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Abstract

We investigate asymptotic equations describing small amplitude surface elastic waves in the half-plane (Rayleigh waves).
For hyperelastic materials such model equations are Hamiltonian systems, and are seen to lead to the formation of singularities
in the surface elastic displacement. At the time of singularity formation the Fourier spectra of the solutions exhibit power law
decay, and the observed exponents suggest the existence of both differentiable and non-differentiable singular profiles. 2001
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1. Introduction

In this Letter we study the non-linear evolution of
small amplitude periodic surface elastic waves (Ray-
leigh waves) in the half-plane. Early investigations of
non-linear Rayleigh waves in this geometry have fo-
cused on the question of existence of traveling waves
of permanent form (see [1,2]), reducing the full trav-
eling wave equation to a simpler model. We have
recently seen that traveling waves solutions of such
model equations can have non-smooth profiles (see
[3]) and in this work we extend our investigation of
singularities in Rayleigh waves to the evolution prob-
lem.

To study the evolution problem we use an asymp-
totic amplitude equation originally derived in [4] (see
also [5]) that describes the non-linear slow modulation
of linear Rayleigh waves. In this approximation, the
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motion of the solid is described by the evolution of the
surface elastic displacement. The resulting amplitude
equation is non-local and has the structure of a non-
local Hamilton–Jacobi type equation. Equations with a
similar structure can be derived for other systems, e.g.,
for conservation laws in the half-plane and other scale
invariant interface geometries (see, e.g., [6]). Also,
non-linear Rayleigh waves have been recently gener-
ated and studied experimentally (see [7,8]), and we
comment on the relation of the present work with these
experiments the end of the Letter.

Numerical simulations in [4,9] and elsewhere show
that the amplitude equations for surface elastic waves
can develop singularities. To investigate these singu-
larities we consider hyperelastic materials, where the
amplitude equations have a Hamiltonian structure. We
study numerically three hyperelastic models and in all
cases we see that smooth initial conditions lead to non-
smooth surface elastic displacements. These phenom-
ena are especially pronounced for the horizontal dis-
placement, where we see the formation of “cusps”, i.e.,

0375-9601/01/$ – see front matter 2001 Elsevier Science B.V. All rights reserved.
PII: S0375-9601(01)00596-5

http://www.elsevier.com/locate/pla


112 P. Panayotaros / Physics Letters A 289 (2001) 111–120

points where the second derivative of the horizontal
elastic displacement diverges. We argue that for ana-
lytic initial conditions the solutions stay analytic up to
the time of singularity formation. As a consequence,
the Fourier spectra of the solutions have power law
decay at the singularity formation time, and this obser-
vation allows us to determine the singularity time nu-
merically. Note that the idea of connecting singularity
formation, loss of analyticity and Fourier spectra has
been used by several authors (see, e.g., [10,11]). Since
characteristics or similarity blow-up solutions are not
available here, we focus on the evolution of Fourier
spectra.

Power law exponents at the singularity time can be
measured in several ways, in some cases using the con-
servation of momentum. The exponents observed sug-
gest that for some initial conditions the surface elas-
tic displacement is still differentiable at the singularity
time, i.e., the apparent “cusps” are differentiable func-
tions. For other initial conditions, however, the elas-
tic displacement at the singularity time may fail to be
differentiable. We also remark that the traveling wave
solutions seen in [3] have even stronger singularities.

This Letter is organized as follows. Section 2 sets
up the notation and outlines the argument leading to
the amplitude equations. In Section 3 we show that the
amplitude equations have a Hamiltonian structure, and
we discuss some of their symmetries. In Section 4 we
describe numerical experiments with three models, fo-
cusing at the power law behavior at the time of singu-
larity formation. In the last section we briefly discuss
to connection of our work with recent experiments on
non-linear Rayleigh waves.

2. Amplitude equation for surface elastic waves

We considerR2 with the Cartesian coordinates
(x1, x2) and an elastic solid occupying in its unde-
formed state the half-planeH = {x = (x1, x2) ∈ R2:
x2 � 0}. The Cartesian components of the elastic dis-
placementu will be denoted byui(x1, x2), i = 1,2.
The densityρ of the material will be assumed to be
constant. The internal elastic forces due to a deforma-
tion can be obtained from the (first Piola–Kirchhoff)
stress tensorτ (x) :H → R2 ×R2, thought of here as a
2× 2 real matrix with componentsτij , i, j = 1,2. We
will assume that the stress tensorτ is a specified func-

tion τ (∇u) of the derivative∇u of the elastic displace-
ment (τ (∇u) is the “stress–strain” relation). With this
notation, a time-dependent elastic displacement must
satisfy the equations of motion

(2.1)ρ∂ttui =
2∑
j=1

∂xj τij , i = 1,2, in H,

and we will consider “zero-traction” boundary condi-
tions

(2.2)
2∑
j=1

τij n̂j = 0 at∂H,

with n̂= [n̂1, n̂2] = [0,−1] the outward unit normal at
∂H . A convenient shorthand for (2.1), (2.2) isρ∂ttu=
∇ · τ in H , τ · n̂= 0 at∂H , respectively.

We will also require that for all timest ∈ R the elas-
tic displacement satisfy periodicity and decay condi-
tions

(2.3)
u(x1 + 2π,x2, t)= u(x1, x2, t), ∀(x1, x2) ∈H,

(2.4)lim
x2→∞u(x1, x2, t)= 0, ∀x1 ∈ R,

respectively. In view of the periodicity condition in the
horizontal direction we work in the half-cylinderD,
obtained by identifying the points(x1 + π,x2) and
(x1 − π,x2) of the strip D̃ = {(x1, x2) ∈ H : x1 ∈
[−π,π]}.

We will be particularly interested in hyperelastic
materials, where the stress tensorτ has the form

(2.5)

τij = ∂W(∇u)
∂ui,j

, with ui,j = ∂xi uj , i, j = 1,2.

The real functionW represents the density of the po-
tential energy stored in a deformed solid. We will as-
sume that the potential energy density can be decom-
posed asW = WL + WNL, with WL quadratic and
WNL cubic in∇u. The quadratic partWL will be given
by

WL = λ

2
(trγ )2 +µ tr

(
γ 2), with

(2.6)γ = 1

2

[∇u+ (∇u)T ]
,

with λ,µ > 0 the Lamé constants. The particular
choice ofWL gives the standard linear theory for iso-
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tropic materials. Also, we let

(2.7)WNL =
2∑

a,b,c,d,e,f=1

WNL
abcdef ua,buc,due,f ,

with theWNL
abcdef real constants. The cubic partWNL

is general enough to include the cubic part of several
physically reasonable models, e.g., for isotropic mate-
rials. An example is the St. Venant–Kirchhoff mater-
ial, considered in Section 4. The asymptotic theory be-
low describes only the lowest-order non-linear effects
and does not take into account the effects of quartic or
higher-order terms in the potential energy density.

We will now use a formal multiple scales argument
to seek small amplitude solutions of (2.1)–(2.3) that
have the form

u(x1, x2, t)= εU(θ, x2, εt)+ ε2Ũ(θ, x2, εt)

(2.8)+O(
ε3),

whereθ = x1 − ct , andc is a constant. We enforce the
boundary conditions (2.3), (2.4) by requiring thatU, Ũ
be 2π -periodic inθ , and that they decay asx2 → ∞.
The small parameterε can be chosen to be the typi-
cal slope∂x1u1 of the horizontal displacement. We are
thus seeking elastic displacements that travel to the
right with velocity c, with a wave profile that varies
over a “slow” time-scaleεt . The goal is an equation
describing the slow evolution ofU(θ, x2, εt). Equa-
tions of this type have been derived by [4]. The argu-
ment we outline here follows related work of [6].

To determineU, Ũ we insert (2.8) into Eqs. (2.1),
(2.2) and match powers ofε. Note that∂θ = ∂x1 and
∂t = ∂T0 + ε∂T + O(ε2), i.e., T0 = t and T = εt ,
are the “fast” and “slow” time-scales, respectively. At
orderε1 we have the linear homogeneous system

(2.9)
(λ+µ)∇(∇ ·U)+µ∆U − ρc2∂2

θ U = 0 inD,

and

−µ(∂x2U1 + ∂θU2)= 0,

(2.10)−λ(∇ ·U)− 2µ∂x2U2 = 0 at∂D,

with ∇ = [∂θ , ∂x2] and∆= ∇ ·∇. We also require that
U(θ, x2)→ 0 asx2 → ∞. Eqs. (2.9), (2.10) do not
involveT so that the dependence of solutions onT is
arbitrary at this stage.

The theory of (2.9), (2.10) is well known (see, e.g.,
[12,13]), and we summarize the results. First, in order
for solutions with the required boundary conditions to
exist,c2 must satisfy a cubic equation with a unique
real solutionc2

0 (the Rayleigh speed). Then, letting

(2.11)A2 = 1− ρc2
0

µ
and B2 = 1− ρc2

0

λ+ 2µ
,

all solutions have the form

(2.12)U(θ, x2, T )=
∑
k∈Z∗

a(k,T )eikθ v̂(k, x2),

whereZ∗ = Z \ {0} and v̂(k, x2) = [v̂1(k, x2), v̂2(k,

x2)], with

v̂1(k, x2)= i sgn(k)

(
−Ae−|k|Ax2 + 2A

A2 + 1
e−|k|Bx2

)
,

(2.13)k ∈ Z∗,

(2.14)

v̂2(k, x2)=
(
e−|k|Ax2 − 2AB

A2 + 1
e−|k|Bx2

)
, k ∈ Z∗.

To obtain real elastic displacements, we require that
a∗(k, T ) = a(−k,T ), ∀k ∈ Z∗. The coefficients
a(k,T ) are otherwise arbitrary, and can be determined
by the elastic displacement at the surface∂D. For in-
stance,U1(θ,0, T ) can be arbitrary, and once speci-
fied,U2(θ,0, T ) and the displacementU in the interior
of D are completely determined. ForU independent
of T , (2.12) describes linear traveling wave solutions
(Rayleigh waves).

Matching the orderε2 terms of (2.1), (2.2) with
expansion (2.8) we obtain

∇ · τL(
Ũ

) − ρc2
0∂

2
θ Ũ = F(U) in D,

(2.15)τL
(
Ũ

) · n̂= f (U) at∂D,

with

F(U)= −ρc0∂T ∂θU − ∇ · τNL(U,U),

(2.16)f (U)= −τNL(U,U) · n̂,
andU a solution of the homogeneous system (2.9),
(2.10). We require that̃U(θ, x2)→ 0 asx2 → ∞.

In order for (2.15), (2.16) to have a solution,F(θ,
x2, T ) = F(U(θ, x2, T )), f (θ,T ) = f (U(θ,0, T ))
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must satisfy the solvability condition∫
D

u∗(θ, x2, T ) · F(θ, x2, T )

(2.17)−
∫
∂D

u∗(θ,0, T ) · f (θ,T )= 0

for all solutions u(θ, x2, T ) of the homogeneous
system (see [3]). Equivalently, lettingvk(x2)= eikθ ×
v̂(k, x2), with the components of̂v(k, x2) as in (2.13),
(2.14), we require

2ρc0∂T

∫
D

v∗
k (x2) · ∂θU

= −
∫
D

v∗
k (x2) ·

(∇ · τNL(U,U)
)

(2.18)+
∫
∂D

v∗
k (0) ·

(
τNL(U,U) · n̂)

for all k ∈ Z∗.
The amplitude equation (2.18) is the desired equa-

tion for the evolution of the coefficientsa(k,T ),
k ∈ Z∗, of the lowest-order displacementU(θ, x2, T )

in the “slow” time scaleT = εt . The initial con-
ditions a(k,0) should satisfy the reality conditions
a(−k,0) = a∗(k,0), ∀k ∈ Z∗. Note that the assump-
tion that the material is hyperelastic has not been used
so far, and that (2.18) involves only the quadratic non-
linearity of the equations of motion, even in the pres-
ence of higher-order terms.

3. Hamiltonian structure of the amplitude
equation

In this section we point out some general features
of the amplitude equation (2.15) that do not depend on
the detailed form of the stress tensor. First, we note
that in the case where the material is hyperelastic,
amplitude equation (2.18) has a Hamiltonian structure.

Proposition 3.1. Let U(θ,T ) be an arbitrary solution
of the linear homogeneous system (2.9), (2.10), i.e.,
a real function of form (2.12). Then amplitude equa-
tion (2.18)can be written as Hamilton’s equation

(3.1)
da(k)

dT
= −i sgn(k)

∂H

∂a(−k), k ∈ Z∗.

The Hamiltonian H is given by

(3.2)H = (K)−1
∫
D

WNL(U,U,U),

with K = 4ρc0πd , and d a constant (d = |k| ×∫ ∞
0 (|v̂1(k, x2)|2 + |v̂2(k, x2)|2)).

Proof. LetV (a(k))= ∫
D
WNL(U,U,U) be the cubic

potential energy, restricted to the space of solutionsU

of the linear homogeneous system (2.9), (2.10). It is
easy to show (see [3]) that the right-hand side of (2.18)
is the (formal) gradient ofV , that is,

∂V

∂a(−k) = −
∫
D

v(−k, x2) ·
(∇ · τNL(U,U)

)

(3.3)+
∫
∂D

v(−k,0) · (τNL(U,U) · n̂),

k ∈ Z∗. On the other hand,

(3.4)2ρc0∂T

∫
D

v̂∗(k, x2) · ∂θU = 4ρc0πd
ik

|k|
∂a(k)

∂T
,

with d as in Appendix A, and (3.1) follows.✷
Remark 3.1. Eq. (3.1) has the form of Hamilton’s
equation

(3.5)
da(k)

dT
= [
a(k),H

]
.

The conjugate variables area(k), k ∈ Z∗, and the
Poisson bracket[· , ·] is given by

[f,g] = −i
∑
k∈Z∗

sgn(k)

(3.6)

×
(
∂f

∂a(k)

∂g

∂a(−k) − ∂g

∂a(k)

∂f

∂a(−k)
)
.

The axioms for Poisson brackets are verified readily
for (3.6).

In (3.1) we may alternatively take the canonical
variables to bea(k), a∗(k) with k ∈ Z+ and use the
reality conditiona(−k)= a∗(k) to write the Hamilto-
nianH and the Poisson bracket in terms of thea(k),
a∗(k), k ∈ Z+. Also, letting q(k) = (1/2)(a(k) +
a∗(k)), p(k) = (1/2i)(a(k)− a∗(k)), for k ∈ Z+, we
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can also write Hamilton’s equations as

dq(k)

dT
= 1

2

∂H

∂p(k)
,

dp(k)

dT
= −1

2

∂H

∂q(k)
,

(3.7)k ∈ Z+.

An immediate consequence of the Hamiltonian
structure of (2.18) is that

(3.8)I =
∑

k∈Z\{0}
|k|∣∣a(k)∣∣2

is conserved under the evolution: by (3.6),[a(k), I ] =
−ika(k), i.e.,I is the generator of horizontal transla-
tions. On the other hand,

∫
D
WNL(U,U,U) is transla-

tion invariant, hence[I,H ] = 0.
A HamiltonianH obtained from the cubic potential

energy densitiesWNL of (2.7) has the general form

H =
∑

k1,k2,k3∈Z\{0}
a(k1)a(k2)a(k3)(ik1)(ik2)(ik3)

(3.9)× δ(k1 + k2 + k3)C̃k1,k2,k3.

The coefficientsC̃k1,k2,k3 can be computed easily once
WNL is specified, and we see that they are sums of
terms

g(k1, k2, k3)

f1|k1| + f2|k2| + f3|k3| ,

where theg(k1, k2, k3) depend onA, B and sgn(kj ),
j = 1,2,3, and thef1, f2, f3 are constants (depending
on A,B). Therefore,C̃λk1,λk2,λk3 = λ−1C̃k1,k2,k3 for
all λ ∈ R andk1, k2, k3 ∈ Z∗.

The amplitude equation will thus have the form

da(k)

dT
=

∑
k1∈Z\{0,k}

[
ik1a(k1)

][
i(k− k1)a(k− k1)

]

(3.10)× (−ik)Λ(k, k1), k ∈ Z∗,

where Λ(k, k1) = C̃−k,k1,k−k1 + C̃k1,−k,k−k1 +
C̃k1,k−k1,−k . (The reality of the Hamiltonian implies
thatΛ∗(k, k1) = Λ(−k,−k1), ∀k, k1 ∈ Z∗.) Transla-
tion invariance and the fact that the non-linearity of
(3.10) is quadratic imply that, for anyL ∈ Z+, the
subspacesVL of functions whose Fourier coefficients
a(k) vanish fork /∈ LZ∗ are invariant under the evolu-
tion of (3.10). Then, by the homogeneity of the coeffi-
cientsikΛ(k, k1) (and the fact that (3.10) is quadratic),
if α(k,T ) is a trajectory of (3.10) with initial condition
α(k,0) = f (k), andβ(Lk,T ) a trajectory of (3.10)

with initial conditionβ(Lk,0) = rf (k) (for L ∈ Z+,
r ∈ R), we will haveβ(Lk,T )= rα(k, rL2T ).

Remark 3.2. Since k �= 0, we may also multiply
(3.10) by ik to obtain an evolution equation for the
Fourier coefficientsika(k) of U ′ = ∂θU(θ, x2, T ).
The evolution equation forU ′ has the form of a con-
servation law∂T U ′ + ∂θ (F (U ′)) = 0, with F(U ′) a
quadratic integral operator (see also [6]). Starting from
(3.3) it is easy to see that the equation forU ′ is also a
Hamiltonian system for hyperelastic media.

Remark 3.3. The amplitude equations for hyperelas-
tic media can also be derived from a variational princi-
ple using a Lagrangian. The existence of the constants
H,I then follows from Noether’s theorem (see [5]).
Note also that in [9] the amplitude equations for hy-
perelastic media are derived directly starting from
an averaged Hamiltonian. Proposition 3.1 shows that
the more general multiple scales argument and ap-
proaches starting from an appropriate Hamiltonian or
Lagrangian yield the same equation.

4. Singularity formation and power law spectra

In this section we study numerically the evolu-
tion of the amplitude equations for three model non-
linearities. In all three cases smooth initial surface
elastic displacements develop singularities. The time
of singularity formation and the nature of the singular-
ities are studied by examining the Fourier spectra of
the numerical solutions.

The first two models we consider have cubic poten-
tial energy densitiesWNL1,WNL2, with

WNL1 = 1

4
(λ+µ)u1,1u

2
1,2 and

(4.1)WNL2 = 1

4
(λ+µ)(u1,1u

2
1,2 + u2,2u

2
2,1

)
,

respectively. The partsWL,WNL for the third model
are the quadratic and cubic parts of the St. Venant–
Kirchhoff potential energy densityWSVK, given by

WSVK = λ

2
(trE)2 +µ trE2, where

(4.2)E = 1

2

(∇u+ (∇u)T + (∇u)T∇u).
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The St. Venant–Kirchhoff material is a simple model
for isotropic elastic solids (see [10, Ch. 4]), while the
first two non-linearities are toy models chosen for their
simplicity and are not consistent with isotropy. In all
the numerical experiments below the Poisson ratio
was set to 1/4 (the corresponding Rayleigh speed is
approximatelyc2

0 ∼ 0.845µ/ρ).
To integrate the equations of motion numerically

we work with the variablesq(k),p(k), k ∈ Z+. To
obtain Galerkin projections of the amplitude equa-
tion we consider Hamilton’s equations (3.7) for modes
with wavenumberk � N and the truncated Hamil-
tonianHN ,

HN =
k2+k3�N∑
k2,k3>0

2
[
q(k2 + k3)q(k2)q(k3)

− q(k2 + k3)p(k2)p(k3)

+ p(k2 + k3)q(k2)p(k3)

+ p(k2 + k3)p(k2)q(k3)
]

(4.3)× (k2 + k3)k2k3C(k2, k3).

The coefficientsC(k2, k3) for the three models above
can be computed straightforwardly using (2.12) and
(2.13). Also, the components of the elastic displace-
ment at the surface are

U1(θ,0, T )

(4.4)

=
k�N∑
k=1

c1
[−2q(k,T )sinkθ − 2p(k,T )coskθ

]
,

U2(θ,0, T )

(4.5)

=
k�N∑
k=1

c2
[
2q(k,T )coskθ + 2p(k,T )sinkθ

]
,

where

c1 = −A+ 2A

A2 + 1
, c2 = 1− 2A

A2 + 1
.

Remark 4.1. From Hamilton’s equations and (4.3),
the subspaceVE of solutions withq(k,T ) = 0, ∀k ∈
Z+, is invariant under the evolution. An analogous
statement holds for Galerkin projections. By (4.4),
(4.5) these subspaces correspond to solutions with
U1(θ,0, T ) even andU2(θ,0, T ) odd.

The Galerkin equations were integrated numeri-
cally using a predictor–corrector multi-step method

from the LSODE package (Adams–Bashforth predic-
tor, Adams–Moulton correction, see [14]). Global ac-
curacy in the integration of the Galerkin system was
assessed and verified using the conserved quantitiesH

andI . The truncation error will be discussed at the end
of the section.

In all numerical experiments with the three mod-
els considered we observed that smooth initial surface
displacements develop singularities. Examples for the
three models are shown in Figs. 1, 2 and 3. The singu-
larities are more pronounced for the horizontal surface
displacement, where we see the formation of “cusps”.
These cusps develop at local extrema ofU1 and can
be characterized as points where|∂θθU1| diverges, see,
for instance, Fig. 4. Note that in the trajectory of Fig. 4
the local maximum ofU1 is always atθ = 0, in gen-
eral the local extrema were observed to move slightly
from their initial conditions. The above observations
suggest that there is a finite singularity timeTs when
the solutions cease to be smooth.

Remark 4.2. After the cusps become visually evi-
dent, we see small scale oscillations that begin to grow
to appreciable magnitudes, eventually distorting the
shape of the wave. The discussion at the end the sec-
tion suggests that afterTs the computed surface dis-
placement looses accuracy due to truncation error. The
problem of continuing the solutions past the conjec-
tured singularity timeTs will not be addressed here.

To determine the singularity timeTs and also to
study the nature of the singularities we look at the
Fourier spectraa(k,T )= q(k,T )+ ip(k,T ), k ∈ Z+,
of the numerical solutions. We observe that at some
time T = TL inside the interval where we expect to
find Ts the Fourier spectrum has a power law decay,
while for T < TL the spectrum decays exponentially.
These observations suggest that analytic initial condi-
tions lead to solutions that remain analytic inθ for all
T ∈ [0, TL), and that the singularities are formed at
T = TL, i.e., the singularity timeTs is the numerically
determinedTL.

The above scenario is suggested by the log–log plots
of |a(k,T )| vs. k. Initially these plots are concave
(possibly at largek) or have a concave envelope. Even-
tually they become linear, as in Figs. 5, 6 (the latter
for large k), or profiles that are enveloped by lines,
as in Fig. 7. The concavity of the logarithmic plots
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Fig. 1. Amplitude equation for model NL1: (a) Initial horizontal
surface displacementU1(θ,0)= 2cosθ , (b) U1(θ,T ) at later time
T = T1, (c) initial vertical surface displacementU2(θ,0)= 2sinθ ,
(d) U2(θ,T ) at later timeT = T1.

Fig. 2. Amplitude equation for model NL2: (a) Initial horizon-
tal surface displacementU1(θ,0) = −2cosθ − (1/5)cos 2θ −
(1/5)sin 2θ +O(0.01), (b) U1(θ,T ) at later timeT = T2, (c) ini-
tial vertical surface displacementU2(θ,0)= 2sinθ+(1/5)cos 2θ+
(1/5)sin 2θ +O(0.01), (d)U2(θ,T ) at later timeT = T2.

beforeTL indicates exponential decay of the power
spectra forT < TL. Moreover, visual inspection of
the logarithmic plots already gives usTL to a reason-
able accuracy. For instance, for the NL1 model with
U(θ,0)∼ cosθ , we can determineTL to ±0.05 (recall
that the relevant time-scale depends on the amplitude

Fig. 3. Amplitude equation for St. Venant–Kirchhoff model:
(a) Initial horizontal surface displacementU1(θ,0) = 0.2sinθ ,
(b) U1(θ,T ) at later timeT = T1, (c) initial vertical surface dis-
placementU2(θ,0)= 0.2cosθ , (d)U2(θ,T ) at later timeT = T1.

Fig. 4. Evolution of∂θθU1 at θ = 0 for trajectory of Fig. 1 (model
NL1).

and length-scale). Note also that, to this accuracy, the
timesTL obtained using different Galerkin truncations
(ranging fromN = 100 to 1600 modes) agree.

To obtain more information on the singularities we
focus on trajectories that atTL exhibit spectra|a(k)|2
= Ckγ over allk � 1, e.g., as in Fig. 5. Note that such
exact power law behavior atT = TL was observed for
several initial conditions. Also, the spectra of such tra-
jectories have an almost exact exponential decay be-
fore TL, and this allows us to estimate the size of
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Fig. 5. Logarithmic power spectrum atT = TL for the trajectory of
Fig. 1 (model NL1).

Fig. 6. Logarithmic power spectrum atT = TL for initial condi-
tion with U1(θ,0) = (11/5)cosθ + (3/5)cos 2θ − (2/5)cos 3θ −
(1/5)sin 3θ +O(0.04) (model NL1).

the domain of analyticity of the surface elastic dis-
placement. Recall that a periodic functionf (θ) whose
Fourier coefficientsf̂ (k) satisfy |f̂ (k)| � Me−|k|ρ
for someM, ρ > 0 must be analytic in the strip
| Imθ |< ρ. We can estimateρ by fitting the numerical
values of|a(k,T )|2 to a profileC(T )kγ (T )e−|k|ρ(T )
using least squares. The decay ofρ(T ) in Fig. 8 is
typical. A simple way to estimateTL is to extrapo-
late from the graph ofρ(T ). Also, we expect that as
ρ(T )→ 0, the exponentγ (T ) converges to the power
law exponent atTL.

Fig. 7. Logarithmic power spectrum atT = TL from an initial con-
dition U1(θ,0) with two maxima atθ1,−θ1. The maxima develop
into cusps at the same time (model NL1).

Fig. 8. Evolution of the exponentρ(T ). The initial condition is
U1(θ,0)= 2cosθ − sin 2θ +O(0.05) (model NL1).

The timeTL and the power law exponentγ can
be determined more directly, by looking for the time
that minimizes the least-squares error of a linear fit
to the log–log plot of the power spectrum. Assuming
that the spectrum obeys an exact power law for allk,
we consider only the modes with 1� k � N/2 to
minimize the effects of the truncation error. The two
approaches yield the same exponentγ , to ±0.02. For
instance, for Fig. 5, both approaches yieldγ = −4.53.
Alternatively, the conservation ofI and the power law
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assumption imply

∑
k∈Z∗

∣∣a(1, TL)∣∣|k|1+γ = I (0),

and we can determineγ using the numerical values
of |a(1, TL)|, I (0). For the trajectory corresponding to
Fig. 5, we findγ = −4.52.

The above analysis can be performed in principle
for all initial conditions. For instance in Fig. 7, the
envelope obeys a power law for allk � 1, and we
perform the above analysis for the points on the
envelope. We find the exponentγ = −4.0 ± 0.1.
However, trajectories exhibiting power law spectra at
TL only whenk is sufficiently large, e.g., as in Fig. 6,
require higher resolution and have not been studied
systematically.

The exponentsγ measured atT = TL contain inter-
esting information on the differentiability ofU(θ,T )
at the singularity timeT = Ts . Recall here that a peri-
odic functionf (θ) with Fourier coefficientsf̂ (k) sat-
isfying

∑
k∈Z |f̂ (k)||k|l <∞ must havel continuous

derivatives for allθ , i.e., must beCl . Thusγ < −4
implies theU(θ,Ts) is C1. Combining this with the
observed divergence of the second derivative, we thus
have evidence for solutions that are analytic up toTs ,
when they cease to beC2 but remain continuously
differentiable. The “cusps” observed in such cases
are therefore somewhat misleading, the slope at the
“cusp” points is well defined and vanishes. In the case
whereγ = −4, as in Fig. 7,U(θ,Ts) does not have
to beC1, i.e., we can have bona fide cusps. The two
possibilities were seen in all three models.

Remark 4.3. Note that the numerical observations
are consistent with the assumptions of (2.8) used in
the derivation of the amplitude equations, sinceU
and ∂θU remain ofO(1) for all times up toTs . In
particular, we see that maxθ∈S1 |∂θU | stays within 4
times its initial value. Typically, the largest increase is
seen in∂θU2, e.g., as in Fig. 2.

Note that in general different initial conditions lead
to different power law exponents atTs , although we
have also observed initial conditions, not necessarily
nearby and with well separated singularity timesTs ,
that lead to the same power law exponent atTs . Fur-
ther results on the dependence of the exponents on the

initial conditions and the model will be presented else-
where.

The current simulations also give some information
on traveling wave solutionsU(θ − c1T ,x2), c1 �= 0,
of the amplitude equation. Recent numerical work in
[3] suggests that such solutions can exist but they
are not smooth. These non-smooth traveling solutions
have power law spectra with exponentsγ > −4, i.e.,
they are more singular than the surface displacements
U(θ,TL) seen here. On the other hand, smooth initial
conditions were always observed to lead to singularity
formation in the present study. Smooth traveling wave
solutions therefore seem to be either impossible or
unstable to singularity formation. For some elastic
models the amplitude equations may also have non-
trivial stationary statesU(θ) (see [1]). A search for
trajectories that evolve (or come close) to such states
has not produced any examples so far.

We conclude with a brief discussion of the reliabil-
ity of the numerical results. First, the global relative
numerical drifts of the conserved quantitiesHN and
IN = ∑N

k=1 k[q2(k) + p2(k)] over the interval of in-
tegration[0, Tmax] (typically Tmax ∼ 1.2TL) were in
the range[10−8,10−7], suggesting very good accu-
racy in the integration of the Galerkin systems. Also,
as long as the number of modesN in the trunca-
tion satisfiesN > ρ(T )−1, the truncation error is in-
significant (see [10]). For instance, in Fig. 8 we use
N = 800 and the values ofρ(T ) in the plot are self-
consistent, i.e.,ρ(T )N−1 ∼ 1.5 × 10−3. Determin-
ing Ts by extrapolating from these values ofρ(T )
should be reliable. To argue that the truncation er-
ror does not affect the lowest modes significantly as
T → TL, and that the values for the timeTL and the
exponentγ have sufficient accuracy, we note that the
values ofγ obtained using the conservation ofI in-
volved only |a(1, TL)|, i.e., the least affected mode,
and agree to±0.002 with the values ofγ obtained
from the modes with 1< k < N/2. Also, we find that
that the values ofTL and γ from different Galerkin
truncations agree, e.g.,N = 400, 800, 1600 give the
same exponents to±0.002. Finally, we integrated nu-
merically Galerkin truncations ofuT −(1/2)(uθ)2 = 0
with several initial conditions. We saw thatTL and
the singularity time found using characteristics agree.
Similar agreement between the theoretical value of
Ts and TL is also seen in the Burgers equation (see
[10,11]).
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5. Discussion

In the present work we have investigated some as-
pects of singularity formation in amplitude equations
describing the slow non-linear modulation of Rayleigh
waves. We observed that for analytic initial conditions
solutions stay analytic up to some finite singularity
time Ts , when the second derivative of the horizon-
tal displacement diverges. The regularity of the sur-
face elastic displacement atTs depends in general on
the initial conditions, and in some cases the wave pro-
file is continuously differentiable atTs . Progress on
the theoretical explanation of these observations will
be reported in future work.

Note that some non-local conservation laws of the
type encountered here can be reduced to local equa-
tions (see, e.g., [15]). In such cases we can use charac-
teristics to show analyticity up to the singularity time
and also to trace the motion of complex singularities of
the initial condition. A similar reduction to a local sys-
tem does not seem applicable for surface elastic waves,
however it may still be possible to trace complex sin-
gularities numerically using Padé-type extrapolations
(see, e.g., [16]).

The persistence of our results for the full system is
not known, and we can only say at present that the
types of singularities we observed are consistent with
the assumptions used in deriving the amplitude equa-
tions. It would be therefore useful to see whether we
can construct exact solutions with singularities. The
question could also be investigated for simpler conser-
vation laws in the half-plane.

We conclude with some remarks on recent experi-
mental observations of singular surface elastic waves
(see [7,8]). The experiments describe pulses of sur-
face elastic waves that develop very large slopes in
∂x1u(x1,0). This is analogous to the blow-up of
|∂θθU |, and we also see that the shapes of the ob-
served pulses are qualitatively similar to the wave pro-
files shown in the figures, e.g., the derivative∂θU from
U in Fig. 2 is very similar to∂θU from Figs. 1, 2

of [8]. The authors also argue that the motions they
study can be approximately described by solutions of
form (2.8), and show that the evolution of the pulses
can be modeled quantitatively to good accuracy by a
non-local conservation law for∂θU of the type consid-
ered here, with a phenomenological dissipative term
added. Thus the experiments show that the amplitude
equations are a physically relevant first approximation.
There are several questions however, and it appears
that a more realistic model must include dissipative ef-
fects. Such effects are in evidence in the results of both
studies, and should also affect the spectra (see [11]).
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