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Abstract. We present results on the continuation of breathers in the dis-
crete cubic nonlinear Schrödinger equation in a finite one-dimensional lattice
with Dirichlet boundary conditions. In the limit of small inter-site coupling
the equation has a finite number of breather solutions and as we increase the
coupling we see numerically that all breather branches undergo either fold or
pitchfork bifurcations. We also see branches that persist for arbitrarily large
coupling and converge to the linear normal modes of the system. The stability
of the breathers that persist generally changes as the coupling is varied, al-
though there are at least two branches that preserve their linear and nonlinear
stability properties throughout the continuation.

1. Introduction. In the present work we study the continuation and bifurcations
of breather solutions of the discrete cubic nonlinear Schrödinger equation (DNLS)
in a finite one dimensional lattice with open boundary conditions. The equation is a
simple model for many systems where we see a combination of nonlinear and spatial
inhomogeneity effects, e.g. in optical waveguide array systems [6], Bose-Einstein
condensates (BEC) in a periodic magnetic field [16], and in electron transport in
solid state systems, or biomolecules [15]. Depending on the system size, it is of
interest to study both few-site and larger (or infinite) lattices, e.g. in some optics,
and BEC applications of the DNLS a few-site model seems more appropriate, while
in molecular or solid state systems one may consider an infinite lattice model. From
the theoretical point of view, the subtle differences in the long time dynamics of
finite and infinite lattice systems, e.g. in coherent structures that may exist in the
finite lattice but decay slowly in the infinite system (see [5] for likely examples),
also call for studies of both types of systems.

A breather solution of the DNLS is a solution if the form un = e−iωtAn, where
n is the lattice index, ω is the temporal frequency, and An is the time-independent
breather amplitude. In an infinite lattice, where we also require that An decay
at infinity, breathers can be viewed as the simplest spatially localized solutions.
In a finite DNLS, localization can also be an important feature of some breather
solutions (i.e. when An decays rapidly away from certain sites), but we are primarily
interested in the temporal periodicity of breathers, and the fact that breathers are
relative equilibria. We use these properties to see that (most) breathers are fixed
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2 CONTINUATION AND BIFURCATIONS OF BREATHERS

points in a suitable reduced phase space. The reduction construction is elementary
and generalizes the change to action-angle coordinates used in the integrable 2-
site lattice. It also appears only applicable to the finite one-dimensional DNLS
with Dirichlet boundary conditions. The reduction is global, in the sense that it
is defined in the whole of phase space minus some codimension-one (or smaller)
sets, that may however include breathers. Thus breathers can be thought of as the
simplest invariant sets of the DNLS system, and a starting point for a study of
the global dynamics of the DNLS. The reduction construction seems most useful in
small lattices, where we use it to find bifurcations of breathers in 2−, and 3−site
lattices (also considered in [8], [12]). The types of bifurcations we see there are
representative of the bifurcations we see in larger systems.

In studying larger lattices we use the fact that in the finite DNLS system with
Dirichlet boundary conditions and weak inter-site coupling we have a finite num-
ber of breather solutions. These breathers can be continued from trivial breather
solutions of the system with zero inter-site coupling (the “anticontinuous limit”
system), moreover many of their stability properties can be deduced using ideas
from studies of the infinite lattice ([18], [20]). A further property of the system is
that all breathers are real. We remark that there are related finite lattice systems
with analogous solutions at the weak coupling regime. However, the number of
such solutions can be infinite; this is the case for the finite one dimensional DNLS
with periodic boundary conditions (see [10]), higher dimensional finite DNLS sys-
tems (see [21], [19]), and discrete sine-Gordon systems (see [4]). Thus the finite
one-dimensional DNLS system with Dirichlet boundary conditions is special and
allows us, at least in principle, to consider the more global question of continuing
numerically all breathers as the inter-site coupling increases.

The results we present mainly concern the continuation of breathers that are
symmetric or antisymmetric under spatial reflection. We see evidence that as we
increase the inter-site coupling the majority of breather branches undergo fold bifur-
cations where two branches collide and both solutions disappear. Some examples
of folds were earlier seen in [2]. There is also evidence for pitchfork bifurcations
where three branches originating from small inter-site coupling breathers collide,
and one can be continued past the bifurcation point. Although the collisions stud-
ied systematically here involve branches of breathers with the same symmetry type
(symmetric or antisymmetric) there is also evidence for collisions of symmetric and
non-symmetric branches, e.g. we see a possible double fold involving two symmetric
and two non-symmetric branches. In all cases we observe that the bifurcations are
subcritical, i.e. the number of branches decreases as we increase |δ|. This does not
seem to be the case in the periodic lattice (see [10]).

For an N−site lattice we also see N branches that are continued to arbitrary
large inter-site coupling. These breathers are symmetric or antisymmetric and in
the limit of infinite coupling they are seen to converge to the normal modes of
the linear DNLS, i.e. the eigenvectors of the discrete Laplacian. The possibility
of such a continuation was discussed earlier in [2]. We also study the stability of
these branches. We see that there are always two branches of nonlinearly (orbitaly)
stable breathers that may be heuristically characterized as “spatially localized” and
“ spatially delocalized” respectively.

In the computations we report we increase the inter-site coupling keeping the
power (l2 norm of the solutions) constant. Also, as we try different lattices we
consider a power that is roughly proportional to the number of sites, i.e. we keep the
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“power per site” fixed. These choices are made to simplify the numerics, moreover
we show that the results apply to the problem of varying both coupling and power.

The related problem of the continuation of breathers of the DNLS in the infinite
lattice was studied in [1]. The number of anti-continuous limit breathers is infinite
in that case, and a comprehensive numerical study of all breather branches is not
possible. Nevertheless, the types of bifurcations seen in both cases appear to be
the same. Similarities and differences between the finite and infinite problems are
discussed further in Section 4.

The paper is organized as follows. In Section 2 we describe the reduced phase
space for the finite DNLS. In Section 3 we state general results on breathers, espe-
cially on weak inter-site coupling breathers. We also use the reduced phase space
to study bifurcations of breathers in small lattices. In Section 4 we present numer-
ical results on the continuation and bifurcation of symmetric and antisymmetric
breathers in larger lattices.

2. Hamiltonian structure and reduction. We consider the discrete NLS equa-
tion

u̇n = iδ(∆u)n − 2i|un|2un, (1)

where n ranges over the finite set ιN = {1, . . . , N} of lattice sites, and the discrete
Laplacian ∆u is defined by

(∆u)n = un+1 + un−1 − 2un, n = 2, . . . , N − 1 (2)

(∆u)1 = u2 − 2u1, (∆u)N = uN−1 − 2uN . (3)

The particular form of (∆u)1, (∆u)N corresponds to Dirichlet boundary conditions.
The site coupling constant δ is real. System (1) is equivalent to Hamilton’s equation

u̇n = −i
∂H

∂u∗
n

, n ∈ ιN , with (4)

H = δ

(

N−1
∑

n=1

|un+1 − un|2 + |u1|2 + |u1|2
)

+

N
∑

n=1

|un|4. (5)

The conserved quantities of system (1) are the Hamiltonian H , and the “power”

P =
∑

n∈ιN

|un|2. (6)

The conservation of P comes from the invariance of H under the map un 7→ eiθun,
n ∈ ιN , where θ is an arbitrary real number that is independent of n.

We can use the conservation of P , and a composition of elementary canonical
transformations to explicitly reduce the dimension of the phase space of (4) by 2.
First, using real and imaginary parts qn = Reun, pn = Imun, n ∈ ιN , and letting
h = 1

2H , system (4) is written as

q̇n =
∂h

∂pn

, ṗn = − ∂h

∂qn

, n ∈ ιN . (7)

Introducing polar coordinates un =
√

Jneiφn , Hamilton’s equations take the form

φ̇n = − ∂h

∂Jn

, J̇n =
∂h

∂θn

, n ∈ ιN , with (8)

h =
1

2
δ

(

N−1
∑

n=1

[Jn+1 + Jn − 2
√

Jn+1Jn cos(φn+1 − φn)] + J1 + JN

)

+
1

2

N
∑

n=1

J2
n. (9)
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Furthermore, define the angles θn and actions In by

θn = φn+1 − φn, n = 1, . . . , N − 1, θN =

N
∑

n=1

φn (10)

J1 = I1 + IN , Jn = In − In−1 + IN , n = 2, . . . , N − 1, JN = IN − IN−1. (11)

The above define implicitly a canonical transformation and Hamilton’s equation (8)
become

θ̇n = − ∂h

∂In

, İn =
∂h

∂θn

, n ∈ ιN , (12)

with h the Hamiltonian in terms of the θn, Jn. We observe that h is independent
of θN . Then IN is a conserved quantity, and by (11),

IN = N−1
N
∑

n=1

Jn = N−1P, (13)

i.e. we recover the conservation of the power.
Setting IN = c, with c an arbitrary positive constant, the reduced system is

θ̇n = − ∂h

∂In

, İn =
∂h

∂θn

, n ∈ {1, . . . , N − 1}, (14)

where

h = −δ

N−1
∑

n=1

√

Jn+1Jn cos θn +
1

2

N
∑

n=1

J2
n, (15)

with

J1 = I1 + c, Jn = In − In−1 + c, n = 2, . . . , N − 1, JN = c − IN−1. (16)

Let Yj ⊂ R2N be the set of points [q1, . . . , pN ] ∈ R2N satisfying qj = pj = 0.
Let Y = ∪N

j=1Yj. Also consider the set S of [I1, . . . , IN ] ∈ RN satisfying Jk > 0,

k = 1, . . . , N , where the Jk are as in (11). Let Tk denote the k−dimensional
torus. Then, (10), (11) define a smooth symplectic transformation from R2N \ Y to
S×TN , Also, let SN−1

c be the the set of [I1, . . . , IN−1] ∈ RN−1 that satisfy Jk > 0,
k = 1, . . . , N , where the Jk are as in (16). The reduced system is defined in the
reduced phase space S

N−1
c × TN−1.

Remark 1. Reduction via use of the θn, In variables is applicable to the DNLS
with site-dependent δ (as in models with “disorder”), and to the DNLS equations
with time-dependent parametric forcing, such as diffraction management (see [9]).

3. Relative equilibria and breathers. A breather solution of (1) is a periodic
solution of (1) of the form un = e−iωtAn, with ω real, and A = [A1, . . . , AN ] ∈
CN \ {0} independent of t. By (1), A, ω satisfy

− ωAn = δ(∆A)n − 2|An|2An, n ∈ ιN . (17)

Note that if A satisfies (17) so does eiφA, for arbitrary real φ independent of n.

A real breather is a breather of the form with eiφÃ, where Ã ∈ RN , and φ is an
arbitrary real independent of n. A nowhere-zero breather is a breather with An 6= 0,
∀n ∈ ιN . The set of nodes N of a breather A consist of the n ∈ ιN satisfying An = 0.

Proposition 1. Let δ 6= 0. Then all breathers are real.
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Proof. By the breather Ansatz un = e−iωtAn, the phases of the un have the same
angular velocity, and the moduli are constant. Then, by the definition of the vari-
ables θn, In above, each nowhere-zero solution of (1) can be identified with a fixed
point of the reduced DNLS (14). The correspondence in onto, and 2 to 1. By (15),
fixed points of (14) must satisfy

∂h

∂θn

= δ
√

Jn+1Jn sin θn = 0, n ∈ {1, . . . , N − 1}, (18)

thus θn = 0, or π, ∀n ∈ {1, . . . , N−1} (since the Jn are positive). Thus nowhere-zero
breathers are real.

Consider a breather whose set of nodes N is nonempty. In the case where N

contains at least two consecutive nodes, there exists a j ∈ N such that either j − 1,
or j + 1 is not on N. By δ 6= 0 we see that the j−th equation of (17) can not be
satisfied. Thus the nearest neighbors of any j ∈ N belong to ιN \N. We consider two
cases. In the case where N is {1}, or {N}, or {1, N}, we can use polar coordinates and
similarly define variables θn, In for the sites in ιN \ N, i.e. the breather corresponds
to a nowhere-zero breather in a smaller lattice. The reality of breathers follows then
as in the case of nowhere-zero breathers. In the case where N 6= {1}, {N}, or {1, N},
there exists a j ∈ N, such that if j ± 1 ∈ N then j ± 1 ∈ ιN \ N. Let jL be the nearest
site to the left of j that is either in N, in which case let BL(j) = {jL + 1, . . . , j − 1},
or in {1}, in which case let BL(j) = {1, . . . , j − 1}. Also, let jR be the nearest site
to the right of j that is either in N, in which case let BR(j) = {j +1, . . . , jR − 1}, or
in {N}, in which case let BR(j) = {j + 1, . . . , N}. Arguing as in the previous case
we use polar coordinates, the variables θn, In, and the argument for nowhere-zero
breathers for the sites of BL to see that the breather, restricted to BL, has the form
An = eiφLÃn, with Ãn ∈ R, ∀n ∈ BL, and φL an arbitrary real that is independent
of n ∈ BL. Similarly we see that the breather, restricted to BR, is real up to an
arbitrary real phase φR. By δ 6= 0 we see that the j−th equation of (17) implies
then that, φL = ±φR (modulo 2π). Applying the argument to other sites j ∈ N

with j ± 1 ∈ ιN \ N, we see that the breather is real.

The reality statement also holds for the infinite one-dimensional lattice, see [24].
The argument here is different. The impossibility of neighboring nodes was also
noted in [14].

Remark 2. The frequency ω of a nowhere-zero breather corresponding to a fixed
point of the reduced system can be recovered in the following way. Let θ̃ =
[θ̃1, . . . , θ̃N−1] ∈ TN−1, Ĩ = [Ĩ1, . . . , ĨN−1] ∈ S

N−1
c be a fixed point of the re-

duced system. Let λ = ∂h
∂IN

, evaluated at θj = θ̃j, Ij = Ĩj , j = 1, . . . , N − 1,

IN = c. By (12) we then have θN (t) = λt + θN (0), while for j = 1, . . . , N − 1 we

have θj(t) = θ̃j , ∀t. Inverting the linear system (10) by the Jordan algorithm we
see that φj = N−1θN + σj , j = 1, . . . , N , where the σj are linear combinations of
θ1, . . . , θN−1. It then follows that ω = N−1λ. (By Proposition 1 the σj are integer
multiples of π; this can be also verified directly by inverting (10).) In the case of
breathers with nodes we use the same procedure for a set of sites between nodes.
The assumption that we have a breather for the N site lattice, and the observation
above that in the sites between nodes we have a nowhere-zero breather of a smaller
lattice imply that the ω found for different sublattices between nodes must coincide.

To look for breather solutions we start with small |δ| breathers. These are con-
tinued from solutions of (17) with δ = 0. In particular, given any U ⊂ ιN , (17) with
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δ = 0 has solutions of the form

An = eiφn

√

ω

2
, for n ∈ U ; An = 0, for n ∈ U c, (19)

with ω > 0, and arbitrary φn ∈ R.
The basic continuation result states that all real breathers of the δ = 0 system

can be continued to real breathers of the δ 6= 0 system.

Proposition 2. Let ω > 0 and consider U ⊂ ιN . Let A(0) ∈ CN be a solution of
the form (19) of the δ = 0 breather equation (17) that satisfies φn = 0, or π, ∀n ∈ U .

Then there exists δ̃ > 0 such that for any δ ∈ (−δ̃, δ̃) equation (17) has a unique
real solution A(δ) ∈ RN that satisfies A(δ) → A(0) as δ → 0. The dependence

of A(δ) on δ is real analytic in (−δ̃, δ̃). Moreover, any continuous one-parameter

family A(δ), δ ∈ (−δ̃, δ̃), of breathers that satisfies A(δ) → A(0) as δ → 0, is a
one-parameter family of real breathers.

An analogous proposition was originally shown for an infinite lattice in [20]. The
arguments used in the infinite case apply with minor modifications to the present
case and the proof is omitted. In the finite case the proof can be also simplified
using the real breather continuation result of [17], and Proposition 1.

In the numerical study below we are mainly interested in the fixed power con-
tinuation problem, where we have similar statement. In this variant of the problem
we fix C > 0 and look for A ∈ CN \ {0}, ω ∈ R that satisfy

− ωAn = δ(∆A)n − 2|An|2An, n ∈ ιN ,
∑

n∈ιN

|An|2 = C. (20)

Given any U ⊂ ιN , the breather equation (20) with δ = 0 has solutions of the form

An = eiφn

√

ω

2
, for n ∈ U ; An = 0, for n ∈ U c; ω =

2C

|U | (21)

where the φn ∈ R are arbitrary, and |U | is the cardinality of U .

Proposition 3. Fix C > 0 and consider U ⊂ ιN . Let A(0) ∈ CN , ω(0) be a
solution of the form (21) of the δ = 0 breather equation (20) that satisfies φn = 0,

or π, ∀n ∈ U . Then there exists δ̃ such that for any δ ∈ (−δ̃, δ̃) equation (20) has
a unique solution A(δ) ∈ RN , ω(δ) ∈ R that satisfies A(δ) → A(0) as δ → 0. The

dependence of A(δ) on δ is real analytic in (−δ̃, δ̃).

Proof. By Proposition 1 it is enough to look for real solutions of the breather equa-
tion. Let C > 0. Let X = RN+1, and for [A1, . . . , AN , ω] ∈ RN+1, δ ∈ R define
the function F : X × R → X by

Fn = ωAn + δ(∆A)n − 2A3
n, n = 1, . . . , N ; FN+1 =

1

2

(

N
∑

n=1

A2
n − C

)

. (22)

By (20) real breathers are solutions of F = 0. Let x0 satisfy F (x0, 0) = 0, i.e. x0 is
of the form (21) with φn = 0, π, ∀n ∈ U . We check that the matrix [D1F ](x0, 0) is
nonsingular. By the real analyticity of F in its domain, and the implicit function
theorem we then have a δ̃ > 0 and a unique real analytic family of x(δ) ∈ X , |δ| < δ̃,
satisfying F (x(δ), δ) = 0, and x(δ) → x0 as δ → 0.

Corollary 1. There exists δ0 such that all solutions of the δ 6= 0 breather equation
(17) with |δ| < δ0 are obtained by continuation from the real breather solutions of
the δ = 0 breather equation.
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Proof. By Proposition 1 for δ 6= 0 it is sufficient to examine solutions of F = 0. By
Proposition 3 and the fact that at δ = 0 we have a finite set of real breathers, we
have the existence of branches of breathers continued from the δ = 0 real breathers
for all |δ| < δ̃0, where δ̃0 is the minimum of the δ̃ for each δ = 0 real breather

of Proposition 3. Thus for |δ| < δ̃0 we have the breather solutions obtained by
continuing the δ = 0 real breathers. To show the statement for some δ0 > 0,
δ0 ≤ δ̃0, assume that on the contrary there exists a sequence of {ǫn}∞m=1 → 0,

ǫm ≤ δ̃0, ∀m ≥ 1, such that the breather equation with δ = ǫm has at least one
solution xm = [A1(m), . . . , AN (m), ω(m)] that stays away from the set of the δ = 0
real breathers, Multiplying the j−th equation of (17) by Aj , summing over the j,

and using
∑N

j=1 A2
j = C, there exists some Ω > 0 for which ω(m) ≤ Ω, ∀m ≥ 1.

Then the sequence of the pairs (ǫm, xm) has a convergent subsequence (ǫµ, xµ),
satisfying F (xµ, ǫµ) = 0, ∀µ, and ǫµ → 0, xµ → χ for some χ ∈ RN+1. By the
continuity of F , χ is a δ = 0 real breather, a contradiction.

A breather obtained by continuing a δ = 0 breather with |U | = k is referred to
as a k−peak breather.

By the above, for small enough |δ| we know all breather solutions and they can
be obtained by continuing the δ = 0 real breathers. For a lattice of N sites, each
δ = 0 real breather and its unique continuation (for small |δ|) can be labeled by an
array [s(1), . . . , s(N)], where s(j) = 0, for j ∈ N, and s(j) = +1, −1, for φj = 0,
π respectively. For a lattice of N sites we thus have 3N − 1 distinct δ = 0 real
breathers. Furthermore, for |δ| sufficiently small the reduced phase space has at

most (3N−1)
2 fixed points, i.e. we may have breathers with nodes. Fixed points of

the reduced phase space can be labeled by the arrays used for the δ = 0 breathers,
with arrays related by a global sign flip identified.

Remark 3. In the finite lattice system we expect that we can also continue higher
dimensional invariant tori of the δ = 0 equations (in addition to the 2−tori of
[3]). The reduced phase space construction shows that breathers are the simplest
invariant sets of the DNLS system in a global sense. A drawback of the reduction is
that it introduces artificial singularities at ∂Sc, where polar coordinates are not well
defined. For instance breathers with nodes belong to ∂Sc and can not be studied
using the reduced phase space construction.

Remark 4. In the case of the finite lattice with periodic boundary condition and
N > 2, we do not have a similar reduction. For instance, the definition (10) does
not lead to a similar cyclic variable reduction, while the possible θn = φn+1 − φn,
n = 1, . . . , N − 1, θN = φ1 − φN is singular. At the same time we can see that in
the periodic problem we have N−peak breather solutions that are not real; their
existence can be shown by the argument used in [21] to show the existence of discrete
vortices in two dimensions.

Some of the general features of the continuation of breathers can be obtained
by examining the simplest cases of lattices of two, three, and four sites where it
is possible to visualize bifurcations. We consider the cases of two, and three sites
where the visualization is simpler. In what follows we set P = C, or IN = c = C

N
,

i.e. compare (13), (20).
Example 1: Two sites.
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In this case the system is integrable. Let un = Jneiφn , and define

θ1 = φ1 − φ2, θ2 = φ2 + φ1, I1 =
1

2
(J1 − J2), I2 =

1

2
(J2 + J1), (23)

as in (11), (10). Letting θ = θ1, I = I1, I2 = c, the Hamiltonian reduces to

h = −I2 − δ
√

c2 − I2 cos θ (24)

and is defined in the phase space |I| < c, θ ∈ S1. (S1 is the interval [0, 2π] with 0,
2π identified). For |δ| small we expect four breather solutions. These are shown in
Figure 1, where we plot the contours of the Hamiltonian h at δ = −2, c = 3. At
θ = π, I = 0 we see the [1,−1] fixed point (corresponding to a 2−peak breather).
At θ = 0, I = 0 we see the [1, 1] fixed point (2−peaks), and the fixed points [1, 0],
and [0, 1] (1−peak). As δ decreases further, the 1−peak fixed points move closer to
I = 0, i.e. the difference in amplitudes at each peak decreases, while the 2−peak
fixed points remain at I = 0. At about δ = −5.5 the contour plot suggests that
the three θ = 0 fixed points collide at I = 0. Afterwards there is only one fixed
point, at I = 0. This is indicated in the contours of h at δ = −6, c = 3, see Figure
2. We thus have evidence for a pitchfork bifurcation. For δ > 0 we have the same
contours, shifted by π.

Note that the two site system has been analyzed along similar lines by [8] (it is
also known as the dimer system, see [11]). The bifurcations of breathers were seen
in [12] who also considered the addition of a potential that breaks the symmetry
between the two sites. By Remark 1 the reduction is still valid for this and more
general perturbations.

Example 2: Three sites.
Let un = Jneiφn , and define the variables θn, In by

θ1 = φ1 − φ2, θ2 = φ3 − φ2, θ3 = φ1 + φ2 + φ3 (25)

J1 = I1 + I3, J2 = I2 − I1 + I3, J3 = I3 − I2 (26)

as in (11), (10). Letting I3 = c, the Hamiltonian reduces to

h =
1

2
[(I1 + c)2 + (I2 − I1 + c)2 + (c − I2)

2]

−δ[
√

(I1 + c)(I2 − I1 + c) cos θ1 +
√

(I2 − I1 + c)(c − I2) cos θ2], (27)

with (θ1, θ2) ∈ S1 × S1, (I1, I2) ∈ S
2
c , where S

2
c is the set of (I1, I2) ∈ R2 satisfying

I1 > −c, I2 < c, I2 − I1 > c. These restrictions follow from Jk > 0, k = 1, 2, 3 . S
2
c

is a triangle with edges at (−c, c), (−c,−2c, ), (2c, c) and each side corresponds to
the vanishing of one of the three Jk.

To find nowhere-zero breathers we fix the vector (θ1, θ2) to one of the values
(0, 0), (0, π), (π, 0), (π, π) and look for critical points of h(θ1, θ2) for (I1, I2) ∈ S

2
c .

For (θ1, θ2) = (0, 0), and δ = −2.5, c = 3, we see the 1−peak fixed points [1, 0, 0],
[0, 1, 0], [0, 0, 1], the 2−peak fixed points [1, 1, 0], [1, 0, 1], [0, 1, 1], and the 3−peak
fixed point [1, 1, 1]. Note that for |δ| small, fixed points [s(1), . . . , s(N)] with s(j) = 0
for some j are near the sides of the triangle and are difficult to detect by contour
plots of h(θ1, θ2). For instance, in Figure 3, we are showing a piece of the triangle
S
2
c, c = 3, for δ = −1.4. Near (−3, 3) we see the [0, 1, 0] fixed point and further

to the right we have the fixed point [1, 1, 0]. Both are near the segment (−3, 3),
(6, 3), the side corresponding to J3 = 0. As we decrease δ further, the fixed points
remain away from the sides of the triangle and we see pairs of fixed points that
merge and disappear. First we see that [1, 1, 1], and [1, 0, 1] approach each other,
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merge, and disappear at δ ≈ −1.8, in what appears to be a fold bifurcation. At
δ ≈ −5.7 we see the merger and disappearance of [1, 0, 0], and [1, 1, 0]. By symmetry
this also happens to the pair [0, 0, 1], and [0, 1, 1]. In Figure 4 we magnify a piece
of the triangle to locate the continuations of [0, 1, 1] (top), and [0, 0, 1] (bottom)
at δ = −5.6. Note that they have both moved significantly, e.g. [0, 0, 1] goes to
the corner (−3,−6) as δ → 0. In Figure 5 we see the same region at δ = −5.8;
apparently the two breathers have merged and disappeared. After about δ = −5.8
only the breather [0, 1, 0] survives. Decreasing δ further suggest that this breather
exists for δ arbitrarily small.

For (θ1, θ2) = (π, 0) we see the merger and disappearance of the fixed points
[1,−1,−1], and [1,−1, 0], while for (θ1, θ2) = (0, π) we see the same for the fixed
points [1, 1,−1], and [0, 1,−1]. For (θ1, θ2) = (π, π) we see the fixed [1,−1, 1] that
appears to persist for δ arbitrarily small.

The above 12 fixed points of the correspond to 24 nowhere-zero breathers. The
missing breathers are [1, 0,−1], and [−1, 0, 1], this suggests that these breathers
have a node at the middle site, ∀δ 6= 0.

The above qualitative analysis is corroborated by solving (20) directly, as in
the next section. In particular, we verify the three basic collisions between (i)
[1, 1, 1], [1, 0, 1] at δ = −1.790, (ii) [1,−1,−1], [1,−1, 0] at δ = −2.335, and (ii)
[1, 1, 0], [1, 0, 0] at δ = −5.760. The corresponding relative angles are as above.
(All other colliding branches are obtained by the above three via reflections with
respect to the middle site or via the inversion A → −A.) We also see evidence that
[0, +, 0], [−1, 1,−1], [−1, 0, 1], and their respective inversions can be continued to
|δ| arbitrarily negative and verify that breathers [−, 0, +], [+, 0,−] that were not
seen in the above picture have a node, ∀δ < 0.

By (27) we see that for δ > 0 we obtain a similar bifurcation scenario, e.g. the
contour plots for (π, π), δ > 0 coincide with the ones for (0, 0), −δ < 0.

Remark 5. A similar correspondence between positive and negative δ nowhere-zero
breathers holds for arbitrary N . This follows from (15), (16). By the arguments in
the proof of Proposition 1 the correspondence holds also for breathers with nodes.

In [13] a similar but slightly different system of three equations is derived to ap-
proximate breathers in an NLS equation with a three well potential. The breathers
considered there have a similar identification with strings of +1, −1, 0, and despite
the difference in the intermediate steps, the bifurcation scenario observed (summa-
rized in Figure 3 of [13]) seems the same as the one we see here. An explanation
of these similarities is outside the scope of the present work, we do point out how-
ever that the comparison of the theory with direct simulation of the breather for
the PDE in [13] supports the idea that the bifurcation scenarios found for DNLS
lattices can be relevant to or have analogues with bifurcations in the NLS equations
they approximate, independently of the question of how good these approximations
are.

4. Bifurcations in larger chains. In this section we consider the numerical con-
tinuation of breathers in δ in larger lattices by studying the solutions of the equation
F = 0 of (22), i.e. (20). This approach allows us to continue all breathers obtained
for |δ| sufficiently small, without being restricted to nowhere-zero breathers. The
numerical strategy here is to continue each breather by increasing |δ| in suitably
small steps, until some criterion tells us to stop the continuation. The general
idea, to be justified a-posteriori, is that monitoring where branches stop is sufficient
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for detecting and characterizing all possible bifurcations. By a breather branch
(starting at A0) we here denote a differentiable one-parameter family of solutions
[A(δ), ω(δ)] of (20) with δ ∈ (−δ0, 0], δ0 ∈ R+, that also satisfies A(0) = A0.

In what follows, the power P will be held fixed to a constant C as we vary δ.
Furthermore, we let C be proportional to N , i.e. we fix the “power per site”. For
|δ| sufficiently small, this scaling keeps ω bounded away from zero, i.e. by (20), and
P = cN we have ω ≥ 2c > 0 at δ = 0 (see also Remark 7 below).

Due to the large number of breathers we have so far restricted our study to sym-
metric and antisymmetric breathers. Given a breather A = [A1, . . . , AN ] ∈ RN ,
define its reflection B ∈ RN by B = [B1, . . . , BN ] = [AN , . . . , A1]. A breather
is symmetric if B = A, and antisymmetric if B = −A. Note that F preserves
symmetry and antisymmetry and we can restrict the equation F = 0 to the re-
spective subspaces. In the results below we instead consider the full system and
verify numerically that branches that start at symmetric (antisymmetric) δ = 0
breathers consist of symmetric (antisymmetric) breathers. We also consider δ < 0,
i.e. decrease δ. By Remark 5 the continuation of nowhere-zero breathers should
give the same results for both signs of δ, up to a permutation of the branches. The
numerical results suggest that for δ 6= 0 the symmetric breathes have no nodes.

In Figures 6, 7 we plot δ vs. ω for all branches of symmetric breathers obtained
for N = 7, 13 respectively. The graph suggests that there are many branches that
collide and disappear, as in N = 3. There is also a number of branches that are
continued up to the largest |δ| shown. In the cases of apparent branch collisions, we
verify that they correspond to pairs of distinct branches that terminate at some δ,
where all components of the solution x = [A, ω] of F = 0 coincide. Both breather
branches consist of symmetric breathers. As suggested by Figure 6, for N = 7
there also 4 branches that may be continued to |δ| arbitrarily large. For N = 13
we have 7 branches with that property, see Figure 7. In these examples, a branch
of symmetric breathers either collides with another branch in a fold bifurcation, or
can be continued to δ arbitrarily negative.

Continuation of antisymmetric breathers for N = 7 yields a similar scenario,
with folds involving pairs of branches of antisymmetric branches, and a number of
branches that can be continued to δ arbitrarily negative. In Figure 8 we plot δ vs. ω

for all branches of antisymmetric breathers obtained for N = 13. In addition to folds
involving pairs of antisymmetric breathers, and branches that can be continued to
|δ| arbitrarily large (without intersecting other branches), we also see evidence for
pitchfork bifurcations involving antisymmetric breathers. We see three examples of
pitchforks. One of them is indicated in Figure 9, where we plot the A4 component
of breathers that are continued from the δ = 0 breathers [−1, 1,−1,−1, 1,−1, 0, . . .],
[−1, 1,−1, 0, 1,−1, 0, . . .], [−1, 1, 0,−1, 1,−1, 0, . . .]. The numerical continuation of
two of the branches (corresponding to the second and third breathers) is terminated
at the apparent bifurcation point, at approximately δ = −3.5, while a third branch
is continued to |δ| arbitrarily large.

In the numerical continuation of symmetric and antisymmetric breathers we see
that in a lattice of N sites the number of breathers that can be continued for |δ|
arbitrarily large is N . Moreover as we increase |δ| these N breathers converge to

the N solutions v of ∆v = λv (normalized to
∑N

j=1 v2
j = C), while the slopes

−ω
δ

converge to the eigenvalues λ. The convergence of breathers that persist for
large |δ| to eigenvectors of ∆ (the linear normal modes) should follow from the fact
that the term δ(∆A)n dominates the nonlinearity A3

n as |δ| increases, i.e. since
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supn∈ιN
|An|2 ≤ C. Examples for N = 13 are shown in Figure 10. There we

compare breathers for the branches starting at the δ = 0 symmetric breathers
[0, 0, 0, 0, 0, 0, 1, . . .] (top), [−1, 1,−1, 1, 0,−1, 1, . . .] (bottom) to the respective linear
normal modes to which they converge. Convergence is slower for the branch of the
first breather, which is more localized and whose supn∈ιN

|An|2 is larger. Specifically,
in the top picture the comparison is with a breather at δ = −75.0, while in the
picture we use a breather obtained for δ = −7.5.

In summary, all examples examined so far suggest that the possible bifurcations
of symmetric and antisymmetric breathers are folds and pitchforks. Also, in all fold
and pitchfork bifurcations we see that the number of branches decreases only in the
direction of increasing |δ|, i.e. all bifurcations are subcritical.

Also, in all symmetric and antisymmetric cases above we observe numerically that
DF has a simple eigenvalue that approaches zero as we approach the bifurcation
point δ0. By standard arguments this implies a one dimensional bifurcation equation
with one parameter, i.e. an equation of the form f(x, ǫ) = 0, with x, ǫ = δ−δ0. The
possibility of determining f from the numerics will be analyzed in further work.

Note that the study of symmetric and antisymmetric breathers does not give
a the whole picture since there is evidence of bifurcations involving symmetric or
antisymmetric breathers (some pitchforks of this type are reported in [2]). An
interesting example is seen at N = 5, where we have the collision and disappearance
of the symmetric branches [−1,−1,−1, . . .], [−1, 0,−1, . . .] with the non-symmetric
branches [−1, 0,−1,−1,−1], [−1,−1,−1, 0,−1] at approximately δ = −0.705, i.e.
a double fold bifurcation. In this example the nullspace of DF at the bifurcation is
two dimensional.

Remark 6. To solve F = 0 we used the minpack implementation of Powell’s hybrid
Newton’s method (see [7], [22]). The criterion for stopping the continuation is the
failure of convergence for the Newton’s method. This is a crude criterion but it
has been efficient in the examples described in the figures, e.g. it has allowed us to
continue past pitchforks with only a few cases of branch switching. More refined
strategies near the suspected bifurcation point are currently under consideration.

Remark 7. Setting an = An√
C

, ω̃ = ω
C

, equation (20) becomes

− ω̃an = δ̃(∆a)n − 2|an|2an, n ∈ ιN ,
∑

n∈ιN

|an|2 = 1, (28)

with δ̃ = δ
C

. Thus the breather equation has only one parameter and by varying δ

with C fixed we are studying the general case. Keeping C proportional to N has a
numerical advantage however. In the results obtained this way we see that the first
bifurcations occur for a range of δ that does depend on N . In (28) such bifurcations

would correspond to a range of δ̃ of size ∼ N−1. Solving (28) would then require

that we vary δ̃ using smaller steps as we increase N .

Remark 8. Breather bifurcations in the infinite one-dimensional DNLS were stud-
ied in [1] using the symplectic map interpretation of the breather equation (with
ω fixed, and P undetermined). The bifurcations seen in that work correspond to
the fold and pitchfork bifurcations we see here and they also appear to subcritical.
We have also examined some of the breather branches seen in N−site lattices in
larger lattices. We saw cases where the breather branches appear to converge as
we increase the size of the larger lattice. There are however cases of bifurcations
seen in the N−site lattice system that do not persist in a larger lattice. Some of
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these differences can be explained by the lack of translation symmetry in the finite
problem. For instance, for N odd we see that the branches continued from off-center
one-peak anticontinuous limit breathers eventually disappear as |δ| is increased, i.e.
only the breather at the center appears to converge to a linear normal mode as |δ|
increases. In the infinite lattice the one-peak breather exists for −δ arbitrarily large;
this follows from the variational interpretation of the breather equation and the ab-
sence of a power threshold in one dimension, see [23]. Also in the infinite problem
there are no finite l2 norm normal modes: breathers that persist for arbitrary |δ|
must converge to the trivial solution in the (weaker) l∞ norm.

We conclude we some remarks on the stability of the breathers seen in this study.
These are based on a comparison between the theoretically expected stability prop-
erties of small |δ| breathers, and numerical results on the stability of the continued
branches.

To study the (relative) stability of a breather u = e−iωtA, we write the DNLS in
the variables v defined by u = e−iωtv. In this system the breather is a fixed point.
The linearized equation has the form v̇ = JH, where H = ∇2Hω(A), the Hessian of
Hω = H−ωP at A. For a k−peak breather in an N−site lattice, and |δ| sufficiently
small we expect the following.

The spectrum of JH consists of (i) a double zero eigenvalue, (ii) 2(N − k) imag-
inary eigenvalues (in pairs ±iω + O(δ)), and (iii) 2k − 2 eigenvalues that can be

either real (in pairs ±O(
√

δ)), or imaginary (in pairs ±iO(
√

δ)). Furthermore, the
spectrum of H consists of ( i) one zero (simple) eigenvalue, (ii) 2(N − k) negative
eigenvalues (of absolute value O(1)), (iii) k − 1 positive eigenvalues (of size O(1)),
and (iv ) k eigenvalues of size O(δ) (that can be positive or negative).

The above scenario is an extrapolation of results obtained for an infinite lattice,
with ω fixed (see [18], [20]). The results on the parts (i), (iii) of the spectrum of JH

should follow from the arguments used in the infinite problem. The eigenvalues of
part (ii) of JH are seen numerically in examples and correspond to “remnants” of the
continuous spectrum of JH: for a given k−peak breather that is found numerically
in a lattice with increasing N (and that appears to converge to a breather of the
infinite problem), we see that the eigenvalues of part (ii) of JH become denser in two
bounded intervals on the imaginary axis that approach the continuous spectrum of
JH in the infinite lattice. (Analogous observations apply to H.)

By the above general picture, linear stability is determined by the eigenvalues
of part (ii) (see [18], [20] for more information). Also, for 2 ≤ k ≤ N − 1, H has
at least two positive, and two negative eigenvalues, therefore the only breathers
that can be a local minima or maxima of Hω restricted to P = C are 1−peak
breathers, and some N−peak breathers. We note that local minima and maxima
of Hω restricted to P = C are nonlinearly (orbitaly) stable breathers. On the
other hand, trajectories starting near a linearly stable breather that is not a local
extremum of Hω restricted to P = C may stay near the breather orbit for a long
time, but it is not clear that they will stay near the breather for all time.

Most nonlinearly stable breathers of the small |δ| regime disappear as δ < 0 is
decreased. As noted in Remark 8, for N odd, the 1−peak breather whose peak
is located at the middle site persists to arbitrary δ < 0, while all other 1−peak
breathers disappear through fold bifurcations. For N even, most 1−peak breathers
disappear through folds. There are also pairs of 1−peak breather branches that
collide with a symmetric multi-peak branch in a pitchfork bifurcation; the symmetric
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branch then persists for arbitrary δ < 0, as in N = 2. Similarly, it appears that
only one of the N−peak breathers persist for arbitrary δ < 0.

In examining the breathers that persist for arbitrary δ < 0 we see that their
linear stability can change as we vary δ. There are many scenarios of change of
stability. For example, in Figure 11 we show the real part of all eigenvalues of JH

for the symmetric breather [−1, 1,−1, 1, 0,−1, 1, . . .]. It is indicated that there are
intervals of δ where the real part of all eigenvalues vanishes, these are (roughly)
−0.2 < δ ≤ 0, and δ < −3.1, i.e. for the remaining values of δ we have instability.

Also, for N odd we see two branches, originating in a 1−peak, and an N−peak
breather respectively, that remain nonlinearly stable for all δ < 0. For |δ| small
these 1−peak breathers may be thought of as stable spatially localized states, while
N−peak breathers may be thought of as stable delocalized (or power equipartition)
states. These two branches respectively correspond to unique global maxima and
minima of H on P = C. This follows from the numerical spectra of the Hessian H,
and should explain their persistence to arbitrary δ < 0. For N even, we also have
the persistence of two branches connected to 1−peak, and N−peak breathers, with
the additional phenomenon of the merging of two distinct global maxima.
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Figure 1. Contours of the Hamiltonian h of (24) in the
(θ, I)−plane. c = 3,δ = −2.
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Figure 2. Here is the Caption of your figure. Contours of the
Hamiltonian h of (24) in the (θ, I)−plane. c = 3, δ = −6.
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Figure 3. Contours of h(θ1, θ2), θ1 = θ2 = 0, in a subregion
of the (I1, I2)−plane. c = 3, δ = −1.4.
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of the (I1, I2)−plane. c = 3, δ = −5.8.
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Figure 6. δ vs. ω for all branches of symmetric breathers,
N = 7, C = 7.
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Figure 7. δ vs. ω for all branches of symmetric breathers,
N = 13, C = 13.
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Figure 8. δ vs. ω for all branches of antisymmetric
breathers, N = 13, C = 13.
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Figure 9. δ vs. A4 component of breathers
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[−1, 1,−1,−1, 1,−1, 0, . . .] (middle), [−1, 1,−1, 0, 1,−1, 0, . . .]
(top), [−1, 1, 0,−1, 1,−1, 0, . . .] (bottom). N = 13, C = 13.
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Figure 10. (a) Continuation of δ = 0 symmetric breather
[0, 0, 0, 0, 0, 0, 1, . . .], δ = −75.0 (square), linear normal mode
(circle). (b) Continuation of δ = 0 symmetric breather
[−1, 1,−1, 1, 0,−1, 1, . . .], δ = −7.5 (square), linear normal
mode (circle).
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Figure 11. N013, C = 13. δ vs. imaginary part of eigenva-
lues of JH for symmetric breather [−1, 1,−1, 1, 0,−1, 1, . . .].
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