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Abstract

We show the existence of localized breather solutions in an averaged version of the discrete nonlideangsctequation
(NLS) with diffraction management, a system that models coupled waveguide arrays with periodic diffraction management
geometries. The breather solutions are constrained extrema of the Hamiltonian of the averaged system and their existence is
shown by a discrete version of the concentration-compactness principle. The main assumptions are that the averaged diffraction
is sufficiently small (compared to strength of the nonlinearity) and that the sign of the nonlinearity corresponds to the focusing
case. An interesting feature of the problem is that the nonlinear interaction between neighboring lattice sites can be large and
is of infinite range. On the other hand, the interaction decays rapidly at sufficiently large distances, and this plays an important
role in the proof. The results also apply to higher dimensional lattices, and to the discrete NLS equation.
© 2005 Elsevier B.V. All rights reserved.

MSC:37J45; 53C22; 70F16
PACS:42.65Sf; 45.20.Jj

Keywords:Nonlinear Schiadinger equations; Discrete breathers; Variational methods

1. Introduction

The study of the dynamics of nonlinear lattice systems has a long history, e.g. in models of solids, and in recent
years discrete systems have found many applications in nonlinear optics (S€g1&}y. In the present work we
consider an array of coupled waveguides with the zigzag diffraction management geometry introd8teadh
study coherent structures using as a starting point the mogg] of

Oty = 1D()(upy1 — 2up + up—1) — 2iy(g(@))n, (g))n = |an|zaru (1.1)
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with u,, the complex amplitude (of the electric field) at the site Z, andD a T-periodic function with averagé

and oscillating partl. System(1.1)is also a discrete version of the cubic nonlinear 8dhmger (NLS) equation

with dispersion management, and as in the continuous equation one of the main technological motivations behind
the diffraction management idea is to produce and control low power coherent structures.

Problems of interest fql.1) include the existence and stability of localized periodic or quasi-periodic solutions
(found numerically if3]), and multi-bump solutions and their interactions. A technical complication is the fact that
(1.1)is a non-autonomous system. To obtain some possible insight into the above problems we will approximate
(1.1) by the autonomous (but “nonlocal”) system

T St
Oan =15(Aa)y = 2iy (L@, (gL(@)n = %fo (Ltg(Lea)adr,  (Ly = (€01OC40),, (1.2)

with (Aa),, = a,+1 — 2a, + a,—1. The relation between the solutiong(tfl) and (1.2ill be discussed in Section
2. We will see that approximatin(..1) by (1.2) involves an averaging argument that is similar to the one used in
the continuous NLS with dispersion management [$8¢l]).

We will show that for|s|/|y| sufficiently small andsy < O, the averaged Ed1.2) has localized breather-
type solutions. The result also holds for the analogudld?) in integer lattices of arbitrary dimension. The
proof we give is variational and rests on the interpretation of the breather solutions as constrained minima (for
y < 0) of the Hamiltonian of(1.2). The constraint is thé; norm. The argument is a discrete version of the
concentration-compactness principle (see E.8,5]). A similar strategy was used {19] for the local discrete
NLS equation, and also for the nonlocal nonlinearity in the continuous versigh.®f ([20], see alsd14]).
In the nonlocal discrete case the main effort goes into controlling the value of the Hamiltonian in the overlap
between distant bumps and thus assuring that minimizing sequences cannot split. The corresponding estimate
rely on the fact that the nonlinear interaction between sufficiently distant sites decays rapidly. Once the min-
imizer is shown to converge the problem is simpler that its continuous counterpart, and the dimension of the
lattice only affects the condition on the size |6f/|y|. In the limit of constanD the operator.; becomes the
identity and we recover the local discrete NLS. In that case we also expect thélt/fet sufficiently small we
can obtain the existence of breathers by the continuation argumef8gsl8f. It seems that an advantage of the
variational approach here is that it allows us to handle more general nonlinear interactions between neighboring
sites.

The paper is organized as follows. In Sectibwe set the notation, outline the steps leading from the original
model(1.1)to the averaged Eq1.2) and state and discuss the results. In Seciare present an outline and the
first part the proof of the existence of breathers, examining convergent and vanishing minimizing sequences. In
Section4 we show that a minimizing sequence cannot split, and must therefore have a subsequence converging tc
the infimum (up to translations).

2. Discrete NLS equations and breathers

We consider the lattice of integeFs and complex valued functionsr) on Z that evolve according to the
non-autonomous system

u = iD(0)Au — 2iyg(u), (2.1)
where

(Au)j=ujyr—2uj+uj1, gju)=lujuj, 2.2)
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and f; is the value off : Z — C at the sitg. The functionD is real valued ang is a real constant. We further
assume thab is T-periodic, and we decompose it as

~ 1 /T
D(t) =8+d@F), with §= 7./0 D(t)dr (2.3)

the average. Physically, the “timeéin (2.1) is the distance along the waveguides, while the “spatial varigloé”
(2.1)is the transverse direction (more precisely the index of the waveguide, sg e Blodel(2.1)was proposed
by [3]. Also, u, is the complex amplitude of (any) one of the components of the electric field at time ke initial
conditionu(rg) for (2.1) is the emitted light and to simplify the notation we may consider initial datg &t0,
shifting d(¢) if necessary.

In this work we study an approximate autonomous system derived by an averaging argument. To obtain the
averaged equation we rewrit2.1) using the variable(r) defined by

A ~ t,.,
a() = L7 (), with L, =404 and A@r) = / d(r) dr. (2.4)
0

By (2.1), the evolution equation fat(z) is then
da =i8Aa — 2iyL  g(L,a), (2.5)

with the initial conditiona(0) = u(0). Note thatL; * = e=14®4 and that the right hand side (&.5)is T-periodic.
Eq.(2.5)is then replaced by the averaged equation

_ — 1T
dra = i8Aa — 2iygr(a), with gr(a) = T / Lr_lg(Lta) de. (2.6)
0

The distance between the solutiong26) and (2.6tan be estimated using averaging arguments and we expect
that for|y|, |8] of O(e), |¢] small, andw = 27/ T > 0 of at least O(1), solutions of the two systems that correspond
the same O(1) size initial conditions should stay)@{ose for a time of O("1) (Distances are measured in the
norm defined below.) The steps are the ones leading to the averaging the¢i&j modified for flows in/,, i.e.
the requisite Lipshitz continuity properties of the right hand sides are the same. Alternative approaches are e.g. in
[17,20,14]

The above definitions and notation can be extended to the case wiaerda are complex valued functions on
Z%,d > 1. In particular, letD; ; (D) denote the forward (backward) first order difference operators along the
kth direction, and set\; = Dy + Dy _ andA = ZZ:l Ag. Clearly, ford = 1, the new definition ofA agrees with
the one in(2.3).

Remark 2.0.1. The diffraction management idea is also meaningfulfes 2, although the particular “isotropic”
diffraction managemend(r) A here may be too restrictive. In the special case of the local discrete NL& ~h2
problem is already of physical interest (see &§).

We look for localized solutions ®.6)that have the form(r) = e "* A, for somex € R. We refer to these periodic
orbits as breathers. B2.6), we must then findi : Z¢ — C that satisfies

AA = —SAA + 2ygL(A) (2.7)

and decays at infinity.
The strategy will be to use the variational structure of the equation. Consider the standard hermitian inner product
(u, v)p =), czd unv; ON pairs of complex valued functionsv onz<. Also letX bely = lg(Zd, C), the real Hilbert
space of square summable complex valued functio®amith the inner product:, -) given by(u, v) = Re(u, u)p,
u, v € X (i.e. we identifyC with R? and use the complex notation for convenience). The nprihof u € X is
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lull = llulli, = (Refu, u))?,u € X. Similarly, |et||u||;; =Y czd lun|* (< 0 if u € X). We define the functional
H onX by
_ d 1 T
HE) =3 1D 0l + v /0 1Ll dr, 2.8)
k=1

and look for critical points off inthe set, = {v € X : ||lv] = ¢}. We will show the following:

Theorem 2.1. Consider the functional above withs > 0 andy < 0. Assume thati) D is piecewise continuous
and bounded of0, T], and (i) that givenc > 0, there existg. > 0 for which§/|y| < . Then the infimum off
on X, is attained

Remark 2.1.1. The constani: depends on the dimensiah the functiond, andc. We will see that that the sign,
and relative size assumptions &ry imply that, given any: > 0, the infimum ofH on X is strictly negative. This
property is crucial for the proof.

Remark 2.1.2. Condition (i) onD here means that eith&ris continuous in [0T], or there exists a finite number
of points0< 71 < --- < 1, < T so thatD is continuous in each of the closed intervalsd(, .. ., [t,, T]. ThusD
can at worst have (finite) jump discontinuities at a finite number of points,df)(dn the physical examplds is
piecewise constant.

The Euler—Lagrange equation corresponding to the ab_ove variational problem is prcigeNote in particular
thatL;1 = LI, the adjoint ofL, in X. We also see that thal is C in X. Standard arguments therefore yield:

Proposition 2.2. Leta € X, satisfyﬁ(c”z) =infyex, ﬁ(v). Then there exists a € R for which A = a satisfies
(2.7).

The proof ofTheorem (2.1vill be given in the next two sections; we here make some basic observations. First,
note thatH and thel, norm are invariant under (i) translationss, and (ii) the circle action — €%v, ¢ € R,
Thus, if @ is a minimizer ofH on X, the integer translates af and points on the circle'%, ¢ € R are also
minimizers.

A consequence of the variational characterization of breather solut{gns e 1% A of (2.5)with Aa minimizer
of H on X, is that they also satisfy a stability property. To make this precise consider the corresponding breather
periodic orbit (i.e. invariant circley.(A) (i.e. seen a subset &f.). Note that the initial value problem f@2.6) has
global solutions:(r) in CO(R, I,). This follows from the Lipschitz continuity of the right hand side(f6) and the
conservation of thé& norm. We can therefore consider the evolution of the distance between a breather invariant
circle y.(A) and a solutior(r) that starts neay.(A). We have the following.

Proposition 2.3. Let I'.(A) be an isolated set of breather invariant circles corresponding to a minimizerAaf
X. as aboveAlso leta(r) be a solution of2.6) with initial conditionag. Then givere > 0 there existsg > 0 for
whichsugcepc(A) llag — xllz, < €o impIiessugceFC(A) la(t) — x|, < €,Vt € R.

The geometrical ideas behind the proof are simple and we will not give the details here. Note however that the
proposition does not imply that individual invariant circles corresponding to minimizers are orbitally stable. For this
it would be sufficient to show that such invariant circles are isolated. The numerical evid¢Blcstiggests that this
is probably the case. We note that in the special case of the local NL3d\yith| small where the periodic orbits
can be approximated explicitly we expect that we can apply ideas from perturbation theory to obtain Nekhoroshev
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stability results (sef4]). A further question is the existence of other critical point$fodn X, e.g. saddles. Some
interesting suggestions for the discrete NLS arg 1.

We also remark that the proof @heorem (2.1)n the higher dimensional case is not significantly different from
the one-dimensional one (itis only more involved at a few points). On the other hand, the resultis interesting from the
point of view of possible “higher-dimensional time” extensions of dynamical concepts relevant to one-dimensional
lattices (e.g. homoclinic orbits, multi-bump solutions, shadowing, etc.).

Remark 2.3.1. We have not considered here the problem of finding breather solutionsdpen0 is fixed and
cvaries, e.g. setting = —1 and fixingé > 0. The existence of breathers of arbitrgrynormc is then subtle since

the infimum of H on X . may fail to be strictly negative. In the case of the discrete NLS the question is settled in
[19], where it was shown thatdf > 2 then the infimum oH on X, is negative only it is above a certain threshold.

Remark 2.3.2. Theorem 2.kan be equivalently restated for the case wldete0, y > 0. Then, givert > 0, and

assuming thats|/|y| < u, the functionalH attains its supremum ove¥.. The constang is exactly the one in
Theorem 2.1and the alternative statement follows immediately by applyihgorem 2.1to —H and using the
conditions of the theorem onés, —y. In the case wherg y > 0 (< 0) we see in the next sectioRé¢mark 3.2.2

that the infimum (supremum) df on X, can not be attained.

3. Minimizing sequences: vanishing and convergent cases

We now outline the steps of the proof theorem (2.1)We start with a minimizing sequend¢e, } € X. (See
the remark on notation after the present paragraph®pipendix Awe show thatd is continuous inX = I, and
it is therefore sufficient to find a subsequencdmf} that converges strongly . To see that this is the case we
distinguish three possibilities for the minimizing sequence. First we obseRmjosition 3.2hat the supremum
of |a,(j)| over j € Z4 is bounded away from zero. Translating theso that the maxima dfz,| are at the origin,
we define a numbeF > 0 that indicates the portion of tig norm ofa, that stays concentrated around the origin
asn — oo. In the casd™ = ¢? we show in Proposition 3.3 thdt,} has a convergent subsequence. It therefore
remains to eliminate the cage< 2, and we do this in Sectiod. Intuitively, I" < ¢Z corresponds ta,, splitting
into pieces that carry away to infinity nontrivial portions of theworm ofa,, asn — oo.

Notation: Let U be a subset dR?, and a functionf : U — C. In this and the next sectiofi(j) will denote the
value off at the poinj. Subscripts will from now on denote indices in a sequence, e.g.@sdhove.

As a preliminary step we give an explicit expression and a basic estimate for the ofgratat4()4 of (2.4).

Lemma 3.1. LetL, : X — X be the operator defined i{2.4), and letv € X. Then

(Lyv)(n) = Z Gi(n —m)v(m), neZ¢ with (3.1)
mezd
.~ d ~
Gi(y) = e MO0 7, AW),  y=Iy.-...val € Z% (3-2)
j=1

andJ, the Bessel function of integer order> 0. (The dependence 6f; on the function is suppressed from the
notation) Alsg,

d

G <]

J=1

|A(r)| P!

o Vy=[y1....ya] € Z%. (3.3)
il
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Proof. Let /¢ = [—nx, 7]¢ and define the semi discrete Fourier transfdfmX — Ly(1¢, C) by

k) =Y e ®mum), kel (3.4)

nezd

i.e. we use the notatian = Fu. Fis an isometry with inversg¢—* defined by

u(n) = oy /[_M]d domik)dky---dkg, n ez (3.5)
We compute
. d k:
(Au)(k) = —4 (Z sin? Ef) a(k), k=1[kw ..., ka. (3.6)
j=1
hence
(La)(n) = > Gy(n —m)u(m), with (3.7)
mezZd
1 d i sir?
Gi0) = Gy /Ig /lj[l(e'km e MAOSTPEI/Dy gy odky, = [yas . val. (3.8)

But

/71 eikjyj e_i4}x(z) sin?(k;/2) dkj — e—iZA(,) /” eikjj eiz}x(z) cosk; dkj
—TT —TT
e 1240 ”eiz}x(z) cosk; Nyl ami2A() ~
=— /0 7 cos|yjlk;dk; = (i)' e Jiy;1(2A(1))

(3.9)

by the definition of7),, the Bessel function of integer orderBy (3.8), (3.9)and Fubini we immediately obtain
(3.2). The bound onG,(y)| follows from the definition ofG,(y) and the basic inequality

2|P
@< 5 veec, p=012...

for the Bessel functions (see e[8]). |

Proposition 3.2. ConsiderH as in(2.7)with § > 0,y < 0. Let{u,} be sequence iX . possessing a subsequence
{v,} satisfyinglim,,_, o SUP;czd [vp| = 0. Then there exist8y > 0 for which§ < §g implies that{u, } cannot be
minimizing sequence fdd in X..

Proof. Letv(0) = ¢, v(j) = O for j # 0. We havev € X... Using(3.9), and the facts thati(0) = 0, | 7o(0)| = 1,
we see that ify < 0, then

1T C4T .
y—/|wmmmsy—f|%mmww<a (3.10)
T Jo T Jo
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ThenI-_I(v) < 0 for§ > 0 sufficiently small and therefore the infimum Bfin X_ is strictly negative. On the other
hand, consider the subsequefigg whose maximum ovez? goes to zero as above. We observe iab, ||;‘4 -0
asn — oo, uniformly inr € [0, T]. This is because

ILivnllf < SUPI(Levn)(DPILivalIE < A(supl(Liva)(j)I)? (3.11)
jezd jezd

sinceL, preserves the& norm,vz. From(3.3), the kernelG, is absolutely summabhe, and by(3.11)we have

1 (7 .
?/ 1Ll dr < 2KR)(suplua(j))2 — 0 as n — oo, (3.12)
0 jezd

with the constank (A) depending on SYPo, 7] | A(t)]. Thus the quartic part off vanishes and since the quadratic
part is nonnegative by > 0 we have that infex, H(z) > 0, a contradiction. [

Remark 3.2.1. The above proof makes it clear that the conségrtepends o, the dimensior, and the function
8. For§ = 0 (y < 0) the fact that the infimum off on X, is strictly negative is automatic. In the case whére

is fixed however, finding a trial function € X, with H(v) < 0 could be difficult or impossible (i.e. if there is a
threshold), and one would require an approach similar to the ofi®]n

Remark 3.2.2. The arguments dProposition 3.2also show that iy > 0, § > 0 then the infimum off on X,
cannot be attained. To see this define the sequen¢dy a, (k) = (21 + 1)~ @3¢, if k1| <n, ..., lkqg| < n, and
an (k) = 0 otherwise k = [k1, ..., kq] € Z¢). We have that|a, || = c, for all n, moreover SUR.za lan(j)l — O as
n — oo. Computing the quadratic part &f and using the argument i{3.12) we then see thakl(a,) — 0 as
n — oo. Similarly, if 5y > 0,8 < 0 the supremum off on X, is not attained.

Corollary 3.3. Leté < §p, with §g as inProposition 3.2Then if{u,} C X, is a minimizing sequence féf in X,
we have that for every subsequencéwgf of {u,} there exista > O for WhiChSUpjezd v, ()] = a, Vn.

Let {a,} be a subsequence of a minimizing sequence &oillary 3.3 For each index we can translate,
so that the supremum af, () over j € Z¢ is attained aj = 0. We refer to this new sequence fay,} (by a slight
abuse of notation). We therefore haug(0)| > ¢, Vn. We will construct a notion of “asymptotic mass in a bounded
region” to characterize the behavior{af, }. We first establish some basic notation.

LetB, = {k € [k1, ..., kq] € Z¢: kil <rj=1,....d},m(an,r) = 1cp, lan (k)|2. Letr = 1. We can extract
from {a,} a subsequencf:}} for which m(al, r) converges. We proceed inductively, increasingiven {a’}
with m(al,, r) convergent we extract a subsequetie&™!} of {a’} for which m(a’, r) is convergent. We thus
obtain a sequence of subsequen{zé,s} D .- D{a,} D --- of the minimizing sequencgs,} € X.. We also let
m, =1lim, oo m(a,, r),r > 0. The sequende:,} is bounded above by, and it easy to check that is also increasing.
We therefore defing” by

r=lim m,. (3.13)
r—00
The definition and the above construction implies that @ < ¢2. In Proposition 3.5ve see that ifl” = ¢? then
the original minimizing sequende:,,} has a convergent subsequence. On the other hand, in the next section we
show thatl” < ¢2 implies that{a,} can not be a minimizing sequence.

Remark 3.3.1. Note that the definition of” depends on the subsequenfgg we choose as we increasdt will
become clear however that the conclusions following from the valueé arfe independent of this choice.
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Proposition 3.4. Consider{a,} in X, and I" as aboveSuppose thaf” = ¢2. Then there exists a subsequence
{a,} of {a,} satisfying that for every > 0, there exist RN > 0 for whichn > N implies

=" lan(k)® < e. (3.14)

kEBR

Proof. Consider the subsequenc{eé} D---Df{a)} D of {a,} and letd, = a4, n > 1 define the diagonal
sequencéd, }. Clearly,{d,} is a subsequence ¢d,}. By the definition ofI", and the assumptiofi = ¢2, given
anye > 0 we can findR for which

|c® — mg| < % (3.15)

By the definition ofd, we can also finav > 0 for whichn > N implies

> () = me| < 3. (3.16)

keBgr

Combining(3.15), (3.16)we have(3.14)with a,, = d,. O

Proposition 3.5. Consider{a,} in X., I" as above Suppose thaf” = ¢2. Then{a,} has a subsequence that
converges to an elemedte X, .

Proof. We consider the diagond,,} defined inProposition 3.4and

ldny = duollfy = Y |duy (k) = duy () 1P+ Y 1y (k) — dip (R)1°. (3.17)

keBR kezd\Bg

Lete > 0. By Proposition 3.4ve can choos®, N’ > 0 so that the second term can be bounded as

D dn () —dny(®P = D Hd R+ Y 1dey (0 (3.18)
kezZd\Bg keZ4\Bg keZ4\Bg
= (= > Nan, ()1 + (2= Y lan, (K)?) < 2e, (3.19)
keBg keBgr

for n1, np > N’. Since the restriction af, to any B, is convergent, we can cho®&’ > 0 for whichny, no > N”
implies.

D Ndny (k) = diy (k)% < €. (3.20)
keBpr

Combining(3.17)—(3.20we see tha{d,} is Cauchy and hence convergentinSince|d, |1, = ¢, Yn, the limit
belongs taX,. |

4. Minimizing sequences: splitting case

We now consider the case whelfes ¢2, and show that the sequengsg } can not be a minimizing sequence.
The sequencefy, }, {a,}, andI" are as deflned afteCorollary 3.3and we also use the diagonal sequefitg
defined in the proof oProposition 3. 4H is as inTheorem 2.5and we also left = maX.e[o,7] A(7). By assumption
(i) of Theorem 2.1 A is finite.
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Proposition 4.1. Consider the sequencés, }, {a),}, r > 1, and the diagonald,} as abovewith I" < c2. Also let
p = p(R, R1) = (R1 — R — 2)/2. Then for everye > Othere existR1 > R > 0 satisfying

Appd+l 1
o <1 3R+ 1<R,, RI_R <€, 4.2)
and N > 0 for whichn > N implies
r=Y" lda(k)?| < 2, (4.2)
keBgr
r— %" ld.(k? <e (4.3)
kEBRl
Yo lda(R)? < 5e. (4.4)
kGBRl\BR

Proof. Lete > 0. By the definitions ofz,, I' (afterCorollary 3.3 we can choos® > 0 for which|mg — I'| < €.
Also, if n > R then{d,} is a subsequence «{)&f} which converges teng, i.e. we can choos#> > R for which
n > Nz implies

> ldu(R)? —mg| <. (4.5)

kEBR

We thus obtair{4.2). Also, chooseR; > R satisfying(4.1)and|mg — I'| < €/2. As before we can find/s > R1
for whichn > N3 implies

€
D (R —mpy| < <. (4.6)
kEBRl
We thus obtair{4.3). By (4.3), (4.2)we have
la—b| <€, |2a] <2¢ b>0,with 4.7)
a=T=3 ld®P b= ) |d®) (4.8)
keBg keBg; \Br

We easily see thgq#t.5)impliesb < 5e, i.e.(4.4). d

Lemma 4.2. Consider the sequencés,}, and{d’}, r > 1 above withI" < ¢? and let{d,} be the diagonal as in
Proposition4.1 For everye > 0, there exist sequencés, }, {w,} of complex valued functions &f and N > 0
for whichn > N implies

vn(k) + wp(k) = du(k), Vk € 27, (4.9)
‘r . ||v,,||122‘ <7e, ‘(c2 — 1) — w2 < 66, (4.10)
H(d,) = H(vy) + H(wy) + hp, With || < k/e, (4.11)

and k a constant depending omg § and d
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Remark 4.2.1. The splitting ofd,, into v,, w, depends oR.

Lemma 4.2contains the main computation and we will give its proof below. To concludgahatvith I" < c?
is not a minimizing sequence we will u¢é.11) and the subadditivity of the function@, given byLemma 4.3
below. In particular, defin®, by P, = inf Il = H(u), with H as in(2.7). We have:

Lemma 4.3. ConsiderH as in(2.7)with§ > 0,y < 0and lete, 8 > 0. Then
Pyip < Py + Pg. (4.12)
The subadditivity property for the quartic NLS &¢ is shown in[5,20]. The proof uses a scaling argument that
applies to the present case almost verbatim.

Proposition 4.4. Consider the sequencé¢s, }, and {a} }, r > 1 above withI" < ¢? and let{d,} be the diagonal
sequence as iRroposition4.1 Then{a,} cannot be a minimizing sequence

Proof. Givene > 0, we can us¢4.10)to approximatey,, w, by v, € Xr, W, € X_ to within anl, error of
O(e€). By the continuity ofH in I», and(4.11)in Lemma 4.2we can choos#& > 0 so that: > N implies

H(dy) + |hp| = HDp) 4+ H(iy), with  |h,| < k/e, (4.13)
andk independent of (k will depend onc and "), hence

H(dn) + hn| = Pr+ Pao_p. (4.14)

Assuming thaf{d,} is a subsequence of a minimizing sequence, taking the imit oo in (4.14)and using the
bound o, in (4.13) we have

P2+kJe>Pr+ P2 , VYe>O. (4.15)
By Lemma 4.3ve therefore hav®.. > Pr + P._ > P., acontradiction. [

In provingLemma 4.2ve will use the estimates iremma 4.%elow. The proof is somewhat lengthy but follows
from elementary arguments and we give a sketch at the end of the section.

Lemma4.5. Letry > r > Owith2r + 1 < r1 —r,andd > 1. Also consider the kerne}, defined by(3.7)—(3.9)
Let A = maxc[o,1] | A(f)|. Then

2

(r1—r)
sup| > 1G(k—m)| <ZK(d A)(A > , (4.16)

r,—r)!
keB, meZd\Brl ( 1 )

2

(r1—r)
Yoo DGk -m)| = (1-n)" ZK(d A)<(A r)') , (4.17)

kezd\B,, \meB: J=1

with constantsk ;, K ; that depend on dA.

Proof of Lemma 4.2. We start by constructing the functiong, w,. We consideiR; > R > 0 as inProposition
4.1, and functionsp, ¢1 : R? — [0, 1] C R that satisfy

1, ifke Bg

k) = ,
o) 0, ifkeZz?\ Bg,

(4.18)
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1, ifkeZ?\ Bg,

k) = 4.19

P =10 itk By (4.19)
Further, we require that, ¢1 satisfy

o(k) + ¢1(k) =1, VkeR% (4.20)

Such functions exist by partition of unity arguments. To simplify notation we denote the functi®{sand their
restriction toZ? by the same symbol. We defing, w, by

vn(k) = p(K)dn(k),  wa(k) = pr(k)du(k), Kk € Z°. (4.21)

Property(4.9) is immediate, whilg4.10)follows easily fromProposition 4.1, and (4.18)—(4.2@nd we omit the
details. It remains to shog.11)

Notation: We use the abbreviations= v,,, w = w,, andv; = L,v, w; = L,w. Also, K(e, 8, ...) will denote a
constant depending an g, . . ..

Using the abbreviated notation above, apd= v + w, we write

H(d,) = H(v) + Hw) + q(v, w) + Q1(v, w) + Q2(v, w) + Q3(v, w), with (4.22)
d
q(v.w) =8 > 2Re[(Dv)(K)(Djw)* (k)] (4.23)
J=lkezd
1 T
010.0) =7 [ 3 200 d. (4.24)
0 kezd
T
0s(v, w) = y; / > 4Re (ve(k)w? (k) d, (4.25)
0 kezd
1 T
Osv.w) = v [ 3 AuF + )R (w7 1) . (4.26)
kezd

We will estimate the “overlap” terntg 01, Q2, O3. We start with the quadratic tergof (4.24)and use the notation
(Tju)(k) = uky, ..., k;+1,...,ka), j€{1,...,d}. We have

d
q=28) ) Re[2v(k)w*(k) — (Tjv)(K)w* (k) — ()(K)(Tjw)* (K)]. (4.27)

j=lkezd

For the first term in the sum we observe that

d

DO Revwr(R)]| <2d Y [u(kw* (k)| (4.28)
J=lkezd keBgry\Br
<2d ) |dy(k)® < 10de. (4.29)

kEBRl\BR



224 P. Panayotaros / Physica D 206 (2005) 213-231

The last two inequalities follow from the definition @f ¢1 in (4.18), (4.19), and (4.40f Proposition 4.1To
bound the second and third termg#h27)we further restrict, ¢1 by requiring

1, if k € BR+1
k) = , 4.30
() {o, if k € Z9\ Bpy—1 (4-30)
1, ifkez9\ Bg,_1
n=1" = 4.31
91(k) {o, if k € Broa (4.31)

and(4.20) Clearly, such functions exist and satigfl18), (4.19) Using(4.30), (4.31we bound the second term
of (4.27)as

d d
DO Re[(T)wr®)]| <> >0 I(Tj)k)w* (k)] (4.32)
Jj=1kezd j=1keBry\Br
1/2
<d|vly, ( Do w@P] = VI + Te)Be. (4.33)
keBRl\BR

The last inequality follows fronf4.10) The third term 0f4.27)is estimated very similarly and we obtain the bound
of (4.33) We therefore have that

lg(v, w)| < K(c,d, 8)/e. (4.34)

(Note that we can also obtain andpbound by a few extra steps, but this is not necessary.)
To estimateQ of (4.24)we write

1 T
Q1= y?/ 2(Q1(1) + Qa(l) 4+ Q1 (1)) dr,  with (4.35)
0
01() = Y [vi(K)Pwi k)%, (4.36)
keBR
010N = > IuR)Plwik)?, (4.37)
keBry\Br
o1 = D [uR)Plw (k). (4.38)
kezd\Bg,

We further restricty, ¢1 by requiring

1, ifk € Bry(rRi-R)/2)-1
o(6) = _ ) (Ri—R)/2) , (4.39)
0, ifk eZ%\ Bry((rR1—R)/2)+1
1, ifkez?\ B _
b1(0) = . \ BR+((Ri—R)/2}+1 7 (4.40)
0, ifk € Bry(ri—R)/2)-1
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and(4.20) Clearly, such functions exist and satisfy the prope(det8), (4.19), (4.30), (4.31)sed above. To bound
Q1(I) of (4.36)we first note that

101(D)] < (sup|v:(k)|2> D wR)F < qwik)2 (4.41)
keBr keBg keBg
We also have

2
dolw@P=" > G(k—m)w(m))

keBg keBr \mezd

=> > Gk — m)w(m)

keBr \ meZ4\Bri((ry-R)/2)

2
2

< (sumw(m)l) > > 1Glk—m)

mez? keBr \ meZ4\Bry((r,-R)/2)

2

<2 Z Z |G(k — m)|

keBr \ meZ4\Bgi(r;-r)2

2

keB
K \mez\Bry(ry-ry/2

Applying (4.16)in Lemma 4.850r = R, r1 = R+ (R1 — R)/2, and(4.1)in Proposition 4.1, (4.42ecomes

2 _ o AR1—R)/2 )2 ) K(c,d, A)
3 Il < K. (R~ R () = ot (4.43)
By (4.41), (4.43)we therefore have
10101 < K(c, d, A)e. (4.44)
To boundQ(1ll) of (4.37)we use
|0a(lll) | < (sumwf(k»z) Yoo < Y wk) (4.45)
kezd

keZd4\Bg keZ4\Bg
1 1
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We have
2
PG (Z G(k—m)v(m))
keZd\Bg keZd\BRl mezZd

Z( > G(k—m)v(m>)2

keZ\Br, \MEBR+((R1-R)/2)-1

(su|o|v(m)|2)2 > ( > |G(k—m)|)2

d
meZ kezd\Bg, \MEBR+(R;-R)/2-1

IA

2
<& ) ( > |G(k—m)|). (4.46)

keZd\Bg, \MEBR+(R;-R)/2-1

Applying (4.17)in Lemma 4.5%0r = R+ (R1 — R)/2 — 1,r1 = R1, and(4.1)in Proposition 4..ve have

2
> ( > |G(k—m)|) <%. (4.47)

keZd\Br, \MEBRi(R;-R)/2-1
By (4.45)—(4.47)ve therefore have
[01(l) | < K(c, d, Ae. (4.48)
To boundQ1(Il) of (4.36)we let

V=1{keZ?: ke Bri(r—r)2\ Br}, (4.49)

Vi={keZ? ke Br, 1\ Bri(ry-R)2}:

i.e.VUVy = Bg, \ Bg. We can then write

01(1) = Q(IIA) + Q(liB),  with (4.50)
QUIA) =Y JulPlwil?,  QQIB) = Y JuPwi|?. (4.51)
keV keVy

To estimateQ(11A) we use

01(1A) =} [u(k)? Y. Gl—mu(m)| . (4.52)

kev k€ZI\BRy((ry-R)/2)-1
and further

|01(1A) | < Q1(IIAL) + Q1(IIA2), with (4.53)



P. Panayotaros / Physica D 206 (2005) 213-231 227

2
01(11A1) =) " [v,(k)? > Glk—myuwm) | . (4.54)
keV meZd\BRl,l
2
01(1A2) = ) [ui(k)P? > Glk - m)w(m)) : (4.55)
keV meBRy—1\BRr+(R1—R)/2-1

For 01(I1A1) we have

2
2
|Q1(I|A1)|§(Sup|w(m)|> Zv:(k)z( > G(km))

d
meZ kev meZd\Bp, _1

2
<c®[sup| ) IGKk—m) (Z |v,(k)|2) : (4.56)
kev meZd\Bp, _1 keV

Using(4.16)in Lemma 4.5vithr = R+ (R1 — R)/2,r1 = R1 — 1, and(4.1)in Proposition 4.1, (4.5%ecomes
|01(1AL)| < K(c, d, A)e. (4.57)

Also,

101(1A2) | < ) v, (k)12 (Z Gk —m)[> Yy |w(m)|2)

keV meVy meVy

< Ke sup( > Gk - m)|2) (Z |vt(k)|2> < K(c)e. (4.58)

kev meVy keV

We have here used the definitionwf and(4.4)in Proposition 4.1For Q1(11B) we have

|01(1IB)| < |01(11B1)| + |Q1(11B2)|,  with (4.59)
2
01(1IB1) = > [wi(k)I* | > G(k —m)v(m)) , (4.60)
keVy meBg
2
01(11B2) = > [w;(k)|? > Gk — m)v(m)) . (4.61)
keVy MmeEBRi(ry—R)/2\BR
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We have

2 2
|01(1IB1)] < <sup |v(m)|> > |wz(k)|2( > 1G(m —k)|)
mezZd keVy meBR

2 2
502<3Up|wz(m)|) > (Z |G(m—k)|) : (4.62)

meZd Z‘[\BR+(R1—R)/2 meBg
Using(4.16)in Lemma 4.5wnith r1 = R + (R1 — R)/2,r = R, and(4.1)in Proposition 4.1we therefore have
|01(11B1)| < K(c, d, A)e. (4.63)

Also,

2 2
101(11B2)] < ) lwy(k)I? (Z 1G(m —k)|> (Z |v(m)|> < K(c,d, A)e, (4.64)

keVy meV meV

where in the last inequality we have uggd4) in Proposition 4.1By (4.56)—(4.58), and (4.57), (4.63), (4.64%
therefore have

101(1)| < K(c, d, A)e, (4.65)
Collecting(4.44), (4.48), (4.65)ve have

|01(v, w)| < K(c, d, A)e. (4.66)
The estimate foQ» in (4.25)is immediate: Re(v; (k)w; (k)))? < |v,(k)|2|w;(k)|? and(4.66)yield

|Q2(v, w)| < 31Q1(v, w)| < K(c, d, Ae. (4.67)

Also, by (4.26) and (4.66)ve have

1/2 1/2
102(, w)li{Z(Ivt(k)lzﬂwt(k)lz)z} {Z(Re(ut(k)wt(k»)z} <K(e.d A)We.  (468)

kezd kezd

Adding the estimates fay, 01, Q2, andQ3 we obtain(4.11)in the lemma.

Note that in the (local) discrete NLS case, wherés the identity, thé>roof of Lemma 4.2 significantly shorter.
Sincev; = v, w; = w, the definition ofgp, ¢1 in (4.39)—(4.40) andProposition 4.Treadily imply that the overlap
termsQ()-Q(lll) in (4.35)—(4.38)pre of Of). O

Proof of Lemma4.5. The details are somewhat laborious but elementary, and we will only give an outline, stressing
the decomposition of the sBf, = Z4\ B,,,d > 1appearingin the sums (4.16), (4.17The case = 1is simple

and we omit the details.) In particular, we lét- 1 and write By, = By, (d) U By (d — 1)U --- U Bf, (1), where

By, (j) is the set of all multi-indicest, . . . , k4] € By, that havg components with absolute value greater than

We first conside(4.16) We will break the inner sum into sums over tB§ (j). Note that by using appropriate
combinatorial constants that dependjpt, we can replace estimates of sums over#fi€;) by estimates of sums

over the sites with multi-indices satisfyinky|, |k2|, ..., |k;| > r1. We see that
2
sup( D 1Gk—m)| <K(d. j A)CT /D!, with (4.69)
keBr \mes, ()
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2
Alki—r] Alkatr]
C= sup ( , (4.70)

+
lky —ralt k1 + rf!

[k1|<r1
Ik, | 2
Alka—mq
lkal<r1 \ e mry kg —mal!

(K(e, B, ...)is a constant depending eng, . . .. Also, the indices1, k4, my4 in C, D are integer; the same notation
is used inA, B below.) We can easily see that

[ri—r] \ 2

> , D < K(4), (4.72)

C§K(d)<

lrg —rl!

so that collecting4.69)—(4.72)wve obtain the bound i4.16) For (4.17) we use the same decomposition&jf
and similar combinatorial considerations in estimating sums oveB{/{¢). We see that

2
> |G(k—m)|) < K(d, ))A’B?7, with (4.73)

kerl(j) meB,

Alki—ma1] ’
A=Y [ Y ———] . (4.74)

k1 —mq|!
wamrs \moper K2 = mal

Alka—ma|
B = Z Z T (4.75)
kgl<ry \Imgl<r "4~ 1
We have that
Alr=rl \ 2
A<Kd A)|——) . (4.76)
|ry — r|!

To estimateB in (4.75)we split the inner sum into sums ov@r |k,| < r1, estimated byK (A)(2r + 1), and(ii)
r < lkg| < r1, estimated byK(A). Then,

[ri—rl

)
ABT < K(A,d) ( ) : (K(A, d, )2r+ 107 +...+ K(A,d, 0)) . (4.77)

lrg —r|!

Collecting(4.73)—(4.77and using2+ 1 < r1 —r,r1 — r > 1 we obtain(4.17) O
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Appendix A

We outline the proof of the continuity d¥ : X — R. This property is used iftheorem 2.1In Proposition 2.2
we also use thall is (Frechet)C! in X; the proof uses similar standard tools and is omitted. (The notation here is
as in Sectior2.) _

A useful observation for handling the quartic partfdfs thatr — L. is norm-continuous in [0T]. This allows
us to view the integrafOT as a Riemann integral and pass norms inside the integral. In particular, recall that by the
assumptions oB we have a finite number of intervalg = [0, 71], I1 = (t1, 72), . . ., In = (T, T] SO that where! is
continuous in each;. By the fact thatA is bounded, the maps— d(r)A € L£(X) are therefore strongly continuous
in all the intervald/;. (£(X) is the set of bounded linear operatorsXophWe can then use the following.

Lemma A.1. Consider the non-autonomous initial value problem= A(#)u, u(t0) = up € X, with A(¢) € L(X),
Vt € [0, 11]. Assume that— A(r) € L(X) is strongly continuous ifrg, #1]. Then there exists a uniquepgarameter
norm-continuous semigroup of bounded linear operat(s, o) € L(X), t € [to, t1], with U(z, to)uo satisfying the
initial value problem inr, #1].

Lemma A.lis proved in[9], chap. 7.1(see alsd7], chap. 5.9. Applying the lemma to the initial value prob-
lem for the equation:; = d(r)Au in the intervalsl;, i.e. with A(r) = d(1)Au, we have that/(t, t;) = Lyr; =
exp(if:/_ d(s)dsA), T € I;, j=0,..., n. ltis easy to check that if € I; thenL, = LigLy o q...Lyo, Vhe
{0, ..., n}, and that therefore — L, is norm-continuous, for all € [0, T]. We then have:

Lemma A.2. The function” : X — R is Lipschitz continuous on every bounded subset of X

Proof. Firstconsidety(u) = ZZ: | Di+u||?, the quadratic part off. Consider the casé= 1 and let (", u), =
Uns1, n € Z. Expandingu,+1 — un|® — |va41 — v,|? and lettingu, v € X we compute that

| Ho(u) — Ho(v)| < 2(|{u — v, u)| + |(u — v, v)| + [{T4-(u — v), v)| + |{u — v, T1-v)])

< (1]l + llvl)lu = vl (A1)
Ford > 1,u, v € X imply
d
| Ho() — Ho()l < | Y _(IDx+ull® = 1Dk 1011%)| < 4d(llull + [v]})llx — v, (A2)
k=1

where in the last inequality we have repeated the steps leading do=thk estimate.
Also, consider the quartic teri, defined by {/ T)H> = H — §Hp. Givenu € X, define the map,, : [0, T] —
Rbyh,(r) = ||qu||l";. The map, is the composition ofi,, : [0, T] — X, definedbyA, (t) = L.u,andG : X —

R, defined byG(y) = ||w||;i. Applying Lemma A.lto L, as above, the map, is continuous in [0T]. To see the
continuity of G, we calculate that for any, x € X

IG(¥) — G(0)| = Z (|1/fn|2 + |Xn|2)[(l/fn - Xn)l/fZ - Xn(l/f: - X:)]

nezd

< (112 + AU+ DIy — I (A.3)

Therefore, the compositioh, is also continuousyu € X. Lettingv, w € X and using the triangle inequality for
the Riemann integral we then have

_ _ T T
IHz(v)—Hz(w)|=‘ [ 000 = utepae < [ 100~ huoae (A4)
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Estimating the last term as {A.3) and using the fact thdt, is an isometryyz, we then obtain
| Ha(v) — Ha(w)| < (IlvlI> + lwl?)lvll + wl)llv — wl. (A5)
The statement follows by combinir{g.2), (A.5). O
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