
PHYSICAL REVIEW E 93, 032211 (2016)

Diffusive instabilities in hyperbolic reaction-diffusion equations
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We investigate two-variable reaction-diffusion systems of the hyperbolic type. A linear stability analysis is
performed, and the conditions for diffusion-driven instabilities are derived. Two basic types of eigenvalues, real
and complex, are described. Dispersion curves for both types of eigenvalues are plotted and their behavior is
analyzed. The real case is related to the Turing instability, and the complex one corresponds to the wave instability.
We emphasize the interesting feature that the wave instability in the hyperbolic equations occurs in two-variable
systems, whereas in the parabolic case one needs three reaction-diffusion equations.
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I. INTRODUCTION

Spatiotemporal patterns and waves arise in many nonequi-
librium systems at the onset of an instability of the steady
state [1]. Often these systems can be modeled by stan-
dard reaction-diffusion equations. It is well known that
such reaction-diffusion systems can display diffusion-driven
instabilities [1]. The best-known diffusive instability is the
Turing bifurcation leading to stationary spatial patterns [2]. In
that same publication, Turing also described an oscillatory
instability with finite wavelength. This instability, which
gives rise to patterns that are periodic in both time and
space, is variously known as the oscillatory Turing instability
or the wave instability. It has attracted far less attention
than the stationary Turing instability, though experimental
observations of wave phenomena in the Belousov-Zhabotinsky
(BZ) reaction dispersed in aerosol OT (AOT) water-in-oil
microemulsions have led to several theoretical studies in the
past two decades [3–7]. The Turing instability requires at least
two species, an activator and an inhibitor, and the latter must
diffuse sufficiently faster than the former. The conditions for
the occurrence of a wave instability are considerably more
complex. At least three species are required for reaction-
diffusion systems with a diagonal diffusion matrix, i.e., no
cross diffusion occurs. Typical model systems that display
wave instabilities consist of an activator, an inhibitor, and
a third species, coupled to the activator, whose diffusion
coefficient differs significantly from the diffusion coefficients
of both the activator and the inhibitor [7].

Standard reaction-diffusion equations (RDEs) are partial
differential equations (PDEs) of the parabolic type [8]. In
parabolic PDEs, perturbations propagate infinitely fast in
the medium. It has been conjectured that certain features
associated with the wave phenomena generated by the wave
instability and observed in numerical simulations are caused
by the infinite rate of spreading of initial perturbations due to
diffusion [4]. Such an infinite rate is, however, hardly physical,
and it is desirable to investigate diffusion-driven instabilities
in more realistic models. Various types of hyperbolic reaction-
transport equations provide a means to describe transport with
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inertia and to address this issue [9–11]. While the effect of
inertia in the transport on the Turing instability has been
studied previously [8,12,13], the case of the wave instability
remains largely unexplored.

We study here the simplest type of hyperbolic reaction-
transport systems, namely the so-called hyperbolic reaction-
diffusion equations (HRDEs) [14–19]. We find that the wave
instability in HRDEs with diagonal diffusion matrices requires
only two species. The paper is organized as follows. In
Sec. II we carry out a linear stability analysis of the uniform
steady state to determine the conditions for diffusion-driven
instabilities in two-variable HRDEs. In Sec. III we apply our
results to two widely used model systems of pattern formation,
namely the Brusselator and the Gierer-Meinhardt model. We
discuss our results in Sec. IV.

II. LINEAR STABILITY ANALYSIS

A two-variable hyperbolic reaction-diffusion system is
described by

τu

∂2u

∂t2
+ ∂u

∂t
= f (u,v) + Du

∂2u

∂x2
, (2.1a)

τv

∂2v

∂t2
+ ∂v

∂t
= g(u,v) + Dv

∂2v

∂x2
, (2.1b)

where the positive constants τu,v are inertial times and Du,v are
diffusion coefficients. Equations of this type are also employed
in other contexts, such as nonlinear waves, nucleation theory,
and phase-field models of phase transitions, where they are
known as damped nonlinear Klein-Gordon equations; see, for
example, Refs. [20–22]. We assume that the system Eq. (2.1)
has a uniform steady state (USS), (u0,v0), given by f (u0,v0) =
g(u0,v0) = 0. To determine the stability of the USS against
spatially nonuniform perturbations, we write the densities u =
u(x,t) and v = v(x,t) as

u(x,t) = u0 + �u(x,t), (2.2a)

v(x,t) = v0 + �v(x,t). (2.2b)

The perturbations �u(x,t) and �v(x,t) depend both on space
and time and have the form

�u(x,t) = Cu exp(λt + ikx), (2.3a)

�v(x,t) = Cv exp(λt + ikx). (2.3b)
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Here Cu and Cv are some constants, λ is the eigenvalue, k is
the wavenumber, and i2 = −1. Substituting Eq. (2.2) into the
evolution Eqs. (2.1) and linearizing, we find

τu

∂2�u

∂t2
+ ∂�u

∂t
= J11�u + J12�v + Du

∂2�u

∂x2
, (2.4a)

τv

∂2�v

∂t2
+ ∂�v

∂t
= J21�u + J22�v + Dv

∂2�v

∂x2
. (2.4b)

Here Jmn, with m, n = 1, 2, are the elements of the Jacobian
matrix. Exploiting the specific form Eq. (2.3), we obtain the
matrix equation(

J11 − k2Du − γu J12

J21 J22 − k2Dv − γv

)(
Cu

Cv

)
= 0, (2.5)

where we have defined

γu,v ≡ τu,vλ
2 + λ. (2.6)

The matrix equation has a nontrivial solution only if the
determinant of the matrix is equal to zero, i.e.,

γuγv − αγv − βγu + αβ − J12J21 = 0, (2.7)

with

α ≡ J11 − k2Du, β ≡ J22 − k2Dv. (2.8)

Equation (2.7) is a quartic equation in λ, and the form of
its roots is rather complicated. Therefore, we consider the
special case with τu = τv ≡ τ , which suffices to establish the
existence of the diffusion-driven Turing and wave instabilities
in two-variable HRDEs. In this case Eq. (2.7) reduces to a
biquadratic equation,

γ 2 − (α + β)γ + αβ − J12J21 = 0, (2.9)

where

γ ≡ τλ2 + λ. (2.10)

The roots are given by

γ1,2 = α + β

2
±

√(
α + β

2

)2

− αβ + J12J21, (2.11)

leading to the following expressions for the four eigenvalues
λ that govern the stability of the USS,

λ1,2 = − 1

2τ
±

√
1

4τ 2
+ γ1

τ
, (2.12a)

λ3,4 = − 1

2τ
±

√
1

4τ 2
+ γ2

τ
. (2.12b)

We use these expressions in the following to explore the
features of diffusive instabilities in HRDEs.

A. Turing instability

A diffusion-driven instability occurs, if the USS is stable
against uniform perturbations, with k = 0, but not against
nonuniform perturbations, with k �= 0. To provide a complete
picture of diffusive instabilities in HRDEs, we first review
the case of real λn corresponding to a Turing instability. An
instability occurs if a real eigenvalue passes through zero,

corresponding to a stationary bifurcation. The eigenvalues are
real if

(
α − β

2

)2

+ J12J21 > 0, (2.13a)

1

4τ
+ γ > 0. (2.13b)

Stability against uniform perturbations requires that all eigen-
values λn(k2 = 0),n = 1, . . . ,4 must have negative real parts,
Re(λn) < 0. It follows from (2.12) that this requires γ1,2(k2 =
0) < 0. This simply reflects the fact that if a real eigenvalue
λ crosses zero, then γ must also cross zero; see Eq. (2.10).
Taking into account Eqs. (2.11) and (2.8) we find that the
condition γ1,2(k2 = 0) < 0 is fulfilled if

T ≡ trJ = J11 + J22 < 0, (2.14a)

� ≡ detJ = J11J22 − J12J21 > 0. (2.14b)

A real value crosses zero, if the determinant of the Jacobian
crosses zero. Condition Eqs. (2.14) coincide with the well-
known stability conditions for standard (parabolic) reaction-
diffusion systems [8]. We note that the results for standard
RDEs can be obtained using the formal substitution γ → λ

in Eq. (2.9), which corresponds to the parabolic limit of the
inertial time going to zero, τ → 0.

The steady state is unstable against nonuniform perturba-
tions, i.e., a stationary diffusive instability occurs, if there
exists at least one λn with Re(λn) > 0 at k2 �= 0. The first
inequality Eq. (2.13a) restricts the interval of the wave-number
values and the second one, Eq. (2.13b), determines the allowed
values of the inertial time τ . If we plot the dispersion curves,
i.e., the eigenvalues λ as a function of k, at a fixed inertial
time τ , then the larger τ is, the narrower is the interval of
allowed values of k. Since T < 0 and Du,v > 0 we have
α + β < 0 and γ2(k2 �= 0) < 0, i.e., the eigenvalues λ3,4 are
always negative. The instability can occur only if γ1(k2 �= 0)
changes sign. Then the eigenvalue λ1 also changes sign,
whereas λ2 remains negative. The onset of the diffusion-driven
instability corresponds to λn = 0 and dλn/dk = 0. These two
equations determine the critical values of the control parameter
and the critical wave number and yield

(J11 − k2Du)(J22 − k2Dv) − J12J21 = 0, (2.15a)

d

dk
[(J11 − k2Du)(J22 − k2Dv)] = 0, (2.15b)

i.e., the same conditions as those for the Turing bifurcation in
standard parabolic RDEs. Indeed, from λ = 0 and dλ/dk = 0
it follows that γ = 0 and dγ /dk = 0; see Eq. (2.10). As
expected, we find that stationary bifurcations are not affected
by inertia in the transport; the instability conditions are
identical for HRDEs and standard RDEs.

It is well known that a Turing bifurcation in standard RDEs
requires activator-inhibitor kinetics, J11 > 0 and J22 < 0, and
that the inhibitor needs to diffuse sufficiently faster than the
activator, Dv/Du � θT > 1, where θT is the minimum ratio of
the diffusion coefficients of inhibitor and activator needed for
the occurrence of a Turing instability [8,23]. Equations (2.15)
imply that the USS of HRDEs undergoes a Turing instability
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for parameter values such that

DvJ11 + DuJ22 =
√

4DuDv�. (2.16)

The critical wave number is given by

kT = 4

√
�

DuDv

, (2.17)

provided that the determinant � is indeed positive.

B. Wave instability

Next we deal with the case of complex λn. The eigenvalues
have imaginary parts if either one of the inequality Eqs. (2.13)
is violated, i.e., (

α − β

2

)2

+ J12J21 < 0, (2.18)

or

1

4τ
+ γ < 0. (2.19)

The second case, Eq. (2.19), does not lead to an instability; the
real part of all eigenvalues remains negative.

Introducing the additional notations

c ≡ (α + β)/2, d ≡
√

−J12J21 − (α − β)2/4, (2.20)

we can write the eigenvalues in the case of Eq. (2.18) as

λ1,2 = − 1

2τ
±

√
1

4τ 2
+ c + id

τ
= − 1

2τ
± y ± iz, (2.21a)

λ3,4 = − 1

2τ
±

√
1

4τ 2
+ c − id

τ
= − 1

2τ
± y ∓ iz, (2.21b)

where

y =
√

1

2

(√
c2
τ + d2

τ + cτ

)
, (2.22a)

z =
√

1

2

(√
c2
τ + d2

τ − cτ

)
, (2.22b)

and

cτ ≡ 1/(4τ 2) + c/τ, dτ ≡ d/τ. (2.23)

The real part of the eigenvalues is given by Re(λn) =
−1/(2τ ) ± y and the imaginary part by Im(λn) = ±z. The
sign of the real part can change only for the eigenvalues
λ1,3 = −1/(2τ ) + y ± iz. The onset of the diffusion-driven
wave instability corresponds to Re(λn) = 0, with k �= 0,
and dRe(λn)/dk = 0, i.e., y = 1/(2τ ) and dy/dk = 0, while
Re(λn) < 0 for k = 0.

The boundary between the real and complex eigenvalues is
described by the equation(

α − β

2

)2

+ J12J21 ≡ h = 0, (2.24)

which yields

k2(Du − Dv) = J11 − J22 ± 2
√

−J12J21, (2.25)

i.e., determines the zero-value curves or null-clines in param-
eter space.

It is rather cumbersome to derive explicit analytical
conditions for the wave instability from the expressions for
the dispersion curve Eqs. (2.21). We therefore proceed in an
alternative manner. First we need to determine the conditions
that the USS does not undergo an oscillatory instability with
k = 0, i.e., a Hopf bifurcation. Assume that the mode k = 0
has a purely imaginary eigenvalue, i.e., the system is at the
Hopf bifurcation point of the USS. Let λ(k = 0) = iωH, with
ωH ∈ R+. Then γ = −τω2

H + iωH, and Eq. (2.9) for k = 0
reads

τ 2ω4
H − 2iτω3

H + (τT − 1)ω2
H − iT ωH + � = 0. (2.26)

The imaginary part vanishes when

ω2
H = − T

2τ
, (2.27)

which requires that T � 0. Substituting Eq. (2.27) into the real
part of Eq. (2.26), we find

T 2 − 2

τ
T − 4� = 0, (2.28)

whose acceptable root is given by

TH = 1

τ
(1 −

√
1 + 4τ 2�). (2.29)

For small inertial times τ , we have

TH = −2�τ + 2�2τ 3 + O(τ 5), (2.30)

and

ω2
H = � − �2τ 2 + O(τ 4). (2.31)

In other words, the Hopf condition and the frequency of
the Hopf bifurcation approach, as expected, the values of
standard parabolic RDEs, namely T ∗

H = 0 and ω∗
H = √

�, as
the inertial time goes to zero τ → 0, i.e., in the parabolic limit.
As discussed above, inertia in the transport does not affect
stationary bifurcation, but it advances the Hopf bifurcation
point. For large inertial times, τ → ∞, the Hopf condition and
the frequency of the Hopf bifurcation approach TH → −2

√
�

and ωH → 0.
Combining condition Eqs. (2.14), which ensure that the

USS cannot undergo a stationary bifurcation with k = 0, with
the condition T < TH, which ensures that the USS cannot
undergo a Hopf bifurcation with k = 0, we find that the
standard stability conditions for parabolic RDEs Eqs. (2.14)
need to be replaced by the stability conditions

T < TH, (2.32a)

� > 0, (2.32b)

for HRDEs.
The wave instability occurs when the real part of an

eigenvalue with k �= 0 vanishes. To obtain the conditions for
this instability, we proceed in a similar manner, now with
k �= 0, i.e., λ(k �= 0) = iωw. We find

τ 2ω4
w − 2iτω3

w + [(α + β)τ − 1]ω2
w − i(α + β)ωw

+αβ − J12J21 = 0. (2.33)
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The imaginary part yields

ω2
w = −α + β

2τ
= −T − k2(Du + Dv)

2τ
, (2.34)

which requires T � k2(Du + Dv). Substituting Eq. (2.34) into
the real part of Eq. (2.33), we obtain

c0k
4 + c2k

2 + c4 = 0, (2.35)

with

c0 = (Du − Dv)2, (2.36)

c2 = −2

(
T − 1

τ

)
(Du + Dv) + 4(DvJ11 + DuJ22), (2.37)

c4 = T 2 − 2

τ
T − 4�. (2.38)

The coefficient c0 is positive, and stability of the USS against
uniform perturbations implies that so is the coefficient c4;
see Eq. (2.28). Since k2 must be positive, it follows that the
coefficient c2 must be negative:

DvJ11 + DuJ22 <
1

2

(
T − 1

τ

)
(Du + Dv) < 0, (2.39)

since T < TH � 0. As discussed above, for activator-
inhibitor kinetics we have J11 > 0 and J22 < 0. Consequently,
Eq. (2.39) will be fulfilled if the activator diffuses sufficiently
fast compared to the inhibitor, Du/Dv � �w, where �w is the
minimum ratio of the diffusion coefficients of activator and
inhibitor needed for the occurrence of a wave instability. Note
that this is opposite to the requirement for a Turing bifurcation;
see Sec. II A.

The roots of Eq. (2.35) are given by

k2
1,2 =

−c2 ±
√

c2
2 − 4c0c4

2c0
. (2.40)

A wave instability occurs when Eq. (2.35) has a degenerate or
double root. The USS of a HRDE undergoes a wave instability
for parameter values such that

c2
2 − 4c0c4 = 0, (2.41)

and the critical wave number is given by

kw =
√

− c2

2c0
, (2.42)

provided that indeed c2 is negative.

III. MODEL SYSTEMS

We apply our results from the linear stability analysis
to two iconic models of pattern formation, namely the
Brusselator [24] and the Gierer-Meinhardt model [25]. The
first is a cross activator-inhibitor system and the second a pure
activator-inhibitor system. These models, and variants thereof,
have been widely used to elucidate various aspects of diffusive
instabilities in reaction-diffusion systems; see, for example,
Refs. [4,26–39].

A. Brusselator

The HRDEs for the Brusselator are given by

τ
∂2u

∂t2
+ ∂u

∂t
= A − (B + 1)u + u2v + Du

∂2u

∂x2
, (3.1a)

τ
∂2v

∂t2
+ ∂v

∂t
= Bu − u2v + Dv

∂2v

∂x2
, (3.1b)

where A and B are positive constants. The Brusselator has a
unique USS (A,B/A) with the Jacobian matrix

J =
(

B − 1 A2

−B −A2

)
. (3.2)

The standard stability condition Eqs. (2.14) are satisfied
as follows: the trace T = B − 1 − A2 is negative for B <

1 + A2 ≡ B∗
H, whereas the determinant � = A2 is always

positive. Equation (2.29) implies that the USS undergoes a
Hopf bifurcation, with kH = 0, as the control parameter B

increases, at

BH = 1 + A2 + 1

τ
(1 −

√
1 + 4τ 2A2) < B∗

H. (3.3)

Consequently the stability condition Eqs. (2.32) are fulfilled
for B < BH.

As mentioned in Sec. II A, the Turing bifurcation in a two-
variable standard reaction-diffusion system requires activator-
inhibitor kinetics. The Brusselator is of the cross activator-
inhibitor type, because J11 > 0, J22 < 0, J12 > 0, and
J21 < 0. Therefore, J12J21 < 0, and the null-cline equation
h = 0, in the form of Eq. (2.25), becomes

k2(Du − Dv) = B − 1 + A2 ± 2A
√

B. (3.4)

The null-clines h(k,B) = 0 are shown in Fig. 1. If Du > Dv ,
Fig. 1(a), then for any value of the control parameter B there
coexist intervals of the wave number k, where the eigenvalues λ

are real, h > 0, with those where the eigenvalues are complex,
h < 0. In contrast, if Du < Dv , Fig. 1(b), there exist intervals
of B where the eigenvalues are real for the whole range of
k. As discussed in Sec. II A, a Turing instability in standard
(parabolic) reaction-diffusion systems can only occur if
Du < Dv and the Turing conditions for HRDEs coincide
with those of parabolic RDEs. Consequently, Du < Dv is
a necessary condition for the Turing instability, i.e., a real
eigenvalue at k �= 0, passing through zero, in both HRDEs and
standard RDEs.

1. Turing instability

The behavior of the real eigenvalue λ1 = λ1(k) as function
of the wave number at several values of the control parameter
B is shown in Fig. 2. The variation of the eigenvalue λ1 is
compared with γ1, which is the eigenvalue in the case of
the standard (parabolic) Brusselator. Both eigenvalues of the
hyperbolic and parabolic Brusselator systems change sign at
the Turing instability point with the same critical values BT

and kT,

BT = (1 + A
√

Du/Dv)2, kT =
√

A/
√

DuDv, (3.5)

of the control parameter and the wave number, respectively.
To satisfy the condition Eqs. (2.32), the critical value for the
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h<0
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B

h<0

h>0

(b)

0

0.2

0.4

0.6

0.8

1

k

10 20 30 40 50
B

FIG. 1. Wave number versus control parameter k-B diagram for the hyperbolic Brusselator with fixed A = 5 and (a) Du = 3, Dv = 1 and
(b) Du = 1,Dv = 3. The curves represent the null-cline equation h(k,B) = 0.

Turing instability must be less than the critical value for the
Hopf instability, i.e.,

BT < BH, (3.6)

which will be the case for sufficiently large values of θ =
Dv/Du. Then the Turing instability occurs first in the system
as B is increased. At the onset of the Turing instability, the
curves λ1 = λ1(k) and γ1 = γ1(k) touch the k axis at the same
point, as follows from Eq. (2.10).

For the parameter values A = 5, Du = 1, Dv = 3, and
τ = 1, the Hopf condition Eq. (3.3) yields BH = 16.950124,
with ωH = 2.1271901 according to Eq. (2.27). The Turing con-
dition Eqs. (3.5) yield BT = 15.106836 and kT = 1.6990442.
As required, the critical value BT is less than the critical value
BH; the Turing instability occurs before the Hopf bifurcation.

λ,γ

k

iiiiii

iiiiii–1

–0.5

0

0.5

1 2 3

FIG. 2. Turing instability. The dispersion curves for real eigenval-
ues λ1 (thick line) and γ1 (thin line) for the hyperbolic and parabolic
Brusselators, respectively, are shown for various values of the control
parameter B: (i) before the Turing bifurcation point at B = 14.6,
(ii) at the Turing bifurcation point with the critical value BT =
15.106836 and the critical wave number kT = 1.6990442, and (iii)
beyond the Turing instability at B = 16.5. The model parameters are
fixed at A = 5, Du = 1, Dv = 3, i.e., the case of Fig. 1(b), and τ = 1.

2. Wave instability

In the case of complex eigenvalues λ, the two criteria for
the onset of instability are satisfied if Du > Dv as discussed
above, see also Fig. 1(a). An example is presented graphically
in Fig. 3. For the parameter values A = 5, Du = 3, Dv = 1,
and τ = 1, the wave instability condition Eqs. (2.41) and (2.42)
yield the critical values Bw = 1.4693878 and kw = 3.4255939
of the control parameter and the wave number, respectively.
The frequency of the wave instability is ωw = 5.9778503
according to Eq. (2.34). As required, the critical value Bw

is less than the critical value BH; the wave instability occurs
before the Hopf bifurcation. At large values of the inertial time,
the solution is located in the vicinity of the null-cline h = 0.

ii

i

0

2

4

6

8

k

10 20 30 40 50
B

FIG. 3. Criteria for the onset of the wave instability depicted by
thick lines (i) Re(λ1,3) = −1/(2τ ) + y = 0 and (ii) dRe(λ1,3)/dk =
dy/dk = 0 in the wave number versus control parameter k-B plane
for the hyperbolic Brusselator at fixed A = 5, Du = 3, Dv = 1, i.e.,
the case of Fig. 1(a), and τ = 1. The intersection of (i) and (ii) curves
corresponds to the wave bifurcation point with the critical values
Bw = 1.4693878 and kw = 3.4255939. The thin lines represent the
null-cline equation h = 0; see Fig. 1(a).
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k

iii
ii
i

iii
ii
i0

2

4

6

8

2 4 6

FIG. 4. Wave instability. The dispersion curves for real
Re(λ1,3) = −1/(2τ ) + y (thick line) and imaginary Im(λ1,3) = z

(thin line) parts of the eigenvalues λ1,3 for the hyperbolic Brusselator
at various values of the control parameter B: (i) below the wave
bifurcation point at B = 0.1, (ii) at the bifurcation point with the
critical value Bw = 1.4693878 and the critical wave number kw =
3.4255939, and (iii) beyond the wave instability point at B = 10.
The model parameters are fixed at A = 5, Du = 3, Dv = 1, i.e., the
case of Fig. 1(a), and τ = 1.

As discussed above, if Du < Dv , a common solution to the
two instability criteria does not exist; see Fig. 1(b).

The onset of the wave instability for this example is shown
in Fig. 4. The dispersion curves for the real and imaginary
parts of the eigenvalue demonstrate the typical behavior for
the wave instability; see, for example, Fig. 4 in Ref. [3]. The
dependence of the critical values Bw and kw on the inertial
time τ shows contrasting behavior. The critical value of the
control parameter decreases, whereas the critical wavenumber
increases, as τ increases; see Fig. 5. When the inertial time goes
to zero, the limit case of parabolic equations, the critical value
of the control parameter grows without bound. Note, however,

τ
0

1

2

3

4

5

6

7

0.5 1 1.5 2

FIG. 5. Wave instability. Critical values Bw (circles) and kw

(diamonds) as functions of the inertial time τ for A = 5, Du = 3,
and Dv = 1, i.e., the case of Fig. 1(a), for the hyperbolic Brusselator.

that Bw must be smaller than BH as discussed above; otherwise,
the stability condition Eqs. (2.32) are not fulfilled and the USS
has already become unstable and undergone a uniform Hopf
bifurcation. This implies that there exists a minimum value of
the inertial time τ , given by

Bw(τmin) = BH, (3.7)

for a wave instability to occur in the hyperbolic Brusselator.
For the parameter values A = 5, Du = 3, and Dv = 1, the
condition Eq. (3.7) yields a value of τmin = 0.041666667.

B. Gierer-Meinhardt model

The HRDEs for the Gierer-Meinhardt model are given by

τ
∂2u

∂t2
+ ∂u

∂t
= 1 − u + a

u2

v
+ Du

∂2u

∂x2
, (3.8a)

τ
∂2v

∂t2
+ ∂v

∂t
= b(u2 − v) + Dv

∂2v

∂x2
, (3.8b)

where a and b are positive constants. The Gierer-Meinhardt
model has a unique USS state (1 + a, (1 + a)2) with the
Jacobian matrix

J =
(

(a − 1)/(a + 1) −a/(1 + a)2

2b(1 + a) −b

)
. (3.9)

The stability condition Eqs. (2.14) are satisfied as follows:
the trace T = (a − 1)/(a + 1) − b is negative for b > (a −
1)/(a + 1) ≡ b∗

H and the determinant � = b is always positive.
Equation (2.29) implies that the USS undergoes a Hopf
bifurcation, with kH = 0, as the control parameter b decreases,
at bH given by

bH = a − 1

a + 1
− 1

τ
(1 −

√
1 + 4τ 2bH), (3.10)

which has one acceptable root,

bH = 1

τ

[
− 1 +

(
2 + a − 1

a + 1

)
τ

+
√

1 − 4τ + 4τ 2

(
1 + a − 1

a + 1

)]
. (3.11)

Consequently the stability condition Eqs. (2.32) are fulfilled
for b > bH.

The Gierer-Meinhardt model is of the pure activator-
inhibitor type, because J11 > 0, J22 < 0, J12 < 0, and J21 >

0. We have again J12J21 < 0, and the null-cline equation h = 0
in the form of Eq. (2.25) becomes

k2(Du − Dv) = a − 1

a + 1
+ b ± 2

√
2ab

a + 1
. (3.12)

We see that the k − b dependence, k2 ∝ b ± √
b, is identical

to the k − B dependence, Eq. (3.4), for the Brusselator.
Therefore, the diagrams in Fig. 1 apply qualitatively also
to the Gierer-Meinhardt model and we do not show them
here. We choose b as the control parameter for the Gierer-
Meinhardt model and consider the cases of the Turing and
wave bifurcations as above for the Brusselator model.
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FIG. 6. Turing instability. The dispersion curves for real eigen-
values λ1 (thick line) and γ1 (thin line) for the hyperbolic and
parabolic Gierer-Meinhardt models, respectively, at various values
of the control parameter b: (i) before the Turing bifurcation point
at b = 8, (ii) at the Turing bifurcation point with the critical value
bT = 5.8359213 and the critical wave number kT = 0.58450046,
and (iii) beyond the Turing bifurcation point at b = 4. The model
parameters are fixed at a = 9, Du = 1, Dv = 50, and τ = 1.

1. Turing instability

At the Turing bifurcation point, the critical values bT and
kT of the control parameter and the wave number, respectively,
read

bT = Dv

Du

(
− 1 +

√
1 + a − 1

a + 1

)2

, (3.13a)

kT = 4

√
bT

DuDv

. (3.13b)

To satisfy the condition Eqs. (2.32), the critical value for the
Turing instability must be greater than the critical value for the

Hopf instability bH, i.e.,

bT > bH, (3.14)

which will be the case for sufficiently large values of θ =
Dv/Du. Then the Turing instability occurs first in the system
as b is decreased. The corresponding dispersion curves for λ1

and γ1 in the vicinity of the Turing bifurcation point are shown
in Fig. 6.

For the parameter values a = 9, Du = 1, Dv = 50, and
τ = 1, the Hopf condition Eq. (3.10) yields bH = 3.8493901,
with ωH = 1.2347854 according to Eq. (2.27). The Tur-
ing condition Eqs. (3.13) yield bT = 5.8359213 and kT =
0.58450046. As required, the critical value bT is greater than
the critical value bH; the Turing instability occurs before the
Hopf bifurcation.

The behavior of the dispersion curves in the Gierer-
Meinhardt model resembles the Turing case in the Brusselator
illustrated in Fig. 2. The difference is that in the Gierer-
Meinhardt model the Turing instability occurs as the control
parameter decreases, whereas in the Brusselator the instability
arises as the control parameter increases. Note also that the
maxima of the dispersion curves in both models move in
opposite directions: to the left in the Gierer-Meinhardt model
and to the right in the Brusselator.

2. Wave instability

The diagram of the dispersion curves for the wave instability
(Fig. 7) is similar to the Turing case. For the parameter
values a = 2, Du = 5, Dv = 4, and τ = 3, the wave instability
condition Eqs. (2.41) and (2.42) yield the critical values
bw = 5.4166667 and kw = 1.6583124 of the control parameter
and the wave number, respectively. The frequency of the wave
instability is ωw = 2.2298480 according to Eq. (2.34). The
Hopf condition Eqs. (3.10) and (2.27) yield bH = 4.0275875
and ωH = 0.78467129, respectively. As required, the critical
value bw is greater than the critical value bH; the wave
instability occurs before the Hopf bifurcation.

k
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iii

iv

v

λRe(  ) (a)

–0.2
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0

0.1

0.2

1 2 3 4

(b)λIm(  )

k
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ii
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v

0.8

1
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FIG. 7. Wave instability. The dispersion curves for (a) real Re(λ1,3) = −1/(2τ ) + y and (b) imaginary Im(λ1,3) = z parts of the eigenvalues
λ1,3 for the hyperbolic Gierer-Meinhardt model at various values of the control parameter b: (i) before the wave bifurcation point at b = 10,
(ii) at the bifurcation point with the critical value bw = 5.4166667 and the critical wave number kw = 1.6583124, and beyond the wave
bifurcation point at (iii) b = 4.5, (iv) b = 4.03, and (v) b = 3. (The critical value for the Hopf bifurcation is bH = 4.0275875.) The model
parameters are fixed at a = 2, Du = 5, Dv = 4, and τ = 3.
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FIG. 8. Wave instability. Critical values bw (circles) and kw

(diamonds) as functions of the inertial time τ for a = 2, Du = 5,
and Dv = 4 for the hyperbolic Gierer-Meinhardt model.

The dispersion curve for the real part of λ1,3, Fig. 7(a),
moves to the left as the control parameter decreases and
the wave instability arises. In contrast to the Brusselator, the
maximum shows a pronounced shift, to the left, as the control
parameter is decreased through the wave instability threshold,
and is eventually located at k = 0, curve (v) in Fig. 7(a). Note
that this occurs after the Hopf bifurcation at bH = 4.0275875,
curve (iv) in Fig. 7(a).

The dependence of the critical values bw and kw for the wave
bifurcation in the Gierer-Meinhardt model on the inertial time,
Fig. 8, also differs from that of the Brusselator, Fig. 5. As the
inertial time increases, so does the critical value bw. Note again
that there exists a minimum value of the inertial time for a wave
instability to occur. For the parameter values a = 2, Du = 5,
and Dv = 4, the condition bw(τmin) = bH yields a value of
τmin = 2.1776445.

IV. CONCLUSION

We have studied hyperbolic reaction-diffusion systems
and derived the criteria for diffusion-driven instabilities in
such systems. We have illustrated our general results by
applying them to two widely used model systems, namely
the Brusselator and the Gierer-Meinhardt model.

Before discussing our findings, we want to stress that the
form of the hyperbolic Eqs. (2.1) is important for the existence
of diffusive instabilities. The hyperbolic systems must indeed
be HRDEs, in the sense that RDEs are the parabolic limit case.
In other words, the first-order derivatives with respect to time
play a crucial role. As mentioned in Sec. II, HRDEs Eqs. (2.1)
are known as damped nonlinear Klein-Gordon equations in
other fields. The question arises if diffusive instabilities can
occur in coupled Klein-Gordon equations,

τ
∂2u

∂t2
= f (u,v) + Du

∂2u

∂x2
, (4.1a)

τ
∂2v

∂t2
= g(u,v) + Dv

∂2v

∂x2
. (4.1b)

The linear stability analysis of Eq. (4.1), see Sec. II, yields the
matrix equation(

J11 − k2Du − τλ2 J12

J21 J22 − k2Dv − τλ2

)(
Cu

Cv

)
= 0.

(4.2)

The corresponding eigenvalues

λ1,2 = ± 1√
τ

√√√√α + β

2
+

√(
α − β

2

)2

+ J12J21, (4.3a)

λ3,4 = ± 1√
τ

√√√√α + β

2
−

√(
α − β

2

)2

+ J12J21, (4.3b)

cannot change sign, if they are real, and no bifurcation can
occur. If the eigenvalues are complex, the real part,

Re(λ) = ± 1√
τ

√
1

2

(
α + β

2
+

√
αβ − J12J21

)
, (4.4)

cannot change sign, and again no bifurcation can occur.
Hyperbolic reaction-diffusion system can undergo two

types of diffusive instabilities, the Turing instability and the
wave instability. As far as the Turing instability is concerned,
the conditions are the same as for standard reaction-diffusion
equations. At least two variables are required, and the kinetics
need to be of the activator-inhibitor type. Further, the inhibitor
needs to diffuse sufficiently fast, compared to the activator, for
a Turing bifurcation to occur in both hyperbolic and parabolic
systems. The critical values for the Turing instability are
independent of the inertial time and coincide with the critical
values for standard parabolic reaction-diffusion systems.

As far as the wave instability is concerned, the conditions
for hyperbolic and parabolic systems differ qualitatively. It
is the main result of this work that the wave instability
requires only two species in hyperbolic reaction-diffusion
equations, in contrast to standard parabolic reaction-diffusion
equations where at least three species are required. The critical
values for the wave instability depend on the inertial time,
in contrast to the case of the Turing instability. Further, the
wave instability cannot occur for arbitrarily small inertial
times. A minimum distance from the parabolic limit case
is required. Another important difference with the Turing
instability is the requirement that it is the activator that needs to
diffuse sufficiently fast, compared to the inhibitor, for a wave
instability to occur. This is similar to the fact that, as discussed
in Sec. I, wave instabilities in standard reaction-diffusion
systems typically occur in models consisting of an activator, an
inhibitor, and a third species, coupled to the activator, which
diffuses significantly faster than both the activator and the
inhibitor.
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