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Abstract. In this contribution, the non-local, integro-partial differential

system of equations proposed by Hillen et al. [16] to account for the the tumor
growth paradox (or the observation that some incomplete cancer treatments

may enhance tumor growth) is reviewed. It is shown that when cancer cells’

diffusion effects and Neumann boundary conditions are taken into consider-
ation, the same paradoxical tumor growth emerges.

1. Introduction

Cancer stem cells (CSCs) have been identified in many types of cancer such as
leukaemia [6, 21], and carcinomas of breast [1], colon [24], brain [27] and pancreas
[22], among others. The clinical observation that some incomplete cancer treat-
ments may enhance tumor growth is known in the literature as the tumor growth
paradox. It has been suggested (see, e.g., Enderling et al. [9]) that the presence
of CSCs may explain the tumor growth paradox thanks to their pluripotency and
their resistance to treatment. Therefore, some CSCs-based mathematical models
have been proposed in recent years to account for the tumor growth paradox. In
this paper, we review the non-local, integro-partial differential system of equa-
tions proposed by Hillen, Enderling and Hahnfeldt [16], a model which considers
an heterogeneous population of CSCs and standard, non-stem, cancer cells (CCs).
The model system is endowed with initial conditions for both cell populations
and boundary conditions of Dirichlet or Neumann type. The authors in [16] show
that, when diffusion effects are neglected, the resulting purely dynamical system
underlies a sort of tumor growth paradoxical behaviour as a result of the immune
response from cytotoxic treatments. Their analysis is based on a direct applica-
tion of geometrical singular perturbation theory for ordinary differential equations
(ODEs) [12, 13, 15, 18]. In particular, they find that, among the equilibrium states
of the reduced ODE system, the only global attractor is the pure CSC state, so
that after a sufficiently long time the tumor will consist of CSCs only. In later
contribution, Maddalena [23] showed that when diffusion is present and under Neu-
mann boundary conditions, stationary solutions may change. Notably, Maddalena
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proved that the equilibrium states of the associated ODE are the only stationary
solutions to the PDE system under Neumann conditions, but they change their
stability due to diffusion effects. If diffusion is present and Dirichlet boundary
conditions are considered, Delgado et al. [8] recently proved that there exist non-
trivial stationary states that include coexistence states of CSCs and CCs with
positive values for both populations. These works [23, 8], however, do not discuss
the emergence of paradoxical growth behavior.

The motivation of the present review is to analyze the possible effects of cancer
cells’ diffusion on the tumor growth paradox. If diffusion effects are taken into
consideration, does a paradoxical tumor growth emerge? We discuss the possible
effects of diffusion by applying the invariant foliation theory of Bates, Lu and
Zeng [3, 4], which can be seen as the geometric singular perturbation counterpart
theory for PDEs with a fast/slow structure (with some limitations). We consider
the simplest case of Neumann boundary conditions: since the equilibria for the
ODE coincide with stationary solutions to the PDE, the “slow manifold” on which
the long time dynamics takes place is essentially the same as the one described by
Hillen et al. [16] for the ODE system. We show that the very same conditions for
the emergence of the tumor growth paradox can be retrieved for the semiflow of the
diffusive system under Neumann conditions. The description of the paradoxical
tumor growth under the flow of the full PDE system compensates, we hope, for
the lack of novelty of the results.

2. The tumor growth paradox

2.1. The non-local model of Hillen, Enderling and Hahnfeldt. Hillen et al.
[16] proposed the following coupled integro-differential, no-local system of partial
differential equations (PDEs) to describe the CSC and CC dynamics:

(2.1)

ut = Du∆u+ δγ

∫
Ω

k(x, y, p(x, t))u(y, t) dy,

vt = Dv∆v + (1− δ)γ
∫

Ω

k(x, y, p(x, t))u(y, t) dy − ᾱv+

+ ρ

∫
Ω

k(x, y, p(x, t))v(y, t) dy,

for x ∈ Ω ⊆ Rn and t ≥ 0. Ω is a open, bounded set with smooth boundary
∂Ω. Here u = u(x, t) denotes the density of CSCs and v = v(x, t) denotes the
density of non-stem cancer cells (CCs), at each point x ∈ Ω and at time t > 0.
p(x, t) = u(x, t) + v(x, t) is the total tumor cell density and δ ∈ [0, 1], γ > 0 and
ρ > 0 are constant parameters. The coefficient δ is the fraction of symmetric
divisions of a CSC: if δ = 0 it divides into one CSC and one normal CC, whereas
if δ = 1 the CSC divides into two CSCs; both divisions take place at mitosis rate
γ (number of cell cycles per unit time). ρ > 0 is the number of cycles per unit
time for the normal CCs. The function k = k(x, y, p) is an integral kernel that
describes the rate of cell divisions contributing to the point in space x from a cell
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at location y per cell cycle time. Dv > 0 and Du > 0 are the diffusion coefficients
of CCs and CSCs, respectively. The parameter ᾱ > 0 denotes the death rate of
normal CCs. Notice that in model (2.1) the CSCs are considered to be inmortal.
(See [16] for further information about this hypothesis.)

Model equations (2.1) can be derived from a stochastic process known as a
birth-jump process as introduced in [17] in the context of forest fire spotting.
Although the authors in [16] do not discuss this derivation, the reader is referred
to [25] (in the CSC and CC dynamics setting) for a complete derivation departing
from a single-cell agent-based model in the spirit of Enderling et al. [9].

System (2.1) is also endowed with boundary conditions of Neumann or Dirichlet
type. Homogeneous Neumann boundary conditions read

(2.2)
∂u

∂ν̂
= 0,

∂v

∂ν̂
= 0, on ∂Ω,

where ν̂ is the normal exterior unit normal at ∂Ω. They represent no biological flux
of cancer cells due to impenetrable physical constraints such as tissue surrounded
by bone or membranes. In this case the kernel k must satisfy the condition

k(x, y, p) = 0, for all x /∈ Ω,

inasmuch as there cannot be progeny contribution from cells located outside of the
domain. On the other hand, homogeneous Dirichlet boundary conditions have the
form

(2.3) u = 0, v = 0, on ∂Ω,

and they model tissues where cells can leave but not re-enter again, for example, in
the case of vascularized carcinomas; thus, the transport of cells out of the domain
but without allowing re-entering require the kernel k to satisfy

k(x, y, p) = 0, for all y /∈ Ω.

Finally, one should impose initial conditions of the form

(2.4) u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω.

First reduction. Hillen et al. [16] consider a first simplification of model (2.1),
which consists of assuming that the progeny placement depends only on the total
density at the destination, namely, that

k = k(p(x, t)).

The result is the following non-local integro-differential system,

(2.5)

ut = Du∆u+ δγk(u+ v)

∫
Ω

u(y, t) dy,

vt = Dv∆v + (1− δ)γk(u+ v)

∫
Ω

u(y, t) dy − ᾱv + ρk(u+ v)

∫
Ω

v(y, t) dy,

subject to boundary conditions of Neumann (2.2) or Dirichlet type (2.3) and to
appropriate intitial conditions (2.4). This is the system of equations we are con-
cerned with.
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For both analytical and numerical studies one must write the system in non-
dimensional form. In this fashion, one is able to isolate the relevant parameters.
Since the parameter ᾱ > 0 will be a key to differentiate CCs from CSCs, we shall
scale time with the mitosis rate. For simplicity and following [16] we shall assume
that both CCs and CSCs have the same proliferation rate (there is evidence that
this is not the case [28], though), that is,

γ = ρ.

Notice that γ has physical units of frequency. Thus, making the substitutions
α = ᾱ/γ, d = Du/Dv and

x→
( γ

Dv

)1/2

x, t→ γt, u→ u

U
, v → v

U
, k →

(Dv

γ

)n/2
k,

where U is a characteristic tumor cell density, we arrive at the non-dimensional
system

(2.6)

ut = d∆u+ δk(u+ v)

∫
Ω

u(y, t) dy,

vt = ∆v + (1− δ)k(u+ v)

∫
Ω

u(y, t) dy − αv + k(u+ v)

∫
Ω

v(y, t) dy.

Notice that α = ᾱ/γ is now the ratio between the CCs death rate and the
tumor cell proliferation rate. If 0 < α ≤ 1 tumor cells are born at a higher rate
than the rate in which the cytotoxic therapy kills them. If α > 1 the treatment
kills more cells than those that are born per cycle time. Thus, α is a measure of
the effectiveness of the treatment.

Finally, it is assumed that the function k = k(p) satisfies

(2.7)


k(p) is piecewise differentiable,

k(p) > 0, for p ∈ [0, 1),

k(p) = 0, for p ≥ 1,

k(p) is decreasing for p ∈ [0, 1).

The typical form of k considered in [16] reads,

(2.8) k(p) = max{1− pσ, 0}, σ ≥ 1.

2.2. Tumor growth paradox. Hillen et al. [16] define paradoxical tumor growth
as follows.

Definition 2.1. Let pα(t) be the tumor population with spontaneous death rate
α for CCs at time t ≥ 0. The population exhibits a tumor growth paradox if there
exist death rates α1 < α2 and positive times t1, t2 and T0 such that

pα1
(t1) = pα2

(t2) and pα1
(t1 + T ) < pα2

(t2 + T ), for each T ∈ (0, T0).

In other words, there is paradoxical tumor growth whenever, for tumors ini-
tially of the same size at some point of their evolution, the overall tumor size
increases despite a higher CCs death rate.
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Second reduction. The authors in [16] perform a further simplification by assuming
that tumor growth is uniform across the domain, that is, that u and v do not
depend on the spatial variable x ∈ Ω. Thus, diffusion effects are neglected. By
defining mean densities as ū(t) = |Ω|u(t), v̄(t) = |Ω|v(t) and p(t) = |Ω|p(t), model
(2.6) reduces to the ODE system

(2.9)

dū

dt
= δk(p)ū,

dv̄

dt
= (1− δ)k(p)ū− αv̄ + k(p)v̄.

Initial conditions (2.4) are substituted by constant initial conditions for the ODE
of the form (ū, v̄)(0) = (u0, v0).

Upon inspection of the associated ODE system (2.9) one finds that its equilib-
rium points are

(2.10)

P0 = (0, 0), (cancer dissapears),

P1 = (0, k−1(α)) = (0, v∗(α)), (pure CCs state),

P2 = (k−1(0), 0) = (1, 0), (pure CSCs state),

where v∗ is the solution to α = k(v∗). Notice, however, that this may not be well
defined in the case where α > 1 because, for example, under hypotheses (2.7) the
range of k = k(p) is contained in [0, 1]. Via linearization of the system of equations
around equilibrium points, the authors find that

• P0 is a saddle if α > k(0) = 1 and an unstable node if 0 < α < 1.
• P1 is a saddle whenever v∗(α) exists, and,
• P2, the pure stem cell state, is a stable node or stable spiral.

Whence, the authors focus on the role of P2 as the only globally asymptotic equi-
librium point in the positively invariant triangular region

R̃ = {(ū, v̄) : ū ∈ [0, 1], v̄ ≥ 0, ū+ v̄ ≤ 1}.
That is, P2 = (1, 0) is the only global attractor and after a sufficiently long time
the tumor will consist of CSCs only.

By considering a small parameter regime, namely, for 0 < δ � 1, sufficiently
small, which is tantamount to consider very few symmetric divisions and mostly
asymmetric ones (CSCs splitting into one CSC and one CC), the authors in [16]
analyze the fast/slow structure associated to system (2.9) by means of a geometric
singular perturbation analysis [15, 18]. The result is the identification of a slow
manifold, given by

M̃0 = {(ū, v̄) ∈ R̃ : k(p̄)p̄ = αv̄, p̄ = ū+ v̄},
which is normally hyperbolic under the flow of the fast system (which is retrieved
from setting δ = 0 in (2.9)). By Fenichel’s theorems [15, 18], there exists an

invariant manifold M̃δ for the full system, close to M̃0, that can be written as

a graph on M̃0. In this fashion, the long time dynamics is determined by the
solution to the “outer” system on the slow manifold. Once the solution has settled



6 I. PADILLA AND R.G. PLAZA

onto the slow manifold, the paradoxical tumor growth emerges. More precisely,
the authors prove the following

Theorem 2.2 (tumor growth paradox; Hillen et al. [16]). Let (ū1, v̄1) and (ū2, v̄2)
be the corresponding solutions to system (2.9) for values of α1 and α2, respectively,
such that α1 > α2 > 0. Assume that the tumor dynamics has settled into the slow

manifold M̃0 and that for a certain time t0 > 0 the tumors have the same size,
p̄1(t0) = p̄2(t0) ∈ (0, 1). Then (d/dt)p̄1(t0) > (d/dt)p̄2(t0) and p̄1(t) > p̄2(t) for all
t > t0. Moreover, if the tumors have the same initial conditions, then there exist
times ta, tb such that p̄1(ta) = p̄2(tb) and p̄1(ta + θ) > p̄2(tb + θ) for each θ > 0.

For details, see Theorems 3.3 and Corollary 3.4 in [16]. In this fashion, para-
doxical tumor growth establishes itself as a robust and typical property of the
ODE model (2.9).

Other authors have studied model (2.6). For instance, Borsi et al. [5] estab-
lished the existence of spatially dependent solutions, (u, v)(x, t) to the non-local
model without diffusion (Du = Dv = 0), and Fasano et al. [11] proved the well-
posedness of system (2.5) under Dirichlet boundary conditions. However, we re-
view (and focus on) the results by Maddalena [23] and Delgado et al. [8] pertaining
to the existence of stationary states under the influence of diffusion.

2.3. Stationary states and Neumann boundary conditions. In a later con-
tribution, Maddalena [23] considered the complete model with diffusion (2.6) under
Neumann boundary conditions (2.2) and initial conditions (2.4). First, the author
establishes the existence of solutions applying classical arguments (cf. [2]).

Theorem 2.3 (Maddalena [23]). For any (u0, v0) ∈ H2(Ω)×H2(Ω) there exists
T > 0 and a solution (u, v) ∈ C([0, T );H2(Ω)×H2(Ω))∩C1((0, T );H2(Ω)×H2(Ω))
to the Cauchy prpblem for (3.1) under Neumann boundary conditions (2.2).

Actually, by standard semigroup theory [10, 19, 26], it is possible to show that
the solution operator to (3.1) with Neumann conditions constitute a semiflow on
L2(Ω)×L2(Ω), that is, a C0-semigroup Sδ(t) (indexed by δ ∈ [0, 1]). For the proof,
one applies a general result by Kato [19] (see also Section 3.2 below). Details are
omitted.

Theorem 2.4. For each initial condition (u0, v0) ∈ L2(Ω) × L2(Ω), there exists
T > 0 such that the Cauchy problem for system (3.1), subject to Neumann bound-
ary conditions (2.2) has a unique solution (u, v) ∈ C((0, T );D×D)∩C1([0, T );L2(Ω)×
L2(Ω)) (with D = {u ∈ C∞(Ω) : tr ∂νu = 0 on ∂Ω} dense in L2(Ω)) which we
denote as

(u, v) = Sδ(t)(u0, v0).

Moreover, the family of operators Sδ(t) : L2(Ω)×L2(Ω)→ L2(Ω)×L2(Ω) constitute
a C0-semigroup for each δ ∈ [0, 1].

It is also shown in [23] that the region R = [0, 1]× [0, k−1(α)] is invariant under
the flow Sδ(t) (provided that k−1(α) exists: that is, for α < 1 under hypotheses
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(2.7)). One of the main observations in [23] is the non-existence of spatially inho-
mogeneous steady states.

Lemma 2.5 (Maddalena [23]). All stationary solutions (u, v)(x) to system (2.6)
with Neumann boundary conditions (2.2) are constant states.

Remark 2.6. The strategy to prove this result relies on functional inequalities or
so called “entropy methods”. Indeed, by considering an energy functional of the
form

E(t) =

∫
Ω

(∇ut · ∇u+∇vt · ∇v) dx

for solutions (u, v) to (2.6) under Neumann conditions, Maddalena [23] shows that
limt→∞ E(t) = 0, precluding the existence of spatially inhomogeneous attractors
for the Neumann semiflow associated to (2.6). This implies, in turn, that the
only equilibrium solutions to the PDE system are constant steady states of the
associated ODE system.

Consequently, upon inspection of (2.9), one finds that the only stationary
solutions to (2.6) under Neumann conditions are the states (2.10). By performing
a linearized stability analysis of the steady states (2.10) as solutions to system
(2.6) under Neumann conditions, Maddalena establishes that: P1 = (1, 0) and
P2 = (0, v∗(α)) are asymptotically stable (stable nodes), whereas P0 = (0, 0) is
a stable node provided that −µ1d + k(0) < 0 and −µ1 + k(0) − α < 0, where
µ1 = µ1(Ω) > 0 is the first non-zero eigenvalue of the Neumann Laplacian, −∆N

in Ω. Otherwise P0 is a saddle. This is the main result of the analysis in [23]: the
action of diffusion changes the stability properties of the very same equilibrium
states as in the ODE reduction. The author, however, does not examine the rise
of paradoxical tumor growth near P1, for instance.

2.4. Coexistence states under Dirichlet boundary conditions. Delgado et
al. [8] recently studied the stationary version of model (2.5), which is the non-local
elliptic PDE system

(2.11)

0 = Du∆u+ δγk(u+ v)

∫
Ω

u(y, t) dy,

0 = Dv∆v + (1− δ)γk(u+ v)

∫
Ω

u(y, t) dy − ᾱv + ρk(u+ v)

∫
Ω

v(y, t) dy,

for x ∈ Ω, under Dirichlet boundary conditions (2.3). The authors in [8] show
that there are non-trivial stationary solutions with positive components u and v
for the non-local elliptic system (2.11). These solutions correspond to coexistence
states for the evolutionary system of equations (2.5) (and of the normalized system
(2.6), of course). Unlike systems (2.6) with Neumann boundary conditions and
the reduced ODE system (2.9) of Hillen and co-authors, under Dirichlet boundary
conditions there exist steady states for which both populations of CCs and CSCs
may coexist. For instance, if δ < 1 is fixed and α is increased, these non-trivial
equilibria arise. Their analysis is based on bifurcation theory in the spirit of
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Crandall and Rabinowitz [7] and fixed point index theory in conic domains. It
is to be observed, however, that the authors do not analyze the stability of such
states under the flow of the parabolic system of equations of evolution (2.5).

Under the light of these results, we turn our attention to the question whether
there is paradoxical tumor growth when diffusion is switched on. The answer must
take into account the choice of boundary conditions and must certainly relate to
the extension of geometrical singular perturbation theory to semiflows (i.e. to
PDEs), known as invariant foliation theory. In the sequel we analyze the easiest
case where, under Neumann conditions, the only stationary solutions are constant
equilibria of the associated ODE.

3. Application of invariant foliation theory

3.1. The invariant manifold theorems. The extension of geometrical singular
perturbation theory to infinite dimensional spaces (e.g., to PDEs) is quite difficult.
There are, however, some extensions of Fenichel theorems to semiflows which can
be interpreted as the first step for a geometrical singular perturbation theory for
infinite-dimensional systems with a fast/slow structure.

Consider a Banach space X and a (fast) semiflow S0(t) on X. It is assumed
the existence of a C1 compact connected manifold M0 ⊂ X, invariant under the
fast semiflow S0(t), which is normally hyperbolic with respect to the fast semiflow
(see Remark 3.2). For any mapping F on a bounded subset B ⊂ X we define
‖F‖0 := sup{‖F (x)‖X : x ∈ B} and ‖F‖1 := ‖F‖0 + ‖DF‖0. The following
theorem, due to Bates, Lu and Zeng [3, 4], establishes the conditions for the
existence of an invariant manifoldMδ, invariant under the flow of the full system,
that remains close to M0 (the shortened version of the result presented here is
that of Kuehn [20]; see Theorem 18.2.1).

Theorem 3.1 (Bates, Lu, Zeng [3]). Suppose S0(t) is a semiflow on X andM0 is
a C1 compact connected manifold, invariant under S0(t) and normally hyperbolic.
Fix t1 > t0 for some t0 > 0 and let N0 be a sufficiently small tubular neighborhood
of M0. For δ > 0 sufficiently small there exists θ = θ(δ) > 0 such that, if Sδ(t) is
a C1-semiflow satisfying

‖Sδ(t1)− S0(t1)‖1 ≤ θ(δ), and, ‖Sδ(t)− S0(t)‖0 ≤ θ(δ), for all t ∈ [0, t1],

with norms taken with respect to a small neighborhood B ofM0 such that N0 ⊂ B,
then the semiflow Sδ(t) has a C1, compact, connected, normally hyperbolic invari-
ant manifold Mδ near M0, such that Mδ converges to M0 in the C1 topology as
‖Sδ(t1)− S0(t1)‖ → 0.

Remark 3.2. In the present setting, normal hyperbolicity refers intuitively to
the property that the flow in directions that are normal toM0 dominate the flow
in the tangent directions (just like normal hyperbolicity for ODEs [15, 18]). The
term flow now refers to the semiflow generated by the PDE. See conditions (i)-(iii)
in [20], section 18.2, for the precise statement and definitions.
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In the next section, we shall verify that there exists a fast/slow structure
associated to system (2.6) for which essentially the same slow manifold studied
by Hillen et al. [16] is invariant under the fast semiflow associated to the PDE.
The key feature is that, under Neumann boundary conditions, the only stationary
solutions to the PDE are the equilibrium constant states of the ODE. We gloss over
some of the technical details and concentrate on the main properties: existence of
the semiflow, invariance of the slow manifold under the fast semiflow, and normal
hyperbolicity.

3.2. Approximation with Neumann boundary conditions. Consider the
non-local, non-dimensional system (2.6) subject to Neumann boundary conditions
(2.2) and initial conditions of the form (u, v)(x, 0) = (u0, v0) ∈ L2(Ω)×L2(Ω). We
then define the “fast” system by setting δ = 0. The result is

(3.1)

ut = d∆u,

vt = ∆v − αv + k(p)

∫
Ω

p(y, t) dy,
x ∈ Ω, t > 0,

where p = u + v and subject to boundary conditions of Neumann type ∂νu =
∂νv = 0 on ∂Ω.

The first observation is that the non existence of inhomogeneous steady states
for system (3.1), thanks to the boundary conditions of Neumann type. This is a
straightforward consequence of the analysis in [23].

Lemma 3.3. The only stationary solutions (u, v)(x) to the fast system (3.1) under
Neumann boundary conditions (2.2) are constant states.

Proof. Follows directly from the analysis of Maddalena [23] (section 4). (In fact,
(3.1) is a particular case of the system considered in [23] with δ = 0; the proof
goes verbatim; see also Remark 2.6.) �

Consequently, the only equilibrium solutions to (3.1) in L2 are equilibrium
constant states of the associated ODE system. Hence, the slow invariant manifold
M0 under the semiflow of the PDE system (3.1) is essentially the same as in [16]:

M0 = {(u, v) ∈ [0, 1]× [0, v∗(α)] : M(u, v) = 0}.
M(u, v) := k(p)|Ω|p− αv, p = u+ v.

It is well-known that solutions to the Neumann problem,

wt = ∆w, in Ω, ∂νw = 0, on ∂Ω,

define an analytic semigroup in L2(Ω). In fact, one may consider the Neumann
Laplacian −∆N with dense domain D(−∆N ) = H2(Ω)ν := {w ∈ H2(Ω) :
tr ∂νw = 0} acting on L2(Ω) as an infinitesimal generator (cf. [14]). Hence,
let us consider the operator

AN : D(AN ) = H2(Ω)ν ×H2(Ω)ν → L2(Ω)× L2(Ω),

AN

(
u
v

)
:= −

(
d 0
0 1

)
∆N

(
u
v

)



10 I. PADILLA AND R.G. PLAZA

The fast system (3.1) is then recast as

∂t

(
u
v

)
= −AN

(
u
v

)
+ Ḡ(u, v),

where

Ḡ(u, v) =

(
0

G(u, v)

)
, G(u, v) = −αv + k(p)

∫
Ω

p(y, t) dy.

To define the fast semiflow associated to solutions to (3.1) we just need to
make an observation and to apply standard semigroup theory.

Lemma 3.4. Ḡ = Ḡ(u, v) is continuously Fréchet differentiable in L2(Ω)×L2(Ω).

Proof. It follows from the fact that, for each h = (h1, h2) ∈ L2(Ω) × L2(Ω) and
each fixed w = (u, v) ∈ L2(Ω)×L2(Ω), there holds G(w+h) = G(w) +DG(w)h+
O(‖h‖L2), where

DG(w)h = −αh2 +
(
k′(p)

∫
Ω

p dx
)
(h1 + h2) + k(p)

∫
Ω

(h1 + h2) dx,

defines a bounded operator in L2 in view that

‖ − αh2‖L2 ≤ Cα‖h‖L2×L2 ,

‖(k′(p)
∫

Ω

p dx
)
(h1 + h2)‖L2 ≤ Ck,p,Ω‖h‖L2×L2 ,

‖k(p)

∫
Ω

(h1 + h2) dx‖L2 ≤ Ck,p,Ω‖h‖L2×L2 ,

for each fixed (u, v) ∈ L2(Ω)× L2(Ω). �

As a result, we may apply standard semigroup theory [10, 26] to conclude
that for each initial condition (u0, v0) ∈ L2(Ω) × L2(Ω), the Cauchy problem for
system (3.1) subject to Neumann boundary conditions (2.2) has a unique solution
(u, v) ∈ C((0, T );D(AN )) ∩ C1([0, T );L2(Ω) × L2(Ω)) for some T > 0, which we
denote as

(u, v) = S0(t)(u0, v0).

(See, e.g., [19].) The solution operator S0(t) is a C0-semigroup (or semiflow) acting
on L2(Ω) × L2(Ω). It is the fast semiflow associated to (3.1) under Neumann
boundary conditions.

Thanks to the fact that the only equilibrium states for the fast system (3.1)
are constant states we have the following straightforward

Lemma 3.5. M0 is invariant under the fast semiflow S0(t).

Proof. Take a constant state (uM , vM ) ∈M0 ⊂ D(AN ) (for which k(pM )|Ω|pM =
αvM ). Then the results follows immediately from uniqueness of the solution
(u, v) = S0(t)(uM , vM ) to (3.1) with initial condition (uM , vM ), and from observ-
ing that (u, v) ≡ (uM , vM ) is also a trivial solution to (3.1). Thus, S0(t)M0 =M0

for all t ∈ [0, T ]. �
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Lemma 3.6. M0 is normally hyperbolic with respect to the semiflow S0(t).

Proof. We need to show that the manifold is attractive for the fast dynamics or
solutions to the fast system (3.1). For that purpose consider (uM , vM ) ∈M0 and
perturbations (u+ uM , v + vM ) as solutions to the fast system (3.1). Linearizing
around (uM , vM ) one obtains

(3.2)

ut = d∆u,

vt = ∆v − αv + k(pM )

∫
Ω

p(y, t) dy + k′(pM )|Ω|pMp,
x ∈ Ω, t > 0,

subject to Neumann boundary conditions ∂νu = ∂νv = 0 on ∂Ω. Let ϕj and µj be
the eigenfunctions and eigenvalues, respectively, of the Neumann Laplacian on Ω;
that is, −∆ϕj = µjϕj , with 0 = µ0 < µ1 ≤ . . . ≤ µj ≤ . . ., µj → +∞, ∂νϕj = 0
on ∂Ω as j → +∞ and ϕ0 is the constant solution. Therefore, µ1 > 0 is the first
positive eigenvalue, the eigenfunctions are an orthonormal basis of L2(Ω) and we
can consider expansions of the form

u− uM =

∞∑
j=1

wj(t)ϕj(x), v − vM =

∞∑
j=1

yj(t)ϕj(x).

Upon substitution into (3.2) one finds that for each j,

d

dt

(
wj
yj

)
= (−µjD + JM )

(
wj
yj

)
with

D =

(
d 0
0 1

)
, JM =

(
0 0

|Ω|(k′(pM )pM + k(pM )) |Ω|(k′(pM )pM + k(pM ))− α

)
.

The eigenvalues of −µjD + JM are

λ
(j)
1 = −µjd, λ

(j)
2 = |Ω|k′(pM )pM − µj + |Ω|k(pM )− α.

Clearly λ
(j)
1 < 0 for all j ≥ 1. Substituting k(pM )|Ω|pM = αvM we notice that

λ
(j)
2 = |Ω|k′(pM )pM − µj − |Ω|k(PM )uM < 0,

inasmuch as k is decreasing. Thus, solutions to the linearized fast system around
a point inM0 decay and time and we conclude that the slow manifold is normally
hyperbolic. �

By Theorem 3.1, for 0 < δ � 1 sufficiently small there exists an invariant
manifold Mδ under the semiflow Sδ(t) associated to system (2.6), which is close
toM0. The long time dynamics of solutions to (2.6) are therefore settled onto the
slow manifold M0, which can be expressed as a graph (see Lemma 3.2 in [16]).
Indeed, by the implicit function theorem, for every (uM , vM ) ∈ M0 satisfying
M(uM , vM ) = 0, and since

∂vM(uM , vM ) = k′(pM )|Ω|pM − k(pM )|Ω|uM < 0,
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then the slow manifold can be recast as M0 = {(u, ṽα(u) : u ∈ [0, 1]}, where

dṽα
du

=
|Ω|(k′(p)p+ k(p))

α− |Ω|(k′(p)p+ k(p))
, p = u+ ṽα(u).

Moreover, it can be shown that for α1 > α2, one has ṽα1
(u) < ṽα2

(u)(see [16],
Lemma 3.2).

As a result, the tumor growth paradox arises due to the properties of the slow
manifold analyzed by Hillen et al. [16]. (Actually, the analysis can be quoted word
by word.) We omit the details and simply state the emergence of the paradox in
the current PDE setting. Notice that we need to assume that the initial condi-
tions are near the attracting slow manifoldM0 to guarantee the emergence of the
paradoxical tumor growth.

Theorem 3.7. Under the assumptions (2.7) on the progeny kernel k = k(p) and
for 0 < δ � 1 sufficiently small, let (u1, v1) and (u2, v2) be the corresponding
solutions to the PDE system (2.6) for values of α1 and α2, respectively, under
Neumann boundary conditions (2.2) with the same initial condition (u, v)(x, 0)
(same initial tumor size) near the slow manifold M0. Assume that α1 > α2 > 0.
Then there exists times ta, tb such that∫

Ω

p1(x, ta) dx =

∫
Ω

p2(x, tb) dx, and

∫
Ω

p1(x, ta + θ) dx =

∫
Ω

p2(x, tb + θ) dx,

for each θ > 0.
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