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Abstract. This paper considers a one-dimensional generalized Allen-Cahn equation of
the form

ut = ε2(D(u)ux)x − f(u),

where ε > 0 is constant, D = D(u) is a positive, uniformly bounded below, diffusivity
coefficient that depends on the phase field u, and f(u) is a reaction function that can be
derived from a double-well potential with minima at two pure phases u = α and u = β. It
is shown that interface layers (namely, solutions that are equal to α or β except at a finite
number of thin transitions of width ε) persist for an exponentially long time proportional
to exp(C/ε), where C > 0 is a constant. In other words, the emergence and persistence
of metastable patterns for this class of equations is established. For that purpose, we
prove energy bounds for a renormalized effective energy potential of Ginzburg-Landau
type. Numerical simulations, which confirm the analytical results, are also provided.

1. Introduction

1.1. The Allen-Cahn model. The classical Allen-Cahn equation [1] (also known as the
time-dependent Ginzburg-Landau equation [43]),

ut = ε2D0∆u− F ′(u), x ∈ Ω, t > 0, (1.1)

was introduced to model the motion of spatially non-uniform phase structures in crystalline
solids. It describes the state of a system confined in a bounded space domain Ω ⊂ Rn,
n ≥ 1, in terms of a scalar phase field, u = u(x, t) (also called “order parameter” [30]),
depending on space and time variables, x ∈ Ω and t > 0, respectively, which interpolates
two homogeneous pure components, u = α and u = β, of the binary alloy. The potential
F ∈ C3(R) is a prescribed function of the phase field u, having a double-well shape with
local minima at the preferred α- and β-phases. The parameter ε > 0 measures the interface
width separating the phases and D0 > 0 is a constant diffusion coefficient (also known as
mobility). Associated to equation (1.1) is the Ginzburg-Landau free energy functional

Eε[u] =

∫
Ω

{
1

2
ε2D0|∇u|2 + F (u)

}
dx. (1.2)

The free energy per unit volume has two contributions: F (u) is the free energy that a
small volume would have in an homogeneous concentration with value u, whereas the
term 1

2ε
2D0|∇u|2 penalizes spatial variation with an energy cost associated to an interface
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between the two pure phases. In general, this “gradient energy” density is also a function
of the local composition [10, 7]. It is well-known (see, e.g., [15, 25] and the references
therein) that, if no constraints are imposed on the total value of the phase field u in Ω,
then the L2(Ω)-gradient flow of the Ginzburg-Landau functional (1.4) is the Allen-Cahn
equation (1.1) endowed with homogeneous Neumann boundary conditions,

∂νu = 0, on ∂Ω, (1.3)

(where ν ∈ Rn, |ν| = 1, is the outer unit normal at each point of ∂Ω) describing no flux
of atoms outside the physical domain Ω. If the integral of u is assumed to be constant,
then the H−1(Ω)-gradient flow of (1.4) results into the well-known Cahn-Hilliard model
[10, 15].

When the parameter 0 < ε � 1 is very small, the order parameter u concentrates
near the pure components α and β, except possibly at sharp anti-phase boundaries known
as interface (or phase transition) layers. The limit when ε → 0+ describes such sharp
interface layers separating both phases inside an heterogeneous composition of the alloy.
In the study of their dynamics, the renormalized Ginzburg-Landau energy functional

Eε[u] =
1

ε
Eε[u] =

∫
Ω

{
1

2
εD0|∇u|2 +

F (u)

ε

}
dx, (1.4)

plays a key role. For instance, sequences with uniformly renormalized energy converge to
a function which is equal to α or β a.e. with a finite-perimeter interface ∂{u = α, u = β}
(see, e.g., [40] and the discussion in [33]).

In the calculus of variations, the Γ-convergence is a very important notion of convergence
for functionals that was introduced by De Giorgi [21] that possesses some special and
useful properties: for instance, if a functional Eε Γ-converges to E0 and uε is a minimizer
of Eε, then every cluster point of the sequence uε is a minimizer of E0. In addition, Γ-
convergence is stable under continuous perturbations and Γ-limits are always lower semi-
continuous. We refer to the excellent works [4, 19] for the precise definition and a complete
presentation on Γ-convergence. In such framework, Modica and Mortola [36, 37] showed
that the Γ(L1(Ω))-limit as ε → 0+ of the renormalized energy functional Eε[·] in (1.4) is
proportional to the perimeter functional,

Eε[·]
Γ−→ γ0PerΩ(Aαβ) := γ0Hn−1(∂Aαβ ∩ Ω), ε→ 0+,

where Aαβ = {x ∈ Ω : u(x) = α, u(x) = β}, Hn−1 is the n − 1 dimensional Hausdorff
measure [24] and γ0 > 0 is a constant independent of ε > 0, an energy lower bound for the
renormalized energy. In several space dimensions (n > 1), it is well known that this fast
reaction/slow diffusion regime leads to limiting dynamics of (1.1) when ε → 0+ in which
the interface ∂Aαβ evolves by mean curvature flow (cf. [23, 32, 41]).

In one space dimension (n = 1), in contrast, the situation is rather peculiar. Since here
interface layers are points, the Hausdorff measure H0 reduces to the counting measure in
R and the finite perimeter is simply the number N of transitions in the layer structure.
This results into a negligible effect of the interfaces on the main term of the energy and
the interface motion is exponentially slow. This phenomenon is known in the literature
as metastability [6, 12, 13, 28]: interface layers are transient solutions that appear to be
stable, but which, after an exponentially long time of order Tε = O(exp(1/ε)), drastically
change their shape. To observe slow layer interface motion one must assume a fundamental
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physical condition, expressing balance of forces, that allows the existence of stationary
traveling front solutions (see equation (1.19) and Remark 1.1 below). In this work we
establish this (one-dimensional) phenomenon of exponentially slow motion of coherent
structures in the case where the diffusion coefficient depends on u.

1.2. Phase-dependent diffusivity. In some physical situations the diffusion coefficient
or mobility should be regarded as a function of the phase field. It is to be observed that, in
fact, a concentration-dependent diffusional mobility appears in the original derivation of
the Ginzburg-Landau energy functional by Cahn [8] and Cahn and Hilliard [11] (see also [9,
44]). Such dependence has been incorporated into several mathematical models of Allen-
Cahn or Cahn-Hilliard type to describe a great variety of physical systems (an abridged list
of references includes [15, 16, 17, 18, 20, 22]). Particularly, in the physics literature, there
exist one-dimensional, phase-transitional models with concentration-dependent, strictly
positive diffusivities which are described by equations of the form

ut = (D(u)ux)x − f(u), (1.5)

such as the experimental exponential diffusion function for metal alloys (cf. Wagner [46])
and the Mullins diffusion model for thermal grooving [5, 38].

The first example pertains to the description of the physical properties of metal alloys,
for which it is well-known that the characteristic lattice parameter varies with the metal
composition [31, 46]. Hence, it is customary to propose a phenomenological diffusion
profile based on the Boltzmann-Matano method [3, 35], which allows to approximate the
diffusion coefficient as a function of concentration over the whole range of composition
from one phase to the other. This function can be computed from experimental results.
Wagner [46] argues that the function that best fits many experiments on binary alloys (such
as Fe-Cu, Cu-Zn, Cu-Al and Fe-Al, just to mention a few; see [46] and the experimental
references mentioned therein) has the shape of an exponential function

D = D(u) = D0 exp
{
c0

(
u− 1

2(α+ β)
)}
, (1.6)

where c0 > 0 is an experimental constant and D0 > 0 is the value of the diffusion at
the Matano boundary (where the concentration is the average of the two pure phases).
Temperature and pressure are supposed to be constant and changes normal to the direction
of diffusion are negligible, so that a one-dimensional model is usually applicable (see, e.g.,
[34]). When coupled with a reaction process based on a double-well potential as Allen and
Cahn [1] originally proposed for a Fe-Al metal binary alloy, for instance, one recovers an
equation of the form (1.5).

The second example refers to thermal grooving, that is, the development of surface
groove profiles on a heated polycrystal by the mechanism of evaporation-condensation (cf.
Mullins [38], Broabridge [5]). The metal polycrystal is assumed to be in quasi-equilibrium
of its vapor, and the surface diffusion process, as well as the mechanism of evaporation
and condensation, are modelled via Gibbs-Thompson formula. In view that the properties
of the interface do not depend on its orientation, this is essentially a one-dimensional
phenomenon. After an appropriate transformation (see [5]), the Mullins nonlinear diffusion
model of groove development can be expressed in terms of a one-dimensional diffusion
equation where the nonlinear diffusion coefficient is given by

D(u) =
D0

1 + u2
, (1.7)
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with D0 > 0 constant. Notice that D > 0 in its whole domain. When the Mullins
pure diffusion model is coupled to a Gibbs energy double-well potential F for the two
polycrystal evaporation-condensation phases, the result is an reaction-diffusion equation
with nonlinear phase-dependent diffusivity of the form (1.5).

1.3. Assumptions and main results. The goal of this paper is to study the emergence
and persistence of metastable phase transition layers in a one-dimensional generalized
Allen-Cahn model with a phase-dependent diffusivity coefficient of the following form

ut = ε2(D(u)ux)x − f(u), x ∈ (a, b), t > 0, (1.8)

endowed with homogeneous Neumann boundary conditions

ux(a, t) = ux(b, t) = 0, t > 0, (1.9)

and initial datum

u(x, 0) = u0(x), x ∈ [a, b]. (1.10)

Here ε > 0 is a small parameter, the diffusivity coefficient D = D(u) is a strictly positive
function of the phase field and the reaction term f = f(u) is assumed to be of bistable type.
More precisely, we assume that there exists an open interval I ⊂ R such that D ∈ C2(I)
satisfies

D(u) ≥ d > 0, ∀u ∈ I, (1.11)

and f ∈ C2(I) is such that

f(α) = f(β) = 0, f ′(α) > 0, f ′(β) > 0, (1.12)

for some α < β with [α, β] ⊂ I. Clearly, if we choose D(u) ≡ D0 > 0, constant, then we
recover the classical Allen-Cahn equation (1.1) in one dimension

ut = ε2D0uxx − F ′(u), (1.13)

with potential F (u) =
∫ u

f(s) ds.
Crucial assumptions in this work concerning the interaction between f and D are∫ β

α
D(s)f(s) ds = 0, (1.14)

and ∫ u

α
D(s)f(s) ds > 0, ∀u ∈ I, u 6= α, β. (1.15)

It is important to notice that (1.11)-(1.12)-(1.14)-(1.15) imply that the function

G(u) :=

∫ u

α
D(s)f(s) ds (1.16)

is an effective double-well potential with wells of equal depth, i.e. G : I → R satisfies

G(α) = G(β) = G′(α) = G′(β) = 0, G′′(α) > 0, G′′(β) > 0,

G(u) > 0, ∀u 6= α, β.
(1.17)

Equation (1.8) is a parabolic equation in I in view of the assumption (1.11) and through-
out the paper we consider initial data satisfying

M1 ≤ u0(x) ≤M2, ∀x ∈ [a, b], (1.18)
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for some M1 < M2 such that [M1,M2] ⊂ I. Therefore, we can use the classical maximum
principle to conclude that the solution u to the initial boundary value problem (1.8)-(1.9)-
(1.10) remains in I for all time t ≥ 0.

Remark 1.1. The typical example of a reaction function with a bistable structure is the
cubic polynomial of the form

f(u) = (u− α)(u− β)(u− u∗),
where u∗ ∈ (α, β) is an energy barrier where the potential (up to a constant)

F (u) =

∫ u

f(s) ds,

has a local maximum. Since the minimization of (1.4) remains unchanged (up to a con-
stant) when F is replaced by the affine transformation F (u) → F (u)− (c1u + c0), in the
standard Ginzburg-Landau theory one usually finds energy potentials of the form

F (u) =
1

4
(u− α)2(u− β)2,

for which the energy barrier lies precisely at the midpoint u∗ = 1
2(α+β) (it is customary in

the literature to consider α = −1, β = 1, yielding u∗ = 0). This produces two energy wells
with same minimum value (F (α) = F (β) = 0) and symmetrically located with respect to
the barrier in between. A necessary condition for this to happen, however, is that∫ β

α
f(s) ds = 0. (1.19)

In the classical Ginzburg-Landau theory with constant diffusion D = D0 > 0 condition
(1.19) is a fundamental hypothesis that guarantees the existence of traveling wave solutions
with zero speed (or stationary waves). This allows that if u0 underlies a transition layer
structure then layer migrations will be slow. Condition (1.19) is tantamount to a balance
of forces precluding invading front phases (waves with speed c 6= 0) and without which the
phenomenon of metastability does not occur (see [6, 12, 13] and the references therein).

In the present density-dependent diffusion case, hypothesis (1.19) has to be replaced
by (1.14) as the balance of forces condition that ensures the metastability phenomenon.
It is to be noticed that condition (1.14) also appears in other contexts as a fundamental
assumption for the emergence of stationary profiles solutions when diffusion is density
dependent and with the same bistable reaction term (see [42]). Under (1.14) the effective,
diffusion-weighted energy density G inherits the properties of an equal-well potential. In
this case, though, the energy barrier might not be symmetrically located depending on
the properties of the diffusion function D. To illustrate this, Figure 1 shows the graph of
a reaction function with cubic polynomial form and of the effective potential (1.16) in the
case of the exponential (Matano type) diffusion function (1.6) with α = −1, β = 1 and
energy barrier u∗ such that (1.14) holds.

Motivated by previous metastability results for the classical Allen-Cahn equation (1.13)
(see, for example, [6, 12, 13, 28]), in this paper we apply the energy approach of Bronsard
and Kohn [6] to rigorously prove the existence of metastable states for the initial boundary-
value problem (IBVP) (1.8)-(1.9)-(1.10). We recall that in [6] the Authors introduce the
energy approach to prove persistence of metastable patterns for (1.13) for a time O(ε−k)
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(b) G(u) =

∫ u

−1

D(s)f(s) ds

Figure 1. Panel (a) displays the graph (in orange) f(u) = (u2−1)(u−u∗).
The value of u∗ = 1

2(e2− 7) is chosen so that condition (1.14) holds. Panel
(b) shows the graph (in wine color) of the effective potential G(u) defined
in (1.16) in the case of the Matano diffusion function D(u) = eu. Notice
that it has the shape of a double well potential with same energy levels
(color online).

for any k ∈ N. Then, the energy approach was improved in [29], where the Author
obtains persistence the exponentially long time O(exp (−C/ε)) in the case of Cahn-Morral
systems. By using these ideas, the energy approach has been applied to prove persistence
of metastable patterns in many different models, see among others [26, 27] and references
therein.

The main goal of this paper is to show how to adapt the energy approach to the case of
a nonlinear diffusion (1.8). For that purpose, we study the following renormalized energy
functional

Eε[u] =

∫ b

a

{
ε

2
[D(u)ux]2 +

G(u)

ε

}
dx, (1.20)

where G is the effective potential defined in (1.16). Notice that the u-dependent mobility
is involved not only in the gradient term of the energy density, but also in the barrier
energy term via the function G. We regard this energy functional as a generalized effective
energy of Ginzburg-Landau type.

Let us now present a panoramic overview of the results of this paper. The main theorem
(Theorem 2.3 below) establishes that, if an initial datum for equation (1.8) has an N -
transition layer structure (for the precise definition see Definition 2.1 below) then the
IBVP (1.8)-(1.9)-(1.10) maintains this structure for an exponentially long time. For that
purpose, we prove (see Proposition 2.4) the following variational result for the generalized
energy (1.20): if u ∈ H1(a, b) underlies an N -transition layer structure, then there exist
constants A,C, δ and ε0 > 0, independent of u, such that

Eε[u] ≥ Nγ0 − C exp(−A/ε), (1.21)

for all ε ∈ (0, ε0). Here, γ0 > 0 is a constant that depends on the energy F and the diffusion
coefficient alone (see (2.6) below). Such energy bound is reminiscent (actually, strongly
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related) to the Γ-convergence of the functional, inasmuch as the perimeter functional is
the number of transitions N and the constant γ0 is independent of ε > 0. Estimate (1.21),
however, is inherently sharper, because it provides exact information on the convergence
rate as ε→ 0+. The exponential term in (1.21) is crucial to show the exponentially slow
motion of the interfaces and, in turn, to prove our main result, Theorem 2.3. These results
are the content of Section 2.

Remark 1.2. In [40], the Authors study the Γ-convergence properties of the general class
of functionals

Wε[u] :=

∫
Ω

1

ε
w(x, u, ε∇u) dx,

where Ω is an open, bounded domain in Rn and the function w ∈ C3(Ω̄ × R × Rn)
satisfies appropriate assumptions (cfr. assumptions (H1)-(H7) in [40]). In particular, the
generalized energy (1.20) with D and G satisfying (1.11)-(1.17) enters in the framework of
[40], but as it was already mentioned, the Γ-convergence properties of [40] are not sufficient
to prove the exponentially slow motion of the solutions to (1.8)-(1.9)-(1.10) and we need
the sharper inequality (1.21). We also stress that (1.21) holds for generic functions D
and G satisfying (1.11)-(1.17) (G can be different from (1.16)) and that the lower bound
(1.21) (valid only in the one-dimensional case) can be used to find the Γ(L1(a, b)−)-limit
of (1.20) (by proceeding as in [40]). Indeed, Proposition 2.4 implies that for any sequence
uε converging in L1 to a step function v, which assumes only the values α, β and with
exactly N jumps, one has

lim inf
ε→0+

Eε[u
ε] ≥ Nγ0.

Moreover, we can properly construct a sequence uε such that the equality holds (see
Proposition 3.1).

Section 3 is devoted to show the existence of metastable patterns. We construct a family
of functions having an N -transition layer structure (see Proposition 3.1) based on standing
wave solutions to (1.8) with asymptotic boundary conditions. In addition, we provide an
upper bound for the velocity of the transitional points of the solution (see Theorem 3.3),
conveying a precise characterization of the dynamics of the interfaces. This estimation
relies on a purely variational result (Lemma 3.2 below) which states that, if u underlies
an N -transition layer structure and Eε[u] slightly exceeds the minimum energy to have N
transitions, then the Hausdorff distances between the interface associated to u and the N
transition structure is arbitrarily small. We finish the paper by presenting the results of
some numerical simulations with diffusivities of the form D = D0, constant (the classical
Allen-Cahn model), the exponential function (1.6) and Mullins diffusion (1.7). These
numerical experiments confirm the analytical results (see Section 4 below). Furthermore,
numerical simulations with degenerate diffusion (e.g., D vanishing at one or both of the
pure phases, like for example, a porous medium type diffusion [45]) or degenerate reaction
(that is, f ′(α) or f ′(β) equal to zero) were also performed. These choices were motivated
by physical considerations (see the discussion on Section 5).
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2. Persistence of metastable patterns

Here and in the rest of the paper, we fix N ∈ N and a piecewise constant function v
assuming only the values α, β and with exactly N jumps located at h1, . . . , hN , namely

v : [a, b]→ {α, β} with N jumps located at a < h1 < h2 < · · · < hN < b. (2.1)

Moreover, we fix r > 0 such that

hi + r < hi+1 − r, for i = 1, . . . , N, a ≤ h1 − r, hN + r ≤ b. (2.2)

Definition 2.1. Let D and f satisfying (1.11), (1.12) and (1.14)-(1.15), and let v be a
piecewise constant function like in (2.1)-(2.2). We say that a function uε ∈ H1(a, b) has
an N -transition layer structure if

lim
ε→0
‖uε − v‖

L1 = 0, (2.3)

and there exist C > 0 and A ∈ (0, r
√

2λ), where

λ := min

{
f ′(α)

D(α)
,
f ′(β)

D(β)

}
, (2.4)

such that
Eε[u

ε] ≤ Nγ0 + C exp(−A/ε), (2.5)

for any ε� 1, where the energy Eε is defined (1.20) and the positive constant γ0 is given
by

γ0 :=

∫ β

α

√
2G(s)D(s) ds. (2.6)

The main goal of this section is to show that if the initial datum uε0 has an N -transition
layer structure, then the solution to the IBVP (1.8)-(1.9)-(1.10) maintains such a structure
for an exponentially long time as ε→ 0+. We underline that the condition (2.3) fixes the
number of transitions between α and β and their relative positions as ε → 0+; while the
condition (2.5) requires that uε makes these transitions in an “energetical efficient” way,
that is, the energy at uε exceeds at most of the small quantity C exp(−A/ε) the minimum
energy to have N transitions (see Remark 1.2). We shall construct a function satisfying
(2.3)-(2.5) in Section 3.

The first step to prove persistence of N -transition layer structures for an exponentially
long time is to study the behavior of the energy (1.20) along the solutions to (1.8)-(1.9).

Lemma 2.2. Let u ∈ C([0, T ], H2(a, b)) be solution to equation (1.8) with homogeneous
Neumann boundary conditions (1.9). If Eε is the functional defined in (1.20), then

Eε[u](0)− Eε[u](T ) = ε−1

∫ T

0

∫ b

a
D(u)u2

t dxdt. (2.7)

Proof. Multiplying equation (1.8) by D(u)ut and integrating in the interval [a, b], we de-
duce ∫ b

a
D(u)u2

tdx =

∫ b

a

[
ε2(D(u)ux)xD(u)ut − f(u)D(u)ut

]
dx.

Integrating by parts and using the boundary conditions (1.9), we get∫ b

a
D(u)u2

tdx = −
∫ b

a

[
ε2D(u)ux(D(u)ux)t +G′(u)ut

]
dx,
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where we used the definition (1.16). Since

ε2D(u)ux(D(u)ux)t +G′(u)ut =
∂

∂t

{
ε2

2
[D(u)ux]2 +G(u)

}
,

using the definition of the energy (1.20), we obtain

− d

dt
Eε[u](t) = ε−1

∫ b

a
D(u)u2

tdx,

and integrating the latter equality in [0, T ] we end up with (2.7). �

The equality (2.7) holds true for any smooth functions D, f ; in particular, if D satisfies
(1.11) and the initial datum u0 satisfies (1.18), then we can state that the energy functional
(1.20) is a non-increasing function of time along the solution to (1.8)-(1.9)-(1.10), namely

d ε−1

∫ T

0

∫ b

a
u2
t dxdt ≤ Eε[u](0)− Eε[u](T ). (2.8)

In particular, the latter inequality tells us that if (2.5) is satisfied at time t = 0, then it
holds for any positive time t. Concerning property (2.3), the main result of this paper
states that if the initial datum satisfies (1.18) and has a N -transition layer structure, then
the solution to the IBVP (1.8)-(1.9)-(1.10) satisfies (2.3) for an exponentially long time,
and so we can conclude that the solution maintains the same structure of the initial datum
for an exponentially long time.

Theorem 2.3. Assume that f,D ∈ C2(I) satisfy (1.11)-(1.12)-(1.14)-(1.15). Let v, r be

as in (2.1)-(2.2) and let A ∈ (0, r
√

2λ), with λ defined in (2.4). If uε is the solution of
(1.8)-(1.9)-(1.10) with initial datum uε0 satisfying (1.18), (2.3) and (2.5), then,

sup
0≤t≤m exp(A/ε)

‖uε(·, t)− v‖
L1 −−−→

ε→0
0, (2.9)

for any m > 0.

The crucial step in the proof of Theorem 2.3 is to show a particular lower bound on the
energy (see (1.21)). Such a result is purely variational in character and the model (1.8)-
(1.9) plays no role. As we already discussed in Remark 1.2, the following lower bound,
which holds for any strictly positive function D and any double well potential G, can be
used to study the Γ-convergence of the functional (1.20).

Proposition 2.4. Assume that D ∈ C1(I) satisfies (1.11) and that G ∈ C3(I) satisfies
(1.17). Let

θ := min

{
G′′(α)

D2(α)
,
G′′(β)

D2(β)

}
> 0, (2.10)

v, r be as in (2.1)-(2.2) and A ∈ (0, r
√

2θ). Then, there exist ε0, C, δ > 0 (depending only
on G, v and A) such that if u ∈ H1(a, b) satisfies (1.18) and

‖u− v‖
L1 ≤ δ, (2.11)

then for any ε ∈ (0, ε0),

Eε[u] ≥ Nγ0 − C exp(−A/ε), (2.12)

where Eε and γ0 are defined in (1.20) and (2.6), respectively.
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Proof. Fix u ∈ H1(a, b) satisfying (1.18), v as in (2.1) satisfying (2.11), r satisfying (2.2)

and fix A ∈ (0, r
√

2θ). For ρ1 > 0 such that [α− ρ1, β + ρ1] ⊂ I, define

ω := min

{
2G′′(α)− νρ1

max|z−α|≤ρ1 D
2(z)

,
2G′′(β)− νρ1

max|z−β|≤ρ1 D
2(z)

}
,

ν := sup
{
|G′′′(x)|, x ∈ [α− ρ1, β + ρ1]

}
.

(2.13)

Notice that ω → 2θ as ρ1 → 0+. Take r̂ ∈ (0, r) and ρ1 so small that

A ≤ (r − r̂)
√
ω, ρ1 max

u∈[α−ρ1,β+ρ1]
|D′(u)| ≤ d, (2.14)

where d > 0 is the minimum of D, see (1.11). Then, choose 0 < ρ2 < ρ1 sufficiently small
that ∫ β−ρ2

β−ρ1

√
2G(s)D(s) ds >

∫ β

β−ρ2

√
2G(s)D(s) ds,∫ α+ρ1

α+ρ2

√
2G(s)D(s) ds >

∫ α+ρ2

α

√
2G(s)D(s) ds.

(2.15)

The choices of the constants r̂, ρ1, ρ2 will be clear later on the proof.
We focus our attention on hi, one of the discontinuous points of v and, to fix ideas, let

v(hi − r) = α, v(hi + r) = β, the other case being analogous. We can choose δ > 0 so
small in (2.11) so that there exist r+ and r− in (0, r̂) such that

|u(hi + r+)− β| < ρ2, and |u(hi − r−)− α| < ρ2. (2.16)

Indeed, assume by contradiction that |u− β| ≥ ρ2 throughout (hi, hi + r̂); then

δ ≥ ‖u− v‖
L1 ≥

∫ hi+r̂

hi

|u− v| dx ≥ r̂ρ2,

and this leads to a contradiction if we choose δ ∈ (0, r̂ρ2). Similarly, one can prove the
existence of r− ∈ (0, r̂) such that |u(hi − r−)− α| < ρ2.

Now, we consider the interval (hi − r, hi + r) and claim that∫ hi+r

hi−r

{
ε

2
[D(u)ux]2 +

G(u)

ε

}
dx ≥ γ0 − C

N exp(−A/ε), (2.17)

for some C > 0 independent on ε. Observe that from Young inequality, it follows that for
any a ≤ c < d ≤ b,∫ d

c

{
ε

2
[D(u)ux]2 +

G(u)

ε

}
dx ≥

∣∣∣∣∣
∫ u(d)

u(c)

√
2G(s)D(s) ds

∣∣∣∣∣ . (2.18)

Hence, if u(hi + r+) ≥ β and u(hi − r−) ≤ α, then from (2.18) we can conclude that∫ hi+r+

hi−r−

{
ε

2
[D(u)ux]2 +

G(u)

ε

}
dx ≥ γ0,
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which implies (2.17). On the other hand, notice that in general we have∫ hi+r

hi−r

{
ε

2
[D(u)ux]2 +

G(u)

ε

}
dx ≥

∫ hi+r

hi+r+

{
ε

2
[D(u)ux]2 +

G(u)

ε

}
dx

+

∫ hi−r−

hi−r

{
ε

2
[D(u)ux]2 +

G(u)

ε

}
dx

+

∫ β

α

√
2G(s)D(s) ds

−
∫ u(hi−r−)

α

√
2G(s)D(s) ds

−
∫ β

u(hi+r+)

√
2G(s)D(s) ds

=: I1 + I2 + γ0 − I3 − I4, (2.19)

where we again used (2.18). Regarding I1, recall that β−ρ2 < u(hi+r+) < β and consider
the unique minimizer z : [hi + r+, hi + r] → R of I1 subject to the boundary condition
z(hi + r+) = u(hi + r+). If the range of z is not contained in the interval (β − ρ1, β + ρ1),
then from (2.18), it follows that∫ hi+r

hi+r+

{
ε

2
[D(z)zx]2 +

G(z)

ε

}
dx >

∫ β

u(hi+r+)

√
2G(s)D(s) ds = I4, (2.20)

where, in the last inequality, we used the first estimate of (2.15) and, so the smallness of
r+ and ρ2. Suppose, on the other hand, that the range of z is contained in the interval
(β − ρ1, β + ρ1). Then, the Euler-Lagrange equation for z is

εD2(z)z′′ = ε−1G′(z)− εD(z)D′(z)(z′)2, x ∈ (hi + r+, hi + r),

z(hi + r+) = u(hi + r+), z′(hi + r) = 0.

Denoting by ψ(x) := (z(x)− β)2, we have ψ′ = 2(z − β)z′ and

ψ′′ = 2(z − β)z′′ + 2(z′)2 =
2G′(z)

ε2D2(z)
(z − β) + 2

[
D(z)− (z − β)D′(z)

D(z)

]
(z′)2.

The main (technical) novelty in this proof with respect to the classical Ginzburg-Landau
functional is the estimate of ψ′′ and, in particular, the presence of D2 in the denominator
of the first term of the right hand side and the presence of a coefficient (depending on
D and D′) in front of (z′)2, which is not positive a priori. By taking advantage of the
choice of ρ1 in the conditions (2.13) and (2.14), we shall overcome this difficulties (without

putting assumption on D′) and we will prove that the function ψ satisfies ψ′′ ≥ µ2

ε2
ψ, for

some µ. Indeed, since |z(x) − β| ≤ ρ1 for any x ∈ [hi + r+, hi + r], thanks to the second
condition of (2.14), we can state that the coefficient in front of (z′)2 is positive, yielding

ψ′′ ≥ 2G′(z)

ε2D2(z)
(z − β).

Moreover, using Taylor’s expansion and the assumptions (1.17) on G, we get

G′(z(x)) = G′′(β)(z(x)− β) +R,
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where |R| ≤ ν|z − β|2/2 with ν defined in (2.13), and as a consequence

ψ′′(x) ≥ 2G′′(β)

ε2D2(z)
(z(x)− β)2 − νρ1

ε2D2(z)
(z(x)− β)2 ≥ ω

ε2
ψ(x) ≥ µ2

ε2
ψ(x),

where µ := A/(r − r̂) and we used (2.13)-(2.14). Thus, ψ satisfies

ψ′′(x)− µ2

ε2
ψ(x) ≥ 0, x ∈ (hi + r+, hi + r),

ψ(hi + r+) = (u(hi + r+)− β)2, ψ′(hi + r) = 0.

We compare ψ with the solution ψ̂ of

ψ̂′′(x)− µ2

ε2
ψ̂(x) = 0, x ∈ (hi + r+, hi + r),

ψ̂(hi + r+) = (u(hi + r+)− β)2, ψ̂′(hi + r) = 0,

which can be explicitly calculated to be

ψ̂(x) =
(u(hi + r+)− β)2

cosh
[µ
ε (r − r+)

] cosh
[µ
ε

(x− (hi + r))
]
.

By the maximum principle, ψ(x) ≤ ψ̂(x) so, in particular,

ψ(hi + r) ≤ (u(hi + r+)− β)2

cosh
[µ
ε (r − r+)

] ≤ 2 exp(−A/ε)(u(hi + r+)− β)2.

Then, we have

|z(hi + r)− β| ≤
√

2 exp(−A/2ε)ρ2. (2.21)

Now, by using Taylor’s expansion for G(s), we obtain

G(s) ≤ (s− β)2

(
G′′(β)

2
+
o(|s− β|2)

|s− β|2

)
.

Therefore, for s sufficiently close to β we have

0 ≤ G(s) ≤ Λ(s− β)2. (2.22)

Using (2.21) and (2.22), we obtain∣∣∣∣∣
∫ β

z(hi+r)

√
2G(s)D(s) ds

∣∣∣∣∣ ≤ max
u
{D(u)}

√
Λ/2(z(hi + r)− β)2

≤ max
u
{D(u)}

√
2Λ ρ2

2 exp(−A/ε). (2.23)

From (2.18)-(2.23) it follows that, for some constant C > 0,∫ hi+r

hi+r+

{
ε

2
[D(z)zx]2 +

G(z)

ε

}
dx ≥

∣∣∣∣∣
∫ β

z(hi+r+)

√
2G(s)D(s) ds−

∫ β

z(hi+r)

√
2G(s)D(s) ds

∣∣∣∣∣
≥ I4 − C

2N exp(−A/ε). (2.24)
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Combining (2.20) and (2.24), we get that the constrained minimizer z of the proposed
variational problem satisfies∫ hi+r

hi+r+

{
ε

2
[D(z)zx]2 +

G(z)

ε

}
dx ≥ I4 − C

2N exp(−A/ε).

The restriction of u to [hi + r+, hi + r] is an admissible function, so it must satisfy the
same estimate and we have

I1 ≥ I4 − C
2N exp(−A/ε). (2.25)

The term I2 on the right hand side of (2.19) is estimated similarly by analyzing the interval
[hi − r, hi − r−] and using the second condition of (2.15) to obtain the corresponding
inequality (2.20). The obtained lower bound reads:

I2 ≥ I3 − C
2N exp(−A/ε). (2.26)

Finally, by substituting (2.25) and (2.26) in (2.19), we deduce (2.17). Summing up all of
these estimates for i = 1, . . . , N , namely for all transition points, we end up with

Eε[u] ≥
N∑
i=1

∫ hi+r

hi−r

{
ε

2
[D(u)ux]2 +

G(u)

ε

}
dx ≥ Nγ0 − C exp(−A/ε),

and the proof is complete. �

Remark 2.5. Notice that, in the particular case (1.16), G′(u) = f(u)D(u) and, since
f(α) = f(β) = 0, the constant θ (see (2.10)) appearing in the statement of Proposition
2.4 coincides with the constant λ in (2.4). Therefore, in the following, we use Proposition
2.4 with θ = λ, where λ defined in (2.4), to prove Theorem 2.3.

Thanks to the generalized effective energy of Ginzburg-Landau type (1.20), the dissi-
pative estimate (2.8) and the lower bound in Proposition 2.4, we can apply the energy
approach introduced in [6] and we can proceed as in [29, 26, 27].

Proposition 2.6. Assume that f,D ∈ C2(I) satisfy (1.11)-(1.12)-(1.14)-(1.15), and con-
sider the solution uε to (1.8)-(1.9)-(1.10) with initial datum uε0 satisfying (1.18), (2.3) and
(2.5). Then, there exist positive constants ε0, C1, C2 > 0 (independent on ε) such that∫ C1ε−1 exp(A/ε)

0
‖uεt‖2L2

dt ≤ C2ε exp(−A/ε), (2.27)

for all ε ∈ (0, ε0).

Proof. Let ε0 > 0 so small that for all ε ∈ (0, ε0), (2.5) holds and

‖uε0 − v‖L1 ≤
1

2
δ, (2.28)

where δ is the constant of Proposition 2.4. Let T̂ > 0; we claim that if∫ T̂

0
‖uεt‖L1dt ≤

1

2
δ, (2.29)

then there exists C > 0 such that

Eε[u
ε](T̂ ) ≥ Nγ0 − C exp(−A/ε). (2.30)
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Indeed, inequality (2.30) follows from Proposition 2.4 if ‖uε(·, T̂ ) − v‖
L1 ≤ δ. By using

triangle inequality, (2.28) and (2.29), we obtain

‖uε(·, T̂ )− v‖
L1 ≤ ‖uε(·, T̂ )− uε0‖L1 + ‖uε0 − v‖L1 ≤

∫ T̂

0
‖uεt‖L1 +

1

2
δ ≤ δ.

By using the inequalities (2.8), (2.5) and (2.30), we deduce∫ T̂

0
‖uεt‖2L2

dt ≤ ε

d

(
Eε[u

ε
0]− Eε[uε](T̂ )

)
≤ C2ε exp(−A/ε). (2.31)

It remains to prove that inequality (2.29) holds for T̂ ≥ C1ε
−1 exp(A/ε). If∫ +∞

0
‖uεt‖L1dt ≤

1

2
δ,

there is nothing to prove. Otherwise, choose T̂ such that∫ T̂

0
‖uεt‖L1dt =

1

2
δ.

Using Hölder’s inequality and (2.31), we infer

1

2
δ ≤ [T̂ (b− a)]1/2

(∫ T̂

0
‖uεt‖2L2

dt

)1/2

≤
[
T̂ (b− a)C2ε exp(−A/ε)

]1/2
.

It follows that there exists C1 > 0 such that

T̂ ≥ C1ε
−1 exp(A/ε),

and the proof is complete. �

Now, we have all the tools to prove (2.9).

Proof of Theorem 2.3. Triangle inequality gives

‖uε(·, t)− v‖
L1 ≤ ‖uε(·, t)− uε0‖L1 + ‖uε0 − v‖L1 , (2.32)

for all t ∈ [0,m exp(A/ε)]. The last term of inequality (2.32) tends to 0 by assumption
(2.3). Regarding the first term, take ε so small that C1ε

−1 ≥ m; thus we can apply
Proposition 2.6 and by using Hölder’s inequality and (2.27), we infer

sup
0≤t≤m exp(A/ε)

‖uε(·, t)− uε0‖L1 ≤
∫ m exp(A/ε)

0
‖uεt (·, t)‖L1 dt ≤ C

√
ε,

for all t ∈ [0,m exp(A/ε)]. Hence (2.9) follows. �

3. Metastable patterns and speed of the layers

The goal of this section is to construct a family of functions uε having a N -transitions
layer structure (existence of metastable patterns) and to give an estimate on the velocity
of the transition points h1, . . . , hN ; more precisely, we will show that the layers move with
an exponentially small speed as ε→ 0+.
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3.1. Existence of metastable patterns. In order to construct a family of functions uε

satisfying (2.3)-(2.5), we will use a standing wave solution to (1.8), that is the solution
Φε = Φε(x) to the boundary value problem

ε2 (D(Φε)Φ
′
ε)
′ − f(Φε) = 0, in (−∞,+∞),

lim
x→−∞

Φε(x) = α, lim
x→+∞

Φε(x) = β,

Φε(0) =
α+ β

2
,

(3.1)

where D, f satisfy (1.11)-(1.12)-(1.14)-(1.15).

Proposition 3.1. Fix a piecewise constant function v as in (2.1) and assume that f,D ∈
C2(I) satisfy (1.11)-(1.12)-(1.14)-(1.15). Then, there exists a function uε ∈ H1(a, b) taking
values in (α, β) and satisfying (2.3), (2.5) and

lim
ε→0+

Eε[u
ε] = Nγ0, (3.2)

where γ0 is defined in (2.6).

Proof. First of all, we prove that if f,D ∈ C2(I) satisfy (1.11)-(1.12)-(1.14)-(1.15), then
there exists a unique increasing solution to (3.1). Multiplying byD(Φε)Φ

′
ε = D(Φε(x))Φ′ε(x)

the first equation of (3.1), we deduce{
ε2

2

[
D(Φε)Φ

′
ε

]2 −G(Φε)

}′
= 0, in (−∞,+∞),

where G is defined in (1.16) and, from the second equation of (3.1) and (1.17), it follows
that the profile Φε satisfies εD(Φε)Φ

′
ε =

√
2G(Φε),

Φε(0) =
α+ β

2
.

(3.3)

Therefore, the fact that G satisfies (1.17) and the strictly positiveness of D imply that
there exists a unique solution to (3.3) which is increasing and implicitly defined by∫ Φε(x)

α+β
2

D(s)√
2G(s)

ds =
x

ε
. (3.4)

Observe that

lim
ε→0+

Φε(x) =


α, x < 0,
α+β

2 , x = 0,

β, x > 0.

Now, we use the profile Φε to construct a family of functions satisfying (2.3) and (2.5).
Fix N ∈ N and N transition points a < h1 < h2 < · · · < hN < b, and denote the middle
points by

m1 := a, mj :=
hj−1 + hj

2
, j = 2, . . . , N, mN+1 := b.

Define

uε(x) := Φε

(
(−1)j(x− hj)

)
, x ∈ [mj ,mj+1], j = 1, . . . N, (3.5)
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where Φε is the solution to (3.1). Notice that uε(hj) = α+β
2 , for j = 1, . . . , N and for

definiteness we choose uε(a) < 0 (the case uε(a) > 0 is analogous). It is easy to check that
uε ∈ H1(a, b), α < uε < β and (2.3) holds; let us prove that uε satisfies (2.5). From the
definitions of Eε (1.20), uε (3.5) and (3.3), we obtain

Eε[u
ε] =

N∑
j=1

∫ mj+1

mj

[
ε

2
[D(uε)uεx]2 +

G(uε)

ε

]
dx =

N∑
j=1

∫ mj+1

mj

2G(Φε)

ε
dx

=
N∑
j=1

∫ mj+1

mj

√
2G(Φε)D(Φε)|Φ′ε| dx < Nγ0,

where γ0 is defined in (2.6), and then uε satisfies (2.5). Moreover, choosing ε so small that
assumption (2.11) is satisfied and applying Proposition 2.4, we infer

Nγ0 − C exp(−A/ε) ≤ Eε[uε] < Nγ0.

Passing to the limit as ε→ 0+, we end up with (3.2) and the proof is complete. �

In what follows, we discuss the role of assumptions (1.11)-(1.12) on the functions f,D
in the proof of Proposition 3.1. In particular, we discuss their role in (3.3) and we see what
happens when they are not satisfied, that is when either f ′(α)f ′(β) = 0 or D(α)D(β) = 0.

First of all, notice that the assumptions (1.11), (1.12) imply the exponential decay

|Φε(x)− α| ≤ c1e
c2x, as x→ −∞,

|Φε(x)− β| ≤ c1e
−c2x, as x→ +∞,

(3.6)

for some constants c1, c2 > 0 (depending on f and D). If D is strictly positive, but f ′ is
degenerate at α or β, that is f ′(α)f ′(β) = 0, we have the existence of a unique solution
for (3.1), but we do not have the exponential decay (3.6). We will see in Section 4 that
if f ′(α)f ′(β) = 0, the numerical solutions do not exhibit exponentially slow motion, cfr.
Figure 5.

On the other hand, in the case assumptions (1.12) are satisfied, but D is degenerate at
α or β, that is, D(α)D(β) = 0, the situation drastically changes. Indeed, for definiteness
assume D(β) = 0 and D(s) ∼ (s − β)2n as (s − β) → 0, for some n ∈ N. Using the
expansion G(s) ∼ (s− β)2n+2, we deduce that the integral∫ β

α+β
2

D(s)√
2G(s)

ds < +∞, (3.7)

and as a consequence, there exists x̄ > 0 such that Φε(x̄) = β. In Section 4, we consider
a numerical solution in the case (3.7) and we observe a sharp connection between the two
stable points, which does not exhibit exponentially slow motion, cfr. Figure 6.

Finally, we remark that in order to have a strictly monotone solution to (3.1) in the
case D(s) ∼ (s − β)2n as (s − β) → 0, the potential G must satisfy G(s) ∼ (s − β)2m as

(s− β)→ 0, for some m ≥ 2n+ 1, meaning that f(β) = f ′(β) = · · · = f (2m−2n−2)(β) = 0

and f (2m−2n−1)(β) > 0. In particular, we have the exponential decay (3.6) if and only if
m = 2n+ 1, that is D(s) ∼ (s− β)2n and f(s) ∼ (s− β)2n+1 as (s− β)→ 0.
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3.2. Layers speed. Theorem 2.3 provides sufficient conditions for existence and per-
sistence for an exponentially long time of metastable states with a N -transition layer
structure for the IBVP (1.8)-(1.9)-(1.10); moreover, we construct in Proposition 3.1 an
example of function satisfying such conditions. The next goal is to establish an upper
bound on the velocity of the transition points. To do this, fix v as in (2.1), r as in (2.2)
and define its interface I[v] as

I[v] := {h1, h2, . . . , hN}.

For an arbitrary function u : [a, b]→ I and an arbitrary closed subset K ⊂ I\{α, β}, the
interface IK [u] is defined by

IK [u] := u−1(K).

Finally, we recall that for any X,Y ⊂ R the Hausdorff distance d(X,Y ) between X and
Y is defined by

d(X,Y ) := max

{
sup
x∈X

d(x, Y ), sup
y∈Y

d(y,X)

}
,

where d(x, Y ) := inf{|y − x| : y ∈ Y }.
The following result is purely variational in character and states that, if a function

u ∈ H1(a, b) satisfies (1.18), it is close to v in L1 and Eε[u] exceeds of a small quantity
the minimum energy to have N transitions, then the distance between the interfaces IK [u]
and IK [v] is small.

Lemma 3.2. Assume that D ∈ C1(I) satisfies (1.11) and that G ∈ C3(I) satisfies (1.17).

Given δ1 ∈ (0, r) and a closed subset K ⊂ I\{α, β}, there exist positive constants δ̂, ε0

(independent on ε) and M > 0 such that for any u ∈ H1(a, b) satisfying (1.18) and

‖u− v‖
L1 < δ̂ and Eε[u] ≤ Nγ0 +M, (3.8)

for all ε ∈ (0, ε0), we have

d(IK [u], I[v]) < 1
2δ1. (3.9)

Proof. Fix δ1 ∈ (0, r) and choose ρ > 0 small enough that

Iρ := (α− ρ, α+ ρ) ∪ (β − ρ, β + ρ) ⊂ I\K,

and

inf

{∣∣∣∣∫ ξ2

ξ1

√
2G(s)D(s) ds

∣∣∣∣ : ξ1 ∈ K, ξ2 ∈ Iρ
}
> 2M,

where

M := 2N max

{∫ α+ρ

α

√
2G(s)D(s) ds,

∫ β

β−ρ

√
2G(s)D(s) ds

}
.

By reasoning as in the proof of (2.16) in Proposition 2.4, we can prove that for each i
there exist

x−i ∈ (hi − δ1/2, hi) and x+
i ∈ (hi, hi + δ1/2),

such that

|u(x−i )− v(x−i )| < ρ and |u(x+
i )− v(x+

i )| < ρ.
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Suppose that (3.9) is violated. Hence, d(IK [u], I[v]) ≥ 1
2δ1, meaning that there exists (at

least) a point ζ such that u(ζ) = ξ1 ∈ K and min
i=1,...,N

|hi − ζ| ≥ 1
2δ1. In particular, notice

that ζ /∈ [x−i , x
+
i ]. Using (2.18), we deduce

Eε[u] ≥
N∑
i=1

∣∣∣∣∣
∫ u(x+i )

u(x−i )

√
2G(s)D(s) ds

∣∣∣∣∣
+ inf

{∣∣∣∣∫ ξ2

ξ1

√
2G(s)D(s) ds

∣∣∣∣ : ξ1 ∈ K, ξ2 ∈ Iρ
}
. (3.10)

On the other hand, we have∣∣∣∣∣
∫ u(x+i )

u(x−i )

√
2G(s)D(s) ds

∣∣∣∣∣ ≥
∫ β

α

√
2G(s)D(s) ds

−
∫ α+ρ

α

√
2G(s)D(s) ds

−
∫ β

β−ρ

√
2G(s)D(s) ds

≥ γ0 −
M

N
.

Substituting the latter bound in (3.10), we deduce

Eε[u] ≥ Nγ0 −M + inf

{∣∣∣∣∫ ξ2

ξ1

√
2G(s)D(s) ds

∣∣∣∣ : ξ1 ∈ K, ξ2 ∈ Iρ
}
.

For the choice of ρ, we obtain

Eε[u] > Nγ0 +M,

which is a contradiction with assumption (3.8). Hence, the bound (3.9) is true. �

Thanks to Theorem 2.3 and Lemma 3.2 we can prove the following result, which states
that the velocity of the transition points is (at most) exponentially small.

Theorem 3.3. Assume that f,D ∈ C2(I) satisfy (1.11)-(1.12)-(1.14)-(1.15). Let uε be
the solution of (1.8)-(1.9)-(1.10), with initial datum uε0 satisfying (1.18), (2.3) and (2.5).
Given δ1 ∈ (0, r) and a closed subset K ⊂ I\{α, β}, set

tε(δ1) = inf{t : d(IK [uε(·, t)], IK [uε0]) > δ1}.
There exists ε0 > 0 such that if ε ∈ (0, ε0) then

tε(δ1) > exp(A/ε).

Proof. Let ε0 > 0 so small that (2.3)-(2.5) imply uε0 satisfies (3.8) for all ε ∈ (0, ε0). From
Lemma 3.2 it follows that

d(IK [uε0], I[v]) < 1
2δ1. (3.11)

Now, consider uε(·, t) for all t ≤ exp(A/ε). Assumption (3.8) is satisfied thanks to (2.9)
and because Eε[u

ε](t) is a non-increasing function of t. Then,

d(IK [uε(t)], I[v]) < 1
2δ1 (3.12)
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for all t ∈ (0, exp(A/ε)). Combining (3.11) and (3.12), we obtain

d(IK [uε(t)], IK [uε0]) < δ1

for all t ∈ (0, exp(A/ε)). �

4. Numerical experiments

In this section, we present some numerical solutions to the IBVP (1.8)-(1.9)-(1.10),
which confirm the analytical results of the previous sections. Moreover, we consider as
well the case when the assumptions (1.11) or (1.12) are not satisfied, and we numerically
show that they are necessary conditions for the exponentially slow motion of the solutions.

4.1. Classical Allen-Cahn equation. As a first example, we consider the classical
Allen-Cahn equation

ut = ε2uxx + u− u3, (4.1)

which corresponds to the choices D(u) ≡ D0 = 1 and f(u) = u3 − u in equation (1.8).
Therefore, we are considering the case of a constant diffusion coefficient (independent on
the density u) and the simplest case of balanced bistable reaction term f , with two stable
zeros at ±1 and one unstable zero at 0. The metastable dynamics of the solutions to
the IBVP associated to equation (4.1) has been studied in [6]; moreover, equation (4.1)
is the typical example of the general case considered in [12, 14, 28]. In particular, it is
well know that metastable patterns for such a model can be approximated by using the
function defined in (3.5), with Φε(x) := tanh(x/

√
2ε), which is the explicit solution of the

boundary problem (3.1) with D ≡ 1, f(u) = u3 − u, α = −1 and β = +1.
In Figure 2, we consider the interval [a, b] = [−4, 4] and an initial datum with a 6-

transition layer structure, given by formula (3.5) with Φε(x) := tanh(x/
√

2ε).
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Figure 2. Numerical solutions to (1.8)-(1.9)-(1.10) with D(u) = 1, f(u) =
u(u2 − 1), ε = 0.1 and initial datum u0 with N = 6 transitions, located at
−3.4,−2,−0.5, 0.8, 2.2, 3.2.

We see that the solution maintains the same transition layer structure of the initial
datum for a time t = 2 ∗ 104 and after that the two closest transition points collapse (we
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choose the minimum distance equal to 1). Then, we have a solution with a 4-transition
layer structure and it is impossible to distinguish the solution at time t = 0 and t = 3∗104

(apart from the elimination of the closest transition points). Finally, we stress that for
Theorem 2.3, we expect the solution to maintain the transition layer structure for a time
t ≥ exp(A/ε): in the example considered in Figure 2, we have A ∈ (0,

√
2λ/2) (since

the minimum distance between the layers is 1), λ = 2 (see (2.4)), ε = 0.1 and so, t ≥
exp(10) ≈ 2.2 ∗ 104.

As we already mentioned, the metastable dynamics of the solutions to equation (4.1)
has been studied in different papers, but we consider it as first example in order to analyze
the differences with the density dependent diffusion we consider in the next examples.

4.2. Mullins diffusion. Now, we consider the Mullins diffusion D(u) = (1 +u2)−1 intro-
duced in Section 1. In this case, D(u) ∈ (0, 1] for any u ∈ R and so the diffusion coefficient
is smaller than the one considered in Figure 2. Since D is an even function, we can consider
the same reaction term f of Figure 2, that is the odd function f(u) = u3−u, and the func-
tion G defined in (1.16) satisfies the assumption (1.17) with α = −1 and β = 1. In Figure
3, we consider the same data of Figure 2 and we only change the diffusion coefficient.
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Figure 3. Numerical solutions to (1.8)-(1.9)-(1.10) with D(u) = (1 +
u2)−1, f(u) = u(u2−1) and ε = 0.1. The initial datum u0 with 6 transitions
is the same of Figure 2.

In this case, we see that the lifetime of the metastable state is greater than Figure 2, and
the solution maintains the 6-transition layer structure for a time t = 106. The numerical
solution confirms the analytical results, since D(±1) = 1/2 and so λ = 4, with λ defined
in (2.4). Hence, we expect the collapse of the two closest transition points after a time
t ≥ exp(10

√
2) ≈ 1.4 ∗ 106.

4.3. Exponential diffusion. Here, we consider the exponential diffusion D(u) = eu,
which satisfies D(u) ∈ [e−1, e] for any u ∈ [−1, 1]. In particular, the diffusion coefficient is
smaller than Figure 2 for u ∈ [−1, 0) and it is greater for u ∈ (0, 1]. We want assumptions
(1.14)-(1.15) to be satisfied and then we choose the reaction term of the form f(u) =
(u− u∗)(u2 − 1); in such a way, ±1 are the stable points, while the unstable point u∗ has
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to be chosen so that

∫ 1

−1
f(s)es ds = 0. It is easy to check that u∗ = e2−7

2 and it follows

that λ = min{2(1 + u∗)e, 2(1− u∗)e−1} = 9e−1 − e and we can choose A ∈ (0, 0.5443). In
the case ε = 0.1, we have exp(5.443) ≈ 231 and such a number is very small (with respect
to the cases considered in Figures 2-3); we see in Figure 4(a) that the solution maintains
the 6-transition layer structure for a small time. Next, we choose ε = 0.05 and we see in
Figure 4(b) that the solution maintains the 6-transition layer structure for a time t ≈ 105.
Notice also that all the transition points move faster.
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(a) ε = 0.1
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Figure 4. Numerical solutions to (1.8)-(1.9)-(1.10) with D(u) = eu,

f(u) = (u− e2−7
2 )(u2− 1) and two different values for ε. The initial datum

u0 is the same of Figures 2-3.
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In all the previous examples, the assumptions of Theorem 2.3 on the nonlinear diffusion
D and on the reaction term f are all satisfied; in the next examples we consider the
degenerate cases f ′(α) = f ′(β) = 0 or D(α) = 0.

4.4. The degenerate case f ′(α) = f ′(β) = 0. Here, we consider the case when the
assumptions (1.11), (1.14) and (1.15) hold, f(α) = f(β) = 0, but f ′(α) = f ′(β) = 0.
Notice that, in such a case the function G defined in (1.16) satisfies G′′(α) = G′′(β) = 0
and so the assumptions of Proposition 2.4 are not satisfied. In Figure 5, we choose the
Mullins diffusion D(u) = (1 + u2)−1 as in Figure 3 and we only change the reaction term.
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(a) f(u) = u(u2 − 1)3
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Figure 5. Numerical solutions to (1.8)-(1.9)-(1.10) with D(u) = (1 +
u2)−1, ε = 0.1 and two different reaction terms satisfying f ′(α) = f ′(β) =
0. The initial datum u0 has 6 transitions as in Figure 3.

It is very important to notice that we choose the same value of ε and the same initial
transition layer structure of Figure 3, but in the degenerate case f ′(α) = f ′(β) = 0 the
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situation drastically changes and the closest layers disappear in a much shorter time.
More precisely, in Figure 3 with f(u) = u(u2 − 1) the transitions disappear after a time
t = 2 ∗ 106, in Figure 5(a) with f(u) = u(u2 − 1)3 they disappear at time t = 1200 and in
Figure 5(b) with f(u) = u(u2 − 1)5 at time t = 600.

4.5. The degenerate case D(α) = 0. In this last section, we consider an example where
the diffusion coefficient vanishes in one of the two stable points α, β. Our choice follows the
well-known porous medium diffusivity [45] with D(u) = u2 and a reaction term satisfying

(1.12) with α = 0, β = 1 and such that

∫ 1

0
f(s)s2 ds = 0. It is easy to check that the

reaction term f(u) = u(u− 2
3)(u−1) satisfies (1.12) and (1.14)-(1.15), with D(u) = u2. As

we already mentioned in the discussion after Proposition 3.1, in this case the stationary
profile connecting the two stable points is sharp (see (3.7)) and this is confirmed by the
numerical solutions in Figure 6. It is to be observed that the lifetime of the metastable state
is much smaller than the previous simulations both in the case ε = 0.1 (see Figure 6(a))
and ε = 0.06 (see Figure 6(b)), and the numerical solutions do not exhibit exponentially
slow motion.

5. Discussion

In this paper we have rigorously proved the emergence and persistence of metastable
structures for the one-dimensional, generalized Allen-Cahn equation (1.8) with phase-
dependent diffusivity coefficient. Motivated by physical models, such as the Mullins diffu-
sion for thermal grooving or the exponential function for diffusion profiles in metal alloys,
we have assumed that the diffusivity is strictly positive and uniformly bounded below. In
this fashion, we have extended the previous results on metastability to the case of reaction-
diffusion problems where the diffusion is nonlinear and strictly positive. The method of
proof is based on the energy approach by Bronsard and Kohn [6] and the energy consid-
ered in this paper has the form of a generalized effective Ginzburg-Landau functional (see
(1.20)). There is an innovative work by Otto and Reznikoff [39] that establishes the phe-
nomenon of dynamic metastability for gradient flow equations associated to a large class
of energy functionals. In this paper, however, the evolution equation (1.8) is not the L2-
gradient flow of the energy (1.20) (see, for example, Cirillo et al. [16]). Actually, equation
(1.8) is not the L2-gradient flow of any anisotropic energy functional of Ginzburg-Landau
type of the form

Eε[u] =

∫ b

a

{
ε2

2
Φ(u, ux) + F (u)

}
dx

as the dedicated reader may easily verify. Hence, our result does not enter into the
framework of the analysis in [39]. We would like to emphasize that (1.20) is the right
energy functional to study the metastable dynamics of the solutions to (1.8). Our analysis
shows that the energy method is applicable to evolution equations beyond the class of
gradient flows and that the phenomenon of metastability holds for more general reaction-
diffusion models. We regard these as the main contributions of this paper.

In addition, we have presented the output of numerical simulations for the IBVP prob-
lem (1.8)-(1.9)-(1.10) with different diffusion profiles satisfying the assumptions of this
paper (namely, the Mullins (1.7) and exponential (1.6) diffusion functions), which verify
the analytical results. We have performed numerical simulations in the case of degenerate
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(a) ε = 0.1
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Figure 6. Numerical solutions to (1.8)-(1.9)-(1.10) with D(u) = u2,
f(u) = u(u − 2

3)(u − 1) and two different values for ε. The initial datum
has 6 transitions located at the same positions of Figures 2-3-4-5.

diffusion coefficients (for which D(α) = 0 or D(β) = 0) as well. These simulations show
that the interface layers do not exhibit exponentially slow motion. In other words, we have
provided numerical evidence that the non-degeneracy conditions on D are necessary for
metastability, the former understood as exponentially slow motion of interface layers. It is
to be observed that degenerate diffusions are of interest within the physics community. For
example, in some binary alloys the diffusivity seems to be zero outside a relatively narrow
interfacial band (cf. [44, 22]), that is, D is zero outside the grain boundary including, e.g.,
the pure phases u = ±1, and positive inside. A function of the form

D(u) = D0(1− u2), u ∈ [−1, 1],
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can be justified under thermodynamic considerations (see Taylor and Cahn [44] and the
references therein). Another example is the aforementioned porous medium type diffusion.

In view of our numerical results and the theoretical ones of [2], where the Authors
consider the classical Allen–Cahn equation (1.13) with degenerate f , we think that the
speed of the interface motion strongly depends on the behavior of the diffusion D and
the reaction f in the degenerate points. This is an interesting phenomenon that warrants
future investigations.
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