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Abstract

We use ideas from analytic bifurcation theory to develop expansions for periodic small amplitude traveling surface elastic
waves of permanent form in the half-plane (Rayleigh waves). We focus on the case of hyperelastic materials where the traveling
wave problem has a variational structure, and solve numerically the equations describing the lowest order approximation to
the traveling wave solutions. For the materials considered, there is evidence for solutions describing elastic displacements
that have discontinuous derivative at the boundary of the domain. © 2002 Published by Elsevier Science B.V.

1. Introduction

In this work, we develop a perturbation theory for periodic small amplitude non-linear surface elastic waves of
permanent form in the half-plane, and present some new numerical results on the possible shape of such waves for
a number of hyperelastic materials. One of our motivations for considering the problem is related to the common
interpretation of traveling waves as solutions bifurcating from the trivial state. This viewpoint has been very fruitful
in dispersive wave equations, especially in the simplest case of spatially periodic waves, where the problem is often
reduced to solve a finite dimensional bifurcation equation. On the other hand, linear surface elastic waves in the
half-plane are non-dispersive, and traveling waves that decay away from the surface would correspond to solutions
bifurcating from an eigenvalue of infinite multiplicity.

To study the possibility of such a bifurcation, we develop a systematic perturbation theory that is formally
analogous to solve the bifurcation and complementary equations appearing in Liapunov–Schmidt reduction order
by order in a suitable small parameter. In this approach, the bifurcation equation is replaced by an infinite set
of solvability conditions. The first of these conditions is a non-linear equation for the lowest order contribution,
while the second and higher order solvability conditions have the same structure and involve the linearization of
the first solvability equation around its solutions. The solvability equations are infinite dimensional, but one of the
advantages of this approach is that they are equations for the boundary values of the elastic displacement, i.e. the
displacement inside the domain can be at each order recovered from its boundary values.

The above scheme was developed in an effort to extend and understand earlier works on the problem. In particular,
the first solvability condition coincides with the approximate equation derived and solved numerically by Lardner,
and Parker and Talbot [1,2]. These authors were the first to obtain results on the possible shape of traveling surface
elastic waves, and their argument has been simplified by Hunter [3], who derived an asymptotic evolution equation
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for the surface elastic displacement. This model equation is interesting in its own right, being a conservation law on
the line with non-local flux, moreover, its traveling wave solutions are precisely the solutions of the first solvability
condition.

Although the argument leading to the first solvability condition has been understood and applied to a variety of
other non-dispersive systems in the half-plane, the existence of solutions to this equation has not been established
for surface elastic waves, and numerical results have led to some controversy (see [4]). We thus start our analysis of
the perturbation theory by studying the first solvability condition numerically. A new feature of our approach is the
use of the constrained variational structure of the traveling wave problem for hyperelastic materials. This variational
structure is also present in the solvability conditions, and is useful because the first solvability condition considered
here has no intrinsic scale. By using the constraint to normalize the sequences of approximate solutions obtained
numerically, we see that for all the non-linearities considered there exist sequences of numerical solutions that start
to converge to non-trivial shapes. An interesting feature of these surface displacements obtained numerically is
that they have discontinuities in their first derivative, specifically, cusps in the horizontal component of the surface
elastic displacement. These features were observed for all the non-linearities considered. The second and higher
order solvability conditions will be studied in a future work.

The paper is organized as follows. In Section 2, we state the traveling wave problem and fix the notation. In Section
3, we gather necessary information on the linear traveling wave problem. In Section 4, we describe the perturbation
theory for traveling waves of small amplitude. We derive a sequence of solvability conditions (equations) for the
terms in the expansion, and remark on the relation of our approach to earlier works and to bifurcation theory and
Signorini’s method. In Section 5, we study the basic structure of the solvability conditions showing that in the case of
hyperelastic materials these equations are constrained variational problems. In Section 6, we present some numerical
solutions of the first solvability condition for three hyperelastic materials, the St. Venant-Kirchhoff material and
two toy-models with simpler structure.

2. The traveling wave problem

We considerR2 with the Cartesian coordinates(x1, x2) and an elastic medium occupying in its unstrained state the
half-planeH = {x = (x1, x2) ∈ R2 : x2 ≥ 0}. We also letu(x) = H → R2 denote the elastic displacement with
Cartesian componentsui(x1, x2), i = 1,2. The density of the material will be denoted byρ, and will be assumed
to be constant. The internal elastic forces due to a displacementu can be obtained from the (first Piola–Kirchhoff)
stress tensorτ(x) : H → R2 × R2, thought of here as a 2× 2 real matrix with componentsτij , i, j = 1,2. The
stress tensorτ is a function of the derivative∇u of the displacement, and the elastic response of the material is
determined by the particular choice of the functionτ(∇u). With this notation, the equations of motion of elasticity
are

ρ∂ttui =
2∑

j=1

∂xj τij , i = 1,2, in H. (2.1)

At the boundary∂H = R, we will impose the “zero-traction” boundary condition

2∑
j=1

τij n̂j = 0 at ∂H, (2.2)

with n̂ = [n̂1, n̂2] = [0,−1], the outward unit normal at∂H . A convenient shorthand for (2.1) and (2.2) is

ρutt = ∇ · τ in H, τ · n̂ = 0 at ∂H. (2.3)

The above equations, possibly with additional boundary conditions, constitute the equations for free surface elastic
waves, and are clearly meaningful for a variety of domains.
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In the problem of traveling waves of permanent form in the half-plane we are seeking solutions of (2.1), (2.2)
that have the formu(x1 − ct, x2) for some constantc ∈ R. Rewriting the equations in the system of coordinates
x̃1 = x1 − ct, x̃2 = x2, t̃ = t , and dropping the tilde from the notation, we are thus looking for displacements
u(x1, x2) satisfying

ρc2∂2
x1
u = ∇ · τ in H, τ · n̂ = 0 at ∂H. (2.4)

In addition, we will impose the decay condition

lim
x2→∞u(x1, x2) = 0, ∀x1 ∈ R, (2.5)

and periodicity in the horizontal direction, i.e.

u(x1 + 2π, x2) = u(x1, x2), ∀(x1, x2) ∈ H. (2.6)

In view of the periodicity condition (2.6), we can work in the half-cylinderD obtained by identifying the points
(x1 + 2π, x2) and (x1, x2) of the stripD̃ = {(x1, x2) ∈ H : x1 ∈ [−π, π ]}. The formalism that follows is
independent of the choice of the particular fundamental stripD̃.

In this work, we will consider the traveling wave problem for hyperelastic materials. We will thus assume that
the stress tensorτ is given by

τij = ∂W(∇u)
∂ui,j

, with ui,j = ∂xi uj , i, j = 1,2. (2.7)

The real functionW is the potential energy density.
Note that by Kirchhoff’s variational formulation of hyperelasticity (see [5], Chapter 7) the traveling wave equations

and boundary conditions (2.4)–(2.6) can also be written as the Euler–Lagrange equations for the LagrangianL given
by

L = 1

2
ρc2

∫
D

2∑
i=1

(∂x1ui)
2 −

∫
D

W(∇u). (2.8)

The velocityc2 plays the role of the Lagrange multiplier.
The potential energy densityW will be decomposed intoW = WL +WNL with WL = WL(u, u) quadratic and

WNL = WL(u, u, u) cubic in∇u, respectively. The corresponding stresses obtained via (2.7) will be denoted by
τL(u) andτNL(u, u), respectively. The quadratic potential energy density is standard for isotropic materials and is
given by

WL = 1
2λ(tr γ )

2 + µ tr(γ 2), with γ = 1
2[∇u+ (∇u)T], (2.9)

andλ,µ > 0 the Lamé constants. Quadratic non-linearities will be specified by the real constant coefficientsWNL
abcdef

and the expression

WNL =
2∑

a,b,c,d,e,f=1

WNL
abcdefua,buc,due,f . (2.10)

The corresponding stress is

τNL
ij (u, u) =

2∑
κ,λ,µ,ν=1

SNL
ijκλµνuκ,λuµ,ν, (2.11)

with

SNL
ijκλµν =

2∑
φ,χ,ψ,ω=1

(WNL
ijφχψω +WNL

φχ ijψω +WNL
φχψωij ). (2.12)
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The coefficientsWNL
abcdef are not uniquely determined for a given non-linearity, but once they are specified, they

determine theSNL
ijκλµν unambiguously through (2.12). It is not necessary at this point to specify the non-linearity.

The choice of quadratic non-linearity is for notational convenience. Physically relevant models typically include
higher order non-linearities and a consistent theory must take them into account. On the other hand, as we will
see the inclusion of higher order terms require minor modifications and the main features of the expansion remain
the same. For instance, the leading order approximation to the shape of the traveling waves involves the quadratic
non-linearity only, even in the presence of higher order terms.

3. Linear traveling waves

To develop a perturbation theory for the non-linear traveling wave problem, we first consider its linearization
around the trivial solutionu ≡ 0. Using the quadratic potential energy (2.9), and (2.7), the linear traveling wave
equations become

(λ+ µ)∂xi (∇ · u)+ µ$ui − ρc2∂2
x1
ui = 0, i = 1,2 in H, (3.1)

and

−λδi2(∇ · u)− µ(ui,2 + u2,i ) = 0, i = 1,2 at ∂H. (3.2)

We also impose the decay and periodicity conditions (2.5) and (2.6), respectively.
To solve this equation we expand the displacement in Fourier series asui(x1, x2) = ∑

k∈Z eikx1v̂i (k, x2),
i, j = 1,2. For eachk ∈ Z, we obtain a linear homogeneous system of two second-order ordinary differential
equations for̂v1(k, x2), v̂2(k, x2), with boundary conditions atx2 = 0 and at infinity. The system also involves the
velocity c2 as a parameter. We find that, in order for solutions to exist, the velocityc2 must satisfy

(A2 + 1)2

4AB
= 1, where A2 = 1 − ρc2

µ
, and B2 = 1 − ρc2

λ+ 2µ
. (3.3)

Then, lettingc2
0 be a solution of (3.3) andA = A(c2

0), B = B(c2
0) from now on, the solutions are

v̂1(k, x2) = iak
k

|k|
(

−Ae−|k|Ax2 + 2A

A2 + 1
e−|k|Bx2

)
, k ∈ Z \ {0}, (3.4)

v̂2(k, x2) = ak

(
e−|k|Ax2 − 2AB

A2 + 1
e−|k|Bx2

)
, k ∈ Z \ {0}, (3.5)

with ak ∈ C arbitrary (a−k = āk for real displacements). Fork = 0, we have the trivial solution̂vi(0, x2) ≡ 0,
i = 1,2.

Eq. (3.3) is a cubic equation forc2 and has only one real solutionc2
0, known as the Rayleigh speed (see e.g. [5],

Chapter 8). Eq. (3.3) also plays the role of the dispersion relation, and since it does not involvek, linear waves
are dispersionless. From (3.4) and (3.5), the boundary valueu1(x1,0) of the horizontal displacement is arbitrary
and completely determinesu2(x1,0) and the displacementu(x1, x2) in the rest of the domain (alternatively, we
may specifyu2(x1,0)). All possible displacementsu(x1, x2) corresponding to the different boundary values of
u1(x1,0) travel with the same speedc0. The above construction also give us solutions inH 1(D,R2) with boundary
displacements inL2(S1,R2).

Remark 3.1. The lack of dispersion in linear free surface elastic waves on the half-plane can also be deduced
from the scale invariance of the equations of motion and the domain (see e.g. [6]). Examples of domains leading
to dispersive free surface elastic waves are the strip (e.g. withx2 ∈ [0,1]), and the half-plane occupied by two
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materials of different density (e.g. densityρ1 for x2 ∈ [0,1), and densityρ2 for x2 ∈ [1,∞)). Stokes waves and
their modulation for the second domain were studied in [7].

We will also need information on the inhomogeneous linear traveling wave problem

∇ · τL(u)− ρc2
0∂

2
x1
u = F in H, τL(u) · n̂ = f at ∂H, (3.6)

with the decay and periodicity conditions (2.5) and (2.6), respectively. The functionsF = [F1, F2] : H → R2 and
f = [f1, f2] : H → R2 are assumed to be 2π -periodic inx1.

To solve the inhomogeneous equation, we expand the displacement in Fourier series as before withFi(x1, x2) =∑
k∈Zeikx1F̂i(k, x2) andfi(x1, x2) = ∑

k∈Zeikx1f̂i (k, x2), i, j = 1,2. We similarly obtain for eachk ∈ Z the
inhomogeneous version of the linear system encountered previously. The general solution has the formûi (k, x2) =
ŵi(k, x2) + ckv̂i(k, x2), i = 1,2, with v̂i (k, x2), i = 1,2 the solutions of the homogeneous system given in (3.4),
(3.5),ck ∈ C arbitrary, andŵi(k, x2) a solution of the inhomogeneous equations given in Appendix A.

A necessary condition for solutions of the inhomogeneous equations to exist is thatF andf must satisfy∫
D

u∗(x1, x2) · F(x1, x2)−
∫
∂D

u∗(x1,0) · f (x1) = 0, (3.7)

for every solutionu(x1, x2) of the homogeneous problem (3.1). This solvability condition is derived straightfor-
wardly by multiplying (3.6) byu∗(x1, x2) and integrating by parts. Alternatively, writing an arbitrary solutionu of
the homogeneous problem asu(x1, x2) = ∑

Z\{0}akv(k) with vi(k) = eikx1v̂i (k, x2), i = 1,2, see (3.4) and (3.5),
we may write (3.7) as∫ ∞

0
v̂∗(k, x2) · F̂ (k, x2)dx2 − v̂∗(k,0) · f̂ (k) = 0, ∀k ∈ Z \ {0}, (3.8)

and ∫ ∞

0
F̂i(0, x2)dx2 − f̂i (0) = 0, i = 1,2 (3.9)

for k = 0.

Remark 3.2. In the special case whereF = ∇·g andf = g|∂H for some tensorg : H → R2×R2, i.e. 2π -periodic
in the horizontal direction and decays at infinity, condition (3.9) is satisfied identically.

4. Small amplitude non-linear traveling waves

We now develop a perturbation theory for the traveling wave equations (2.4)–(2.6). We assume that the displace-
mentu and the differencec2−c2

0 from the Rayleigh speed can be expanded in powers of a small parameterα, so that

u = αu[0] + α2u[1] + α3u[2] + · · · , (4.1)

and

c2 − c2
0 = αλ1 + α2λ2 + α3λ3 + · · · . (4.2)

Theu[i] should satisfy the periodicity and decay conditions (2.5) and (2.6), respectively. Physically,α can be the
ratio of the boundary displacement (u1 or u2) to the horizontal period. Inserting the expansions into (2.4)–(2.6) and
matching powers ofα, we have at orderα1

∇ · τL(u[0])− ρc2∂2
x1
u[0] = 0, in H, τL(u[0]) · n̂ = 0 at ∂H, (4.3)

at orderα2

∇ · τL(u[1])− ρc2
0∂

2
x1
u[1] = −∇ · τNL(u[0], u[0])+ λ1ρ∂

2
x1
u[0] in H, (4.4)
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τL(u[1]) · n̂ = −τNL(u[0], u[0]) · n̂ at ∂H, (4.5)

and at orderαr , r ≥ 2

∇ · τL(u[r−1])− ρc2
0∂

2
x1
u[r−1] =

∑
i+j=r,
i,j≥1

(−∇ · τNL(u[i−1], u[j−1])+ λiρ∂
2
x1
u[j−1]) in H, (4.6)

τL(u[r−1]) · n̂ = −
∑

i+j=r,
i,j≥1

τNL(u[i−1], u[j−1]) · n̂ at ∂H. (4.7)

Thus,u[0] satisfies Eqs. (3.1) and (3.2) for linear traveling waves, while theu[r−1] with r ≥ 2 satisfy the inho-
mogeneous linear equation (3.6), with the inhomogeneous part depending onu[0], . . . , u[r−2] andλ1, . . . , λr−1. In
the inhomogeneous equations, we are looking for pairsu[r−1], λr−1. The way to proceed is standard: first we let
u[0] = v[0] be a solution of the homogeneous system (4.3). To solve the orderα2 equations (4.4) and (4.5) foru[1] ,
the inhomogeneous part must satisfy the solvability condition (3.7). This is an equation forv[0] andλ1. Assuming
that solutionsv[0] ,λ1 exist and that the solvability condition is also sufficient, we have a solutionu[1] = w[1] +v[1] of
(4.4) and (4.5) withw[1] given by the expressions of Appendix A, andv[1] an arbitrary solution of the homogeneous
linear equation (4.3). We can continue this formal procedure to higher order, i.e. determiningv[1] andλ2 from the
solvability condition for the equation foru[2] , decomposing the solution using the particular solution of Appendix
A and so on. Assuming that the solvability conditions have solutions, and that they are sufficient for solving the
inhomogeneous equation at each order, we may thus write the solution as

u = αv[0] + α2(v[1] + w[1])+ α3(v[2] + w[2])+ · · · , (4.8)

where eachv[r−2], r ≥ 2, is a solution of the homogeneous linear traveling wave equation and is found from the
solvability condition for the orderαr equation foru[r−1], and eachw[r−1], r ≥ 2, is the particular solution of the
orderαr inhomogeneous equation foru[r−1], given in Appendix A.

Using (4.3)–(4.7) and the decomposition (4.8) of the displacementu, the solvability condition determiningv[r−2]

andλr−1, r ≥ 2 can be written as∫
D

v̂∗(k) · F [r−1] −
∫
∂D

v̂∗(k) · f [r−1] = 0, ∀k ∈ Z \ {0}, (4.9)

where thev̂i (k) = eikx1v̂i (k, x2), i.e. as in (3.4), (3.5), and

F [r−1] = −
∑

i+j=r,
i,j≥1

(∇ · τNL(v[i−1], v[j−1])+ ∇ · τNL(v[i−1], w[j−1])+ ∇ · τNL(w[i−1], v[j−1])

+∇ · τNL(w[j−1], w[j−1]))+
∑

i+j=r,
i,j≥1

λi∂
2
x1
(v[i−1] + w[j−1]), (4.10)

and

f [r−1] = −
∑

i+j=r,
i,j≥1

(τNL(v[i−1], v[j−1]) · n̂+ τNL(v[i−1], w[j−1]) · n̂+ τNL(w[i−1], v[j−1]) · n̂

+τNL(w[i−1], w[j−1]) · n̂). (4.11)

Here, we have setw[0] ≡ 0. From (4.10) and (4.11), the solvability condition for the inhomogeneous equation for
u[1] is a non-linear equation forv[0] andλ1, while the solvability condition for the inhomogeneous equation for
u[r−1], r ≥ 3 is a linear equation forv[r−2] andλr−1 involving the functionsv[0], . . . , v[r−3], w[1], . . . , w[r−2] and
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numbersλ1, . . . , λr−2 determined at the previous stages. Once the solvability condition for the equation foru[r−1],
r ≥ 3 is satisfied, the functionsv[0], . . . , v[r−3], v[r−2], w[1], . . . , w[r−2] and numbersλ1, . . . , λr−2, λr−1 appearing
in the inhomogeneous part of the equation are known, and we letu[r−1] = w[r−1] + u[r−1] as described above.

Remark 4.1. ExpandingF [r−1] andf [r−1] in their Fourier series, the solvability conditions take the form of (3.8).
Note that the solvability condition (3.9) fork = 0 is satisfied automatically, since the zeroth Fourier coefficient
of the ∂2

x1
(v[i−1] + w[j−1]) vanishes, while the zeroth Fourier coefficient of the remaining terms satisfy (3.9) by

Remark 3.2.

The formalism we have described does not require that the material be hyperelastic and can be applied to the
question of traveling waves in a variety of non-dispersive, non-linear wave equations in the half-plane. Some exam-
ples are piezoelectricity (see e.g. [8]), non-linear optics, and the class of hyperbolic conservation laws considered
by Hunter [3]. The first solvability condition was essentially derived by Lardner, and Parker and Talbot [1,2]. The
higher order theory here follows a standard procedure for continuing solutions perturbatively (e.g. in the presence
of bifurcation). A closely related method for constructing higher order corrections was originally given by Parker
[9], and alternative derivations can be obtained by extending the multiple-scales argument of Hunter [3] (see also
[10]) to higher orders (see e.g. [11]).

The formal connection to (analytic) bifurcation theory and Liapunov–Schmidt reduction is through the decompo-
sition of the displacementu[i] at each order into a partv[i] in the kernel of the linear traveling wave operator, and a
part belonging to the image of the operator. Instead of projections to the image and co-image of the linear traveling
wave operator, we here use the solution given in Appendix A, and the procedure above amounts to solving the
bifurcation and complementary equation perturbatively, order by order. The analog of the bifurcation equation is the
infinite set of solvability conditions and one of the difficulties here is that these equations are infinite dimensional
(see [12,13] for rigorous results on bifurcations from an eigenvalue of infinite multiplicity). The expansion method
we described is also similar to Signorini’s method in static elasticity (see e.g. [14], where the formal relation to
Liapunov–Schmidt reduction is also pointed out).

5. Variational structure of the solvability conditions

In this section we show that the solvability conditions for hyperelastic materials are constrained variational
problems. Also we see that the second and higher order solvability conditions have a common structure.

In order to solve (4.4) and (4.5) with the appropriate boundary conditions we must satisfy the first solvability
condition, which by (4.9) may be written as

Sk(c
[0], λ1)= −

∫
D

v̂∗(k) · (∇ · τNL(v[0], v[0]))+
∫
∂D

v̂∗(k) · (τNL(v[0], v[0]) · n̂)+λ1ρ

∫
D

v̂∗(k) · ∂2
x1
v[0] =0,

∀k ∈ Z \ {0}, (5.1)

with v̂i (k) = eikx2v̂i (k, x2), i.e. see (3.4) and (3.5). Writing

v[0] =
∑

k∈Z\{0}
c

[0]
k v̂(k), (5.2)

and lettingc[0] be the vector with the componentsc[0]
k ∈ C, k ∈ Z \ {0} (c−k = c̄k for realv[0] ), (5.1) is an infinite

system of quadratic equations indexed byk ∈ Z \ {0}, from which we want to determinec[0] andλ1. We can also
consider the Galerkin projections of (5.1) by choosing finite subsetsJ ⊂ Z \ {0} and solving the finite set of
equationsSk(c

[0]
J , λ1) = 0, k ∈ J , with c[0]

J vectorsc[0] for which c[0]
k = 0, ∀k /∈ J .
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Remark 5.1. For higher order non-linearities, the first solvability condition will also have the form (5.1), only
involving the quadratic non-linearity.

An important property of Eq. (5.1) and its Galerkin approximations is homogeneity inc[0] andλ1, if v[0] = v,
λ1 = λ is a solution of (5.1), then so isεv, ελ, ∀ε ∈ C. Also, for hyperelastic materials, (5.1) describes a constrained
variational problem:

Proposition 5.1.

1. The system of Eq.(5.1) is equivalent to

∇c̄[0]V (c
[0]) = λ1∇c̄[0] I (c

[0]), (5.3)

where thekth component of∇c̄[0] is ∂
c̄

[0]
k

, k ∈ Z \ {0}, and

V (c[0]) =
∫
D

WNL(v[0], v[0], v[0]), I (c[0]) = 1

2
ρ

∫
D

2∑
i=1

(∂x1v
[0]
i )2. (5.4)

2. The Galerkin projections of(5.1) to finite setsJ ⊂ Z \ {0} are equivalent to

∇
c̄

[0]
J
VJ (c[0]

J ) = λ1∇c̄
[0]
J
IJ (c[0]

J ), (5.5)

with VJ , IJ as in(5.4)with c[0] , v[0] replaced byc[0]
J , v[0]

J , respectively.

Proof.

1. From the definition ofV and (5.2) we compute forp ∈ Z \ {0}

∂V

∂c̄
[0]
p

=
∫
D

2∑
a,b,c,d,e,f=1

V NL
abcdef((∂xb v̂

∗
a(p))uc,due,f + ua,b(∂xd v̂

∗
c (p))ue,f + ua,buc,d(∂xf v̂

∗(p))).

Passing the derivative to the other side in each of the three terms, we have

∂V

∂c̄
[0]
p

= −
∫
D

2∑
i=1

v̂∗(p)
2∑

j=1

∂xj

2∑
φ,χ,ψ,ω=1

(WNL
ijφχψω +WNL

φχ ijψω +WNL
φχψωij )uφ,χuψ,ω

+
∫
∂D

2∑
i=1

v̂∗(p)
2∑

j=1

2∑
φ,χ,ψ,ω=1

(WNL
ijφχψω +WNL

φχijψω +WNL
φχψωij )uφ,χuψ,ωn̂j ,

which by (2.12) yields

∂V

∂c̄
[0]
p

= −
∫
D

v̂∗(p) · (∇ · τNL(v[0], v[0]))+
∫
∂D

v̂∗(k) · (τNL(v[0], v[0]) · n̂).

Similarly,

∂I

∂c̄
[0]
p

= ρ

∫
D

2∑
i=1

(∂xi v̂
∗
i (p))v

[0]
i,1 = −ρ

∫
D

v̂∗
i (p) · ∂2

x1
v[0],

so that adding the two terms we have (5.1).
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2. The variational formulation for the Galerkin projections follows from the same calculation after replacingv[0]

by v[0]
J . �

Corollary 5.2. The Galerkin projections of the first solvability condition(5.1)have non-trivial solutions.

Proof. Let c−k = c̄k. We observe that the setIJ (c[0]
J ) = h > 0 is an ellipsoid inR2|J |, |J | = card(J ). Since

VJ (c[0]
J ) is a smooth real valued function, it will attain its extrema at some points on the ellipsoid and satisfy the

Galerkin projection of the solvability condition (5.3) for for appropriate realsλJ1 . �

Remark 5.2. The corollary does not guarantee the existence of Galerkin solutions withλ1 = 0.

By the corollary, one way to approach the problem of finding solutions of (5.1) is to try to understand limits of
sequences of solutions of Galerkin projection of increasing size|J | → ∞. In view of the invariance of the Galerkin
projections of (5.1) under rescaling ofc[0]

J andλJ1 by an arbitrary constant, it appears that we may choose quite
arbitrary sequences of Galerkin solutions by changing the scaling factor as we increase the size of the projections.
Although this may result useful, in the next section we use the variational interpretation of (5.1) to consider sequences
of solutions belonging toI (c[0]

J ) = h, with h fixed as we increase|J |.
Although the perturbation theory of the previous section produces an infinite number of solvability conditions,

we now see that the second and higher solvability conditions have the same structure. We may use (4.9)–(4.11) to
write the solvability conditions for the inhomogeneous equation obtained at orderαr , r > 2, as

−
∫
D

v̂∗(k) · (∇ · τNL(v[r−2], v[0])+ ∇ · τNL(v[0], v[r−2]))

+
∫
∂D

v̂∗(k) · (τNL(v[r−2], v[0]) · n̂+ τNL(v[0], v[r−2]) · n̂)+ ρλ1

∫
D

v̂∗(k) · ∂2
x1
v[r−2]

+ρλr−1

∫
D

v∗(k) · ∂2
x1
v[0] = G

[r−1]
k (v[0], . . . , v[r−3], w[1], . . . , w[r−2], λ1, . . . , λr−2) (5.6)

for all k ∈ Z \ {0}. The G
[r−1]
k are known since it is assumed that we have solved the previous solvabil-

ity conditions and inhomogeneous equations. The left-hand side of (5.6) involves the linearization of the first
solvability condition (5.1) around a solutionv[0] , λ1, applied to the unknownv[r−2], and we may also write
(5.6) as

[(D1S
[1](c[0], λ1))v

[r−2]]k + ρλr−1

∫
D

v̂∗(k) · ∂2
x1
v[0] = G

[r−1]
k , k ∈ Z \ {0} (5.7)

with D1 the derivative with respect to the first variable, [·]k the kth row. Thus to solve the higher order solv-
ability conditions we must invert the linearization of the first solvability condition (5.1) around its solutionc[0] .
The presence of theλr−1, r > 3, allows for one null direction. For instance, if we can find a non-trivial solu-
tion v[0] of (5.1) with λ1 = 0, the homogeneity of (5.1) gives us a lineεv[0] , ε ∈ R, of solutions. However,
it may still be possible to adjust theλr−1, r > 3, so that the linearization is invertible in the complementary
subspace.

Remark 5.3. Note that the addition of higher order non-linear terms in the traveling wave equation will not alter
the general structure of (5.6). Cubic and higher order terms will involve termsv[j ] , w[j ] with j at mostr − 3, and
will thus be absorbed in the right-hand side ofG

[r−1]
k .

The variational structure of the higher solvability conditions is expressed by the following statement.
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Proposition 5.2.

1. Let c[r−2] be the vector of the coefficientsc[r−2]
k ∈ C, k ∈ Z \ {0} of v[r−2] = ∑

k∈Z\{0}c
[r−2]
k v(k). Then the

solvability condition for the orderαr , r > 3 inhomogeneous Eq.(4.6), (4.7)is equivalent to

∇c̄[r−2]V
[r−2](c[r−2]) = λr−1∇c̄[r−2]I

[r−2](c[r−2]), (5.8)

where the gradient∇c̄[r−2] has components∂
c̄

[r−2]
k

, k ∈ Z \ {0}, and

I [r−2] = ρ

∫
D

2∑
i=1

(∂x1v
[r−2]
i )(∂x1v

[0]
i ). (5.9)

For the potential energyV [r−2], each pair of terms∇ ·τNL(f, g), τNL(f, g) · n̂ ofF [r−1], f [r−1] in (4.10), (4.11),
respectively, is the gradient∇c̄[r−2] of

Vf,g =
∫
D

(V NL(v[r−2], f, g)+ V NL(f, v[r−2], g)+ V NL(f, g, v[r−2])), (5.10)

also, each termλi∂2
x1
f in (4.10) is the gradient∇c̄[r−2] of 1

2λi Ĩ
[r−2]
f if f = v[r−2], and λi Ĩ

[r−2]
f if f =

v[0], . . . , v[r−3], w[1], . . . , w[r−2], where

Ĩ
[r−2]
f = −ρ

∫
D

2∑
i=1

(∂x1v
[r−2]
i )(∂x1f ). (5.11)

2. The variational structure of the Galerkin projections is given by (1),withV [r−2],I [r−2] replaced byV [r−2](c
[r−2]
J ),

I [r−2](c
[r−2]
J ), respectively.

Proof. The proposition follows by a calculation similar to the one used in showing Proposition 5.1, i.e. we integrate
by parts to transfer derivatives onv̂∗(k) to the other terms of the area integrals. �

In contrast to the first solvability condition, here the variational structure does not automatically guarantee the
existence of solutions for the Galerkin projections. The constraintI [r−2] = h ∈ R is a hyperplane, while the
functionV [r−2] is quadratic inv[r−2] (see e.g. (5.10) withf = v[0] , g = v[r−2]), and there is no a priori reason to
expect thatV [r−2] has a convex quadratic part. In the case where the first solvability condition has solutions with
λ1 = 0, the constraintI [r−2] = h eliminates a null direction.

6. Numerical study of the first solvability condition

In this section, we study the first solvability condition numerically for three different hyperelastic materials,
namely the St. Venant-Kirchhoff material, and two simpler but less physical models.

According to the theory of elasticity, the assumptions of material frame indifference and isotropy (see e.g. [15],
Chapter 4) which imply that the potential energy densityW of a two-dimensional hyperelastic material is a function
of the trace of the matricesE , E2 andE3, or

W = W(tr E, tr E2, tr E3), where E = 1
2(∇u+ (∇u)T + (∇u)T∇u) (6.1)

is the strain tensor. We may also assume that the potential energy density does not involve terms that are linear in
the displacementu. This way the trivial displacementu ≡ 0 is a solution of the equations of motion.



P. Panayotaros / Wave Motion 36 (2002) 1–21 11

The first non-linearity we choose corresponds to one of the simplest models satisfying the above constraints, and
is specified by

W = 1
2λ(tr E)

2 + µ tr E2 (6.2)

(this is the St. Venant-Kirchhoff material, see [15], Chapter 4). The quadratic terms in (6.2) give us the quadratic
potential energy densityWL of (2.9), while the first solvability condition involves the cubic terms in (6.2). The
simpler models we will consider correspond to the potential energy densitiesW = WL +WNL with WL as in (2.9)
and

WNL = 1
4(λ+ µ)u1,1u

2
1,2, and WNL = 1

4(λ+ µ)(u1,1u
2
1,2 + u2,2u

2
2,1), (6.3)

respectively. Note that these models are not consistent with isotropy.
To simplify the first solvability conditions, we will look for traveling wave solutions of (2.4) and (2.5) satisfying

u1(−x1, x2) = −u1(x1, x2), and u2(−x1, x2) = u2(x1, x2), ∀(x1, x2) ∈ D̃. (6.4)

These parities are specific to the fundamental domainD̃ of Section 2. We easily check that the traveling wave
equation (2.4) for the non-linearities we are considering, as well as the linear equations of the perturbative
scheme of Section 4 are compatible with the parities of (6.4). The periodicity and decay conditions are (2.5)
and (2.6), respectively. Solutions of the linear traveling wave equation with the parities (6.4) will have the
form

v
[0]
1 (x1, x2) =

∞∑
p=1

ap sinpx1Â(p, x2), v
[0]
2 (x1, x2) =

∞∑
p=1

ap cospx1B̂(p, x2),

where Â(p, x2) = −iv̂1(p, x2), B̂(p, x2) = −v̂2(p, x2), (6.5)

i.e. see (3.4) and (3.5), and the coefficientsap ∈ R, ∀p ∈ Z+. The solvability condition for the inhomogeneous
linear equations is (3.7), witĥv∗(k, x2) replaced by [Â(k, x2),−B̂(k, x2)] and theF̂i(k, x2), f̂i (k, x2) replaced by
the sine(i = 1) and cosine(i = 2) transforms ofFi , fi , respectively. Furthermore, the first solvability condition
has the variational formulation

∂apV (a) = λ1∂apI (a), p ∈ Z+, (6.6)

where the componentsap, p ∈ Z+ of the vectora are as in (6.6). The functionsV (a) andI (a) are given by (5.4),
with the linear solutionsv[0] as in (6.5).

With the above information we can write the solvability condition in spectral form in a straightforward manner
by evaluatingV (a), I (a) and the variational equation (6.6). The potential energyV (a) for a general cubic potential
energy densityWNL of the form given in (2.10) will be

V (a)=
∞∑

p2>p3≥1

(p2 − p3)p2p3ap2−p3ap2ap3

π

2
C−(p2 − p3, p2, p3)

+
∞∑

p2,p3≥1

(p2 + p3)p2p3ap2+p3ap2ap3

π

2
C+(p2 + p3, p2, p3). (6.7)

For instance, for the first model non-linearity of (6.3) we haveC+(q, r, s) = C−(q, r, s) with

C−(q, r, s) = λ+ µ

4
I11′1′(q, r, s) ≡ λ+ µ

4rs

∫ ∞

0
Â(q, x2)Â

′(r, x2)Â
′(s, x2)dx2, (6.8)

q, r, s ∈ Z+ (derivatives are with respect tox2). The coefficientsI11′1′(q, r, s) are given in Appendix B.
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For the kinetic energy partI (a) we have

I (a) = M

2

∞∑
p=1

pa2
p (6.9)

(the constantM is in Appendix B), so that by (6.7) the solvability condition (6.6) takes the form

Gp(a, λ1) =
p−1∑
p1=1

pp1(p − p1)ap1ap−p1Kp,p1 +
∞∑

p1=1

pp1(p + p1)ap1ap+p1Λp,p1 − λ1Mpap = 0,

p ∈ Z+ (6.10)

For the first non-linearity of (6.2), we have

Kp,p1 = (λ+ µ)π

8
(I11′1′(p − p1, p, p1)− I11′1′(p, p − p1, p1)), (6.11)

Λp,p1 = (λ+ µ)π

8
(I11′1′(p, p + p1, p1)+ I11′1′(p1, p + p1, p)

−I11′1′(p + p1, p, p1)− I11′1′(p + p1, p1, p)). (6.12)

The coefficientsC±(q, r, s) for the other non-linearities are in Appendix B. They similarly involve triple integrals
of the functionsÂ(q, x2), B̂(q, x2) of (6.5) and their derivatives, and are sums of termsα/(βq + γ r + δs),
with α, β, γ, δ ∈ R constants depending onA andB. The denominators in the coefficientsKp,p1, Λp,p1 are
bounded away from zero uniformly in the allowed integersp, p1, so that the coefficients are well-defined. These
observations also apply to the coefficientsC±(q, r, s), Kp,p1, andΛp,p1 obtained for general non-linearities that
have the form of (2.10). We can see this by counting the number of derivatives in the cubic potential energy
terms.

To study the first solvability condition (6.10) numerically, we consider the Galerkin approximations of (6.7) and
(6.10) for the vectorsaN = [aN1 , a

N
2 , . . . , a

N
N ] ∈ RN , with the necessary modifications in the summations. It is also

convenient to introduce the vectorsãN with components̃aNp = paNp , p = 1, . . . , N . Expressing the Lagrangian

L(aN) = V (aN) − λN1 I (a
N) and the Galerkin projectionGN

p (a
N, λN1 ) = 0, p = 1, . . . , N of (6.10) in the tilde

variables we have

GN
p (a

N, λN1 ) = ∂apL
N(aN, λN1 ) = p∂ãpL

N(ãN , λN1 ) ≡ pG̃N
p (ã

N , λN1 ) = 0, (6.13)

p = 1, . . . , N , and it is sufficient to solve numerically the equationG̃N
p (ã

N , λN1 ) = 0,p = 1, . . . , N . By Corollary
5.2, the Galerkin projections of the first solvability condition have non-trivial solutions and to find them we set
λN1 = 1 and solve numerically

G̃N
p (ã

N ,1) = 0, p = 1, . . . , N. (6.14)

Letting β̃N = [β̃N1 , . . . , β̃
N
N ] ∈ RN be a non-trivial solution of (6.14), the vectorγN with components

γNp =

M

2

N∑
p=1

1

p
(β̃Np )

2




−1/2

p−1β̃Np , p = 1, . . . , N (6.15)

satisfies the Galerkin projection of (6.10) withN modes, i.e. we have

GN
p (γ

N, λN1 ) = 0, p = 1, . . . , N, with λN1 =

M

2

N∑
p=1

1

p
(β̃Np )

2




−1/2

. (6.16)
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Moreover,

IN(γ N) = M

2

N∑
p=1

p(γNp )2 = 1. (6.17)

Remark 6.1. The choice of the constraintIN(aN) = 1 used here is arbitrary, we can also work withIN(aN) = h

for anyh > 0. We can rescaleγN andλN1 by h to also obtain a solution of theN -mode Galerkin projection of the
first solvability condition. Even though the first solvability condition has no intrinsic scale, it is natural to impose a
scale on the lowest order displacementu[0] . This way the assumption on the smallness of the parameterα becomes
meaningful (the scale ofγN andλN1 can be absorbed inα).

For the purpose of the numerical study, the choice of scale is useful for comparing solutions of the different
Galerkin projections. To find candidates for solutions of (6.10), we consider Galerkin projections withN1 < N2 <

· · · < Ni < · · · modes and construct sequences of numerical solutionsγNi , λNi

1 by solving (6.14) and rescaling as
above. Since each Galerkin projection has many solutions, to produce sequences that have a chance of converging
in a reasonably strong sense, we start by considering a low order Galerkin projection, e.g. withN1 = 4 modes

Fig. 1. (a) and (b) shows the surface displacement and horizontal componentv
[0]
1 (x1,0) of 260, 500 modes, respectively, for first non-linearity

of (6.3); (c) and (d) shows the surface displacement and vertical componentv
[0]
2 (x1,0) of 260, 500 modes, respectively, for first non-linearity of

(6.3) (multiply by 1.47).
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and find numerically a solutionγN1, λN1
1 . Then to increase the number of modes fromNi to Ni+1, we apply

Newton’s iteration for the equatioñGNi+1
p (ãNi+1,1) = 0, p = 1, . . . , Ni+1 using as initial condition the vector

[γN1
i , . . . , γ

Ni

Ni
,0, . . . ,0] ∈ RNi+1, and obtain (after rescaling the numerical result)γNi+1 andλNi+1

1 . Although we

cannot control the dynamics of Newton’s iteration, it is reasonable to expect thatγNi , λNi

1 andγNi+1, λNi+1
1 will be

getting closer as we increaseNi .

Remark 6.2. The sequence of Fourier coefficient vectorsβNi = [γNi

1 , . . . , γ
Ni

Ni
,0, . . . ] obtained from the Galerkin

solutions are bounded in@2 since
∑∞

p=1p(β
Ni
p )2 = 1,∀Ni . Therefore, there will be subsequences of{βNi }∞i=1

that converge weakly in@2. Also the corresponding boundary valuesv
[0]
1 , v[0]

2 of the displacement given by (6.5)
will converge weakly inL2(S1), andH 1/2(S1). However, these notions of convergence do not necessarily imply
that the limits are non-trivial.

Remark 6.3. We will not seek solutions withλ1 = 0 in this work. The non-invertibility of the linearization of the
functionG(a,0) in (6.10) around such solutions will likely require thatλi �= 0 for i > 1, and we plan to consider
this case in the future.

Fig. 2. (a) and (b) shows the surface displacement and horizontal componentv
[0]
1 (x1,0) of 120, 500 modes, respectively, for second non-linearity

of (6.3); (c) and (d) shows the surface displacement and vertical componentv
[0]
2 (x1,0) of 120, 500 modes, respectively, for second non-linearity

of (6.3) (multiply by 1.47).
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The numerical results that follow were obtained following the above procedure, and solving (6.14) using the NAG
library implementation of the hybrid Newton–Raphson method of [16]. The computed Fourier coefficients of the
surface displacement are normalized as in (6.15). By (6.10), to obtain numerical values for the surface displacement
andλ1 we need to specify the Poisson’s ratioν = 1

2(λ/(λ+µ)), and we setν = 1
4 (e.g.ν = 0.28 for glass,ν = 0.28

for iron, see [15], p. 129). The Rayleigh speed forν = 1
4 is approximatelyc2

0 = 0.845(µ/ρ).
We found two types of sequences of numerical solutions. First, we see sequences where the computed surface

displacementsv[0]
1 (x1,0), v[0]

2 (x1,0) approach definite nontrivial shapes as we increase the number of modes. The

corresponding sequencesλNi

1 also seem to approach a limit. The conjectured limits are candidates for solutions of
the first solvability condition. The shapes of some of the surface displacements obtained numerically for the first
and second non-linearities of (6.3), and for the the St. Venant-Kirchhoff material of (6.2) are shown in Figs. 1–3.
Also, the values ofλ1 corresponding to the solutions of Figs. 1–3 are shown in Fig. 6(a)–(c). Evidently, there are
sequences of surface displacements andλ1 with possible non-trivial limits for all three non-linearities considered.
An interesting feature of the numerical solutions is the appearance of well-defined cusps inv

[0]
1 (x1,0) for all the

non-linearities considered. On the other hand,v
[0]
2 (x1,0) appears to be differentiable. The numerical solutions also

Fig. 3. (a) and (b) shows surface displacement and horizontal componentv
[0]
1 (x1,0) of 300, 500 modes, respectively, St. Venant-Kirchhoff

material of (6.2); (c) and (d) shows surface displacement and vertical componentv
[0]
1 (x1,0) of 300, 500 modes, respectively, St. Venant-Kirchoff

material of (6.2) (multiply by 1.47).
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Fig. 4. (a) and (b) shows coefficientspγNi
p , Ni = 200, 500 respectively, solution of Fig. 3.

exhibit small oscillations that decrease in scale and amplitude as we increase the size of the Galerkin truncation.
This oscillatory behavior can be better appreciated by looking at Fig. 4(a) and (b) where we plotp vs.pγNi

p for three

Ni-mode truncations. TheγNi
p in Fig. 4(a) and (b) are the Fourier coefficients for the non-linearity of Fig. 3(a)–(d).

The tails inpγNi
p are apparently moving to the right with almost constant amplitude as we increase the number

of modesNi , so thatγNi

Ni
∼ p−1. These features are common to the Fourier coefficients of all the numerical

solutions of this first type, and are evidence that the weakL2 limits of the surface displacements are non-trivial.
It is also possible that we have stronger convergence, e.g. inL2(S1), and it is also interesting to see whether
there is a way to filter out the small-scale oscillations. A more qualitative comparison of the surface displacements
shown is also possible. For instance, evaluating the surface displacements at 2500 uniformly distributed points
in [−π, π ] we see that the difference between the horizontal and vertical displacements obtained using 400 and
500 modes is bounded by 2× 10−2 for the solutions of Fig. 1(a)–(d), and by 2× 10−3 for the solutions of
Figs. 2 and 3(a)–(d). The pointwise difference is in all cases oscillatory and its integral over [−π, π ] is in the
range 10−6–10−5.

Remark 6.4. The surface displacements we found are reminiscent of those reported in [PT] for a different
non-linearity. The number of modes used in that work was smaller(∼ 25), and the (possible) cusps were not
resolved. It also appears that, at least for the models considered here, the main qualitative features of the numerical
solutions do not depend on the details of the non-linearity.
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Remark 6.5. Despite the presence of the cusps at the boundary, (6.15) implies that the lowest order elastic
displacementv[0](x1, x2) we obtain from the computed surface displacement is smooth inside the domain.

We have also found a second type of sequences of Galerkin solutions that seem to converge weakly inL2(S1)

to the trivial solution. A typical example is shown in Fig. 5(a)–(d). The particular example was found for the St.
Venant-Kirchhoff material, but similar numerical solutions were also found for the other non-linearities. In these
sequences, the surface displacement has small-scale oscillations that become finer decreasing slowly in amplitude,
as well as spikes that become more and more concentrated as we increase the number of modes. Also, for this
type of numerical solutions theλNi

1 do not seem to approach any limit. TheλNi

1 corresponding to the sequence of
solutions of Fig. 5 is shown in Fig. 6(d).

The accuracy of the numerical solutions presented is indicated by the vector of residualsG̃N
p (x

N
c ,1), p =

1, . . . , N of the numerical solutionsxNc of (6.15). Since, however, limx→0G̃
N(x,1) = 0, it is more meaningful to

consider the vector of relative residuals [G̃N
p (x̃

N
c ,1)]−1G̃N

p (x
N
c ,1), p = 1, . . . , N , wherex̃Nc has the same size as

xNc , e.g. in practice we get̃xNc by changing the sign of a few components ofxNc . For the solutions corresponding
to all the figures shown, all the components of the relative residuals were bounded by 10−7–10−6. These numbers

Fig. 5. (a) and (b) shows surface displacement and horizontal componentv
[0]
1 (x1,0)of 160, 500 modes, respectively, St. Venant-Kirchhoff material

of (6.2); (c) and (d) shows surface displacement and vertical componentv
[0]
1 (x1,0) of 160, 500 modes, respectively, St. Venant-Kirchhoff material

of (6.2) (multiply by 1.47).
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Fig. 6. Values ofλNi

1 for Galerkin approximations withNi modes: (a) solution of Fig. 1; (b) solution of Fig. 2; (c) solution of Fig. 3; (d) solution
of Fig. 5.

also agree with the condition for terminating the iteration successfully, i.e. with the relative residuals smaller than
the square root of the machine accuracy.

7. Discussion

We have considered the problem of traveling surface elastic waves in the half-plane and extended the perturbative
approach of Parker and Talbot, and Hunter [2,3] to higher order. Our extended scheme is formally equivalent
to a perturbative implementation of the Liapunov–Schmidt method, and is also related to Signorini’s method in
static elasticity. The analog of the bifurcation equation is an infinite set of solvability conditions that involve the
values of the displacement at the surface, and we also observed that for hyperelastic materials the solvability
conditions are constrained variational problems. In this work, we focused on the first solvability condition. We
noted that the Galerkin approximations of the first solvability condition must posses solutions, and our numerical
results suggest that there exist sequences of Galerkin solutions with non-trivial limits; such limits are candidates for
non-trivial solutions of the first solvability condition. The Galerkin solutions obtained numerically rather quickly
tend to surface displacements of a well-defined shape, although the conjectured convergence is rather slow. Thus,
although we consider that our work gives stronger numerical evidence for the existence of non-trivial solutions
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to the first solvability condition than earlier studies, we believe that further improvements are possible and that
the existence question should also be understood theoretically. It would also be useful (and possibly related to
the existence question) to see whether we can devise a numerical scheme filtering out the small-scale oscillations
we saw.

The second step in pursuing the expansion method we described will be to numerically examine the invertibility
of the first solvability condition around its solutions, and the possibility of constructing higher order corrections to
the approximate solutions presented here. A positive result would give further evidence for the existence of traveling
wave solutions, although proving existence using the present constructive approach seems difficult at this point, and
other strategies may be more practical.

Further, dynamical questions can be addressed by considering the asymptotic evolution equation derived by
Hunter and Parker [3,9]. For instance, one may ask whether the conjectured traveling wave solutions are stable.
Instabilities of several types are possible, e.g. to shocks or to radiation (in an extended framework where other
modes are included). Another question is whether arbitrary smooth initial data lead to the formation of cusps and
then shocks. In the neighborhood of a cusp one expects very large forces, so that such loss of regularity phenomena
may have an interesting physical interpretation, relating non-linear effects to the appearance of small-scale cracks
near the surface of solids.
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Appendix A

Assuming that the solvability conditions (3.8) and (3.9) are satisfied, the general solution of the inhomogeneous
linear system for the Fourier coefficientsûi (k, x2), k ∈ Z, of the displacement is

ûi (k, x2) = ŵi(k, x2)+ ckv̂i(k, x2), i = 1,2, (A.1)

where v̂i (k, x2), i = 1,2 are the solutions of the homogeneous system given by (3.4) and (3.5),ck ∈ C, and
ŵi(k, x2) is a solution of the inhomogeneous system given fork ∈ Z+ \ {0} by

ŵ1(k, x2)= −iA e−kAx2

∫ x2

0

ekAs

2k

(
− iµ−1

A2 − 1
F̂1(k, s)+ (λ+ 2µ)−1

A(B2 − 1)
F̂2(k, s)

)
ds

−iA ekAx2

∫ ∞

x2

e−kAs

2k

(
− iµ−1

A2 − 1
F̂1(k, s)− (λ+ 2µ)−1

A(B2 − 1)
F̂2(k, s)

)
ds

+i e−kBx2

[∫ x2

0

ekBs

2k

(
iµ−1

B(A2 − 1)
F̂1(k, s)− (λ+ 2µ)−1

B2 − 1
F̂2(k, s)

)
ds

−A2 + 1

2B

∫ ∞

0

e−kAx2

2k

(
iµ−1

A2 − 1
F̂1(k, s)+ (λ+ 2µ)−1

A(B2 − 1)
F̂2(k, s)

)
ds

−
∫ ∞

0

e−kBx2

2k

(
− iµ−1

A2 − 1
F̂1(k, s)+ (λ+ 2µ)−1

A(B2 − 1)
F̂2(k, s)

)
ds − iµ−1f̂1(k)

2kB

]

−i ekBx2

∫ ∞

x2

e−|k|Bs

2k

(
iµ−1

A2 − 1
F̂1(k, s)+ (λ+ 2µ)−1

B2 − 1
F̂2(k, s)

)
ds, (A.2)



20 P. Panayotaros / Wave Motion 36 (2002) 1–21

ŵ2(k, x2)= e−kAx2

∫ x2

0

ekAs

2k

(
− iµ−1

A2 − 1
F̂1(k, s)+ (λ+ 2µ)−1

A(B2 − 1)
F̂2(k, s)

)
ds

−ekAx2

∫ ∞

x2

e−kAs

2k

(
− iµ−1

A2 − 1
F̂1(k, s)− (λ+ 2µ)−1

A(B2 − 1)
F̂2(k, s)

)
ds

−B e−kBx2

[∫ x2

0

ekBs

2k

(
− iµ−1

B(A2 − 1)
F̂1(k, s)+ (λ+ 2µ)−1

B2 − 1
F̂2(k, s)

)
ds

−A2 + 1

2B

∫ ∞

0

e−kAx2

2k

(
− iµ−1

A2 − 1
F̂1(k, s)− (λ+ 2µ)−1

A(B2 − 1)
F̂2(k, s)

)
ds

−
∫ ∞

0

e−kBx2

2k

(
iµ−1

A2 − 1
F̂1(k, s)+ (λ+ 2µ)−1

A(B2 − 1)
F̂2(k, s)

)
ds − iµ−1f̂1(k)

2kB

]

−B ekBx2

∫ ∞

x2

e−kBs

2k

(
iµ−1

A2 − 1
F̂1(k, s)+ (λ+ 2µ)−1

B2 − 1
F̂2(k, s)

)
ds, (A.3)

and fork = 0 by

ŵ1(0, x2) = −iµ−1
∫ ∞

x2

[∫ ∞

t

F̂1(0, s)ds

]
dt, ŵ2(0, x2) = (λ+ 2µ)−1

∫ ∞

x2

[∫ ∞

t

F̂2(0, s)ds

]
dt.

(A.4)

Fork ∈ Z−, ŵi(k, x2) = w∗
i (k, x2). If the F̂i(k, x2), i = 1,2, k ∈ Z are continuous and decay at least polynomially,

the above expressions give well-defined solutions of the inhomogeneous system.

Appendix B

The coefficientsI11′1′(q, r, s) defined in (6.8) are given by

I11′1′(q, r, s)=
(

−A4 1

q + r + s
+ 2A4B

(A2 + 1)

1

(q + r)A+ sB
+ 2A4B

(A2 + 1)

1

(q + s)A+ rB

− 4A3B2

(A2 + 1)2
1

qA+ (r + s)B
+ 2A5

(A2 + 1)

1

(r + s)A+ qB
− 4A4B

(A2 + 1)2
1

rA + (q + s)B

− 4A4B

(A2 + 1)2
1

sA+ (q + r)B
+ 8A3B

(A2 + 1)3
1

q + r + s

)
. (B.1)

The coefficientsC±(q, r, s) in the potential energyV of (6.7) for the other non-linearities are as follows: for the
second non-linearity of (6.3) we have

C−(q, r, s) = C+(q, r, s) = 1
4(λ+ µ)(I11′1′(q, r, s)+ I222′(q, r, s)), (B.2)

while for the St. Venant-Kirchhoff non-linearity of (6.2) we have

C∓(q, r, s)= 1
2(λ+ 2µ)(I11′1′(q, r, s)+ I222′(q, r, s)+ I111(q, r, s)+ I2′2′2′(q, r, s)

±I122(q, r, s)∓ I2′1′1′(q, r, s))

+1
2λ(I112′(q, r, s)+ I12′2′(q, r, s))+ 1

2µ(∓I11′2(q, r, s)− I21′2′(q, r, s)). (B.3)
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Letting the subscriptsφ, χ ,ψ range over the symbols 1, 1′, 1′′, 2, 2′, 2′′, the triple integralsIφχψ(q, r, s) are defined
by

Iφχψ(q, r, s) =
∫ ∞

0
Cφ(q, x2)Cχ (r, x2)Cψ(s, x2)dx2,

whereC1(t, x2) = Â(t, x2),C1′(t, x2) = t−1Â′(t, x2),C1′′(t, x2) = t−2Â′′(t, x2),C2(t, x2) = B̂(t, x2),C2′(t, x2) =
t−1B̂′(t, x2), C2′′(t, x2) = t−2B̂′′(t, x2), t = q, r, s ∈ Z+. Evaluation of the triple integrals is straightforward and
we omit the results here.

Also, the constantM of (6.9) is

M = A

2
+ 2A2

(A2 + 1)B
− 4A2

(A2 + 1)(A+ B)
+ 1

2A
+ 2A2B2

(A2 + 1)2
− 4AB

(A2 + 1)(A+ B)
.
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