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Abstract

We use ideas from analytic bifurcation theory to develop expansions for periodic small amplitude traveling surface elastic
waves of permanent formin the half-plane (Rayleigh waves). We focus on the case of hyperelastic materials where the traveling
wave problem has a variational structure, and solve numerically the equations describing the lowest order approximation to
the traveling wave solutions. For the materials considered, there is evidence for solutions describing elastic displacements
that have discontinuous derivative at the boundary of the domain. © 2002 Published by Elsevier Science B.V.

1. Introduction

In this work, we develop a perturbation theory for periodic small amplitude non-linear surface elastic waves of
permanent form in the half-plane, and present some new numerical results on the possible shape of such waves for
a number of hyperelastic materials. One of our motivations for considering the problem is related to the common
interpretation of traveling waves as solutions bifurcating from the trivial state. This viewpoint has been very fruitful
in dispersive wave equations, especially in the simplest case of spatially periodic waves, where the problem is often
reduced to solve a finite dimensional bifurcation equation. On the other hand, linear surface elastic waves in the
half-plane are non-dispersive, and traveling waves that decay away from the surface would correspond to solutions
bifurcating from an eigenvalue of infinite multiplicity.

To study the possibility of such a bifurcation, we develop a systematic perturbation theory that is formally
analogous to solve the bifurcation and complementary equations appearing in Liapunov—Schmidt reduction order
by order in a suitable small parameter. In this approach, the bifurcation equation is replaced by an infinite set
of solvability conditions. The first of these conditions is a non-linear equation for the lowest order contribution,
while the second and higher order solvability conditions have the same structure and involve the linearization of
the first solvability equation around its solutions. The solvability equations are infinite dimensional, but one of the
advantages of this approach is that they are equations for the boundary values of the elastic displacement, i.e. the
displacement inside the domain can be at each order recovered from its boundary values.

The above scheme was developed in an effort to extend and understand earlier works on the problem. In particular,
the first solvability condition coincides with the approximate equation derived and solved numerically by Lardner,
and Parker and Talbot [1,2]. These authors were the first to obtain results on the possible shape of traveling surface
elastic waves, and their argument has been simplified by Hunter [3], who derived an asymptotic evolution equation
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for the surface elastic displacement. This model equation is interesting in its own right, being a conservation law on
the line with non-local flux, moreover, its traveling wave solutions are precisely the solutions of the first solvability
condition.

Although the argument leading to the first solvability condition has been understood and applied to a variety of
other non-dispersive systems in the half-plane, the existence of solutions to this equation has not been establishe
for surface elastic waves, and numerical results have led to some controversy (see [4]). We thus start our analysis o
the perturbation theory by studying the first solvability condition numerically. A new feature of our approach is the
use of the constrained variational structure of the traveling wave problem for hyperelastic materials. This variational
structure is also present in the solvability conditions, and is useful because the first solvability condition considered
here has no intrinsic scale. By using the constraint to normalize the sequences of approximate solutions obtainec
numerically, we see that for all the non-linearities considered there exist sequences of numerical solutions that star
to converge to non-trivial shapes. An interesting feature of these surface displacements obtained numerically is
that they have discontinuities in their first derivative, specifically, cusps in the horizontal component of the surface
elastic displacement. These features were observed for all the non-linearities considered. The second and highe
order solvability conditions will be studied in a future work.

The paperis organized as follows. In Section 2, we state the traveling wave problem and fix the notation. In Section
3, we gather necessary information on the linear traveling wave problem. In Section 4, we describe the perturbation
theory for traveling waves of small amplitude. We derive a sequence of solvability conditions (equations) for the
terms in the expansion, and remark on the relation of our approach to earlier works and to bifurcation theory and
Signorini’s method. In Section 5, we study the basic structure of the solvability conditions showing that in the case of
hyperelastic materials these equations are constrained variational problems. In Section 6, we present some numeric
solutions of the first solvability condition for three hyperelastic materials, the St. Venant-Kirchhoff material and
two toy-models with simpler structure.

2. Thetraveling wave problem

We consideR? with the Cartesian coordinatés;, x») and an elastic medium occupying in its unstrained state the
half-planeH = {x = (x1, x2) € R%: xo > 0}. We also lets(x) = H — R? denote the elastic displacement with
Cartesian components(x1, x2), i = 1, 2. The density of the material will be denoted pyand will be assumed
to be constant. The internal elastic forces due to a displacamaan be obtained from the (first Piola—Kirchhoff)
stress tensor (x) : H — R? x R?, thought of here as a 2 2 real matrix with components;, i, j = 1,2. The
stress tensor is a function of the derivativ&u of the displacement, and the elastic response of the material is
determined by the particular choice of the functiqiVu). With this notation, the equations of motion of elasticity
are

2
pdwu; =Y Oy, i=12 in H. (2.1)
j=1
At the boundanp H = R, we will impose the “zero-traction” boundary condition
2
> tji; =0 atdH, (2.2)
j=1

with 2 = [7n1, n2] = [0, —1], the outward unit normal &H. A convenient shorthand for (2.1) and (2.2) is
pug =V .-t in H, t-n=0 atoH. (2.3)

The above equations, possibly with additional boundary conditions, constitute the equations for free surface elastic
waves, and are clearly meaningful for a variety of domains.
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In the problem of traveling waves of permanent form in the half-plane we are seeking solutions of (2.1), (2.2)
that have the fornu(x1 — ct, xp) for some constant € R. Rewriting the equations in the system of coordinates
X1 = x1 — Ct, X2 = xp, f = ¢, and dropping the tilde from the notation, we are thus looking for displacements
u(x1, x2) satisfying

pc?Zu=vV-7rin H,  t-A=0 atdH. (2.4)
In addition, we will impose the decay condition
m wu(xy,x2) =0, Vx1eR, (2.5)
X2—>00

and periodicity in the horizontal direction, i.e.
u(x1 4+ 2m, x2) = u(x1, x2), V(x1,x2) € H. (2.6)

In view of the periodicity condition (2.6), we can work in the half-cylinderobtained by identifying the points
(x1 + 27, x2) and (x1, x2) of the stripD = {(x1,x2) € H : x1 € [—x, 7]}. The formalism that follows is
independent of the choice of the particular fundamental gip

In this work, we will consider the traveling wave problem for hyperelastic materials. We will thus assume that

the stress tensaris given by

AW (V)

Tj = . with uij=0ogxuj, i,j= 1, 2. 2.7)

Bu,-,,-

The real functionW is the potential energy density.
Note that by Kirchhoff's variational formulation of hyperelasticity (see [5], Chapter 7) the traveling wave equations
and boundary conditions (2.4)—(2.6) can also be written as the Euler—Lagrange equations for the Lafrgingian

by
1 2
L= Epcsz ;(axlu,-)z—/l;W(Vu). (2.8)

The velocityc? plays the role of the Lagrange multiplier.
The potential energy density will be decomposed int? = Wt + WN- with Wt = Wb (u, u) quadratic and
WNL = Wl (u, u, u) cubic in Vu, respectively. The corresponding stresses obtained via (2.7) will be denoted by
th(u) andtN- (i, u), respectively. The quadratic potential energy density is standard for isotropic materials and is
given by
Wt =Iary)? +utry?, with y = 3[Vu+ V)Tl (2.9)

andx, u > 0the Lamé constants. Quadratic non-linearities will be specified by the real constant coeiﬁ@ﬁgg
and the expression
2
whb = Z W;\‘blz;defua,buc,due,ﬁ (2.10)
a,b,c,d,e, f=1

The corresponding stress is

2
TiINL(u’ u) = Z Si,j\lKLAMvMKa)»MM,V’ (2.11)
KK, ,p,v=1
with
2
NL _ NL NL NL
Shew = 2 Wigrpo + Wogiive T Woryai): (2.12)

¢, X ¥0=1
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The coefficientsWé\‘b';:defare not uniquely determined for a given non-linearity, but once they are specified, they

determine theSi’j\‘K'-MV unambiguously through (2.12). It is not necessary at this point to specify the non-linearity.
The choice of quadratic non-linearity is for notational convenience. Physically relevant models typically include
higher order non-linearities and a consistent theory must take them into account. On the other hand, as we will
see the inclusion of higher order terms require minor modifications and the main features of the expansion remain
the same. For instance, the leading order approximation to the shape of the traveling waves involves the quadratic

non-linearity only, even in the presence of higher order terms.

3. Linear traveling waves

To develop a perturbation theory for the non-linear traveling wave problem, we first consider its linearization
around the trivial solutiom = 0. Using the quadratic potential energy (2.9), and (2.7), the linear traveling wave
equations become

(A + w3 (V) + pAu; — pc?d2u; =0, i=1,2in H, (3.1)
and
—A8i2(V-u) — p(ui2+uz;)=0, i=12 atodH. (3.2

We also impose the decay and periodicity conditions (2.5) and (2.6), respectively.

To solve this equation we expand the displacement in Fourier series(asx2) = ) .z &g, (k, x0),
i,j = 1,2. For eachk € Z, we obtain a linear homogeneous system of two second-order ordinary differential
equations foii1 (k, x2), v2(k, x2), with boundary conditions at, = 0 and at infinity. The system also involves the
velocity ¢? as a parameter. We find that, in order for solutions to exist, the veletityust satisfy

(A% + 1) 2 pc? 2 pc?
——— =1, wheredA*=1—-—, and B =1- . 3.3
4AB 7 A+ 20 (3.3)
Then, lettinge3 be a solution of (3.3) and = A(c3), B = B(c3) from now on, the solutions are
k 2A
D1k, x0) = iag— [ —Ae kAe 4 == o=lkiBe) =k c 7\ {0}, 3.4
01(k, x2) k|k|< sy € Z\ {0} (3.4)
2AB
n _ —|k|A —|k|B
v2(k, x2) = ak (e e — a211° Xz) . keZ\{0}, (3.5)

with a; € C arbitrary @_; = ay for real displacements). Far= 0, we have the trivial solutior; (0, x2) = 0,
i=12.

Eq. (3.3) is a cubic equation fef and has only one real soluti@ﬁ, known as the Rayleigh speed (see e.g. [9],
Chapter 8). Eqg. (3.3) also plays the role of the dispersion relation, and since it does not inviohear waves
are dispersionless. From (3.4) and (3.5), the boundary val¢e, 0) of the horizontal displacement is arbitrary
and completely determines(x1, 0) and the displacement(x1, x2) in the rest of the domain (alternatively, we
may specifyuz(x1, 0)). All possible displacements(x1, x2) corresponding to the different boundary values of
u1(x1, 0) travel with the same speeg. The above construction also give us solution&/th( D, R?) with boundary
displacements if.2(S1, R?).

Remark 3.1. The lack of dispersion in linear free surface elastic waves on the half-plane can also be deduced
from the scale invariance of the equations of motion and the domain (see e.g. [6]). Examples of domains leading
to dispersive free surface elastic waves are the strip (e.g.awith [0, 1]), and the half-plane occupied by two
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materials of different density (e.g. denspy for x» € [0, 1), and densityp, for xo € [1, c0)). Stokes waves and
their modulation for the second domain were studied in [7].

We will also need information on the inhomogeneous linear traveling wave problem
V-thw) — pc§dZu="F in H, ttw)-A=f atdH, (3.6)

with the decay and periodicity conditions (2.5) and (2.6), respectively. The fundtiea§F1, F»] : H — R? and
f =1[f1 f2] : H— R?are assumed to ber2periodic inx;.

To solve the inhomogeneous equation, we expand the displacement in Fourier series as befo(ewith) =
S e z€1F (k, x2) and fi(x1, x2) = Y€ fi(k, x2), i, j = 1,2. We similarly obtain for each € Z the
inhomogeneous version of the linear system encountered previously. The general solution hasihg fapm=
w; (k, x2) + cx0; (k, x2),i = 1, 2, with 0; (k, x2), i = 1, 2 the solutions of the homogeneous system given in (3.4),
(3.5),cx € C arbitrary, andw; (k, x2) a solution of the inhomogeneous equations given in Appendix A.

A necessary condition for solutions of the inhomogeneous equations to exist 15 éimatf must satisfy

/M*(XLXZ) - F(x1, x2) —/ u*(x1,0) - f(x1) =0, (3.7)
D oD

for every solutionu(x1, x2) of the homogeneous problem (3.1). This solvability condition is derived straightfor-
wardly by multiplying (3.6) by* (x1, x2) and integrating by parts. Alternatively, writing an arbitrary solutioof

the homogeneous problemase1, x2) = ZZ\{O}akv(k) with v; (k) = €819, (k, x2), i = 1, 2, see (3.4) and (3.5),
we may write (3.7) as

/OO 0*(k, x2) - F(k, x2) dxo — 0" (k,0) - f(k) =0, VkeZ\ {0}, (3.8)
and i

/Oo Fi(0,xp)dxp — fi(0)=0, i=1,2 (3.9)
for k =o 0.

Remark 3.2. Inthe special case whefe= V-gandf = g|yx forsometensog : H — R2xR2, i.e. 2r-periodic
in the horizontal direction and decays at infinity, condition (3.9) is satisfied identically.

4. Small amplitude non-linear traveling waves

We now develop a perturbation theory for the traveling wave equations (2.4)—(2.6). We assume that the displace-
mentu and the difference? — c% from the Rayleigh speed can be expanded in powers of a small paramstethat
u = aul® o2 32 (4.1)
and
cz—cg = ak1+a2k2+a3)»3+~-~ . 4.2)

Theul!l should satisfy the periodicity and decay conditions (2.5) and (2.6), respectively. Physiczdly,be the
ratio of the boundary displacement (or u>) to the horizontal period. Inserting the expansions into (2.4)—(2.6) and
matching powers aof, we have at ordez!

Vot @) - pc?o2ul® =0, in H, ttwl.A=0 ataH, (4.3)
at ordero?
V. TL(M[l]) - pcgaflu[l] =-V. INL(u[O], u[o]) + )»1,083114[0] in H, (4.4)
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ety = — N @l 0 o at oA, (4.5)
and at ordew”, r > 2
V.t @y - pcgaflu[rfl] = Z (=v . L@ =1y 4 )»ipaflu[jfl]) in H, (4.6)
i+j=r,
i,j>1
ety == Y Nl WUy et aa 4.7)
i+j=r,
i,j>1

Thus, [ satisfies Egs. (3.1) and (3.2) for linear traveling waves, whileuthie!! with » > 2 satisfy the inho-
mogeneous linear equation (3.6), with the inhomogeneous part dependiffy,on. , u"=2 andi1, ..., A,_1. In

the inhomogeneous equations, we are looking for pairst!, 1,_1. The way to proceed is standard: first we let
ul® = v[% be a solution of the homogeneous system (4.3). To solve the efd=guations (4.4) and (4.5) fat!!,

the inhomogeneous part must satisfy the solvability condition (3.7). This is an equatidf fand1. Assuming
that solution®[¥, 1, exist and that the solvability condition is also sufficient, we have a soluttbr= w! + v of
(4.4) and (4.5) withw!1] given by the expressions of Appendix A, antd an arbitrary solution of the homogeneous
linear equation (4.3). We can continue this formal procedure to higher order, i.e. deterntthiagd, from the
solvability condition for the equation far?!, decomposing the solution using the particular solution of Appendix
A and so on. Assuming that the solvability conditions have solutions, and that they are sufficient for solving the
inhomogeneous equation at each order, we may thus write the solution as

= ool + 2 + wlth) + o3 4wl . (4.8)

where eachl"=2, » > 2, is a solution of the homogeneous linear traveling wave equation and is found from the
solvability condition for the ordex” equation forul"~, and eachwl"~, » > 2, is the particular solution of the
ordera” inhomogeneous equation fat —, given in Appendix A.

Using (4.3)—(4.7) and the decomposition (4.8) of the displacemehe solvability condition determining’ 2]
andi,_1, r > 2 can be written as

fﬁ*(k) .plr=1 —/ k) - f-U =0, Vkez\{O}, (4.9)
D oD
where theb; (k) = &%19; (k, x»), i.e. as in (3.4), (3.5), and
FIt = 57 (0 N @i, U0y 4w Nl 1) . N =1, U
i+j=r,
ij>1
+V N @b b=y 4 3 392 @l 4+ wli=t), (4.10)
i+j=r,
i,j>1
and
P = 37 (@M@, Uy L N U g N1 T 4
i+j=r,
i,j>1
+eNEli =1 li=1y 7y, (4.11)

Here, we have set!? = 0. From (4.10) and (4.11), the solvability condition for the inhomogeneous equation for
ulll is a non-linear equation farl® and i1, while the solvability condition for the inhomogeneous equation for
ul"~1 r > 3is alinear equation farl”~2 anda,_1 involving the functiona!®, ... vl"=31 w1 . wl—2 and
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numbersiy, .. ., A_» determined at the previous stages. Once the solvability condition for the equatidti 8y
r > 3issatisfied, the functiond® , ..., vol"=31 yl=2 [ wl—2and numberay, ..., A,_2, A,_1 appearing
in the inhomogeneous part of the equation are known, and wé' tet! = wl"~1 + 4"~1] as described above.

Remark 4.1. ExpandingF"~1 and fI"~11 in their Fourier series, the solvability conditions take the form of (3.8).
Note that the solvability condition (3.9) far = 0 is satisfied automatically, since the zeroth Fourier coefficient
of the 82 (W'=Y + wl/=1) vanishes, while the zeroth Fourier coefficient of the remaining terms satisfy (3.9) by
Remark 3.2.

The formalism we have described does not require that the material be hyperelastic and can be applied to the
question of traveling waves in a variety of non-dispersive, non-linear wave equations in the half-plane. Some exam-
ples are piezoelectricity (see e.g. [8]), non-linear optics, and the class of hyperbolic conservation laws considered
by Hunter [3]. The first solvability condition was essentially derived by Lardner, and Parker and Talbot [1,2]. The
higher order theory here follows a standard procedure for continuing solutions perturbatively (e.g. in the presence
of bifurcation). A closely related method for constructing higher order corrections was originally given by Parker
[9], and alternative derivations can be obtained by extending the multiple-scales argument of Hunter [3] (see also
[10]) to higher orders (see e.g. [11]).

The formal connection to (analytic) bifurcation theory and Liapunov—Schmidt reduction is through the decompo-
sition of the displacemend’] at each order into a part’] in the kernel of the linear traveling wave operator, and a
part belonging to the image of the operator. Instead of projections to the image and co-image of the linear traveling
wave operator, we here use the solution given in Appendix A, and the procedure above amounts to solving the
bifurcation and complementary equation perturbatively, order by order. The analog of the bifurcation equation is the
infinite set of solvability conditions and one of the difficulties here is that these equations are infinite dimensional
(see [12,13] for rigorous results on bifurcations from an eigenvalue of infinite multiplicity). The expansion method
we described is also similar to Signorini’'s method in static elasticity (see e.g. [14], where the formal relation to
Liapunov—Schmidt reduction is also pointed out).

5. Variational structure of the solvability conditions

In this section we show that the solvability conditions for hyperelastic materials are constrained variational
problems. Also we see that the second and higher order solvability conditions have a common structure.

In order to solve (4.4) and (4.5) with the appropriate boundary conditions we must satisfy the first solvability
condition, which by (4.9) may be written as

e aa)= = [ 570 (v M) [ 5 (Nl o iy a5 - 0%, =0,
D oD D
Vk € Z\ {0}, (5.1)

with 9; (k) = €k¥29; (k, x), i.e. see (3.4) and (3.5). Writing

ol = Z c,EO]ﬁ(k), (5.2)

keZ\{0}

and lettinge!?! be the vector with the componentS! € C, k € Z \ {0} (c_x = & for realv!?), (5.1) is an infinite

system of quadratic equations indexedkbg Z \ {0}, from which we want to determind® andi1. We can also
consider the Galerkin projections of (5.1) by choosing finite suhgets Z \ {0} and solving the finite set of
equationsSy (cf?l, 1) =0,k € J, with 69] vectorscl for which c,[?] =0,Vk ¢ J.
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Remark 5.1. For higher order non-linearities, the first solvability condition will also have the form (5.1), only
involving the quadratic non-linearity.

An important property of Eq. (5.1) and its Galerkin approximations is homogeneitfliand 1, if v[% = v,
A1 = Aisasolution of (5.1), then soéw, €A, Ve € C. Also, for hyperelastic materials, (5.1) describes a constrained
variational problem:

Proposition 5.1.
1. The system of E@5.1)is equivalent to
Vo V() = 21V 1 (), (5.3)

where thekth component oV is .01, k € Z\ {0}, and
k

2
1
V() = f WHE@IL LI, ) = Zp / > (@2, (5.4)
D Di:l

2. The Galerkin projections db.1)to finite setg7 C Z \ {0} are equivalent to
[0] 0]
ViV, =MV ol , 55
C@] j(cj) 1 CEg] j(CJ) (5.5)

with V7, 1.7 as in(5.4)with ¢[%, v[% replaced by:j 9], respectively

Proof.

1. From the definition o¥ and (5.2) we compute fgv € Z \ {0}

/ Z Vel (B, 0 (P)tc.atte,  + tap (B, 07 (P)e, f + tha ptte.a (B, 5% (p))).
a,b,c,d,e, f=1

Passing the derivative to the other side in each of the three terms, we have

2
NL
ac"] /Z DY Y Wigrwe + Wokive + Wopwi gty

=1 ¢.x.v0=1
2
0" NL NL NL .
+/30 Z v (p) Z Z (WWXW) Wi+ Wik i Mg x ol
i=1 -

which by (2.12) yields

av . ) A

50 = —/ 0*(p) - (V- NI, 010 +/3 5 (k) - (2N IOy . .

Cp D b
Similarly,

/ Z(axzvz (p))Ul l = —p/ (p) . 3311,[0],

so that adding the two terms we have (5.1).



P. Panayotaros / Wave Motion 36 (2002) 1-21 9

2. The variational formulation for the Galerkin projections follows from the same calculation after repléing
by W9, O
J

Corollary 5.2. The Galerkin projections of the first solvability conditi(@1) have non-trivial solutions

Proof. Let c_; = c¢x. We observe that the séj;(cfg]) = h > 0is an ellipsoid iR2J1 | 7| = card 7). Since
VJ(CE,?]) is a smooth real valued function, it will attain its extrema at some points on the ellipsoid and satisfy the
Galerkin projection of the solvability condition (5.3) for for appropriate raq?s O

Remark 5.2. The corollary does not guarantee the existence of Galerkin solutions.yvithO.

By the corollary, one way to approach the problem of finding solutions of (5.1) is to try to understand limits of
sequences of solutions of Galerkin projection of increasing|sfize-> oo. In view of the invariance of the Galerkin
projections of (5.1) under rescaling c{f,’l and)cl7 by an arbitrary constant, it appears that we may choose quite
arbitrary sequences of Galerkin solutions by changing the scaling factor as we increase the size of the projections.
Although this may result useful, in the next section we use the variational interpretation of (5.1) to consider sequences
of solutions belonging ta@ (cfgl) = h, with & fixed as we increasigy|.

Although the perturbation theory of the previous section produces an infinite number of solvability conditions,
we now see that the second and higher solvability conditions have the same structure. We may use (4.9)—(4.11) to
write the solvability conditions for the inhomogeneous equation obtained at@ider- 2, as

_/ 05 (k) - (V- NI 0 v NE IO ylr=2y)

D

+f 0% (k) - (N @V O A NI IR ) 4 p2g / 0" (k) - 9202
oD i

+pk,_1/ vi(k) - 92000 = G H @O Sl A ) (5.6)
D

forall k € Z\ {0}. The G,E’_l] are known since it is assumed that we have solved the previous solvabil-
ity conditions and inhomogeneous equations. The left-hand side of (5.6) involves the linearization of the first
solvability condition (5.1) around a solutiont”), i1, applied to the unknownl["—2], and we may also write

(5.6) as

[(D1SM (!, 1) 0l Ay + pr,—1 f o (k) - 020 =6 kez\ (o) (5.7)
D

with D; the derivative with respect to the first variablgy [the kth row. Thus to solve the higher order solv-
ability conditions we must invert the linearization of the first solvability condition (5.1) around its sok/flon
The presence of thie,_1, r > 3, allows for one null direction. For instance, if we can find a non-trivial solu-
tion v of (5.1) with A; = 0, the homogeneity of (5.1) gives us a linel), ¢ € R, of solutions. However,

it may still be possible to adjust the._1, r > 3, so that the linearization is invertible in the complementary
subspace.

Remark 5.3. Note that the addition of higher order non-linear terms in the traveling wave equation will not alter
the general structure of (5.6). Cubic and higher order terms will involve tekthawl/! with j at most- — 3, and
will thus be absorbed in the right-hand sidecf .

The variational structure of the higher solvability conditions is expressed by the following statement.
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Proposition 5.2.

1. Letcl~2 be the vector of the coefficient$ 2 ¢ C, k € Z \ {0} of oI~2 = Zkez\{o}c,[:_z]v(k). Then the
solvability condition for the orde#”, r > 3 inhomogeneous E@.6), (4.7)is equivalent to

Vir-2] ylr-2 (c[r—Z]) = Ar—1Var-2 1r=2 (c[r_z]), (5.8)

where the gradienV ;-2 has component-2, k € Z'\ {0}, and
k

2
-2, /D > @0 ) (01,0, (5.9)
i=1

For the potential energy'"~2, each pair of term&7 - tNL (7, ¢), TN (f, ) -n of FU—1, fIr—1in (4.10), (4.11),
respectively, is the gradie;—2 of

Vig= / (VN2 7 )+ VNE(F 0l =2 gy 4 VNE(f, g, 0l 72y, (5.10)
D

also, each termk; 92 f in (4.10)is the gradientVy;—2 of %)\,-iy’z] if £/ = "2 and Aii[f.r’zl if f =
o0 o8l =2l where ‘ ‘

2
A=y /D S 0! (04, £). (5.11)
i=1

2. Thevariational structure of the Galerkin projections is given bywath V=2, 1I*=2 replaced by/ [ =2 (cf;_zl),
1r=21 (cf}‘zl), respectively

Proof. The proposition follows by a calculation similar to the one used in showing Proposition 5.1, i.e. we integrate
by parts to transfer derivatives @ri(k) to the other terms of the area integrals. O

In contrast to the first solvability condition, here the variational structure does not automatically guarantee the
existence of solutions for the Galerkin projections. The constiin®! = 1 € R is a hyperplane, while the
function vI'—2 is quadratic invl"—2] (see e.g. (5.10) withf = v[%, ¢ = v["—2]), and there is no a priori reason to
expect that/l"—2 has a convex quadratic part. In the case where the first solvability condition has solutions with
A1 = 0, the constraint["=2 = p eliminates a null direction.

6. Numerical study of thefirst solvability condition

In this section, we study the first solvability condition numerically for three different hyperelastic materials,
namely the St. Venant-Kirchhoff material, and two simpler but less physical models.

According to the theory of elasticity, the assumptions of material frame indifference and isotropy (see e.g. [15],
Chapter 4) which imply that the potential energy den®itpf a two-dimensional hyperelastic material is a function
of the trace of the matrice, £2 and&3, or

W=WtrE, g2 re®), where & = 2(Vu+ (Vu)' + (Vu) Vi) (6.1)

is the strain tensor. We may also assume that the potential energy density does not involve terms that are linear ir
the displacement. This way the trivial displacememnt= 0 is a solution of the equations of motion.
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The first non-linearity we choose corresponds to one of the simplest models satisfying the above constraints, and
is specified by

W = 3atr&)% + ptr 2 (6.2)

(this is the St. Venant-Kirchhoff material, see [15], Chapter 4). The quadratic terms in (6.2) give us the quadratic
potential energy densitW® of (2.9), while the first solvability condition involves the cubic terms in (6.2). The
simpler models we will consider correspond to the potential energy denitiesw + WNL with W as in (2.9)

and

Wt = 200+ wuraud,. and WNS = 200+ w(uaaud 5 + uzoub o), (6.3)

respectively. Note that these models are not consistent with isotropy.
To simplify the first solvability conditions, we will look for traveling wave solutions of (2.4) and (2.5) satisfying

u1(—x1, x2) = —u1(xy, x2), and wup(—x1, x2) = uz(x1, x2), V(x1,x2) € D. (6.4)

These parities are specific to the fundamental doniaiof Section 2. We easily check that the traveling wave
equation (2.4) for the non-linearities we are considering, as well as the linear equations of the perturbative
scheme of Section 4 are compatible with the parities of (6.4). The periodicity and decay conditions are (2.5)
and (2.6), respectively. Solutions of the linear traveling wave equation with the parities (6.4) will have the
form

o0 o0
v (61, x0) = > apsinpxiA(p, x2), vl (x1, x2) = > apcospxiB(p, x2),
p=1 p=1
where A(p, x2) = —it1(p, x2), B(p, x2) = —2(p, x2), (6.5)

i.e. see (3.4) and (3.5), and the coefficiemise R, Vp € Z*. The solvability condition for the inhomogeneous
linear equations is (3.7), with* (k, x2) replaced by.[ft(k, x2), —Z’S’(k, x2)] and thef; (k, x2), f, (k, x2) replaced by
the sine(i = 1) and cosingi = 2) transforms ofF;, f;, respectively. Furthermore, the first solvability condition
has the variational formulation

da,V(a) = A04,1(a), peZ”, (6.6)

where the components,, p € Z* of the vectow are as in (6.6). The functiorig(a) and! (a) are given by (5.4),
with the linear solutions[ as in (6.5).

With the above information we can write the solvability condition in spectral form in a straightforward manner
by evaluatingV (@), I (a) and the variational equation (6.6). The potential enéf@y) for a general cubic potential
energy density¥ Nt of the form given in (2.10) will be

o0
T
Vi(a) = Z (p2 — p3)p2p3ap27p3ap2ap3ECf(pz — P3, P2, P3)
p2>p3=1
o0

T
+ D (P2+ PIP2P3pt pstipating 5 C (P2 + P3, P2, P3)- (6.7)
p2,p3=1

For instance, for the first model non-linearity of (6.3) we héugq, r, s) = C_(q, r, s) with

A+
4rs

A
C_(q,r,s)= +

Ly (g, r,s) =
7 1rv(q. 71, s)

/0 A(q, x2) A'(r, x2) A (5, x2) dx2, (6.8)

q,r, s € Z* (derivatives are with respect 19). The coefficientd,11/(q, r, s) are given in Appendix B.
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For the kinetic energy pait(a) we have

M o0
Ia) =~ Z pat, (6.9)
p=1
(the constand/ is in Appendix B), so that by (6.7) the solvability condition (6.6) takes the form
p-1 [e9]
Gpla, 1) = Z pPpP1(p — pvapap—p Kp py + Z pp1(p + pr)apapip Ap py — klMpap =0,
p1=1 p1=1
pezZt (6.10)
For the first non-linearity of (6.2), we have
A+ wm
Kp.pp = =g (1xv(p = p1. p. pv) = Luyv(p. p = p1. p1)). (6.11)
(A +
Appp =g Urr(p. p+ p1. p1) + Iy (p1. p+ p1. p)
—hyy(p + p1. p, p1) — v (p + p1, p1. P))- (6.12)

The coefficient€1 (g, r, s) for the other non-linearities are in Appendix B. They similarly involve triple integrals

of the functions/i(q,xz), l?(q, x2) of (6.5) and their derivatives, and are sums of tewnisfqg + yr + 3s),

with o, B, y,8 € R constants depending ot and B. The denominators in the coefficienss, ,,, A, ,, are
bounded away from zero uniformly in the allowed integerg1, so that the coefficients are well-defined. These
observations also apply to the coefficieats(q, r, s), K, ,,, andA, ,, obtained for general non-linearities that
have the form of (2.10). We can see this by counting the number of derivatives in the cubic potential energy
terms.

To study the first solvability condition (6.10) numerically, we consider the Galerkin approximations of (6.7) and
(6.10) for the vectors™ = [a, al, ..., aN] € RV, with the necessary modifications in the summations. It is also
convenient to introduce the vecta#§ with componentsi’ = pal), p = 1,..., N. Expressing the Lagrangian
L@") = V(") — 2} 1(a") and the Galerkin projectio6 ¥ (aV, 1)) = 0, p = 1...., N of (6.10) in the tilde
variables we have

G (@, 2y) =84, LY (@™, 0)) = poz, LN @Y. 2y)) = pGl @". 1)) =0, (6.13)
p =1 ..., N,anditis sufficient to solve numerically the equat'(éﬁ(&N, A’lv) =0,p=1,..., N.ByCorollary

5.2, the Galerkin projections of the first solvability condition have non-trivial solutions and to find them we set
A) = 1 and solve numerically

Gh@".,1=0, p=1....N. (6.14)
Letting B = [BY. ..., BN] € RY be a non-trivial solution of (6.14), the vectp¥ with components
N ~1/2
vy = 52;(;65)2 p By, p=1...N (6.15)
p=1

satisfies the Galerkin projection of (6.10) withmodes, i.e. we have

N
. M 1 -
GYN.a)=0 p=1.... N, with A= 72:—(,3’%2 ) (6.16)



P. Panayotaros / Wave Motion 36 (2002) 1-21 13

Moreover,

N
M
MM =23 )P =1 (6.17)
p=1

Remark 6.1. The choice of the constrait¥ (a™) = 1 used here is arbitrary, we can also work with(a) = h

for anyh > 0. We can rescalg? and)Jlv by i to also obtain a solution of th¥-mode Galerkin projection of the

first solvability condition. Even though the first solvability condition has no intrinsic scale, it is natural to impose a
scale on the lowest order displacemefit. This way the assumption on the smallness of the parameiecomes
meaningful (the scale gf’ andA} can be absorbed i).

For the purpose of the numerical study, the choice of scale is useful for comparing solutions of the different
Galerkin projections. To find candidates for solutions of (6.10), we consider Galerkin projectiongwithv, <

- < N; < --- modes and construct sequences of numerical soluﬂé(nskzlv" by solving (6.14) and rescaling as
above. Since each Galerkin projection has many solutions, to produce sequences that have a chance of converging
in a reasonably strong sense, we start by considering a low order Galerkin projection, e.yj with modes

15 1.5
1 1
05 1 05
) S
X 0 X o
g -~ S~
> >
-05 -05
- -
-15 -15
24 -2 0 2 4 24 -2 0 2 4
(a) X, € (-m,m) (b) X, € (-7, m)
0.4 0.4
0.2 0.2
0 0
a -0.2 6: -0.2
X 04 X 04
S« S«
> 06 > -06
-0.8 -0.8
-1 -1
-12 -1.2
-4 -2 0 2 4 -4 -2 0 2 4
(c) X, € (-mT) @ X, € (-m,T)

Fig. 1. (a) and (b) shows the surface displacement and horizontal compé(ﬂemt, 0) of 260, 500 modes, respectively, for first non-linearity
of (6.3); (c) and (d) shows the surface displacement and vertical compdﬂem, 0) of 260, 500 modes, respectively, for first non-linearity of
(6.3) (multiply by 1.47).
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and find numerically a solutiop™1, Allvl. Then to increase the number of modes fréinto N;11, we apply
Newton’s iteration for the equatioég"*l(&NHl, 1) =0,p =1,..., N;41 using as initial condition the vector
[yiNl, cees yI{Z", 0,...,0] e RNi+1, and obtain (after rescaling the numerical respft)+1 andk’lv"*l. Although we

cannot control the dynamics of Newton’s iteration, it is reasonable to expe@tfi’ha?tjlv" andyNi+1, /\llv"“ will be
getting closer as we increaag.

Remark 6.2. The sequence of Fourier coefficient vectgfs = [lef, ey ylf,\l’_", 0, ...] obtained from the Galerkin
solutions are bounded ifp sinceZ}‘fﬁzlp(ﬂ,[)/")2 = 1, VN;. Therefore, there will be subsequenceq ot 1724
that converge weakly ii;. Also the corresponding boundary valuﬂi@, vg)] of the displacement given by (6.5)

will converge weakly inL2(s1), and HY/2(s1). However, these notions of convergence do not necessarily imply

that the limits are non-trivial.

Remark 6.3. We will not seek solutions with; = 0 in this work. The non-invertibility of the linearization of the
functionG(a, 0) in (6.10) around such solutions will likely require thiat=# 0 fori > 1, and we plan to consider
this case in the future.

15 : : ‘ 15
1 1
05 0.5
) S
X 0 X o
S -~ S -~
S S
-05 -0.5
-1 -1
-15 -15
24 -2 0 2 4 4 -2 0 2 4
(a) X, € (-m,m) (b) X, € (—m,m)
15 1.5
1 1
5 5)
X 05 X 05
S S
S >
0 0
-05 : : -05 : :
-4 -2 0 2 4 -4 -2 0 2 4
©) X, € (-m,m) (d) X, € (-m,m)

Fig. 2. (a) and (b) shows the surface displacement and horizontal compéqllem, 0) of 120, 500 modes, respectively, for second non-linearity
of (6.3); (c) and (d) shows the surface displacement and vertical commﬂﬂt{mi, 0) of 120, 500 modes, respectively, for second non-linearity
of (6.3) (multiply by 1.47).
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The numerical results that follow were obtained following the above procedure, and solving (6.14) using the NAG
library implementation of the hybrid Newton—Raphson method of [16]. The computed Fourier coefficients of the
surface displacement are normalized as in (6.15). By (6.10), to obtain numerical values for the surface displacement
andi; we need to specify the Poisson’s ratie- %(A/(H—M)), and we set = % (e.g.v = 0.28for glassy = 0.28
for iron, see [15], p. 129). The Rayleigh speedifoe % is approximatel;c% = 0.845u/p).

We found two types of sequences of numerical solutions. First, we see sequences where the computed surface
displacementsllo] (x1, 0), vg)] (x1, 0) approach definite nontrivial shapes as we increase the number of modes. The
corresponding sequenckg" also seem to approach a limit. The conjectured limits are candidates for solutions of
the first solvability condition. The shapes of some of the surface displacements obtained numerically for the first
and second non-linearities of (6.3), and for the the St. Venant-Kirchhoff material of (6.2) are shown in Figs. 1-3.
Also, the values of.1 corresponding to the solutions of Figs. 1-3 are shown in Fig. 6(a)—(c). Evidently, there are
sequences of surface displacementsjandith possible non-trivial limits for all three non-linearities considered.

An interesting feature of the numerical solutions is the appearance of well-defined Cué%(ixl{] 0) for all the

non-linearities considered. On the other ha@,(xl, 0) appears to be differentiable. The numerical solutions also

15 : . : 15
1 1
05 0.5
5 S
X 0 X 0
S~ S~
> >
-0.5 -05
-1 -1
-15 -15
24 -2 0 2 4 24 -2 0 2 4
(a) X, € (-m,m) (b) X, € (-m,m)
05 0.5
0 0
S 5
X -05 X -05
S« S
> >
- -1
-1.5 -15
=4 -2 0 2 4 4 -2 0 2 4
(c) X, € (-m,m) (d) X, € (-m,m)

Fig. 3. (a) and (b) shows surface displacement and horizontal compm&%ﬂtl, 0) of 300, 500 modes, respectively, St. Venant-Kirchhoff

material of (6.2); (c) and (d) shows surface displacement and vertical compé?‘](am, 0) of 300, 500 modes, respectively, St. Venant-Kirchoff
material of (6.2) (multiply by 1.47).
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0.8 T T T T T T T T T

0.6 nl

00
¥
& o
N o N

-0.4 .
-0.6 .
—08 L 1 1 1 1 1 1 1 1

0 20 40 60 80 100 120 140 160 180 200

(2) integer p € [1,200]

-0.8 !

1 Il Il Il L 1 1 1
0 50 100 150 200 250 300 350 400 450 500
(b) integer p € [1,500]

Fig. 4. (a) and (b) shows coefficienty, ", N; = 200, 500 respectively, solution of Fig. 3.

exhibit small oscillations that decrease in scale and amplitude as we increase the size of the Galerkin truncation.
This oscillatory behavior can be better appreciated by looking at Fig. 4(a) and (b) where W@Mpﬁ/ﬁh for three
N;-mode truncations. Thp,ﬁv" in Fig. 4(a) and (b) are the Fourier coefficients for the non-linearity of Fig. 3(a)—(d).
The tails inpy,?'" are apparently moving to the right with almost constant amplitude as we increase the number
of modesN;, so thatyf\)f" ~ p~L. These features are common to the Fourier coefficients of all the numerical

solutions of this first type, and are evidence that the wakmits of the surface displacements are non-trivial.

It is also possible that we have stronger convergence, e.f2(6%), and it is also interesting to see whether
there is a way to filter out the small-scale oscillations. A more qualitative comparison of the surface displacements
shown is also possible. For instance, evaluating the surface displacements at 2500 uniformly distributed points
in [—m, 7] we see that the difference between the horizontal and vertical displacements obtained using 400 and
500 modes is bounded by 2 10~2 for the solutions of Fig. 1(a)—(d), and bys2 10~2 for the solutions of

Figs. 2 and 3(a)-(d). The pointwise difference is in all cases oscillatory and its integral-aver] is in the

range 106-1075.

Remark 6.4. The surface displacements we found are reminiscent of those reported in [PT] for a different
non-linearity. The number of modes used in that work was smélleP5), and the (possible) cusps were not
resolved. It also appears that, at least for the models considered here, the main qualitative features of the numerice
solutions do not depend on the details of the non-linearity.
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Remark 6.5. Despite the presence of the cusps at the boundary, (6.15) implies that the lowest order elastic
displacementz[o] (x1, x2) we obtain from the computed surface displacement is smooth inside the domain.

We have also found a second type of sequences of Galerkin solutions that seem to converge wesh) in
to the trivial solution. A typical example is shown in Fig. 5(a)—(d). The particular example was found for the St.
Venant-Kirchhoff material, but similar numerical solutions were also found for the other non-linearities. In these
sequences, the surface displacement has small-scale oscillations that become finer decreasing slowly in amplitude
as well as spikes that become more and more concentrated as we increase the number of modes. Also, for this
type of numerical solutions th@"’ do not seem to approach any limit. Thg" corresponding to the sequence of
solutions of Fig. 5 is shown in Fig. 6(d).

The accuracy of the numerical solutions presented is indicated by the vector of reiﬁﬁ.(adg’, D, p =
1,..., N of the numerical solutions? of (6.15). Since, however, lig, oGV (x, 1) = 0, it is more meaningful to
consider the vector of relative residua&ﬁ (&N, l)]‘lég(ch, 1), p=1,...,N,wherei) has the same size as

xN, e.g. in practice we get" by changing the sign of a few componentstf. For the solutions corresponding
to all the figures shown, all the components of the relative residuals were boundedby1@c°. These numbers

0.8 0.8
0.6 0.6
0.4 0.4
a 0.2 a 0.2
X o X 0
S .~ S~
> 02 > 02
-0.4 -0.4
-0.6 -0.6
-0.8 -0.8
4 -2 0 2 4 -4 -2 0 2 4
(a) X, € (-m,m) (b) X, € (-m,m)
0.2 0.2
0 0 r—
i A A
-0.2 -0.2
a -0.4 6: -0.4
X -06 X -06
S« S
> 08 > 08
-1 -1
-1.2 -12
-1.4 1.4
-4 -2 0 2 4 -4 ) 0 2 4
() X, € (—m,m) (d) X, € (-m,m)

Fig. 5. (a) and (b) shows surface displacement and horizontal compfiﬂem, 0) of 160, 500 modes, respectively, St. Venant-Kirchhoff material

of (6.2); (c) and (d) shows surface displacement and vertical compo&qka&, 0) of 160, 500 modes, respectively, St. Venant-Kirchhoff material
of (6.2) (multiply by 1.47).
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Fig. 6. Values omllv" for Galerkin approximations witlv; modes: (a) solution of Fig. 1; (b) solution of Fig. 2; (c) solution of Fig. 3; (d) solution
of Fig. 5.

also agree with the condition for terminating the iteration successfully, i.e. with the relative residuals smaller than
the square root of the machine accuracy.

7. Discussion

We have considered the problem of traveling surface elastic waves in the half-plane and extended the perturbative
approach of Parker and Talbot, and Hunter [2,3] to higher order. Our extended scheme is formally equivalent
to a perturbative implementation of the Liapunov—Schmidt method, and is also related to Signorini’s method in
static elasticity. The analog of the bifurcation equation is an infinite set of solvability conditions that involve the
values of the displacement at the surface, and we also observed that for hyperelastic materials the solvability
conditions are constrained variational problems. In this work, we focused on the first solvability condition. We
noted that the Galerkin approximations of the first solvability condition must posses solutions, and our numerical
results suggest that there exist sequences of Galerkin solutions with non-trivial limits; such limits are candidates for
non-trivial solutions of the first solvability condition. The Galerkin solutions obtained numerically rather quickly
tend to surface displacements of a well-defined shape, although the conjectured convergence is rather slow. Thus
although we consider that our work gives stronger numerical evidence for the existence of non-trivial solutions
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to the first solvability condition than earlier studies, we believe that further improvements are possible and that
the existence question should also be understood theoretically. It would also be useful (and possibly related to
the existence question) to see whether we can devise a numerical scheme filtering out the small-scale oscillations
we saw.

The second step in pursuing the expansion method we described will be to numerically examine the invertibility
of the first solvability condition around its solutions, and the possibility of constructing higher order corrections to
the approximate solutions presented here. A positive result would give further evidence for the existence of traveling
wave solutions, although proving existence using the present constructive approach seems difficult at this point, and
other strategies may be more practical.

Further, dynamical questions can be addressed by considering the asymptotic evolution equation derived by
Hunter and Parker [3,9]. For instance, one may ask whether the conjectured traveling wave solutions are stable.
Instabilities of several types are possible, e.g. to shocks or to radiation (in an extended framework where other
modes are included). Another question is whether arbitrary smooth initial data lead to the formation of cusps and
then shocks. In the neighborhood of a cusp one expects very large forces, so that such loss of regularity phenomena
may have an interesting physical interpretation, relating non-linear effects to the appearance of small-scale cracks
near the surface of solids.
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Appendix A

Assuming that the solvability conditions (3.8) and (3.9) are satisfied, the general solution of the inhomogeneous
linear system for the Fourier coefficientgk, x2), k € Z, of the displacement is

Uik, x2) = Wi (k, x2) + cxvi(k, x2), i =12, (A1)
wherev; (k, x2),i = 1,2 are the solutions of the homogeneous system given by (3.4) and {g8.5),C, and
w; (k, x2) is a solution of the inhomogeneous system giverkfarZ* \ {0} by

X2 ekAS ll'L_ ()\, + ZM)_
D1k, :—'Ae—kAXZf -— F k. s) + ———"—Fo(k,
wi(k, x2) = —I % < v 1(k,s) + ABZ_1) 2( S))
kAs -1 -1
e~ A+2u)7" 4
iA e F k,s)— —~——"Fy(k,s)) d
—i s ( 1(k, s) A(BZ 1) 2( S)) s
. xz eBs A+2mt
+ie [ < (A2 Fl(k, s) — BZ—F 2(k, s))
A2 + 1 —kAXz n + 2,&)_1 .
— F k, ————— Fo(k, d
5B o ( 1(k, s) + ABZ 1) 2( S)) s

00 o—kBx i/L—l . (A +2M)_1 R ill_lf]_(k)
= (‘ g+ G o)) - g0

00 a—|k|Bs -1 -1
i€ /XZ % (AZ Fi(k, s) + —l Fo(k,s) ) ds, (A.2)
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xgekAs i -1 n + 2/1)71 .
~ _ kA%
wa(k, x2) = /0 > ( 21 Fl(k s) + ABI-D Fa(k, S)) ds

00 A—kAs -1 -1
kAo e in F k. A+ 2w)
J 2k ( Az gk ) =Ty

Fo(k, s)) ds

X2

pee| [FEX(L_inT g M )
be |:/0 2k B(A2 —1 )Fl(k s) + 71 Fa(k,s) ) ds

A2+l OOe—kA)(z i,lL_l R ()\'+2M)—1
" 2B /0 2k ( Fik,s)

21 — —A(82 _ Fo(k, s)) ds

_/Ooe—kBXz lM -1 ( +2M)—l
o 2kB

.12
in~ = f1(k)
2%k \AZ_1 Fl(k DT AB - }

Eo(k, s)> ds —

—kBs -1 -1

x \az 1 Fl(k )+ —1 Fo(k, s)) ds, (A.3)
x2

and fork = 0 by

W1(0, x2) = —i,ﬂ/m [/w F1(0, s)ds:| dt, W2(0, x2) = (A +2M)—1/oo [/w F>(0, s)ds:| dt
X2 t X2 t

(A.4)

Fork € Z=,w; (k, x2) = w}(k, x2). Ifthe £; (k, x2), i = 1, 2, k € Z are continuous and decay at least polynomially,
the above expressions give well-defined solutions of the inhomogeneous system.

Appendix B

The coefficientdyv1/ (g, r, s) defined in (6.8) are given by

Iuv(g.r.s) = <_A4 1, 2A%B 1 N 2A%B 1
g+r+s (A24+1D)(@+rA+sB (A24+1)(g+s)A+1B
4A3B? 1 245 1 4A*B 1
TATTDZAT 9B | AZT DG +9ATB (A2 DErAL (g + 0B
4 3
B 42A32 1 N 82AB3 1 ) ®.1)
(A2+12sA+(g+r)B  (A2+1D3qg+r+s

The coefficientsC1 (g, r, s) in the potential energy of (6.7) for the other non-linearities are as follows: for the
second non-linearity of (6.3) we have

C_(q.r,5) = C(q,r.5) = (A + W (v (q. . s) + Loz (q, 1, 5)), (B.2)
while for the St. Venant-Kirchhoff non-linearity of (6.2) we have
Cx(q.r.8) =3+ 20 (I1v(q. 7, 8) + Ip22(q. 7. 5) + I111(q. 7. 5) + L2z (q. 1. 5)

*1122(q, 1, 8) F l2vv(q, 1, 5))
+30(I112(q. 1. 8) + h122(q. 1. ) + 3(Fl1v2(q, . 5) — Lyz(q.1.5)). (B.3)
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Letting the subscriptg, x, ¥ range over the symbols 1, 1", 2, 2, 2, the triple integraldy , y (¢, r, s) are defined
by

o0
Isyy(q, 7, 8) = /0 Cp(q, x2)Cy (r, x2)Cy (s, x2) dx2,

whereCi(t, x2) = A(t, x2),Cv (t, x2) = t "L A'(t, x2),C1r (1, x2) = t 2 A" (t, x2),Ca(t, x2) = B(t, x2),Co (t, x2) =
1718 (t, x2), Cor(t, x2) = t2B"(t, x2),t = q, r, s € Z*. Evaluation of the triple integrals is straightforward and
we omit the results here.

Also, the constanM of (6.9) is

moAl 242 4A2 e 1, 2A2B? 4AB
T2 (A2+1)B  (A2+1)(A+B) (A2+1)2 (A2+1)(A+B)’
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