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Abstract

We show the existence of localized breather solutions in an averaged version of the discrete nonlinear Schrödinger equation
(NLS) with diffraction management, a system that models coupled waveguide arrays with periodic diffraction management
geometries. The breather solutions are constrained extrema of the Hamiltonian of the averaged system and their existence is
shown by a discrete version of the concentration-compactness principle. The main assumptions are that the averaged diffraction
is sufficiently small (compared to strength of the nonlinearity) and that the sign of the nonlinearity corresponds to the focusing
case. An interesting feature of the problem is that the nonlinear interaction between neighboring lattice sites can be large and
is of infinite range. On the other hand, the interaction decays rapidly at sufficiently large distances, and this plays an important
role in the proof. The results also apply to higher dimensional lattices, and to the discrete NLS equation.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The study of the dynamics of nonlinear lattice systems has a long history, e.g. in models of solids, and in recent
years discrete systems have found many applications in nonlinear optics (see e.g.[6,15]). In the present work we
consider an array of coupled waveguides with the zigzag diffraction management geometry introduced in[8] and
study coherent structures using as a starting point the model of[3]

∂tun = iD(t)(un+1 − 2un + un−1) − 2iγ(g(a))n, (g(u))n = |an|2an, (1.1)
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with un the complex amplitude (of the electric field) at the siten ∈ Z, andD aT -periodic function with averageδ
and oscillating part̃d. System(1.1) is also a discrete version of the cubic nonlinear Schrödinger (NLS) equation
with dispersion management, and as in the continuous equation one of the main technological motivations behind
the diffraction management idea is to produce and control low power coherent structures.

Problems of interest for(1.1)include the existence and stability of localized periodic or quasi-periodic solutions
(found numerically in[3]), and multi-bump solutions and their interactions. A technical complication is the fact that
(1.1) is a non-autonomous system. To obtain some possible insight into the above problems we will approximate
(1.1)by the autonomous (but “nonlocal”) system

∂tan = iδ(
a)n − 2iγ(ḡL(a))n, (ḡL(a))n = 1

T

∫ T

0
(L−1
τ g(Lτa))n dτ, (Ltu)n = (ei

∫ t
0 d̃(σ) dσ∆u)n, (1.2)

with (
a)n = an+1 − 2an + an−1. The relation between the solutions of(1.1) and (1.2)will be discussed in Section
2. We will see that approximating(1.1) by (1.2) involves an averaging argument that is similar to the one used in
the continuous NLS with dispersion management (see[10,1]).

We will show that for|δ|/|γ| sufficiently small andδγ < 0, the averaged Eq.(1.2) has localized breather-
type solutions. The result also holds for the analogue of(1.2) in integer lattices of arbitrary dimension. The
proof we give is variational and rests on the interpretation of the breather solutions as constrained minima (for
γ < 0) of the Hamiltonian of(1.2). The constraint is thel2 norm. The argument is a discrete version of the
concentration-compactness principle (see e.g.[12,5]). A similar strategy was used in[19] for the local discrete
NLS equation, and also for the nonlocal nonlinearity in the continuous version of(1.2) ([20], see also[14]).
In the nonlocal discrete case the main effort goes into controlling the value of the Hamiltonian in the overlap
between distant bumps and thus assuring that minimizing sequences cannot split. The corresponding estimates
rely on the fact that the nonlinear interaction between sufficiently distant sites decays rapidly. Once the min-
imizer is shown to converge the problem is simpler that its continuous counterpart, and the dimension of the
lattice only affects the condition on the size of|δ|/|γ|. In the limit of constantD the operatorLt becomes the
identity and we recover the local discrete NLS. In that case we also expect that for|δ|/|γ| sufficiently small we
can obtain the existence of breathers by the continuation arguments of[3,13]. It seems that an advantage of the
variational approach here is that it allows us to handle more general nonlinear interactions between neighboring
sites.

The paper is organized as follows. In Section2 we set the notation, outline the steps leading from the original
model(1.1) to the averaged Eq.(1.2) and state and discuss the results. In Section3 we present an outline and the
first part the proof of the existence of breathers, examining convergent and vanishing minimizing sequences. In
Section4 we show that a minimizing sequence cannot split, and must therefore have a subsequence converging to
the infimum (up to translations).

2. Discrete NLS equations and breathers

We consider the lattice of integersZ, and complex valued functionsu(t) on Z that evolve according to the
non-autonomous system

∂tu = iD(t)
u− 2iγg(u), (2.1)

where

(
u)j = uj+1 − 2uj + uj−1, gj(u) = |uj|2uj, (2.2)
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andfj is the value off : Z → C at the sitej. The functionD is real valued andγ is a real constant. We further
assume thatD is T-periodic, and we decompose it as

D(t) = δ+ d̃(t), with δ = 1

T

∫ T

0
D(τ) dτ (2.3)

the average. Physically, the “time”t in (2.1) is the distance along the waveguides, while the “spatial variable”j of
(2.1)is the transverse direction (more precisely the index of the waveguide, see e.g.[8]). Model(2.1)was proposed
by [3]. Also,un is the complex amplitude of (any) one of the components of the electric field at the siten. The initial
conditionu(t0) for (2.1) is the emitted light and to simplify the notation we may consider initial data att0 = 0,
shiftingd(t) if necessary.

In this work we study an approximate autonomous system derived by an averaging argument. To obtain the
averaged equation we rewrite(2.1)using the variablea(t) defined by

a(t) = L−1
t u(t), with Lt = eiΛ̃(t)∆, and Λ̃(t) =

∫ t

0
d̃(τ) dτ. (2.4)

By (2.1), the evolution equation fora(t) is then

∂ta = iδ
a− 2iγL−1
t g(Lta), (2.5)

with the initial conditiona(0) = u(0). Note thatL−1
t = e−iΛ̃(t)∆ and that the right hand side of(2.5) is T -periodic.

Eq.(2.5) is then replaced by the averaged equation

∂ta = iδ
a− 2iγḡL(a), with ḡL(a) = 1

T

∫ T

0
L−1
τ g(Lτa) dτ. (2.6)

The distance between the solutions of(2.5) and (2.6)can be estimated using averaging arguments and we expect
that for|γ|, |δ| of O(ε), |ε| small, andω = 2π/T > 0 of at least O(1), solutions of the two systems that correspond
the same O(1) size initial conditions should stay O(ε) close for a time of O(ε−1) (Distances are measured in thel2
norm defined below.) The steps are the ones leading to the averaging theorem in[16], modified for flows inl2, i.e.
the requisite Lipshitz continuity properties of the right hand sides are the same. Alternative approaches are e.g. in
[17,20,14].

The above definitions and notation can be extended to the case whereu, anda are complex valued functions on
Zd , d ≥ 1. In particular, letDk,+ (Dk,−) denote the forward (backward) first order difference operators along the
kth direction, and set∆k = Dk,+Dk,− and∆ = ∑d

k=1∆k. Clearly, ford = 1, the new definition of∆ agrees with
the one in(2.3).

Remark 2.0.1. The diffraction management idea is also meaningful ford = 2, although the particular “isotropic”
diffraction managementD(t)∆ here may be too restrictive. In the special case of the local discrete NLS, thed = 2
problem is already of physical interest (see e.g.[2]).

We look for localized solutions of(2.6)that have the forma(t) = e−iλtA, for someλ ∈ R. We refer to these periodic
orbits as breathers. By(2.6), we must then findA : Zd → C that satisfies

λA = −δ
A+ 2γḡL(A) (2.7)

and decays at infinity.
The strategy will be to use the variational structure of the equation. Consider the standard hermitian inner product

〈u, v〉h = ∑
n∈Zd unv∗n on pairs of complex valued functionsu, v onZd . Also letXbel2 = l2(Zd,C), the real Hilbert

space of square summable complex valued functions onZd with the inner product〈·, ·〉 given by〈u, v〉 = Re〈u, u〉h,
u, v ∈ X (i.e. we identifyC with R2 and use the complex notation for convenience). The norm‖ · ‖ of u ∈ X is
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‖u‖ = ‖u‖l2 = (Re〈u, u〉)1/2, u ∈ X. Similarly, let‖u‖4
l4

= ∑
n∈Zd |un|4 (< ∞ if u ∈ X). We define the functional

H̄ onX by

H̄(v) = δ

d∑
k=1

‖Dk,+v‖2
l2

+ γ
1

T

∫ T

0
‖Lτv‖4

l4
dτ, (2.8)

and look for critical points of̄H in the setXc = {v ∈ X : ‖v‖ = c}. We will show the following:

Theorem 2.1. Consider the functional̄H above withδ ≥ 0 andγ < 0.Assume that(i) D is piecewise continuous
and bounded on[0, T ], and (ii ) that givenc > 0, there existsµ > 0 for whichδ/|γ| < µ. Then the infimum of̄H
onXc is attained.

Remark 2.1.1. The constantµ depends on the dimensiond, the functiond̃, andc. We will see that that the sign,
and relative size assumptions onδ, γ imply that, given anyc > 0, the infimum ofH̄ onXc is strictly negative. This
property is crucial for the proof.

Remark 2.1.2.Condition (i) onD here means that eitherD is continuous in [0, T ], or there exists a finite number
of points 0< τ1 < · · · < τn < T so thatD is continuous in each of the closed intervals [0, τ1], . . ., [τn, T ]. ThusD
can at worst have (finite) jump discontinuities at a finite number of points of (0, T ). In the physical examplesD is
piecewise constant.

The Euler–Lagrange equation corresponding to the above variational problem is precisely(2.7). Note in particular
thatL−1

τ = L
†
τ , the adjoint ofLτ in X. We also see that that̄H isC1 in X. Standard arguments therefore yield:

Proposition 2.2. Let ã ∈ Xc satisfyH̄(ã) = inf v∈Xc H̄(v). Then there exists aλ ∈ R for whichA = ã satisfies
(2.7).

The proof ofTheorem (2.1)will be given in the next two sections; we here make some basic observations. First,
note thatH̄ and thel2 norm are invariant under (i) translations inZd , and (ii) the circle actionv → eiφv, φ ∈ R.
Thus, if ã is a minimizer ofH̄ on Xc, the integer translates of ˜a, and points on the circle eiφã, φ ∈ R are also
minimizers.

A consequence of the variational characterization of breather solutionsa(t) = e−iλtA of (2.5)withAa minimizer
of H̄ onXc is that they also satisfy a stability property. To make this precise consider the corresponding breather
periodic orbit (i.e. invariant circle)γc(A) (i.e. seen a subset ofXc). Note that the initial value problem for(2.6)has
global solutionsa(t) in C0(R, l2). This follows from the Lipschitz continuity of the right hand side of(2.6)and the
conservation of thel2 norm. We can therefore consider the evolution of the distance between a breather invariant
circleγc(A) and a solutiona(t) that starts nearγc(A). We have the following.

Proposition 2.3. LetΓc(A) be an isolated set of breather invariant circles corresponding to a minimizer A ofH̄ on
Xc as above. Also leta(t) be a solution of(2.6)with initial conditiona0. Then givenε > 0 there existsε0 > 0 for
whichsupx∈Γc(A) ‖a0 − x‖l2 < ε0 impliessupx∈Γc(A) ‖a(t) − x‖l2 < ε, ∀t ∈ R.

The geometrical ideas behind the proof are simple and we will not give the details here. Note however that the
proposition does not imply that individual invariant circles corresponding to minimizers are orbitally stable. For this
it would be sufficient to show that such invariant circles are isolated. The numerical evidence in[3] suggests that this
is probably the case. We note that in the special case of the local NLS with|δ|/|γ| small where the periodic orbits
can be approximated explicitly we expect that we can apply ideas from perturbation theory to obtain Nekhoroshev
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stability results (see[4]). A further question is the existence of other critical points ofH̄ onXc, e.g. saddles. Some
interesting suggestions for the discrete NLS are in[11].

We also remark that the proof ofTheorem (2.1)in the higher dimensional case is not significantly different from
the one-dimensional one (it is only more involved at a few points). On the other hand, the result is interesting from the
point of view of possible “higher-dimensional time” extensions of dynamical concepts relevant to one-dimensional
lattices (e.g. homoclinic orbits, multi-bump solutions, shadowing, etc.).

Remark 2.3.1. We have not considered here the problem of finding breather solutions whenδ/γ < 0 is fixed and
c varies, e.g. settingγ = −1 and fixingδ > 0. The existence of breathers of arbitraryl2 normc is then subtle since
the infimum ofH̄ onXc may fail to be strictly negative. In the case of the discrete NLS the question is settled in
[19], where it was shown that ifd ≥ 2 then the infimum of̄H onXc is negative only ifc is above a certain threshold.

Remark 2.3.2. Theorem 2.1can be equivalently restated for the case whereδ ≤ 0, γ > 0. Then, givenc > 0, and
assuming that|δ|/|γ| < µ, the functionalH̄ attains its supremum overXc. The constantµ is exactly the one in
Theorem 2.1and the alternative statement follows immediately by applyingTheorem 2.1to −H̄ and using the
conditions of the theorem on−δ, −γ. In the case whereδ, γ > 0 (< 0) we see in the next section (Remark 3.2.2)
that the infimum (supremum) of̄H onXc can not be attained.

3. Minimizing sequences: vanishing and convergent cases

We now outline the steps of the proof ofTheorem (2.1). We start with a minimizing sequence{an} ∈ Xc (See
the remark on notation after the present paragraph.) InAppendix Awe show thatH̄ is continuous inX = l2 and
it is therefore sufficient to find a subsequence of{an} that converges strongly inl2. To see that this is the case we
distinguish three possibilities for the minimizing sequence. First we observe inProposition 3.2that the supremum
of |an(j)| overj ∈ Zd is bounded away from zero. Translating thean so that the maxima of|an| are at the origin,
we define a numberΓ > 0 that indicates the portion of thel2 norm ofan that stays concentrated around the origin
asn → ∞. In the caseΓ = c2 we show in Proposition 3.3 that{an} has a convergent subsequence. It therefore
remains to eliminate the caseΓ < c2, and we do this in Section4. Intuitively, Γ < c2 corresponds toan splitting
into pieces that carry away to infinity nontrivial portions of thel2 norm ofan asn → ∞.

Notation: LetU be a subset ofRd , and a functionf : U → C. In this and the next sectionf (j) will denote the
value off at the pointj. Subscripts will from now on denote indices in a sequence, e.g. as inan above.

As a preliminary step we give an explicit expression and a basic estimate for the operatorLt = eiΛ̃(t)∆ of (2.4).

Lemma 3.1. LetLt : X → X be the operator defined in(2.4), and letv ∈ X. Then

(Ltv)(n) =
∑
m∈Zd

Gt(n−m)v(m), n ∈ Zd, with (3.1)

Gt(y) = e−2iΛ̃(t)
d∏
j=1

(i)|yj |J|yj |(2Λ̃(t)), y = [y1, . . . , yd ] ∈ Zd, (3.2)

andJp the Bessel function of integer orderp ≥ 0. (The dependence ofGt on the functionΛ̃ is suppressed from the
notation.) Also,

|Gt(y)| ≤
d∏
j=1

|Λ̃(t)||yj |
|yj|! , ∀y = [y1, . . . , yd ] ∈ Zd. (3.3)
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Proof. Let Idπ = [−π, π]d and define the semi discrete Fourier transformF : X → L2(Idπ,C) by

û(k) =
∑
n∈Zd

e−i〈k,n〉u(n), k ∈ Idπ, (3.4)

i.e. we use the notation ˆu = Fu. F is an isometry with inverseF−1 defined by

u(n) = 1

(2π)d

∫
[−π,π]d

ei〈k,n〉û(k) dk1 · · · dkd, n ∈ Zd. (3.5)

We compute

ˆ(
u)(k) = −4


 d∑
j=1

sin2 kj

2


 û(k), k = [k1, . . . , kd ], (3.6)

hence

(Ltu)(n) =
∑
m∈Zd

Gt(n−m)u(m), with (3.7)

Gt(y) = 1

(2π)d

∫
Idπ

d∏
j=1

(e−ikjyj e−i4Λ̃(t) sin2(kj/2)) dk1 · · · dkd, y = [y1, . . . , yd ]. (3.8)

But ∫ π

−π
e−ikjyj e−i4Λ̃(t) sin2(kj/2) dkj = e−i2Λ̃(t)

∫ π

−π
e−ikjyj ei2Λ̃(t) coskj dkj

= e−i2Λ̃(t)

π

∫ π

0
ei2Λ̃(t) coskj cos|yj|kj dkj = (i)|yj | e−i2Λ̃(t)J|yj |(2Λ̃(t))

(3.9)

by the definition ofJp, the Bessel function of integer orderp. By (3.8), (3.9)and Fubini we immediately obtain
(3.2). The bound on|Gt(y)| follows from the definition ofGt(y) and the basic inequality

|Jp(z)| ≤ |z/2|p
p!

, ∀z ∈ C, p = 0,1,2, . . . ,

for the Bessel functions (see e.g.[18]). �

Proposition 3.2. ConsiderH̄ as in(2.7)with δ ≥ 0, γ < 0.Let {un} be sequence inXc possessing a subsequence
{vn} satisfyinglimn→∞ supj∈Zd |vn| = 0. Then there existsδ0 > 0 for which δ < δ0 implies that{un} cannot be
minimizing sequence for̄H in Xc.

Proof. Let v(0) = c, v(j) = 0 for j �= 0. We havev ∈ Xc. Using(3.9), and the facts that̃Λ(0) = 0, |J0(0)| = 1,
we see that ifγ < 0, then

γ
1

T

∫ T

0
‖Ltv‖4

l4
dt ≤ γ

c4

T

∫ T

0
|J0(Λ̃(t))|4 dt < 0. (3.10)
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ThenH̄(v) < 0 for δ > 0 sufficiently small and therefore the infimum of̄H in Xc is strictly negative. On the other
hand, consider the subsequence{vn} whose maximum overZd goes to zero as above. We observe that‖Ltvn‖4

l4
→ 0

asn → ∞, uniformly in t ∈ [0, T ]. This is because

‖Ltvn‖4
l4

≤ sup
j∈Zd

|(Ltvn)(j)|2‖Ltvn‖2
l2

≤ c2( sup
j∈Zd

|(Ltvn)(j)|)2 (3.11)

sinceLt preserves thel2 norm,∀t. From(3.3), the kernelGt is absolutely summable∀t, and by(3.11)we have

1

T

∫ T

0
‖Ltvn‖4

l4
dt ≤ c2K(λ̃)( sup

j∈Zd
|vn(j)|)2 → 0 as n → ∞, (3.12)

with the constantK(Λ̃) depending on supt∈[0,T ] |Λ̃(t)|. Thus the quartic part of̄H vanishes and since the quadratic
part is nonnegative byδ ≥ 0 we have that infu∈Xc H̄(u) ≥ 0, a contradiction. �

Remark 3.2.1.The above proof makes it clear that the constantδ0 depends onc, the dimensiond, and the function
δ̃. For δ = 0 (γ < 0) the fact that the infimum of̄H onXc is strictly negative is automatic. In the case whereδ

γ

is fixed however, finding a trial functionv ∈ Xc with H̄(v) < 0 could be difficult or impossible (i.e. if there is a
threshold), and one would require an approach similar to the one in[19].

Remark 3.2.2. The arguments ofProposition 3.2also show that ifδγ > 0, δ > 0 then the infimum ofH̄ onXc
cannot be attained. To see this define the sequence{an} by an(k) = (2n+ 1)−(d/2)c, if |k1| ≤ n, . . ., |kd | ≤ n, and
an(k) = 0 otherwise (k = [k1, . . . , kd ] ∈ Zd). We have that‖an‖ = c, for all n, moreover supj∈Zd |an(j)| → 0 as
n → ∞. Computing the quadratic part of̄H and using the argument in(3.12) we then see that̄H(an) → 0 as
n → ∞. Similarly, if δγ > 0, δ < 0 the supremum of̄H onXc is not attained.

Corollary 3.3. Letδ < δ0,with δ0 as inProposition 3.2. Then if{un} ⊂ Xc is a minimizing sequence for̄H in Xc,
we have that for every subsequence of{vn} of {un} there existsa > 0 for whichsupj∈Zd |vn(j)| ≥ a, ∀n.

Let {an} be a subsequence of a minimizing sequence as inCorollary 3.3. For each indexn we can translatean
so that the supremum ofan(j) overj ∈ Zd is attained atj = 0. We refer to this new sequence by{an} (by a slight
abuse of notation). We therefore have|an(0)| ≥ c, ∀n. We will construct a notion of “asymptotic mass in a bounded
region” to characterize the behavior of{an}. We first establish some basic notation.

LetBr = {k ∈ [k1, . . . , kd ] ∈ Zd : |kj| ≤ r, j = 1, . . . , d},m(an, r) = ∑
k∈Br |an(k)|2. Letr = 1. We can extract

from {an} a subsequence{a1
n} for which m(a1

n, r) converges. We proceed inductively, increasingr: given {arn}
with m(arn, r) convergent we extract a subsequence{ar+1

n } of {arn} for which m(arn, r) is convergent. We thus
obtain a sequence of subsequences{a1

n} ⊃ · · · ⊃ {arn} ⊃ · · · of the minimizing sequence{an} ∈ Xc. We also let
mr = limn→∞m(arn, r), r > 0. The sequence{mr} is bounded above byc2, and it easy to check that is also increasing.
We therefore defineΓ by

Γ = lim
r→∞mr. (3.13)

The definition and the above construction implies that 0< Γ ≤ c2. In Proposition 3.5we see that ifΓ = c2 then
the original minimizing sequence{an} has a convergent subsequence. On the other hand, in the next section we
show thatΓ < c2 implies that{an} can not be a minimizing sequence.

Remark 3.3.1.Note that the definition ofΓ depends on the subsequences{arn} we choose as we increaser. It will
become clear however that the conclusions following from the value ofΓ are independent of this choice.
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Proposition 3.4. Consider{an} in Xc, andΓ as above. Suppose thatΓ = c2. Then, there exists a subsequence
{ãn} of {an} satisfying that for everyε > 0, there exist R,N > 0 for whichn > N implies

c2 −
∑
k∈BR

|ãn(k)|2 < ε. (3.14)

Proof. Consider the subsequences{a1
n} ⊃ · · · ⊃ {arn} ⊃ · · · of {an} and letdn = ann, n ≥ 1 define the diagonal

sequence{dn}. Clearly,{dn} is a subsequence of{an}. By the definition ofΓ , and the assumptionΓ = c2, given
anyε > 0 we can findR for which

|c2 −mR| < ε

2
. (3.15)

By the definition ofdn we can also findN > 0 for whichn > N implies∣∣∣∣∣∣
∑
k∈BR

|dn(k)|2 −mR

∣∣∣∣∣∣ <
ε

2
. (3.16)

Combining(3.15), (3.16)we have(3.14)with ãn = dn. �

Proposition 3.5. Consider{an} in Xc, Γ as above. Suppose thatΓ = c2. Then{an} has a subsequence that
converges to an elementã ∈ Xc .

Proof. We consider the diagonal{dn} defined inProposition 3.4, and

‖dn1 − dn2‖2
l2

=
∑
k∈BR

|dn1(k) − dn2(k)|2 +
∑

k∈Zd\BR
|dn1(k) − dn2(k)|2. (3.17)

Let ε > 0. By Proposition 3.4we can chooseR,N ′ > 0 so that the second term can be bounded as∑
k∈Zd\BR

|dn1(k) − dn2(k)|2 ≤
∑

k∈Zd\BR
|dn1(k)|2 +

∑
k∈Zd\BR

|dn2(k)|2 (3.18)

= (c2 −
∑
k∈BR

|ãn1(k)|2) + (c2 −
∑
k∈BR

|ãn1(k)|2) < 2ε, (3.19)

for n1, n2 > N
′. Since the restriction ofdn to anyBr is convergent, we can choseN ′′ > 0 for whichn1, n2 > N

′′
implies.∑

k∈BR
|dn1(k) − dn2(k)|2 < ε. (3.20)

Combining(3.17)–(3.20)we see that{dn} is Cauchy and hence convergent inl2. Since‖dn‖l2 = c, ∀n, the limit
belongs toXc. �

4. Minimizing sequences: splitting case

We now consider the case whereΓ �= c2, and show that the sequence{an} can not be a minimizing sequence.
The sequences{an}, {arn}, andΓ are as defined afterCorollary 3.3and we also use the diagonal sequence{dn}
defined in the proof ofProposition 3.4. H̄ is as inTheorem 2.1and we also letΛ = maxt∈[0,T ] Λ̃(t). By assumption
(i) of Theorem 2.1,Λ is finite.
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Proposition 4.1. Consider the sequences{an}, {arn}, r ≥ 1, and the diagonal{dn} as above, with Γ < c2. Also let
p = p(R,R1) = (R1 − R− 2)/2.Then, for everyε > 0 there existR1 > R > 0 satisfying

Λppd+1

p!
< 1, 3R+ 1 ≤ R1,

1

R1 − R
< ε, (4.1)

andN > 0 for whichn > N implies∣∣∣∣∣∣Γ −
∑
k∈BR

|dn(k)|2
∣∣∣∣∣∣ < 2ε, (4.2)

∣∣∣∣∣∣Γ −
∑
k∈BR1

|dn(k)|2
∣∣∣∣∣∣ < ε, (4.3)

∑
k∈BR1\BR

|dn(k)|2 < 5ε. (4.4)

Proof. Let ε > 0. By the definitions ofmr, Γ (afterCorollary 3.3) we can chooseR > 0 for which|mR − Γ | < ε.
Also, if n ≥ R then{dn} is a subsequence of{aRn } which converges tomR, i.e. we can chooseN2 ≥ R for which
n > N2 implies∣∣∣∣∣∣

∑
k∈BR

|dn(k)|2 −mR

∣∣∣∣∣∣ < ε. (4.5)

We thus obtain(4.2). Also, chooseR1 > R satisfying(4.1)and|mR − Γ | < ε/2. As before we can findN3 > R1
for whichn > N3 implies∣∣∣∣∣∣

∑
k∈BR1

|dn(k)|2 −mR1

∣∣∣∣∣∣ <
ε

2
. (4.6)

We thus obtain(4.3). By (4.3), (4.2)we have

|a− b| < ε, |2a| < 2ε, b > 0,with (4.7)

a = Γ −
∑
k∈BR

|dn(k)|2, b =
∑

k∈BR1\BR
|dn(k)|2. (4.8)

We easily see that(4.5) impliesb < 5ε, i.e. (4.4). �
Lemma 4.2. Consider the sequences{an}, and{arn}, r ≥ 1 above withΓ < c2 and let{dn} be the diagonal as in
Proposition4.1. For everyε > 0, there exist sequences{vn}, {wn} of complex valued functions onZd andN > 0
for whichn > N implies

vn(k) + wn(k) = dn(k), ∀k ∈ Zd, (4.9)∣∣∣Γ − ‖vn‖2
l2

∣∣∣ < 7ε,
∣∣∣(c2 − Γ ) − ‖wn‖2

l2

∣∣∣ < 6ε, (4.10)

H̄(dn) = H̄(vn) + H̄(wn) + hn,with |hn| < k
√
ε, (4.11)

and k a constant depending on c, γ, δ and d.
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Remark 4.2.1. The splitting ofdn into vn, wn depends onε.
Lemma 4.2contains the main computation and we will give its proof below. To conclude that{an} with Γ < c2

is not a minimizing sequence we will use(4.11)and the subadditivity of the functional̄H , given byLemma 4.3
below. In particular, definePα by Pα = inf ‖u‖2

l2
=α H̄(u), with H̄ as in(2.7). We have:

Lemma 4.3. ConsiderH̄ as in(2.7)with δ ≥ 0, γ < 0 and letα, β > 0.Then

Pα+β < Pα + Pβ. (4.12)

The subadditivity property for the quartic NLS onRd is shown in[5,20]. The proof uses a scaling argument that
applies to the present case almost verbatim.

Proposition 4.4. Consider the sequences{an}, and {arn}, r ≥ 1 above withΓ < c2 and let{dn} be the diagonal
sequence as inProposition4.1. Then{an} cannot be a minimizing sequence.

Proof. Givenε > 0, we can use(4.10)to approximatevn, wn by ṽn ∈ XΓ , w̃n ∈ Xc2−Γ to within anl2 error of
O(ε). By the continuity ofH̄ in l2, and(4.11)in Lemma 4.2, we can chooseN > 0 so thatn > N implies

H̄(dn) + |h̃n| ≥ H̄(ṽn) + H̄(w̃n),with |h̃n| < k̃
√
ε, (4.13)

andk̃ independent ofε (k̃ will depend onc andΓ ), hence

H̄(dn) + |h̃n| ≥ PΓ + Pc2−Γ . (4.14)

Assuming that{dn} is a subsequence of a minimizing sequence, taking the limitn → ∞ in (4.14)and using the
bound onh̃n in (4.13), we have

Pc2 + k̃
√
ε ≥ PΓ + Pc2−Γ , ∀ε > 0. (4.15)

By Lemma 4.3we therefore havePc2 ≥ PΓ + Pc2−Γ > Pc2, a contradiction. �
In provingLemma 4.2we will use the estimates inLemma 4.5below. The proof is somewhat lengthy but follows

from elementary arguments and we give a sketch at the end of the section.

Lemma 4.5. Let r1 > r > 0with 2r + 1 ≤ r1 − r, andd ≥ 1.Also consider the kernelGt defined by(3.7)–(3.9).
LetΛ = maxt∈[0,T ] |Λ̃(t)|. Then

sup
k∈Br


 ∑
m∈Zd\Br1

|G(k −m)|




2

≤
d∑
j=1

Kj(d,Λ)

(
Λ(r1−r)

(r1 − r)!

)2j

, (4.16)

∑
k∈Zd\Br1


∑
m∈Br

|G(k −m)|



2

≤ (r1 − r)d
d∑
j=1

K̃j(d,Λ)

(
Λ(r1−r)

(r1 − r)!

)2j

, (4.17)

with constantsKj, K̃j that depend on d,Λ.

Proof of Lemma 4.2. We start by constructing the functionsvn, wn. We considerR1 > R > 0 as inProposition
4.1, and functionsφ, φ1 : Rd → [0,1] ⊂ R that satisfy

φ(k) =
{

1, if k ∈ BR
0, if k ∈ Zd \ BR1

, (4.18)



P. Panayotaros / Physica D 206 (2005) 213–231 223

φ1(k) =
{

1, if k ∈ Zd \ BR1

0, if k ∈ BR
. (4.19)

Further, we require thatφ, φ1 satisfy

φ(k) + φ1(k) = 1, ∀k ∈ Rd. (4.20)

Such functions exist by partition of unity arguments. To simplify notation we denote the functions inRd and their
restriction toZd by the same symbol. We definevn, wn by

vn(k) = φ(k)dn(k), wn(k) = φ1(k)dn(k), k ∈ Zd. (4.21)

Property(4.9) is immediate, while(4.10)follows easily fromProposition 4.1, and (4.18)–(4.20) and we omit the
details. It remains to show(4.11).

Notation: We use the abbreviationsv = vn, w = wn, andvt = Ltv, wt = Ltw. Also,K(α, β, . . .) will denote a
constant depending onα, β, . . ..

Using the abbreviated notation above, anddn = v+ w, we write

H̄(dn) = H̄(v) + H̄(w) + q(v,w) +Q1(v,w) +Q2(v,w) +Q3(v,w), with (4.22)

q(v,w) = δ

d∑
j=1

∑
k∈Zd

2Re[(Djv)(k)(Djw)∗(k)], (4.23)

Q1(v,w) = γ
1

T

∫ T

0

∑
k∈Zd

2|vt(k)|2|wt(k)|2 dt, (4.24)

Q2(v,w) = γ
1

T

∫ T

0

∑
k∈Zd

4Re
(
vt(k)w

∗
t (k)

)2 dt, (4.25)

Q3(v,w) = γ
1

T

∫ T

0

∑
k∈Zd

4(|vt(k)|2 + |wt(k)|2)Re
(
vt(k)w

∗
t (k)

)
dt. (4.26)

We will estimate the “overlap” termsq,Q1,Q2,Q3. We start with the quadratic termqof (4.24)and use the notation
(Tju)(k) = u(k1, . . . , kj + 1, . . . , kd), j ∈ {1, . . . , d}. We have

q = 2δ
d∑
j=1

∑
k∈Zd

Re[2v(k)w∗(k) − (Tjv)(k)w
∗(k) − (v)(k)(Tjw)∗(k)]. (4.27)

For the first term in the sum we observe that∣∣∣∣∣∣
d∑
j=1

∑
k∈Zd

Re[2v(k)w∗(k)]

∣∣∣∣∣∣ ≤ 2d
∑

k∈BR1\BR
|v(k)w∗(k)| (4.28)

≤ 2d
∑

k∈BR1\BR
|dn(k)|2 ≤ 10dε. (4.29)
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The last two inequalities follow from the definition ofφ, φ1 in (4.18), (4.19), and (4.4)of Proposition 4.1. To
bound the second and third terms in(4.27)we further restrictφ, φ1 by requiring

φ(k) =
{

1, if k ∈ BR+1

0, if k ∈ Zd \ BR1−1
, (4.30)

φ1(k) =
{

1, if k ∈ Zd \ BR1−1

0, if k ∈ BR+1
, (4.31)

and(4.20). Clearly, such functions exist and satisfy(4.18), (4.19). Using(4.30), (4.31)we bound the second term
of (4.27)as∣∣∣∣∣∣

d∑
j=1

∑
k∈Zd

Re
[
(Tjv)(k)w

∗(k)
]∣∣∣∣∣∣ ≤

d∑
j=1

∑
k∈BR1\BR

|(Tjv)(k)w∗(k)| (4.32)

≤ d‖v‖l2


 ∑
k∈BR1\BR

|w(k)|2



1/2

≤
√

(Γ + 7ε)5ε. (4.33)

The last inequality follows from(4.10). The third term of(4.27)is estimated very similarly and we obtain the bound
of (4.33). We therefore have that

|q(v,w)| < K(c, d, δ)
√
ε. (4.34)

(Note that we can also obtain an O(ε) bound by a few extra steps, but this is not necessary.)
To estimateQ1 of (4.24)we write

Q1 = γ
1

T

∫ T

0
2(Q1(I) +Q1(II) +Q1(III) ) dt, with (4.35)

Q1(I) =
∑
k∈BR

|vt(k)|2|wt(k)|2, (4.36)

Q1(II) =
∑

k∈BR1\BR
|vt(k)|2|wt(k)|2, (4.37)

Q1(III) =
∑

k∈Zd\BR1

|vt(k)|2|wt(k)|2. (4.38)

We further restrictφ, φ1 by requiring

φ(k) =
{

1, if k ∈ BR+((R1−R)/2)−1

0, if k ∈ Zd \ BR+((R1−R)/2)+1
, (4.39)

φ1(k) =
{

1, if k ∈ Zd \ BR+((R1−R)/2)+1

0, if k ∈ BR+((R1−R)/2)−1
, (4.40)
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and(4.20). Clearly, such functions exist and satisfy the properties(4.18), (4.19), (4.30), (4.31)used above. To bound
Q1(I) of (4.36)we first note that

|Q1(I)| ≤
(

sup
k∈BR

|vt(k)|2
) ∑
k∈BR

|wt(k)|2 ≤ c2
∑
k∈BR

|wt(k)|2. (4.41)

We also have

∑
k∈BR

|wt(k)|2 =
∑
k∈BR


∑
m∈Zd

G(k −m)w(m)




2

=
∑
k∈BR


 ∑
m∈Zd\BR+((R1−R)/2)

G(k −m)w(m)




2

≤
(

sup
m∈Zd

|w(m)|
)2 ∑

k∈BR


 ∑
m∈Zd\BR+((R1−R)/2)

|G(k −m)|




2

≤ c2
∑
k∈BR


 ∑
m∈Zd\BR+(R1−R)/2

|G(k −m)|




2

≤ c2(2R+ 1)d sup
k∈BR


 ∑
m∈Zd\BR+(R1−R)/2

|G(k −m)|




2

. (4.42)

Applying (4.16)in Lemma 4.5to r = R, r1 = R+ (R1 − R)/2, and(4.1) in Proposition 4.1, (4.42) becomes

∑
k∈BR

|wt(k)|2 ≤ K(c, d,Λ)(R1 − R)d
(

Λ(R1−R)/2

((R1 − R)/2)!

)2

<
K(c, d,Λ)

(R1 − R)
. (4.43)

By (4.41), (4.43)we therefore have

|Q1(I)| < K(c, d,Λ)ε. (4.44)

To boundQ1(III) of (4.37)we use

|Q1(III) | ≤
(

sup
k∈Zd

|wt(k)|2
) ∑
k∈Zd\BR1

|vt(k)|2 ≤ c2
∑

k∈Zd\BR1

|vt(k)|2. (4.45)
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We have

∑
k∈Zd\BR

|vt(k)|2 ≤
∑

k∈Zd\BR1


∑
m∈Zd

G(k −m)v(m)




2

=
∑

k∈Zd\BR1


 ∑
m∈BR+((R1−R)/2)−1

G(k −m)v(m)




2

≤
(

sup
m∈Zd

|v(m)|2
)2 ∑

k∈Zd\BR1


 ∑
m∈BR+(R1−R)/2−1

|G(k −m)|



2

≤ c2
∑

k∈Zd\BR1


 ∑
m∈BR+(R1−R)/2−1

|G(k −m)|



2

. (4.46)

Applying (4.17)in Lemma 4.5to r = R+ (R1 − R)/2 − 1, r1 = R1, and(4.1) in Proposition 4.1we have

∑
k∈Zd\BR1


 ∑
m∈BR+(R1−R)/2−1

|G(k −m)|



2

<
K(c, d,Λ)

(R1 − R)
. (4.47)

By (4.45)–(4.47)we therefore have

|Q1(III) | < K(c, d,Λ)ε. (4.48)

To boundQ1(II) of (4.36)we let

V = {k ∈ Zd : k ∈ BR+(R1−R)/2 \ BR}, (4.49)

V1 = {k ∈ Zd : k ∈ BR1−1 \ BR+(R1−R)/2},

i.e.V ∪ V1 = BR1 \ BR. We can then write

Q1(II) = Q(IIA) +Q(IIB) , with (4.50)

Q(IIA) =
∑
k∈V

|vt|2|wt|2, Q(IIB) =
∑
k∈V1

|vt|2|wt|2. (4.51)

To estimateQ1(IIA) we use

Q1(IIA) =
∑
k∈V

|vt(k)|2

 ∑
k∈Zd\BR+((R1−R)/2)−1

G(k −m)w(m)




2

, (4.52)

and further

|Q1(IIA) | ≤ Q1(IIA1) +Q1(IIA2) , with (4.53)
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Q1(IIA1) =
∑
k∈V

|vt(k)|2

 ∑
m∈Zd\BR1−1

G(k −m)w(m)




2

. (4.54)

Q1(IIA2) =
∑
k∈V

|vt(k)|2

 ∑
m∈BR1−1\BR+(R1−R)/2−1

G(k −m)w(m)




2

, (4.55)

ForQ1(IIA1) we have

|Q1(IIA1) | ≤
(

sup
m∈Zd

|w(m)|
)2∑

k∈V
|vt(k)|2


 ∑
m∈Zd\BR1−1

|G(k −m)|




2

≤ c2


sup
k∈V


 ∑
m∈Zd\BR1−1

|G(k −m)|




2

(∑
k∈V

|vt(k)|2
)
. (4.56)

Using(4.16)in Lemma 4.5with r = R+ (R1 − R)/2,r1 = R1 − 1, and(4.1)in Proposition 4.1, (4.56) becomes

|Q1(IIA1) | < K(c, d,Λ)ε. (4.57)

Also,

|Q1(IIA2) | ≤
∑
k∈V

|vt(k)|2

∑
m∈V1

|G(k −m)|2
∑
m∈V1

|w(m)|2



≤ Kε sup
k∈V


∑
m∈V1

|G(k −m)|2

(∑

k∈V
|vt(k)|2

)
< K(c)ε. (4.58)

We have here used the definition ofw, and(4.4) in Proposition 4.1. ForQ1(IIB) we have

|Q1(IIB) | ≤ |Q1(IIB1)| + |Q1(IIB2)|, with (4.59)

Q1(IIB1) =
∑
k∈V1

|wt(k)|2

∑
m∈BR

G(k −m)v(m)




2

, (4.60)

Q1(IIB2) =
∑
k∈V1

|wt(k)|2

 ∑
m∈BR+(R1−R)/2\BR

G(k −m)v(m)




2

. (4.61)



228 P. Panayotaros / Physica D 206 (2005) 213–231

We have

|Q1(IIB1)| ≤
(

sup
m∈Zd

|v(m)|
)2 ∑

k∈V1

|wt(k)|2

∑
m∈BR

|G(m− k)|



2

≤ c2

(
sup
m∈Zd

|wt(m)|
)2 ∑

Zd\BR+(R1−R)/2


∑
m∈BR

|G(m− k)|



2

. (4.62)

Using(4.16)in Lemma 4.5with r1 = R+ (R1 − R)/2, r = R, and(4.1) in Proposition 4.1, we therefore have

|Q1(IIB1)| < K(c, d,Λ)ε. (4.63)

Also,

|Q1(IIB2)| ≤
∑
k∈V1

|wt(k)|2
(∑
m∈V

|G(m− k)|
)2(∑

m∈V
|v(m)|

)2

< K(c, d,Λ)ε, (4.64)

where in the last inequality we have used(4.4) in Proposition 4.1. By (4.56)–(4.58), and (4.57), (4.63), (4.64)we
therefore have

|Q1(II) | < K(c, d,Λ)ε, (4.65)

Collecting(4.44), (4.48), (4.65)we have

|Q1(v,w)| < K(c, d,Λ)ε. (4.66)

The estimate forQ2 in (4.25)is immediate: (Re(vt(k)wt(k)))2 ≤ |vt(k)|2|wt(k)|2 and(4.66)yield

|Q2(v,w)| ≤ 1
2|Q1(v,w)| < K(c, d,Λ)ε. (4.67)

Also, by(4.26) and (4.66)we have

|Q2(v,w)| ≤

∑
k∈Zd

(
|vt(k)|2 + |wt(k)|2

)2




1/2
∑
k∈Zd

(Re(vt(k)wt(k)))
2




1/2

< K(c, d,Λ)
√
ε. (4.68)

Adding the estimates forq,Q1,Q2, andQ3 we obtain(4.11)in the lemma.
Note that in the (local) discrete NLS case, whereLt is the identity, theProof of Lemma 4.2is significantly shorter.

Sincevt = v, wt = w, the definition ofφ, φ1 in (4.39)–(4.40), andProposition 4.1readily imply that the overlap
termsQ(I)–Q(III) in (4.35)–(4.38)are of O(ε). �
Proof of Lemma4.5. The details are somewhat laborious but elementary, and we will only give an outline, stressing
the decomposition of the setBcr1 = Zd \ Br1, d > 1 appearing in the sums of(4.16), (4.17)(The cased = 1 is simple
and we omit the details.) In particular, we letd > 1 and writeBcr1 = Bcr1(d) ∪ Bcr1(d − 1) ∪ · · · ∪ Bcr1(1), where
Bcr1(j) is the set of all multi-indices [k1, . . . , kd ] ∈ Bcr1 that havej components with absolute value greater thanr1.
We first consider(4.16). We will break the inner sum into sums over theBcr1(j). Note that by using appropriate
combinatorial constants that depend onj, d, we can replace estimates of sums over theBcr1(j) by estimates of sums
over the sites with multi-indices satisfying|k1|, |k2|, . . . , |kj| > r1. We see that

sup
k∈Br


 ∑
m∈Bcr1(j)

|G(k −m)|



2

≤ K(d, j,Λ)Cd−jDj, with (4.69)
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C = sup
|k1|≤r1

(
Λ|k1−r1|

|k1 − r1|! + Λ|k1+r1|

|k1 + r1|!

)2

, (4.70)

D = sup
|kd |≤r1


 ∑

|md |>r1

Λ|kd−md |

|kd −md |!




2

. (4.71)

(K(α, β, . . .) is a constant depending onα, β, . . .. Also, the indicesk1, kd ,md in C,D are integer; the same notation
is used inA, B below.) We can easily see that

C ≤ K(d)

(
Λ|r1−r|

|r1 − r|!
)2

, D ≤ K(Λ), (4.72)

so that collecting(4.69)–(4.72)we obtain the bound in(4.16). For (4.17), we use the same decomposition ofBcr1
and similar combinatorial considerations in estimating sums over theBcr1(j). We see that

∑
k∈Bcr1(j)


∑
m∈Br

|G(k −m)|



2

≤ K(d, j)AjBd−j, with (4.73)

A =
∑

|k1|>r1


 ∑

|m1|>r

Λ|k1−m1|

|k1 −m1|!




2

, (4.74)

B =
∑

|kd |≤r1


 ∑

|md |≤r

Λ|kd−md |

|kd −md |!




2

. (4.75)

We have that

A ≤ K(d,Λ)

(
Λ|r1−r|

|r1 − r|!
)2

. (4.76)

To estimateB in (4.75)we split the inner sum into sums over(i) |kd | ≤ r1, estimated byK(Λ)(2r + 1), and(ii)
r < |kd | ≤ r1, estimated byK(Λ). Then,

AjBd−j ≤ K(Λ, d)

(
Λ|r1−r|

|r1 − r|!
)2j (

K(Λ, d, j)(2r + 1)d−j + · · · +K(Λ, d,0)
)
. (4.77)

Collecting(4.73)–(4.77)and using 2r + 1 ≤ r1 − r, r1 − r ≥ 1 we obtain(4.17). �
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Appendix A

We outline the proof of the continuity of̄H : X → R. This property is used inTheorem 2.1. In Proposition 2.2
we also use that̄H is (Frechet)C1 in X; the proof uses similar standard tools and is omitted. (The notation here is
as in Section2.)

A useful observation for handling the quartic part ofH̄ is thatτ �→ Lτ is norm-continuous in [0, T ]. This allows
us to view the integral

∫ T
0 as a Riemann integral and pass norms inside the integral. In particular, recall that by the

assumptions onDwe have a finite number of intervalsI0 = [0, τ1], I1 = (τ1, τ2), . . ., In = (τn, T ] so that wherẽd is
continuous in each̄Ij. By the fact that
 is bounded, the mapst �→ d̃(t)
 ∈ L(X) are therefore strongly continuous
in all the intervals̄Ij. (L(X) is the set of bounded linear operators onX.) We can then use the following.

Lemma A.1. Consider the non-autonomous initial value problemut = A(t)u, u(t0) = u0 ∈ X,withA(t) ∈ L(X),
∀t ∈ [t0, t1]. Assume thatt �→ A(t) ∈ L(X) is strongly continuous in[t0, t1]. Then there exists a unique 1-parameter
norm-continuous semigroup of bounded linear operatorsU(t, t0) ∈ L(X), t ∈ [t0, t1], withU(t, t0)u0 satisfying the
initial value problem in[t0, t1].

Lemma A.1is proved in[9], chap. 7.1(see also[7], chap. 5.9). Applying the lemma to the initial value prob-
lem for the equationut = d̃(t)
u in the intervalsĪj, i.e. with A(t) = d̃(t)
u, we have thatU(τ, τj) = Lτ,τj =
exp(i

∫ τ
τj
d̃(s) ds∆), τ ∈ Īj, j = 0, . . ., n. It is easy to check that ifτ ∈ Īk thenLτ = Lτ,τkLτk,τk−1 . . . Lτ1,0,∀k ∈

{0, . . . , n}, and that thereforeτ �→ Lτ is norm-continuous, for allt ∈ [0, T ]. We then have:

Lemma A.2. The functionH̄ : X → R is Lipschitz continuous on every bounded subset of X.

Proof. First consider̄H0(u) = ∑d
k=1 ‖Dk,+u‖2, the quadratic part of̄H . Consider the cased = 1 and let (T+u)n =

un+1, n ∈ Z. Expanding|un+1 − un|2 − |vn+1 − vn|2 and lettingu, v ∈ X we compute that

|H̄0(u) − H̄0(v)| ≤ 2(|〈u− v, u〉| + |〈u− v, v〉| + |〈T+(u− v), v〉| + |〈u− v, T+v〉|)
≤ 4(‖u‖ + ‖v‖)‖u− v‖. (A.1)

Ford ≥ 1,u, v ∈ X imply

|H̄0(u) − H̄0(v)| ≤
∣∣∣∣∣
d∑
k=1

(‖Dk,+u‖2 − ‖|Dk,+v‖2)

∣∣∣∣∣ ≤ 4d(‖u‖ + ‖v‖)‖u− v‖, (A.2)

where in the last inequality we have repeated the steps leading to thed = 1 estimate.
Also, consider the quartic term̄H2 defined by (γ/T )H̄2 = H̄ − δH̄0. Givenu ∈ X, define the maphu : [0, T ] →

R byhu(τ) = ‖Lτu‖4
l4

. The maphu is the composition ofAu : [0, T ] → X, defined byAu(τ) = Lτu, andG : X →
R, defined byG(ψ) = ‖ψ‖4

l4
. Applying Lemma A.1toLτ as above, the mapAu is continuous in [0, T ]. To see the

continuity ofG, we calculate that for anyψ, χ ∈ X

|G(ψ) −G(χ)| =
∣∣∣∣∣∣
∑
n∈Zd

(|ψn|2 + |χn|2)[(ψn − χn)ψ
∗
n − χn(ψ

∗
n − χ∗

n)]

∣∣∣∣∣∣
≤ (‖ψ‖2 + ‖χ‖2)(‖ψ‖ + ‖χ‖)‖ψ − χ‖. (A.3)

Therefore, the compositionhu is also continuous,∀u ∈ X. Letting v, w ∈ X and using the triangle inequality for
the Riemann integral we then have

|H̄2(v) − H̄2(w)| =
∣∣∣∣
∫ T

0
(hv(τ) − hw(τ))dτ

∣∣∣∣ ≤
∫ T

0
|(hv(τ) − hw(τ))|dτ. (A.4)



P. Panayotaros / Physica D 206 (2005) 213–231 231

Estimating the last term as in(A.3) and using the fact thatLτ is an isometry,∀τ, we then obtain

|H̄2(v) − H̄2(w)| ≤ (‖v‖2 + ‖w‖2)(‖v‖ + ‖w‖)‖v− w‖. (A.5)

The statement follows by combining(A.2), (A.5). �
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