$ such that

$$\operatorname{Re}\left(KA + A_0 LB\right) > 0,\tag{K}$$

for all $u \in \mathcal{U}$.

Shock profiles

Traveling wave solutions

$$u(x,t) = U(x - st),$$
 $q(x,t) = Q(x - st),$
 $U(x) \rightarrow u_{\pm},$ $Q(x) \rightarrow 0,$ if $x \rightarrow \pm \infty$

 $u_{\pm} \in \mathcal{U} \subseteq \mathbb{R}^n$ constant states $u_{-} \neq u_{+}$, $s \in \mathbb{R}$ shock speed. The triple (u_{+}, u_{-}, s) is a front (weak solution) of the underlying system of conservation laws: $u_t + f(u)_x = 0$. It satisfies Rankine-Hugoniot:

$$f(u_+) - f(u_-) - s(u_+ - u_-) = 0,$$

plus Lax entropy conditions.

On the stability of radiative shocks

Ramón G. Plaza

Introduction

Viscous shock profiles

Scalar case

Spectral problem Two Evans functions Pointwise bounds fo the Green operator Nonlinear analysis

Hyperboli elliptic systems

Hypothesis Results

Spectral stability (systems) Spectral proble Kawashima-typ estimate

Goodman-type estimate

Ramón G. Plaza

Introduction

Viscous shock profiles

Scalar case

Spectral problem Two Evans functions Pointwise bounds for the Green operator Nonlinear analysis

Hyperbolic elliptic systems

Hypothesis Results

Spectral stability (systems)

Spectral problem

estimate Goodman-type

estimate

Traveling wave equations:

$$f(U)_x + LQ_x = 0,$$

$$-Q_{xx} + Q + g(U)_x = 0.$$

W.l.o.g. s = 0 (stationary wave).

Ramón G. Plaza

Introduction

Viscous shock profiles

Scalar case Spectral problem Two Evans functions Pointwise bounds for the Green operator Nonlinear analysis

Hyperbolic elliptic systems

Hypothesis Results

Spectral stability (systems) Spectral prob

Kawashima-type estimate Goodman-type estimate

Hypotheses on the shock:

 $f(u_{+}) = f(u_{-}),$ (Rankine-Hugoniot), (H0)

 $a_p(u_+) < 0 < a_{p+1}(u_+),$ $a_{p-1}(u_-) < 0 < a_p(u_-),$ (Lax entropy condition), (H1)

 $(\nabla a_p)^{\top} r_p \neq 0$, for all $u \in \mathcal{U}$, (genuine nonlinearity), (H2)

(H3)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ◆ ○ ○

 $l_p(u_{\pm})LB(u_{\pm})r_p(u_{\pm}) > 0,$ (positive diffusion).

Ramón G. Plaza

Introduction

Viscous shock profiles

Scalar case

Spectral problem Two Evans functions Pointwise bounds for the Green operator Nonlinear analysis

Hyperbolic elliptic systems

Hypothesis Results

Spectral stability (systems

Spectral problem Kawashima-type estimate Goodman-type

Eliminating the q variable:

 $u_t + f(u)_x = (LB(u)u_x)_x + (u_t + f(u)_x)_{xx},$

Positive diffusion hypothesis (H3):

 $l_p \cdot (B \otimes L^{\top} r_p) > 0,$

It provides the positive along the *p*-characteristic field in the Chapman-Enskog expansion.

Ramón G. Plaza

Introduction

Viscous shock profiles

Spectral problem Two Evans functions Pointwise bounds for the Green operator

Hyperbolicelliptic systems

Hypothesis Results

Spectral stability (systems) Spectral problem

Kawashima-type estimate Goodman-type estimate

Eliminating the q variable:

 $u_t + f(u)_x = (LB(u)u_x)_x + (u_t + f(u)_x)_{xx},$

Positive diffusion hypothesis (H3):

 $l_p \cdot (B \otimes L^{\top} r_p) > 0,$

It provides the positive along the *p*-characteristic field in the Chapman-Enskog expansion.

Stability results

Introduction

On the stability of radiative shocks

Ramón G. Plaza

Viscous shock profiles

Scalar case

Two Evans functions Pointwise bounds for the Green operator Nonlinear analysis

Hyperbolic elliptic systems Hypothesis Results

Spectral stability (systems) Spectral proble Kawashima-typ estimate

estimate

• T. NGUYEN, R. G. P. K. ZUMBRUN, *Phys. D* 239, no. 8 (2010).

Theorem 1 (Spectral stability)

Under (S0) - (S2), (H0) - (H3), radiative shock profiles are spectraly stable for $\epsilon = |u_+ - u_-|$ sufficiently small.

Ramón G. Plaza

Introduction

Viscous shock profiles

Scalar case Spectral problem Two Evans functions Pointwise bounds for the Green operator Nonlinear analysis

Hyperbolic elliptic systems Hypothesis Results

Spectral stability (systems) Spectral prob

Goodman-type estimate **Theorem 2** (Nonlinear orbital stability) Under (S0) - (S2), (H0) - (H3) and $\epsilon = |u_+ - u_-|$ sufficiently small, radiative shock profiles are nonlinear orbitally stable, that is, the solution (u, q) to system (HE) with initial data u_0 satisfies

$$egin{aligned} | ilde{u}(x,t)-U(x-lpha(t))|_{L^p} &\leq C(1+t)^{-rac{1}{2}(1-1/p)}|u_0|_{L^1\cap H^4}, \ | ilde{q}(x,t)-Q(x-lpha(t))|_{W^{1,p}} &\leq C(1+t)^{-rac{1}{2}(1-1/p)}|u_0|_{L^1\cap H^4}, \end{aligned}$$

provided that $u_0 - U$ is sufficiently small in $L^1 \cap H^4$, $p \ge 2$, and for some $\alpha(t)$ satisfying $\alpha(0) = 0$, and

 $ert lpha(t) ert \le C ert u_0 ert_{L^1 \cap H^4}$ $ert \dot{lpha}(t) ert \le C (1+t)^{-1/2} ert u_0 ert_{L^1 \cap H^4}.$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ◆ ○ ○

Ramón G. Plaza

Introduction

Viscous shock profiles

Scalar case Spectral problem Two Evans functions Pointwise bounds fo the Green operator Nonlinear analysis

Hyperbolic elliptic systems Hypothesis Results

Spectral stability (systems)

Spectral problem Kawashima-type estimate Goodman-type estimate

Introduction

Viscous shock profiles: (unabridged) history

Radiative shock profiles: scalar case Spectral problem Two Evans functions Pointwise bounds for the Green operator Nonlinear analysis

Hyperbolic-elliptic systems Hypothesis Results

Spectral estability for systems case
 Spectral problem
 Kawashima-type estimate
 Goodman-type estimate

Ramón G. Plaza

Introduction

Viscous shock profiles

Scalar case

Spectral problem Two Evans functions Pointwise bounds for the Green operator Nonlinear analysis

Hyperbolic elliptic systems Hypothesis Results

Spectral stability (systems)

Spectral problem

Kawashima-type estimate Goodman-type estimate

Spectral problem

$$\lambda u + (Au)_x + Lq_x = 0,$$

$$-q_{xx} + q + (Bu)_x = 0.$$

 $A := A(U(x)), \quad B := B(U(x))$

 $u,q \in L^2$

・ロト・西ト・ヨト ・ヨー シック・

Ramón G. Plaza

Introduction

Viscous shock profiles

Scalar case

Spectral problem Two Evans functions Pointwise bounds for the Green operator Nonlinear analysis

Hyperbolic elliptic systems Hypothesis Results

Spectral stability (systems)

Spectral problem

Kawashima-type estimate Goodman-type estimate

Zero-mass conditions

$$\int u\,dx=0,\qquad \int q\,dx=0,$$

Equivalent spectral problem:

 $\lambda u + Au_x + Lq_x = 0,$ $-q_{xx} + q + Bu_x = 0.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Ramón G. Plaza

Introduction

Viscous shock profiles

Scalar case Spectral problem Two Evans functions Pointwise bounds for the Green operator Nonlinear analysis

Hyperbolic elliptic systems Hypothesis Results

Spectral stability (systems)

Spectral problem

Kawashima-type estimate Goodman-type estimate $u_{\pm} \in \mathcal{N}(u_*)$, open neighborhood.

 $0 < \max_{u \in \mathcal{N}} |u - u_*| \le \epsilon \ll 1, \quad |u_* - u_\pm|, |u_- - u_+| = \mathcal{O}(\epsilon).$

"Scalar" structure of the profile:

$$U_x = \mathcal{O}(\epsilon^2) e^{-\eta \epsilon |x|} (r_p(u_*) + \mathcal{O}(\epsilon)),$$

$$U_{xx} = \mathcal{O}(\epsilon^3) e^{-\theta \epsilon |x|},$$

 $\theta, \eta > 0$. Principal characteristic speed: $a_p := a_p(U(x))$,

 $(a_p)_x = \mathcal{O}(U_x) < 0,$ (monotonicity), $(a_p)_{xx} = \mathcal{O}(U_{xx}).$

Ramón G. Plaza

Introduction

Viscous shock profiles

Scalar case Spectral problem Two Evans functions Pointwise bounds for the Green operator Nonlinear analysis

Hyperbolicelliptic systems Hypothesis Results

Spectral stability (systems)

Spectral problem

Kawashima-type estimate Goodman-type estimate Lemma

Under (S0) - (S2) there exists $\beta = \beta(u) > 0$, such that

$$(A_0L)^{\top} = \beta B, \quad \forall u \in \mathcal{U}.$$

Ramón G. Plaza

Introduction

Viscous shock profiles

Scalar case Spectral problem Two Evans functions Pointwise bounds for the Green operator Nonlinear analysis

Hyperbolic elliptic systems Hypothesis Results

Spectral stability (systems)

Spectral problem

Kawashima-type estimate Goodman-type estimate

Basic Friedrichs-type estimate

If u, q solutions with Re $\lambda \ge 0$, then for $\epsilon \ll 1$ sufficiently small,

$$(\operatorname{Re} \lambda)|u|_{L^{2}}^{2} + |q|_{L^{2}}^{2} + |q_{x}|_{L^{2}}^{2} \leq C \int |U_{x}||u|^{2} dx,$$
$$|\operatorname{Im} \lambda| \int |U_{x}||u|^{2} dx \leq C \int |U_{x}| (\delta |u|^{2} + \delta^{-1} |q|^{2}) dx,$$

for some C > 0, any $\delta > 0$.

Corollary:

 $0 \le \operatorname{Re} \lambda \le C\epsilon^2,$ $|\operatorname{Im} \lambda| \le C\epsilon.$

Ramón G. Plaza

Introduction

Viscous shock profiles

Scalar case Spectral problem Two Evans functions Pointwise bounds for the Green operator Nonlinear analysis

Hyperbolic elliptic systems Hypothesis Results

Spectral stability (systems)

Spectral problem

Kawashima-type estimate Goodman-type estimate

Basic Friedrichs-type estimate

If u, q solutions with Re $\lambda \ge 0$, then for $\epsilon \ll 1$ sufficiently small,

$$(\operatorname{Re} \lambda)|u|_{L^{2}}^{2} + |q|_{L^{2}}^{2} + |q_{x}|_{L^{2}}^{2} \leq C \int |U_{x}||u|^{2} dx,$$
$$|\operatorname{Im} \lambda| \int |U_{x}||u|^{2} dx \leq C \int |U_{x}| (\delta |u|^{2} + \delta^{-1} |q|^{2}) dx,$$

for some C > 0, any $\delta > 0$.

Corollary:

 $0 \le \operatorname{Re} \lambda \le C\epsilon^2,$ $|\operatorname{Im} \lambda| \le C\epsilon.$

Ramón G. Plaza

Introduction

Viscous shock profiles

Scalar case

Spectral problem Two Evans functions Pointwise bounds for the Green operator Nonlinear analysis

Hyperbolic elliptic systems Hypothesis Results

Spectral stability (systems)

Spectral problem

Kawashima-type estimate Goodman-type estimate

Kawashima-type estimate

・ロット (雪) (日) (日) (日)

For $0 < \epsilon \ll 1$ small and Re $\lambda \ge 0$, there is C > 0 such that $(\text{Re }\lambda)|u|_{L^2}^2 + |u_x|_{L^2}^2 \le C \int |U_x||u|^2 dx \qquad (\text{KE})$

- Control of the $|u_x|_{L^2}^2$ term.
- L^2 weighted product with the *skew*-symmetric form *K*.

Ramón G. Plaza

Introduction

Viscous shock profiles

Scalar case

Spectral problem Two Evans functions Pointwise bounds for the Green operator Nonlinear analysis

Hyperbolic elliptic systems Hypothesis Results

Spectral stability (systems)

Spectral problem

Kawashima-type estimate Goodman-type estimate

Kawashima-type estimate

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ◆ ○ ○

For $0 < \epsilon \ll 1$ small and Re $\lambda \ge 0$, there is C > 0 such that $(\text{Re }\lambda)|u|_{L^2}^2 + |u_x|_{L^2}^2 \le C \int |U_x||u|^2 dx \quad (\text{KE})$

- Control of the $|u_x|_{L^2}^2$ term.
- L^2 weighted product with the *skew*-symmetric form *K*.

Ramón G. Plaza

Introduction

Viscous shocl profiles

Spectral problem Two Evans functions Pointwise bounds fo the Green operator Nonlinear analysis

Hyperbolic elliptic systems Hypothesis Results

Spectral stability (systems)

Spectral problem

Kawashima-type estimate Goodman-type estimate

Goodman-type estimate

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ◆ ○ ○

For $0 < \epsilon \ll 1$ small and Re $\lambda \ge 0$, there exists $\overline{C} > 0$ such that

$$(\operatorname{Re} \lambda) (|u|_{L^{2}}^{2} + |u_{x}|_{L^{2}}^{2}) + \bar{C} \int |U_{x}| |u|^{2} dx \leq \bar{C} \epsilon |u_{x}|_{L^{2}}^{2} \qquad (\operatorname{GE})$$

- Control of the $\int |U_x| |u|^2$ term.
- Weighted norms in the characteristic direction.
- Diagonalization of the hyperbolic part along the whole trajectory of the profile.

Ramón G. Plaza

Introduction

Viscous shock profiles

Spectral problem Two Evans functions Pointwise bounds for the Green operator Nonlinear analysis

Hyperbolic elliptic systems Hypothesis Results

Spectral stability (systems)

Spectral problem

Kawashima-type estimate Goodman-type estimate

Goodman-type estimate

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ◆ ○ ○

For $0 < \epsilon \ll 1$ small and Re $\lambda \ge 0$, there exists $\overline{C} > 0$ such that

$$(\text{Re }\lambda)(|u|_{L^2}^2 + |u_x|_{L^2}^2) + \bar{C} \int |U_x||u|^2 \, dx \le \bar{C}\epsilon |u_x|_{L^2}^2 \qquad (\text{GE})$$

- Control of the $\int |U_x| |u|^2$ term.
- Weighted norms in the characteristic direction.
- Diagonalization of the hyperbolic part along the whole trajectory of the profile.

Ramón G. Plaza

Introduction

Viscous shock profiles

Scalar case Spectral problem Two Evans functions Pointwise bounds for the Green operator Nonlinear analysis

Hyperbolic elliptic systems Hypothesis Results

Spectral stability (systems)

Spectral problem

Kawashima-type estimate Goodman-type estimate Adding $\overline{C}\epsilon$ times (GE) to (KE):

$$(\operatorname{Re} \lambda)(1+\bar{C}\epsilon)|u|_{L^2}^2+(\bar{C}+C\bar{C}\epsilon)\int |U_x||u|^2\,dx\leq 0.$$

 \implies **Re** $\lambda < 0$, i.e., spectral stability.

Ramón G. Plaza

Introduction

Viscous shock profiles

Scalar case Spectral problem Two Evans functions Pointwise bounds for the Green operator Nonlinear analysis

Hyperbolic elliptic systems Hypothesis Results

Spectral stability (systems)

Spectral problem

Kawashima-type estimate Goodman-type estimate Adding $\overline{C}\epsilon$ times (GE) to (KE):

$$(\operatorname{Re} \lambda)(1+\bar{C}\epsilon)|u|_{L^2}^2+(\bar{C}+C\bar{C}\epsilon)\int |U_x||u|^2\,dx\leq 0.$$

 \implies Re $\lambda < 0$, i.e., spectral stability.

Ramón G. Plaza

Introduction

Viscous shock profiles

Notation:

Scalar case Spectral problem Two Evans functions Pointwise bounds for the Green operator Nonlinear analysis

Hyperbolic elliptic systems Hypothesis Results

Spectral stability (systems) Spectral problem

Kawashima-type estimate

Goodman-type estimate

Sketch of the Kawashima-type estimate

 $\bar{A} := A_0 A((U(x))), \quad \bar{L} := A_0(U(x))L,$

 $K := K(u(x)), \quad \beta = \beta(U(x)),$

 $\beta_x, \overline{L}_x, \overline{A}_x, K_x = \mathcal{O}(|U_x|) = \mathcal{O}(\epsilon^2).$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへの
Ramón G. Plaza

Introduction

Viscous shock profiles

Spectral problem Two Evans functions Pointwise bounds for the Green operator Nonlinear analysis

Hyperbolic elliptic systems Hypothesis Results

Spectral stability (systems) Spectral problem

Kawashima-type estimate

Goodman-type estimate

Suffices to control the $|u_x|_{L^2}$ term for Re $\lambda \ge 0, \lambda \ne 0$,

$$|u_x|_{L^2}^2 \le \bar{C}\big((\text{Re }\lambda)\eta|u|_{L^2}^2 + \int |U_x||u|^2 \, dx\big), \qquad (*)$$

for some C > 0, $\eta > 0$, such that $\epsilon^2/\eta \ll 1$.

Taking $\eta = \mathcal{O}(\epsilon)$ small and with the Friedrichs-type estimate we get (KE).

Ramón G. Plaza

Introduction

Viscous shock profiles

Spectral problem Two Evans function Pointwise bounds for

Nonlinear analysi Hyperbolicelliptic

Hypothesis Results

Spectral stability (systems)

Kawashima-type estimate

Goodman-type estimate

Ingredients:

• Take L^2 product of u equation with Ku_x , use K *skew*-symmetric, Im $\langle Ku_x, u \rangle = -\frac{1}{2} \langle K_x u, u \rangle$:

 $\operatorname{Re} \langle u_x, KAu_x \rangle = \operatorname{Re} \left(\lambda \langle Ku_x, u \rangle \right) + \operatorname{Re} \langle Ku_x, Lq_x \rangle,$ $\operatorname{Re} \left(\lambda \langle Ku_x, u \rangle \right) \leq C(\operatorname{Re} \lambda) \left(\eta^{-1} |u_x|_{L^2}^2 + \eta |u|_{L^2}^2 \right)$ $+ C |\operatorname{Im} \lambda| \int |U_x| |u|^2 dx$

• \overline{LB} symmetric, positive semi-definite; Re $(KA + \overline{LB}) > 0$:

Re $\langle u_x, KAu_x \rangle + \langle u_x, \overline{L}Bu_x \rangle \geq \frac{1}{C} |u_x|_{L^2}^2$

Ramón G. Plaza

Introduction

Viscous shock profiles

Scalar case Spectral problem Two Evans functions Pointwise bounds for the Green operator Nonlinear analysis

Hyperbolic elliptic systems Hypothesis Results

Spectral stability (systems)

Kawashima-type estimate

Goodman-type estimate • L^2 product of u_x with equation for q:

 $\langle u_x, \overline{L}Bu_x \rangle = -\langle u_{xx}, \overline{L}q_x \rangle - \langle u_x, \overline{L}xq_x \rangle - \langle u_x, \overline{L}q \rangle.$

• Use \overline{A} symmetric, \overline{LB} symmetric, positive semi-definide estimate term by term:

 $\langle u_x, \overline{L}Bu_x \rangle \leq C\epsilon |u_x|_{L^2}^2 + C \int |U_x||u|^2 dx.$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ◆ ○ ○

Substitution into the |u_x|²_{L²} estimate. Re λ = O(ε²), ε²/η ≪ 1 small. The result is (*).

Ramón G. Plaza

Introduction

Viscous shock profiles

Scalar case

Spectral problem Two Evans functions Pointwise bounds for the Green operator Nonlinear analysis

Hyperbolic elliptic systems Hypothesis Results

Spectral stability (systems)

Kawashima-type

Goodman-type estimate

Sketch of the Goodman-type estimate

Lemma (Goodman)

There exist smooth matrix field $\mathbb{R}(u)$, $\mathbb{L}(u)$ *such that*

$$\mathbb{L}A\mathbb{R} = \begin{pmatrix} A_- & & \\ & a_p & \\ & & A_+ \end{pmatrix}$$

where A_{\pm} are symmetric, $A_{-} \leq \delta < 0$, $A_{+} \geq \delta > 0$. If $\mathbb{L} = \mathbb{L}(U), \mathbb{R} = \mathbb{R}(U)$,

 $(\mathbb{L}\mathbb{R}_x)_{pp} = (\mathbb{L}_x\mathbb{R})_{pp} = 0,$ $\mathbb{L}LB\mathbb{R} \ge -C\epsilon$

◆ロト ◆御 ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ● のへで

Ramón G. Plaza

Introduction

Viscous shock profiles

Scalar case Spectral problem Two Evans functions Pointwise bounds for the Green operator Nonlinear analysis

Hyperbolic elliptic systems Hypothesis Results

Spectral stability (systems)

Spectral problem

estimate Goodman-type

estimate

$$\mathbb{R} = \Gamma \check{\mathbb{R}}, \quad \mathbb{L} = \Gamma^{-1} \check{\mathbb{L}},$$

 $\check{\mathbb{R}} = (A_0)^{1/2} O^{\top}, \quad \check{L} = O(A_0)^{1/2},$

O orthogonal, real, block-diagonalizes $(A_0)^{1/2}A(A_0)^{-1/2}$,

$$\overline{} = \begin{pmatrix} I_{p-1} & & \\ & \alpha & \\ & & I_{n-p} \end{pmatrix}$$

 α solves the ODE

 $\alpha_x = -\check{l}_p(\check{r}_p)_x \alpha, \qquad \alpha(0) = 1.$

 $\alpha = e^{\int_0^x -\check{l}_p(\check{r}_p)_x} = e^{\mathcal{O}(\int |U_x|)} = 1 + \mathcal{O}(\epsilon).$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Ramón G. Plaza

Introduction

Viscous shock profiles

Scalar case

Spectral problem Two Evans functions Pointwise bounds for the Green operator Nonlinear analysis

Hyperbolic elliptic systems Hypothesis Results

Spectral stability (systems)

Spectral problem

estimate

Goodman-type estimate

From (H3): $l_p^{\pm} L B^{\pm} r_p^{\pm} > 0$, by continuity, $U \sim u_{\pm}$,

 $(l_p LBr_p)_{|u=U} > 0.$

 $\operatorname{Re} \mathbb{L}LB\mathbb{R} \geq -C\epsilon,$

 $(\mathbb{L}LB\mathbb{R})_{pp} \geq \theta > 0$

Ramón G. Plaza

Introduction

Viscous shock profiles

Scalar case Spectral problem Two Evans functions Pointwise bounds for the Green operator Nonlinear analysis

Hyperbolic elliptic systems Hypothesis Results

Spectral stability (systems)

Spectral problem

estimate Goodman-type

estimate

$$ilde{A}(x) := (\mathbb{L}A\mathbb{R})(U(x)) = \begin{pmatrix} A_- & & \\ & a_p & \\ & & A_+ \end{pmatrix}$$

 $\widetilde{L}(x) := \mathbb{L}(U(x))L, \quad \widetilde{B}(x) := B(U(x))\mathbb{R}(U(x)),$

 $v := \mathbb{L}u$,

$$\lambda v + \tilde{A}v_x + \tilde{L}q_x = \tilde{A}\mathbb{L}_x \mathbb{R}v,$$

$$-q_{xx} + q + \tilde{B}v_x = -B\mathbb{R}_x v$$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Ramón G. Plaza

Introduction

Viscous shock profiles

Scalar case Spectral problem Two Evans functions Pointwise bounds for the Green operator Nonlinear analysis

Hyperbolic elliptic systems Hypothesis Results

Spectral stability (systems) Spectral problem

Kawashima-type

estimate Goodman-type estimate

$$ilde{A}(x) := (\mathbb{L}A\mathbb{R})(U(x)) = \begin{pmatrix} A_- & & \\ & a_p & \\ & & A_+ \end{pmatrix}$$

 $\widetilde{L}(x) := \mathbb{L}(U(x))L, \quad \widetilde{B}(x) := B(U(x))\mathbb{R}(U(x)),$

 $v := \mathbb{L}u$,

$$\lambda v + \tilde{A}v_x + \tilde{L}q_x = \tilde{A}\mathbb{L}_x \mathbb{R}v,$$

$$-q_{xx} + q + \tilde{B}v_x = -B\mathbb{R}_x v$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ ● ●

Weighted norms:

Ramón G. Plaza

Introduction

Viscous shock profiles

Scalar case Spectral problem Two Evans functions Pointwise bounds for

Nonlinear analysis

elliptic systems Hypothesis

Results

Spectral stability (systems)

Spectral problem

estimate Goodman-type

Goodman-typ estimate

$$W := \begin{pmatrix} w_{-}I_{p-1} & & \\ & w_p & \\ & & w_{+}I_{n-p} \end{pmatrix}$$

 w_p, w_{\pm} scalar functions:

 $w_p \equiv 1$,

$$(w_{\pm})_x = -c_*|U_x|w_{\pm}/a_{\pm}, \quad w_{\pm}(0) = 1.$$

$$\Rightarrow w_{\pm} = \exp\left(\int_0^x c_* |U_x|/\bar{a}_{\pm}\right) = 1 + \mathcal{O}(\epsilon),$$

$$(w_{\pm})_x = \mathcal{O}(|U_x|), (w_p)_x = 0.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Ramón G. Plaza

Introduction

Viscous shock profiles

Scalar case Spectral problem Two Evans functions Pointwise bounds for the Green operator Nonlinear analysis

Hyperbolic elliptic systems Hypothesis Results

Spectral stability (systems)

Spectral problem

Kawashima-type estimate

Goodman-type estimate

$c_* > 0$ sufficiently large, such that

$$W ilde{A}_x+W_x ilde{A}\leq Cegin{pmatrix} -c_*I_p&&\ &- heta&\ &-c_*I_{n-p}\end{pmatrix},\quad C>0.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ →三 のへぐ

Ramón G. Plaza

Introduction

Viscous shock profiles

Scalar case

Spectral problem Two Evans functions Pointwise bounds for the Green operator Nonlinear analysis

Hyperbolic elliptic systems Hypothesis Results

Spectral stability (systems)

Kawashima-type

Goodman-type estimate

Ingredients:

• L^2 product of Wv versus the equation for v; integrating by parts, \tilde{A} symmetric, $v := (v_-, v_p, v_+)^\top$, previous inequality:

$$(\operatorname{Re} \lambda)|v|_{L^{2}}^{2} + \frac{c_{*}}{2}\langle v_{\pm}, |U_{x}|v_{\pm}\rangle + \frac{1}{2}\theta\langle v_{p}, |U_{x}|v_{p}\rangle + \operatorname{Re} \langle Wv, \tilde{L}q_{x}\rangle = \operatorname{Re} \langle Wv, \tilde{A}\mathbb{L}_{x}\mathbb{R}v\rangle.$$

Bound Re $\langle Wv, \tilde{A}\mathbb{L}_x \mathbb{R}v \rangle \leq C \langle v_{\pm}, |U_x|v_{\pm} \rangle + C \epsilon \langle v_p, |U_x|v_p \rangle$; and taking c_* large, $\epsilon \ll 1$,

$$(\operatorname{Re} \lambda)|v|_{L^2}^2 + C \int |U_x||v|^2 \leq -\operatorname{Re} \langle Wv, \tilde{L}q_x
angle$$

Ramón G. Plaza

Introduction

Viscous shock profiles

Scalar case Spectral problem Two Evans functions Pointwise bounds for the Green operator Nonlinear analysis

Hyperbolic elliptic systems Hypothesis Results

Spectral stability (systems) Spectral problem

Kawashima-type estimate

Goodman-type estimate • Control of the product of v with q_x ; L^2 product of Wv_x with \tilde{L} times the equation for la q, integrate by parts,

$$\begin{split} -\langle Wv, \tilde{L}q_x \rangle &= -\langle Wv_x, \mathbb{L}LB\mathbb{R}_x v \rangle - \langle Wv_x, \tilde{L}\tilde{B}v_x \rangle + \\ &+ \langle Wv_x, \tilde{L}q_{xx} \rangle + \langle Wv, \tilde{L}_x q \rangle + \langle W_x v, \tilde{L}q \rangle. \end{split}$$

• Bound all the terms, in particular

$$\operatorname{Re} \langle W v_{xx}, \tilde{L} q_x \rangle \leq C \epsilon \int |U_x| |v|^2 + C \epsilon^2 |v_x|_{L^2}^2,$$

one gets

$$-{
m Re}\;\langle Wv, ilde{L}q_x
angle \leq C\epsilon\int |U_x||v|^2+C\epsilon |v_x|^2_{L^2}$$

Combining with last estimate, back into the *u* variables, we obtain (GE).

Ramón G. Plaza

Introduction

Viscous shock profiles

Scalar case Spectral problem Two Evans functions Pointwise bounds for the Green operator Nonlinear analysis

Hyperbolic elliptic systems Hypothesis Results

Spectral stability (systems) Spectral proble

Kawashima-type estimate

Goodman-type estimate Control of the product of v with q_x; L² product of Wv_x with L
times the equation for la q, integrate by parts,

$$\begin{split} -\langle Wv, \tilde{L}q_x \rangle &= -\langle Wv_x, \mathbb{L}LB\mathbb{R}_x v \rangle - \langle Wv_x, \tilde{L}\tilde{B}v_x \rangle + \\ &+ \langle Wv_x, \tilde{L}q_{xx} \rangle + \langle Wv, \tilde{L}_x q \rangle + \langle W_x v, \tilde{L}q \rangle. \end{split}$$

• Bound all the terms, in particular

$$\operatorname{Re} \langle W v_{xx}, \tilde{L} q_x \rangle \leq C \epsilon \int |U_x| |v|^2 + C \epsilon^2 |v_x|_{L^2}^2,$$

one gets

$$-{
m Re}\;\langle Wv, ilde{L}q_x
angle \leq C\epsilon\int |U_x||v|^2+C\epsilon |v_x|^2_{L^2}$$

Combining with last estimate, back into the *u* variables, we obtain (GE).

Ramón G. Plaza

Introduction

Viscous shock profiles

Scalar case Spectral problem Two Evans functions Pointwise bounds for

Pointwise bounds for the Green operator Nonlinear analysis

Hyperbolic elliptic systems Hypothesis Results

Spectral stability (systems) Spectral problem

Kawashima-type estimate

Goodman-type estimate

Thank you!