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Radiative hydrodynamics

• W. G. VINCENTI AND C. H. KRUGER, Introduction to
Physical Gas Dynamics, Wiley & Sons, New York, 1965.

Euler-Poisson system(d = 1):

ρt + (ρu)x = 0,

(ρu)t + (ρu2 + p)x = 0,
(
ρ(e+ 1

2u2)
)

t +
(
ρu(e+ 1

2u2) + pu
)

x = −qx,

−qxx + aq+ b(θ4)x = 0,

(EP)
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ρ = mass density,

u = velocity,

p = pressure,

e = internal energy density,

θ = temperature.

p = p(ρ, θ), e = e(ρ, θ) : pρ > 0, pθ 6= 0, eθ > 0.

q = ρχx, radiative heat flux,χ = radiation energy density.

a,b> 0: Absortion coefficientα; Stefan-Boltzmann constantσ:
a = 3α2, b = 4ασ.
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Hamer’s model

• K. HAMER, Quart. J. Mech. Appl. Math.24 (1971).

ut + 1
2(u2)x = −qx,

−qxx + q = −ux,
(H)

q,u ∈ R, (x, t) ∈ R × [0,+∞). Burgers’ flux function:
f (u) = 1

2u2.

It approximates (EP).
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Radiative shock profiles

Trveling wave solution

(u,q)(x, t) = (Ū, Q̄)(x− st), (Ū, Q̄)(ξ) → (U±,0), ξ → ±∞,

(U+,U−, s) = classical shock front

of the underlying hyperbolic system
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• Hydrodynamics and transport determine wave propagation
and wave structure.

• Non-equilibrium diffusion regime:Radiation and gas have
different temperature (θ 6= q1/4); gas interacts with radiation
via energy exchanges.

• Radiation is described by an stationary diffusion process.

• Gray non-equilibrium diffusion hypothesis: All photons have
the same frequency (LOWRIE, EDWARDS, Shock waves18
(2008)).
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Regularization
Hamer’s model:

q = −(1− ∂x)
−1ux =: −Kux

Kf (x) =
1
2

∫ +∞

−∞
e−|x−y|f (y) dy = K ∗ f , K =

1
2

e−|x|,

qx = u−Ku,

ut + uux = −u + Ku,

Rosenau’s regularization(ROSENAU, Phys. Rev. A40 (1989);
SCHOCHET, TADMOR, Arch. Ration. Mech. Anal.119(1992)):

Regularization (truncation of the Chapman-Enskog expansion).
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Symmetric and normal forms

Conserved variables:

U :=
(
ρ, ρu, ρ(e+ 1

2u2)
)⊤

Euler-Poisson (EP):

Ut + f (U)x = −Lqx,

−qxx + Rq+ ν(U)g(U)x = 0,

f (U) =
(
ρu, ρu2 + p, ρu(e+ 1

2u2) + pu
)⊤
,

L = (0, 0, 1)⊤,

R = a ≡ 1,

0< ν(U) = 4bθ5,

g(U) = −1/θ
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Entropy (mathematical):

η = −ρs,

W := (DUη)
⊤ =

(
− ρ+ (e− 1

2u2 + pρ−1)/θ, u/θ, −1/θ
)⊤
,

DUW = D2
Uη > 0

U 7→ W
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Symmetrization:

A0(W)Wt + A(W)Wx + Lqx = 0,

−qxx + q + ν̃(W)Wx = 0,

A0(W) = (DWU)(W) = (D2
Uη)

−1

A(W) = DW(f (U(W))) = (DUf )(D2
Uη)

−1
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Normal form:

W 7→ V := (ρ,u, θ)⊤

Mult. by (DVW)⊤:

Ā0(V)Vt + Ā(V)Vx + L̄(V)qx = 0,

−qxx + q + ν̄(V)L̄(V)⊤Vx = 0,

Ā0(V) = (DVW)⊤A0(W)DVW = (DVW)⊤DVU,

Ā(V) = (DVW)⊤A(W)DVW = (DVW)⊤DVf (U),

L̄(V) = (DVW)⊤L = (DVW)⊤(0,0,1)⊤ = (0,0,1)⊤/θ2,

ν̄(V) = ν(U(W(V))) = 4bθ5 > 0,
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Ā(V) =
1
θ




pρu/ρ pρ 0
pρ ρu pθ

0 pθ peθu/θ




ν̄(V)L̄(V)Vx = 4bθ3(0,0, θx)
⊤ =: bḡ(V)x

ḡ(V) = (0,0, θ4),

General hyperbolic-elliptic system:

Vt + f (V)x + Lqx = 0,

−qxx + q + g(V)x = 0.
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Positive “diffusion”

Eigenvector (characteristic fieldp = 1):

Ār1 = (u + c)Ā0r1, l1Ā = (u + c)l1Ā0

r⊤1 = l1 = (ρ, c, (c2 − pρ)ρ/pθ) = (ρ, c, z∗)

B(V) := (DVḡ)⊤ = (0,0,4θ3)
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l1LBr1 = (ρ, c, z∗)(0,0,1)⊤(0,0,4θ3)(ρ, c, z∗)
⊤ = z2

∗4θ
3 > 0

Positive diffusion coefficient in the characteristic direction p = 1
in the Chapman-Enskog expansion.
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Chapman-Enskog expansion:

ut + ∇p =

∞∑

0

ε2n+1∆n(µn∆u + αn∇(∇ · u)) + other terms,

= εµ0∆u + ε3µ1∆
2u + . . .

µ = εµ0 ≪ 1, kinematic viscosity coefficient (non-dimensional)

ε3µ1, − Burnett’s coefficient



On the
stability of
radiative
shocks

Ramón G.
Plaza

Introduction

Viscous shock
profiles

Scalar case
Spectral problem

Two Evans functions

Pointwise bounds for
the Green operator

Nonlinear analysis

Hyperbolic-
elliptic
systems
Hypothesis

Results

Spectral
stability
(systems)
Spectral problem

Kawashima-type
estimate

Goodman-type
estimate

Rosenau’s model:

∞∑

0

ε2n+1∆n(µn∆u) ∼ µ

1− ε2m2∆
∆u, m = µ1/µ0 > 0.

µ∗ =
µ

1− ε2m2∆
, µ̂∗(k) =

µ

1 + ε2m2k2

Scalar model:

ut + (1
2u)x = ε∂2

x

( 1
1 + m2ε2k2 û(k)

)∨
(x) = −u + Ku

Kf (x) =
1
2

∫ +∞

−∞
e−|x−y|f (y) dy = K ∗ f , K =

1
2

e−|x|,
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For systems:

LAR =




A1

ap

A2


 ,

v = Lu

L(LB(u)ux)x = (LLBR)uxx + . . . ,

Principal part:

(lpLBrp)(vp)xx + . . .
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Previous work

Existence of profiles:

• SCHOCHET, TADMOR, Arch. Ration. Mech. Anal.119
(1992). Small-amplitude profiles, Hamer’s model only.

• KAWASHIMA , NISHIBATA , SIAM J. Math. Anal.30 (1998).
Hamer’s model. Bounded amplitude.

• L IN , COULOMBEL, GOUDON Phys. D218(2006).
Small-amplitude, Euler-Poisson system, ideal gas
ρ = (γ − 1)ρe.

• LATTANZIO , MASCIA, SERRE, Indiana Univ. Math. J.56
(2007). General model,f general, linear coupling. Systems
case problem reduces to a scalar one (!).

• LATTANZIO , MASCIA, SERRE, Proc. HYP2006, Springer
(2008). Nonlinear coupling, most general result.
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(1999). Cauchy problem, Hamer’s model.

• SERRE, Comm. Math. Sci.1 (2003). Stability of constants
in L1, Hamer’s model.

• KAWASHIMA , TANAKA , Kyushu J. Math.58 (2004):
Stability of rerafecation waves (Hamer).
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Appl. Math. 99 (1999). Cauchy problem. general
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• KAWASHIMA , NIKKUNI , NISHIBATA , Arch. Ration. Mech.
Anal. 170(2003). Asymptotic behaviour of solutions when
t → +∞.
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Stability of radiative shock profiles:

• KAWASHIMA , NISHIBATA , SIAM J. Math. Anal.30 (1998).
L2 stability, Hamer’s (escalar) model, linear coupling.

• L IN , COULOMBEL, GOUDON, C. R. Math. Acad. Sci. Paris
345(2007): Stability under zero-mass perturbations, ideal
gas:p = (γ − 1)ρe. Energy estimates of
Goodman-Matsumura-Nishihara type.
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New results:

• Stability of radiative shock profiles in the general scalar case
(general flux functionf , nonlinear coupling):
C. LATTANZIO , C. MASCIA, T. NGUYEN, R. G. P,
K. ZUMBRUN, SIAM J. Math. Anal.41, no. 6 (2009).

• Stability of radiative profiles for general hyperbolic-elliptic
systems (small-amplitude):T. NGUYEN, R. G. P,
K. ZUMBRUN, Phys. D239, no. 8 (2010).
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Viscous shock profiles

ut + f (u)x = (B(u)ux)x,

u ∈ R
n, n ≥ 1, B(u) ≡ I identity viscosity;B(u) degenerate

(Navier-Stokes).

Viscous shock profile: traveling wave solution
u(x, t) = Ū(x− st), Ū(x) → u±. Here(u+,u−, s) is a classical
shcok front of the hyperbolic system of conservation laws.
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Stability

• Viscous shock profilesscalar case: ILIN , OLEINIK ;
SATTINGER.

• Systems:GOODMAN, Arch. Ration. Mech. Anal.95 (1986).
Identity viscosityB = I , zero-mass perturbations. Energy
estimates, diagonalization of the hyperbolic part.

• MATSUMURA, NISHIHARA, Japan J. Appl. Math.2 (1985).
Same approcah for Euler system, ideal gases.

Energy methods: L IU (1986) diffusion waves;SZEPSSY, X IN

(1992) first complete result.
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Pointwise Green function bound method:

• L IU , CPAM 50 (1997): (Approximate) Green function of
linearized operator.

• ZUMBRUN, HOWARD (1999)Under spectral stability
assumption, resolvent kernel bounds; ponitwise bounds for
the Green function.

• ZUMBRUN, MASCIA (2002-2004)degenerate viscosity.

Other cases: relaxation systems, multi-d, boundary layes,
undercompressive shocks, etc.

Basic idea: Spectral stability⇒ nonlinear stability.
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Scalar model

ut + f (u)x + Lqx = 0,

−qxx + q + M(u)x = 0,

u,q ∈ R, M, f : R → R, L ∈ R (constant).

Traveling waves:

(u,q)(x, t) = (U,Q)(x− st), (U,Q)(±∞) = (u±,0),

u+ 6= u−. W.l.o.g. s = 0.



On the
stability of
radiative
shocks

Ramón G.
Plaza

Introduction

Viscous shock
profiles

Scalar case
Spectral problem

Two Evans functions

Pointwise bounds for
the Green operator

Nonlinear analysis

Hyperbolic-
elliptic
systems
Hypothesis

Results

Spectral
stability
(systems)
Spectral problem

Kawashima-type
estimate

Goodman-type
estimate

Scalar model

ut + f (u)x + Lqx = 0,

−qxx + q + M(u)x = 0,

u,q ∈ R, M, f : R → R, L ∈ R (constant).

Traveling waves:

(u,q)(x, t) = (U,Q)(x− st), (U,Q)(±∞) = (u±,0),

u+ 6= u−. W.l.o.g. s = 0.



On the
stability of
radiative
shocks

Ramón G.
Plaza

Introduction

Viscous shock
profiles

Scalar case
Spectral problem

Two Evans functions

Pointwise bounds for
the Green operator

Nonlinear analysis

Hyperbolic-
elliptic
systems
Hypothesis

Results

Spectral
stability
(systems)
Spectral problem

Kawashima-type
estimate

Goodman-type
estimate

Hypotheses:

f ,M ∈ C5, (regularity), (A0)

f ′′(u) > 0, u ∈ [u+,u−] (genuine nonlinearity), (A1)

f (u−) = f (u+), (Rankine-Hugoniot condition),
(A2)

u+ < u−, (Lax’s entropy condition), (A3)

LM′(u) > 0, u ∈ [u+,u−] (positive diffusion), (A4)
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a(x) := f ′(U), b(x) := M′(U).

Lb(0) + (k + 1
2)a′(0) > 0, k = 1,2,3,4. (A5k)
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Structure of profiles

Traveling wave equations:

f (U)′ + L Q′ = 0,

−Q′′ + Q + M(U)′ = 0,

(U,Q)(±∞) = (u±,0).

Existence theory:LATTANZIO , MASCIA, SERRE, Indiana Univ.
Math. J.56 (2007); Proc. HYP2006, Springer (2008).
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Proposition [LMS]
Under (A0) - (A4) there exists a unique (up to translations)
traveling wave(U,Q)(x). Moreover, the velocity profile U is C2

except, at most, in one single point where it has an entropic jumo
satisfying Rankine-Hugoniot and Lax conditions. U is monotone
decreasing Ux < 0, function a(x) = f ′(U(x)) is C1 a.e., it is zero
only at one point which we take w.l.o.g. as x= 0:

a(0) = 0.

If the amplitude is sufficiently small, then the profile is of class C2.
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Consequences:

a′(x) < 0 ∀ x ∈ R, x a(x) < 0 ∀ x 6= 0.

Integrating:
LQ = f (u±) − f (U) > 0,

(
a′(x) + L b(x)

)
U′ = −LQ− a(x)U′′,

In x = 0, U monotone:

a′(0) + L b(0) > 0. (P)

(A51) implies (P).
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Exponential decay
∣∣∣(d/dx)k(U − u±,Q)

∣∣∣ ≤ Ce−η|x|, k = 0, ...,4,

as|x| → +∞, for someη > 0.
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Eigenvalue equations

λu + (a(x)u)′ + Lq′ = 0,

−q′′ + q + (b(x)u)′ = 0.
(SP)

′ = d/dx, u,q ∈ L2(R) perturbations.
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Spectral stability (scalar case)

Zero-mass conditions:
∫

u = 0,
∫

q = 0,

Integrating (SP):

λu + a(x) u′ + Lq′ = 0,

−q′′ + q + b(x) u′ = 0.
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Lemma (Spectral stability)
Let (u,q) be an eigenfuction, withλ ∈ C eigenvalue. Then
Reλ < 0 if one of the following conditions hold:

(i) b is constant (linear coupling), or,

(ii) |u+ − u−| is sufficiently small.

Proof (via energy estimates):

Reλ|b1/2u|2L2 ≤ 〈a′bu,u〉 − L
2
‖q‖2

H1 + C〈(|a| + |b′|)|b′|u,u〉.

Lb> 0, w.l.o.g.b ≥ θ > 0 (q → −q). a′ > 0,
a′,b′ = O(|u+ − u−|).
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First order formulations

Specral problem:p := b(x)u− q′.

a(x)u′ = −
(
λ+ a′(x) + Lb(x)

)
u + Lp,

q′ = b(x)u− p,

p′ = −q.

(SP2)
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Regularity near x = 0.

Lemma
Givenλ ∈ C, ν := (Reλ+ a′(0) + Lb(0))/|a′(0)|. Under (A0) -
(A4), Reλ > −Lb(0), every solution to (SP2) satisfies

1. |u(x)| ≤ C |x|ν for x ∼ 0, some C> 0;

2. q is A.C., p is C1 (for x ∼ 0),

In particular, u∈ L1
loc (for x ∼ 0), and a(x)u(x) → 0 if x → 0.
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Construction of the resolvent
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Fisrt order system
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Θ(x) :=
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Θ is singular at x= 0.
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∂x (Θ(x)Gλ) − A(x, λ)Gλ = δy(x) I ,

∂x (Θ(x)Gλ) − A(x, λ)Gλ = 0, if x 6= y,

+ jump conditions atx = y.

The resolvent kernel is Gλ = (Gλ)11.
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Asymptotic systems

Θ±W′ = A±(λ)W,

Θ± :=

(
a± 0
0 I2

)
, A±(λ) :=



−(λ+ L b±) 0 L

b± 0 −1
0 −1 0


 ,

a± := lim
x→±∞

a(x) = f ′(u±), b± := lim
x→±∞

b(x) = M′(u±).

a+ < 0< a−.
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Dispersion relation

|µ I − Θ−1
± A±(λ)| = µ3 + a−1

± (λ+ Lb±)µ2 − µ− a−1
± λ,

Forλ ∈ R+, λ→ +∞: 2 positive, 1 negative root forπ+. 2
negative, 1 positive forπ−.

For each Reλ > 0:

dimU+(λ) = 2, dimS+(λ) = 1,

dimU−(λ) = 1, dimS−(λ) = 2.

Dimensions are not equal.

{Reλ > 0} ⊂ Λ = region to the left of the dispersion curves

Region of (not so) consistent splitting
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Small frequencies:λ ∼ 0

Eigenvalues ofΘ−1
± A±(λ):

µ±2 (λ) = − λ

a±
+ O(|λ|2),

µ±1 (λ) = ±θ±1 + O(|λ|),
µ±3 (λ) = ∓θ±3 + O(|λ|),

µ±2 (0) = 0,

µ−1 (0) = −θ−1 < 0< θ+
1 = µ+

1 (0),

µ+
3 (0) = −θ+

3 < 0< θ−3 = µ−3 (0) .
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Eigenvectors:

V±
j =




b−1
± (1− µ±j (λ)2)

−µ±j (λ)

1


 .

V±
2 (λ) =



O(1)
O(λ)
O(1)


 , V±

j (λ) = O(1), j = 1,3.
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Lemma
For eachλ ∈ Λ, the asymptotic systems has solutions

eµ±
j (λ)xV±

j (λ), x ≷ 0, j = 1,2,3.

For |λ| ∼ 0, it is possible to find analytic representations forµ±j
and V±j , namely, two “slow” modes

µ±2 (λ) = −a−1
± λ+ O(λ2),

and four “fast” modes:

µ±1 (λ) = ±θ±1 + O(λ), µ±3 (λ) = ∓θ±3 + O(λ),
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Solutions to the systemΘW′ = A(x, λ)W

Thanks to Conjugation Lemma (MASCIA, ZUMBRUN, Indiana
Univ. Math. J.51 (2002): exponential decay of the waves in the
hyperbolic region implies the existence of projections
P±(x, λ) = I + Φ±, uniformly bounded, which relate the solutions
Z to the asymptotic system, with the solutionsW to the variable
coefficient system,W = P±Z. Moreover,|∂ j

λ∂
k
xΦ±| . e−η|x|.
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Lemma
For |λ| ∼ 0 there existψ±

j (x, λ), j = 1,2, explosive modes, and

φ±3 (x, λ) decaying modes, in x≷ 0, of class C1 in x, analytic inλ,
such that

ψ±
j (x, λ) = eµ±

j (λ) x V±
j (λ)(I + O(e−η|x|)), j = 1,2,

φ±3 (x, λ) = eµ±
3 (λ) x V±

3 (λ)(I + O(e−η|x|)),

whereη > 0 is the rate of exponential decay of the profiles.
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Summary: solutions for λ ∼ 0, x ≷ 0

In x ≥ x0 > 0:

ψ+
1 (x, λ) = e(θ+

1 +O(|λ|))x V+
1 (λ)(I + O(e−η|x|)), (fast growing),

ψ+
2 (x, λ) = e(−λ/a++O(|λ|2))x V+

2 (λ)(I + O(e−η|x|)), (slowly growing)

φ+
3 (x, λ) = e(−θ+

3 +O(|λ|))x V+
3 (λ)(I + O(e−η|x|)), (fast decaying).

In x ≤ x0 < 0:

ψ−
1 (x, λ) = e(−θ−1 +O(|λ|))x V−

1 (λ)(I + O(e−η|x|)), (fast growing),

ψ−
2 (x, λ) = e(−λ/a−+O(|λ|2))x V−

2 (λ)(I + O(e−η|x|)), (slowly growing)

φ−3 (x, λ) = e(θ−3 +O(|λ|))xV−
3 (λ) (I + O(e−η|x|)), (fast decaying)
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Solutions for x ∼ 0

ξ =

∫ x

ǫ0

dz
a(z)

,

ξ(ǫ0) = 0, ξ → +∞ if x → 0+.

u′ =
du
dx

=
1

a(x)
du
dξ

=
1

a(x)
u̇,

˙= d/dξ.
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Ẇ = Ã(ξ, λ)W where Ã(ξ, λ) :=



−ω 0 L
ã b̃ 0 −ã
0 −ã 0


 ,

ω(ξ) := λ+a′(x(ξ))+L b(x(ξ)), ã(ξ) := a(x(ξ)), b̃(ξ) := b(x(ξ)).

Forλ ∼ 0, 0< ǫ0 ≪ 1

Reω(ξ) ∼ Reω(0) = η := Reλ+ a′(0) + L b(0) > 0,

for ξ ∈ [0,+∞).
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Block diagonalization:

Ż =

(
−ω 0
0 0

)
Z + ãΘ̂(ξ)Z,

Θ̂ =




0 L/ω L(a′′ + L b′)/ω2

b̃ 0 −1 + L b̃/ω
0 −1 0




“Fast” and “slow” coordinates

Ż1 = −ω Z1 + O(ã)Z1,

Ż2 = O(ã)Z2.

Z1 → 0, ξ → +∞:

e−
R ξ

0 ω(z) dz . e−(Reλ+
1
2η)ξ → 0,
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Lemma (Solutions nearx = 0).
Under (A0) - (A4) y(A52), there exist0< ǫ0 ≪ 1 small such that,
for λ ∼ 0, the solutions in(−ǫ0,0) ∪ (0, ǫ0) are generated by
“fast” modes,

w±
2 (x, λ) =




u±2
q±2
p±2


 =




Z1(x)
0
0


 (1+O(a(x))), ±ǫ0 ≷ x ≷ 0,

and “slow” modes,

z±j (x, λ) =




u±j
q±j
p±j


 , ±ǫ0 ≷ x ≷ 0, j = 1,3,

bounded as x→ 0±. moreover, the fast modes decay as

u±2 ∼ |x|ν → 0,

(
q±2
p±2

)
∼ O(|x|νa(x)) → 0,

when x→ 0±, whereν := (Reλ+ a′(0) + Lb(0))/|a′(0)|.
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Decaying modes

Resolvent kernel construction: complete set of decaying modes

Let ǫ0 > 0, small. Objective: two decaying modes in+∞, W+
j ,

j = 1,2; one decaying in−∞, W−
3 .

W−
3 (x, λ) :=

{
φ−3 (x, λ), x< −ǫ0,
(γ1z−1 + γ3z−3 + γ2w−

2 )(x, λ), −ǫ0 < x< 0.
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W+
1 (x, λ) :=





φ+
3 (x, λ), x> ǫ0,

(α1z+1 + α3z+3 + α2w+
2 )(x, λ), 0< x< ǫ0,

(β1z−1 + β3z−3 + β2w−
2 )(x, λ), −ǫ0 < x< 0

(δ1ψ
−
1 + δ2ψ

−
2 + δ3φ

−
3 )(x, λ), x< −ǫ0.

W+
2 (x, λ) :=





0, x> 0,

w−
2 (x, λ), −ǫ0 < x< 0,

(κ1ψ
−
1 + κ2ψ

−
2 + κ3φ

−
3 )(x, λ), x< −ǫ0.

w−
2 is the fast decaying mode at x → 0−.
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Figura:Two Evans function:D+ for y > 0, andD− for y < 0.
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Analogously we select two modesW−
2 ,W

−
3 decaying at−∞, and

oneW+
1 , decaying at+∞.

We definetwoEvans functions:

D±(y, λ) := det(W+
1 W∓

2 W−
3 )(y, λ), for y ≷ 0,
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Properties

(i) For λ ∼ 0

D±(y, λ) = −a(y)−1λ[u]det

(
q+

1 q∓2
p+

1 p∓2

)

|λ=0

+ O(|λ|2),

where[u] = u+ − u−.

(ii) We define
D±(λ) := D±(±1, λ).

Then,D+(λ) = mD−(λ) + O(|λ|2), wherem 6= 0.

(iii) D±(λ) is analytic inλ; D± = 0 iff λ is an eigenvalue.
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Resolvent kernel bounds forλ ∼ 0

W.l.o.g.y< 0. Jump conditions inx = y:

[Gλ(·, y)] =




a(y)−1 0 0
0 1 0
0 0 1




Gλ(x, y) is constructed in terms of decaying solutions:

Gλ(x, y) =

{
W+

1 (x, λ)C+
1 (y, λ) + W+

2 (x, λ)C+
2 (y, λ), x> y,

−W−
3 (x, λ)C−

3 (y, λ), x< y
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By Cramer’s rule:

C+
11(y, λ) = a(y)−1D−(y, λ)−1

∣∣∣∣
q+

2 q−3
p+

2 p−3

∣∣∣∣ (y, λ),

C+
21(y, λ) = a(y)−1D−(y, λ)−1

∣∣∣∣
q−3 q+

1
p−3 p+

1

∣∣∣∣ (y, λ),

C−
31(y, λ) = a(y)−1D−(y, λ)−1

∣∣∣∣
q+

1 q+
2

p+
1 p+

2

∣∣∣∣ (y, λ).

The only coefficients with possible jumps are in the first column.
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Bounds for y ∼ 0.
Lemma
(i) For y ∼ 0

C+
1 (y, λ) =

1
λ

[u]−1(1, −L, 0) + O(1),

C−
3 (y, λ) = −1

λ
[u]−1(1, −L, 0) + O(1),

C+
2 (y, λ) = a(y)−1|y|−νO(1).

(ii) Under (A0) - (A5k), y< 0, near zero,

Gλ(x, y) = λ−1[u]−1W̄′(1, −L, 0) + O(e−η|x|), y< 0< x,

Gλ(x, y) = λ−1[u]−1W̄′(1, −L, 0)+O(1)
(

1+
|x|ν

a(y)|y|ν
)
, y< x< 0,

Gλ(x, y) = λ−1[u]−1W̄′(1, −L, 0) + O(e−η|x|), x< y< 0,

for someη > 0. The y> 0 case is analogous.̄W′ = derivative of
the profile.
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Bounds for y → −∞.
Lemma
Under (A0) - (A5k), y< 0, for |y| large,

Gλ(x, y) = λ−1[u]−1e−µ−
2 yW̄′(1, −L, 0)

+ O((e−µ−
2 y + e−µ−

1 y)eµ+
3 x), y< 0< x,

Gλ(x, y) = λ−1[u]−1e−µ−
2 yW̄′(1, −L, 0)

+ O(eµ−
1 (x−y)) + O(eµ−

2 (x−y)) + O(e−µ−
2 yeµ−

3 x), y< x< 0,

Gλ(x, y) = −λ−1[u]−1e−µ−
2 yW̄′(1, −L, 0)

+ O(e−µ−
2 yeµ−

3 x) + O(eµ−
3 (x−y)), x< y< 0.

The y> 0 case is analogous.
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Low frequency estimates

“Low frequency” Green function

GI(x, t; y) :=
1

2πi

∫

Γ
T

{|λ|≤r}
eλtGλ(x, y)dλ

Γ = contour nearλ = 0, away from essential spectrum,
0< r ≪ 1 small such that the bounds forGλ hold.
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Lemma
Under (A0) - (A5k), we have the decomposition for y< 0,

GI(x, t; y) = E + G̃I + R,

E(x, t; y) := Ūx(x)[u]−1e(y, t),

e(y, t) :=

(
errfn

(
y + a−t√
4L b− t

)
− errfn

(
y− a−t√
4L b− t

))
;

|∂κ
x ∂

β
y G̃I(x, t; y)| ≤ C1 t−(|β|+|κ|)/2−1/2e−(x−y−a− t)2/C2 t,

R(x, t; y) = O(e−η(|x−y|+t)) + O(e−ηt)χ(x, y)
[
1 +

1
a(y)

(x/y)ν
]
,

for someη, C1, C2 > 0, whereβ, κ = 0,1 andν = Lb(0)+a′(0)
|a′(0)| and

χ(x, y) =

{
1 − 1< y< x< 0

0 otherwise.

Symmetric bounds for y≥ 0.
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With this decomposition and bounds we prove:

Lemma
Under (A0) - (A5k), for 1 ≤ q ≤ p ≤ +∞,

∣∣∣
∫ +∞

−∞
∂β

y G̃I(·, t; y)f (y)dy
∣∣∣
Lp

≤ C(1 + t)−
1
2(1/q−1/p)−|β|/2|f |Lq,

|ey(·, t)|Lp, |et(·, t)|Lp, ≤ Ct−
1
2(1−1/p),

|eyt(·, t)|Lp ≤ Ct−
1
2(1−1/p)−1/2.

, t > 0,C > 0,p ≥ 1.

∣∣∣
∫ +∞

−∞
R(·, t; y)f (y)dy

∣∣∣
Lp

≤ Ce−ηt(|f |Lp + |f |L∞),
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High frequencies

S2(t) =
1

2πi

∫ −γ1+i∞

−γ1−i∞
χ

{|Im λ|≥γ2}
eλt(λ−L)−1dλ,

Small constantsγ1, γ2 > 0,χI = characteristic function.

Linear problem

ut + (a(x)u)x + Lqx = ϕ,

−qxx + q + (b(x)u)x = ψ,

is recast as

ut + (a(x)u)x + J u = ϕ− L ∂x (Kψ) ,

u(x,0) = u0(x)

J u := −L ∂xK ∂x(b(x)u), L := −(a(x)u)x −J u.
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High frequency bounds

|(λ− L)−1(ϕ− L∂x(Kψ))|H1 ≤ C
(
|ϕ|2H1 + |ψ|2L2

)
,

|(λ− L)−1(ϕ− L∂x(Kψ))|L2 ≤ C

|λ|1/2

(
|ϕ|2H1 + |ψ|2L2

)
,

under (A0) - (A5k), R,C > 0 large,γ > 0 small,and for all
|λ| > R, Reλ ≥ −γ.

Mid-frequency bounds

|(λ− L)−1ϕ|L2 ≤ C |ϕ|H1 for R−1 ≤ |λ| ≤ R and Reλ ≥ −γ,

RandC = C(R) large, andγ = γ(R) small.
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Lemma
Under (A0) - (A5k), we have the bounds

|∂κ
x S2(t)(ϕ−L ∂x(Kψ))|L2 ≤ Ce−η1t

(
|ψ|Hκ+2+|ϕ|Hκ+2

)
, κ = 0,1,

for someη > 0.
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Nonlinear perturbation

(
u
q

)
(x, t) :=

(
ũ
q̃

)
(x + α(t), t) −

(
U
Q

)
(x),

ut + (a(x) u)x + L qx = N1(u)x + α̇(t) (ux + Ux),

−qxx + q + (b(x) u)x = N2(u)x,

Nj(u) = O(|u|2)
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Auxiliar estimate

Lemma
Under (A0) - (A5k), if |u|W2,∞ y |α̇| remain small,

|u|2Hk(t) ≤ Ce−ηt|u|2Hk(0)+C
∫ t

0
e−η(t−s)(|u|2L2+|α̇|2)(s) ds, η > 0,

for k = 1, ...,4.

Crucial: Lb> 0, uniformly. For systems it is not trivial!
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Green function decomposition

G(x, t; y) = GI (x, t; y) + GII (x, t; y)

G̃I(x, t; y) = GI(x, t; y) − E(x, t; y) − R(x, t; y)

G̃II (x, t; y) = GII (x, t; y) + R(x, t; y).
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From previous estimates:

∣∣∣
∫ +∞

−∞
∂β

y G̃I (·, t; y)f (y)dy
∣∣∣
Lp

≤ C(1 + t)−
1
2(1/q−1/p)−|β|/2|f |Lq,

for 1 ≤ q ≤ p, β = 0,1,

∣∣∣
∫ +∞

−∞
G̃II (x, t; y)f (y)dy

∣∣∣
Lp

≤ Ce−ηt|f |H3,

for 2 ≤ p ≤ ∞.
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Duhamel principle

Integral representation for the perturbation:

u(x, t) =

∫ +∞

−∞
(G̃I + G̃II )(x, t; y)u0(y)dy

−
∫ t

0

∫ +∞

−∞
G̃I

y(x, t − s; y)
(

N1(u) − LK ∂yN2(u) + α̇ u
)
(y, s) dy ds

+

∫ t

0

∫ +∞

−∞
G̃II (x, t − s; y)

(
N1(u) − LK ∂yN2(u) + α̇ u

)
y
(y, s) dy ds

q(x, t) = (K∂x)(N2(u) − b u)(x, t),



On the
stability of
radiative
shocks

Ramón G.
Plaza

Introduction

Viscous shock
profiles

Scalar case
Spectral problem

Two Evans functions

Pointwise bounds for
the Green operator

Nonlinear analysis

Hyperbolic-
elliptic
systems
Hypothesis

Results

Spectral
stability
(systems)
Spectral problem

Kawashima-type
estimate

Goodman-type
estimate

α(t) = −
∫ +∞

−∞
e(y, t)u0(y)dy

+

∫ t

0

∫ +∞

−∞
ey(y, t − s)

(
N1(u) − LK ∂yN2(u) + α̇ u

)
(y, s) dy

α̇(t) = −
∫ +∞

−∞
et(y, t)u0(y)dy

+

∫ t

0

∫ +∞

−∞
eyt(y, t − s)

(
N1(u) − LK ∂yN2(u) + α̇u

)
(y, s) dy
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Theorem
Under (A0) - (A5k), and spectral stability assumption, the profile
(U,Q) is asymptotically orbitally stable. The solution to the
nonlinear problem with initial datãu0 satisfies

|ũ(x, t) − U(x− α(t))|Lp ≤ C(1 + t)−
1
2(1−1/p)|u0|L1∩H4

|ũ(x, t) − U(x− α(t))|H4 ≤ C(1 + t)−1/4|u0|L1∩H4

u0 := ũ0 − U sufficiently small in L1 ∩ H4, p ≥ 2, withα(t) such
thatα(0) = 0

|α(t)| ≤ C|u0|L1∩H4, |α̇(t)| ≤ C(1 + t)−1/2|u0|L1∩H4.
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More details in:

C. LATTANZIO , C. MASCIA, T. NGUYEN, R. G. P,
K. ZUMBRUN, SIAM J. Math. Anal.41, no. 6 (2009).
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Hyperbolic-elliptic systems

ut + f (u)x + Lqx = 0,

−qxx + q + g(u)x = 0, (x, t) ∈ R × [0,+∞),
(HE)

R
n ⊇ U ∋ u− state variables,n ≥ 1,

R ∋ q− general heat flux function,

R
n×1 ∋ L − constant vector (column),

f ∈ C2(U ; Rn) − flux function,

g ∈ C2(U ; R) − non-linear coupling.
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A(u) := Df (u) ∈ R
n×n,

B(u) := Dg(u) ∈ R
1×n, u ∈ U .

Hyperbolicity: eigenvalues ofA, real, semi-simple,

a1 ≤ · · · ≤ an.

Eigenvectors associated toaj ,

Arj = ajr j , l jAj = aj l j .
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Structural hypotheses

f ,g ∈ C2 (regularity), (S0)

For eachu ∈ U there existsA0 symmetric, posi-
tive definite, such thatA0A symmetric,A0LB sym-
metric, positive semi-definite of rank one. More-
over, principal eigenvalueap of A, 1 ≤ p ≤ n, is
simple.

(S1)

No eigenvector ofA lies in kerLB (genuine cou-
pling).

(S2)
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Theorem (Kawashima-Shizuta)
Under (S0) y (S1), condition (S2) is equivalent to the existence of
a skew-symmetrix K: U → R

n×n such that

Re(KA + A0LB) > 0, (K)

for all u ∈ U .
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Shock profiles

Traveling wave solutions

u(x, t) = U(x− st), q(x, t) = Q(x− st),

U(x) → u±, Q(x) → 0, if x → ±∞,

u± ∈ U ⊆ R
n constant statesu− 6= u+, s∈ R shock speed. The

triple (u+,u−, s) is a front (weak solution) of the underlying
system of conservation laws:ut + f (u)x = 0. It satisfies
Rankine-Hugoniot:

f (u+) − f (u−) − s(u+ − u−) = 0,

plus Lax entropy conditions.
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Traveling wave equations:

f (U)x + LQx = 0,

−Qxx + Q + g(U)x = 0.

W.l.o.g.s = 0 (stationary wave).
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Hypotheses on the shock:

f (u+) = f (u−), (Rankine-Hugoniot), (H0)

ap(u+) < 0< ap+1(u+),

ap−1(u−) < 0< ap(u−),
(Lax entropy condition),

(H1)

(∇ap)
⊤rp 6= 0, for all u ∈ U , (genuine nonlinearity), (H2)

lp(u±)LB(u±)rp(u±) > 0, (positive diffusion). (H3)
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Eliminating theq variable:

ut + f (u)x = (LB(u)ux)x + (ut + f (u)x)xx,

Positive diffusion hypothesis (H3):

lp · (B⊗ L⊤rp) > 0,

It provides the positive along thep-characteristic field in the
Chapman-Enskog expansion.
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Eliminating theq variable:

ut + f (u)x = (LB(u)ux)x + (ut + f (u)x)xx,

Positive diffusion hypothesis (H3):

lp · (B⊗ L⊤rp) > 0,

It provides the positive along thep-characteristic field in the
Chapman-Enskog expansion.
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Stability results

• T. NGUYEN, R. G. P, K. ZUMBRUN, Phys. D239, no. 8
(2010).

Theorem 1(Spectral stability)
Under (S0) - (S2), (H0) - (H3), radiative shock profiles are
spectraly stable forǫ = |u+ − u−| sufficiently small.
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Theorem 2(Nonlinear orbital stability)
Under (S0) - (S2), (H0) - (H3) andǫ = |u+ − u−| sufficiently
small, radiative shock profiles are nonlinear orbitally stable, that
is, the solution(u,q) to system (HE) with initial data u0 satisfies

|ũ(x, t) − U(x− α(t))|Lp ≤ C(1 + t)−
1
2(1−1/p)|u0|L1∩H4,

|q̃(x, t) − Q(x− α(t))|W1,p ≤ C(1 + t)−
1
2(1−1/p)|u0|L1∩H4,

provided that u0 − U is sufficiently small in L1 ∩ H4, p ≥ 2, and
for someα(t) satisfyingα(0) = 0, and

|α(t)| ≤ C|u0|L1∩H4

|α̇(t)| ≤ C(1 + t)−1/2|u0|L1∩H4.
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Spectral problem

λu + (Au)x + Lqx = 0,

−qxx + q + (Bu)x = 0.

A := A(U(x)), B := B(U(x))

u,q ∈ L2
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Zero-mass conditions
∫

u dx= 0,
∫

q dx= 0,

Equivalent spectral problem:

λu + Aux + Lqx = 0,

−qxx + q + Bux = 0.
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u± ∈ N (u∗), open neighborhood.

0< max
u∈N

|u− u∗| ≤ ǫ≪ 1, |u∗ − u±|, |u− − u+| = O(ǫ).

“Scalar” structure of the profile:

Ux = O(ǫ2)e−ηǫ|x|(rp(u∗) + O(ǫ)),

Uxx = O(ǫ3)e−θǫ|x|,

θ, η > 0. Principal characteristic speed:ap := ap(U(x)),

(ap)x = O(Ux) < 0, (monotonicity),

(ap)xx = O(Uxx).
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Lemma
Under (S0) - (S2) there existsβ = β(u) > 0, such that

(A0L)⊤ = βB, ∀u ∈ U .



On the
stability of
radiative
shocks

Ramón G.
Plaza

Introduction

Viscous shock
profiles

Scalar case
Spectral problem

Two Evans functions

Pointwise bounds for
the Green operator

Nonlinear analysis

Hyperbolic-
elliptic
systems
Hypothesis

Results

Spectral
stability
(systems)
Spectral problem

Kawashima-type
estimate

Goodman-type
estimate

Basic Friedrichs-type estimate

If u,q solutions with Reλ ≥ 0, then forǫ≪ 1 sufficiently small,

(Reλ)|u|2L2 + |q|2L2 + |qx|2L2 ≤ C
∫

|Ux||u|2 dx,

|Imλ|
∫

|Ux||u|2 dx≤ C
∫

|Ux|
(
δ|u|2 + δ−1|q|2

)
dx,

for someC > 0, anyδ > 0.

Corollary:

0 ≤ Reλ ≤ Cǫ2,

|Imλ| ≤ Cǫ.
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|Imλ|
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Kawashima-type estimate

For 0< ǫ≪ 1 small and Reλ ≥ 0, there isC > 0 such that

(Reλ)|u|2L2 + |ux|2L2 ≤ C
∫

|Ux||u|2 dx (KE)

Basic ideas:

• Control of the|ux|2L2 term.

• L2 weighted product with theskew-symmetric formK.
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Kawashima-type estimate

For 0< ǫ≪ 1 small and Reλ ≥ 0, there isC > 0 such that

(Reλ)|u|2L2 + |ux|2L2 ≤ C
∫

|Ux||u|2 dx (KE)

Basic ideas:

• Control of the|ux|2L2 term.

• L2 weighted product with theskew-symmetric formK.
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Goodman-type estimate

For 0< ǫ≪ 1 small and Reλ ≥ 0, there exists̄C > 0 such that

(Reλ)
(
|u|2L2 + |ux|2L2) + C̄

∫
|Ux||u|2 dx≤ C̄ǫ|ux|2L2 (GE)

Basic ideas:

• Control of the
∫
|Ux||u|2 term.

• Weighted norms in the characteristic direction.

• Diagonalization of the hyperbolic part along the whole
trajectory of the profile.
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Goodman-type estimate

For 0< ǫ≪ 1 small and Reλ ≥ 0, there exists̄C > 0 such that

(Reλ)
(
|u|2L2 + |ux|2L2) + C̄

∫
|Ux||u|2 dx≤ C̄ǫ|ux|2L2 (GE)

Basic ideas:

• Control of the
∫
|Ux||u|2 term.

• Weighted norms in the characteristic direction.

• Diagonalization of the hyperbolic part along the whole
trajectory of the profile.
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Adding C̄ǫ times (GE) to (KE):

(Reλ)(1 + C̄ǫ)|u|2L2 + (C̄ + CC̄ǫ)
∫

|Ux||u|2 dx≤ 0.

=⇒ Reλ < 0, i.e.,spectral stability.
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Sketch of the Kawashima-type
estimate

Notation:

Ā := A0A((U(x)), L̄ := A0(U(x))L,

K := K(u(x)), β = β(U(x)),

βx, L̄x, Āx,Kx = O(|Ux|) = O(ǫ2).
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Suffices to control the|ux|L2 term for Reλ ≥ 0,λ 6= 0,

|ux|2L2 ≤ C̄
(
(Reλ)η|u|2L2 +

∫
|Ux||u|2 dx

)
, (*)

for someC > 0, η > 0, such thatǫ2/η ≪ 1.

Takingη = O(ǫ) small and with the Friedrichs-type estimate we
get (KE).
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Ingredients:

• TakeL2 product ofu equation withKux, useK
skew-symmetric, Im〈Kux,u〉 = −1

2〈Kxu,u〉:

Re〈ux,KAux〉 = Re(λ〈Kux,u〉) + Re〈Kux,Lqx〉,
Re(λ〈Kux,u〉) ≤ C(Reλ)

(
η−1|ux|2L2 + η|u|2L2

)

+ C|Imλ|
∫

|Ux||u|2 dx

• L̄B symmetric, positive semi-definite; Re(KA + L̄B) > 0:

Re〈ux,KAux〉 + 〈ux, L̄Bux〉 ≥
1
C
|ux|2L2
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• L2 product ofux with equation forq:

〈ux, L̄Bux〉 = −〈uxx, L̄qx〉 − 〈ux, L̄xqx〉 − 〈ux, L̄q〉.

• UseĀ symmetric,̄LB symmetric, positive semi-definide
estimate term by term:

〈ux, L̄Bux〉 ≤ Cǫ|ux|2L2 + C
∫

|Ux||u|2 dx.

• Substitution into the|ux|2L2 estimate. Reλ = O(ǫ2),
ǫ2/η ≪ 1 small. The result is (*).
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Sketch of the Goodman-type
estimate

Lemma (Goodman)
There exist smooth matrix fieldR(u),L(u) such that

LAR =




A−

ap

A+




where A± are symmetric, A− ≤ δ < 0, A+ ≥ δ > 0. If
L = L(U),R = R(U),

(LRx)pp = (LxR)pp = 0,

LLBR ≥ −Cǫ



On the
stability of
radiative
shocks

Ramón G.
Plaza

Introduction

Viscous shock
profiles

Scalar case
Spectral problem

Two Evans functions

Pointwise bounds for
the Green operator

Nonlinear analysis

Hyperbolic-
elliptic
systems
Hypothesis

Results

Spectral
stability
(systems)
Spectral problem

Kawashima-type
estimate

Goodman-type
estimate

R = ΓŘ, L = Γ−1
Ľ,

Ř = (A0)
1/2O⊤, Ľ = O(A0)

1/2,

O orthogonal, real, block-diagonalizes(A0)
1/2A(A0)

−1/2,

Γ =




Ip−1

α
In−p




α solves the ODE

αx = −ľp(řp)xα, α(0) = 1.

α = e
R x

0 −ľp(̌rp)x = eO(
R

|Ux|) = 1 + O(ǫ).
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From (H3): l±p LB±r±p > 0, by continuity,U ∼ u±,

(lpLBrp)|u=U > 0.

ReLLBR ≥ −Cǫ,

(LLBR)pp ≥ θ > 0
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Ã(x) := (LAR)(U(x)) =




A−

ap

A+




L̃(x) := L(U(x))L, B̃(x) := B(U(x))R(U(x)),

v := Lu,

λv + Ãvx + L̃qx = ÃLxRv,

−qxx + q + B̃vx = −BRxv
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Weighted norms:

W :=




w−Ip−1

wp

w+In−p




wp,w± scalar functions:
wp ≡ 1,

(w±)x = −c∗|Ux|w±/a±, w±(0) = 1.

⇒ w± = exp
( ∫ x

0
c∗|Ux|/ā±

)
= 1 + O(ǫ),

(w±)x = O(|Ux|), (wp)x = 0.
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c∗ > 0 sufficiently large, such that

WÃx + WxÃ ≤ C



−c∗Ip

−θ
−c∗In−p


 , C > 0.
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Ingredients:

• L2 product ofWvversus the equation forv; integrating by
parts,Ã symmetric,v := (v−, vp, v+)⊤, previous inequality:

(Reλ)|v|2L2 + c∗
2 〈v±, |Ux|v±〉 + 1

2θ〈vp, |Ux|vp〉+
+ Re〈Wv, L̃qx〉 = Re〈Wv, ÃLxRv〉.

Bound Re〈Wv, ÃLxRv〉 ≤ C〈v±, |Ux|v±〉 + Cǫ〈vp, |Ux|vp〉;
and takingc∗ large,ǫ≪ 1,

(Reλ)|v|2L2 + C
∫

|Ux||v|2 ≤ −Re〈Wv, L̃qx〉
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• Control of the product ofv with qx; L2 product ofWvx with L̃
times the equation for laq, integrate by parts,

−〈Wv, L̃qx〉 = −〈Wvx,LLBRxv〉 − 〈Wvx, L̃B̃vx〉+
+ 〈Wvx, L̃qxx〉 + 〈Wv, L̃xq〉 + 〈Wxv, L̃q〉.

• Bound all the terms, in particular

Re〈Wvxx, L̃qx〉 ≤ Cǫ
∫

|Ux||v|2 + Cǫ2|vx|2L2,

one gets

−Re〈Wv, L̃qx〉 ≤ Cǫ
∫

|Ux||v|2 + Cǫ|vx|2L2

Combining with last estimate, back into theu variables, we
obtain (GE).
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• Bound all the terms, in particular

Re〈Wvxx, L̃qx〉 ≤ Cǫ
∫

|Ux||v|2 + Cǫ2|vx|2L2,

one gets

−Re〈Wv, L̃qx〉 ≤ Cǫ
∫

|Ux||v|2 + Cǫ|vx|2L2

Combining with last estimate, back into theu variables, we
obtain (GE).
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Thank you!
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