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Abstract

We investigate Birkhoff normal forms for the periodic nonlinear Schrödinger equation with dispersion management. The
normalization we describe is related to averaging arguments considered in the literature, and has the advantage of producing
fewer resonant couplings between high spatial frequency modes. One consequence is that the normal form equations have
invariant subspaces of large but finite dimension, where we can find several classes of periodic orbits. The formal arguments
apply to other related dispersive systems, and to normal forms of high order. We also present a rigorous version of the normal
form calculation and show that solutions of the quartic normal form equations remain close to solutions of the full system
over a time that is inversely proportional to a small nonlinearity parameter.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The nonlinear Schrödinger equation with dispersion managementut = id(t)uxx − 2iγ|u|2u, whered(t) is a
periodic real valued function, andγ is real models the propagation of signals in an optical transmission line whose
dispersive properties vary along the line. The initial conditionu(x,0) is interpreted as the emitted signal, while
u(x, t) is the signal at a distancet from the origin of the transmission line. Varying (“managing”) the dispersion
can lead to more robust propagation of signals of small amplitude (see e.g.[4,10,23]), and the idea has attracted
considerable experimental attention in recent years. Theoretical studies have focused on nonlinear effects, modeled
to lowest order by the cubic NLS+ DM system above (see e.g.[5,20]).

The equation has been mainly studied on the line (e.g. with decay boundary conditions), and we will here consider
the periodic case. Theoretical and numerical studies of the NLS+DM equation suggest that its dynamics is nontrivial,
and the periodic system is an example of an infinite dimensional Hamiltonian system of independent interest. Also,

∗ Present address: Departamento de Matemáticas y Mećanica, IIMAS-UNAM, Apdo. Postal 20-726, 01000 Mexico, DF, Mexico.
Tel.: +52-5556223600; fax:+52-5556223364.
E-mail addresses:panos@mym.iimas.unam.mx, panos@colorado.edu (P. Panayotaros).

0167-2789/$ – see front matter © 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.physd.2004.01.037



220 P. Panayotaros / Physica D 191 (2004) 219–237

the periodic theory can be directly compared to simulations that use periodic boundary conditions and spatial
discretizations that preserve the Hamiltonian structure. Such simulations can be of heuristic value for studying the
equation on line, e.g. in studies of the evolution of well-localized, rapidly decaying solutions, and in finding orbits
that have variational characterizations. We must however emphasize the possible differences in the dynamics of the
periodic and unbounded problems, especially in questions of persistence of approximate solutions and of stability.

We will concentrate on the practically interesting parameter regime where the averageδ of the “dispersion
management function”d(t), and the nonlinearity parameterγ are comparable and small in absolute value. We also
assume that the frequencyΩ of the dispersion management functiond(t) is at least of O(1) in absolute value, and
we will be interested in solutions of O(1).

One of the approaches in studying the NLS+ DM equation on the line has been to formally derive an averaged
model equation that is autonomous (see[5,21], also[1]). The averaged equation has the structure of a Schrödinger
equation with a nonlocal cubic nonlinearity. Numerical studies of the averaged equation have indicated the exis-
tence of localized periodic solutions with a Gaussian-like single pulse profile, referred to as DM solitons (see e.g.
[12,17]). More recently the existence of periodic solutions for the averaged equation on the line was also proved by
variational methods (forγδ < 0, see[14,25]), and by a bifurcation argument (forγδ �= 0, see[8]). The variational
characterization of the DM soliton forγδ < 0 also implies nonlinear stability, and there are also error estimates for
the averaged equations (see[14]). Also note that the problem of averaging of a dispersive system coupled to a fast
oscillator has been also considered in a more abstract setting in[16].

In this work we investigate an alternative but related asymptotic theory for the periodic problem. Our first goal is
to modify the approach of[5,21], and produce a simpler normal form equation. In particular, to recover the averaging
theory of[5,21] we split the full system into an unperturbed and a perturbation part where the unperturbed part has
only one fast oscillating degree of freedom (with frequencyΩ). We therefore have a very resonant problem, and the
resulting normal form equations are not sparse enough. We here add to the unperturbed part of the system the high
frequency oscillations corresponding to the high spatial frequency part of the averaged dispersive term. The resulting
Birkhoff normal forms are more involved, but leave fewer resonant terms coupling high spatial frequency modes.
A main observation is that, under a mild condition onΩ, the quartic normal form equation has a finite dimensional
invariant subspace. The dimension of this subspace may be large (of O(|δ|−(1/2))), but some aspects of its dynamics
are easier to analyze. For instance, elementary arguments imply the existence of several classes of periodic orbits,
some of which are analogous to the orbits considered in the literature for the averaged NLS+ DM equation on the
line. The argument leading to the existence of invariant subspaces applies to higher order normal form equations,
and to NLS+ DM equations with higher dispersion (considered recently in[14,16]). A rough interpretation of the
normalization we describe is that averaging over the fast oscillations of the high spatial frequency modes leads to
invariant subspaces for the slower low spatial frequency motions.

In the second part of the paper we show that the solutions of the alternative quartic normal form we construct
remain O(γ) close to solutions of the full system over a time of O(|γ|−1). The main assumption is that the initial
conditions for the normal form system are of O(1) in an appropriate Sobolev norm (the precise statement is in
Section 4). Our approach follows the spirit of the formal calculations, where we consider the NLS+ DM equation
as an autonomous Hamiltonian system in an extended phase space. The transformation theory for infinite dimensional
Hamiltonian systems has been developed by many authors (see e.g.[6]). Some points that require attention here
is the low regularity of the dispersion management function (required by the applications), and the fact that the
transformation in the extended phase is not close to the identity in some directions. The error estimates also use the
fact that solutions of the full system cannot grow too much over the O(|γ|−1) time interval of interest. Such control
may not available for longer times, and it is not clear at present whether we can extend the error estimates to the
higher order normal forms. The work of[16] suggests that long time regularity could lead to averaging results over
times that are exponentially long in|γ|−1.
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The paper is organized as follows. InSection 2we introduce the Hamiltonian structure of the NLS+ DM system
and establish the notation used in the formal calculations. We also emphasize the parameters of the problem. In
Section 3we formally construct Birkhoff normal forms and study some properties of the normal form systems. In
Section 4we give a rigorous version of the first order normal form calculation and estimate the distance between
solutions of the quartic normal form system and the dispersion managed NLS equation.

2. Hamiltonian structure

We consider the initial value problem for the nonautonomous equation

ut = id(t)uxx − 2iγ|u|2u (2.1)

with u(x, t) a complex valued function satisfying periodic boundary conditionsu(x, t) = u(x+ 2π, t). The “disper-
sion management” functiond(t) and the parameterγ are real. As remarked inSection 1the “time” t in (2.1) is the
distance from the point where we emit the signal, while the “spatial variable”x of (2.1) is physically the time. The
“initial condition” u(x,0) for (2.1) is the signal we send, and is assumed to 2π-periodic. Also, the functiond(t) in
(2.1)will be T -periodic, and we decompose it as

d(t) = δ + d̃(t) with δ = 1

T

∫ T

0
d(s)ds, (2.2)

the average. LettingΩ = 2π/T we assume that|Ω| ≥ O(1). We will further assume that|δ| ∼ |γ| 
 1. Note that
since the system is nonautonomous we should consider initial conditionsu(x, t0), t0 ∈ R. Equivalently, we here fix
t0 = 0 and handle the general case by appropriately shiftingd(t).

Remark 2.1. The parametersγ, δ,Ω are assumed dimensionless. Some physically interesting special cases of the
parameter regime we consider are: (i)|Ω| ∼ |γ|−1, (ii) |Ω| ∼ |γ|−1 with |Ω|/h of O(1), and (iii)|Ω| ∼ |γ|−1 with
|Ω|/h 
 1, whereh is the amplitude of̃d(t). Also of interest is the case where (iv)h 
 |γ|.

Remark 2.2. The dimensional analysis leading to the above parameters is derived for the equation on the line. The
periodic problem is often used in numerical studies of the problem on the line, and this is reasonable for solutions
that have a negligible amplitude (e.g. below 10−16 for double precision calculations) outside a region of O(1) size.
By (2.1)we can rescale such a region to have length 2π by rescaling the “spatial” variablex toαx and the amplitude
of the dispersion functiond to α2d without changing qualitatively the assumptions on the relative sizes of the
parameters in the previous remark.

It is easy to see thatEq. (2.1)has the structure of a nonautonomous Hamiltonian system. To perform normal
form calculations it will be convenient to first rewrite(2.1)using certain “amplitude” variables, and then make the
system autonomous by introducing an additional angle variable. For the first step, we denote the Fourier transform
of u(x, t) by uk(t), and use the notation of(2.2) to define the variablesak(t), k ∈ Z by

ak(t) = uk(t)eiωkΛ̃(t) with ωk = k2, Λ̃(t) =
∫ t

0
d̃(s)ds. (2.3)

From(2.1), the variablesa(k, t) then evolve according to

ȧk = −iδωkak − 2iγ
∑

k1,k2,k3∈Z

ak1ak2a
∗
k3
δk1+k2−k3−k e−i(ωk1+ωk2−ωk3−ωk)Λ̃(t), k ∈ Z, (2.4)
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whereδr = 1 if r = 0, and 0 otherwise. The initial condition isak(0) = uk(0), k ∈ Z. By the definition ofΛ̃ the
right hand side of(2.4)isT -periodic. The time dependence is therefore absorbed in the nonlinear term. To eliminate
the explicit dependence on time in(2.4)we consider an angleφ ∈ [0,2π), and add to(2.4) the equation

φ̇ = Ω with φ(0) = φ0 = 0. (2.5)

We also define the functionΛ by Λ(φ) = Λ̃(t(φ)) = Λ̃(φ/Ω), and note thatΛ is 2π-periodic with zero average.
Then, the nonautonomous system(2.4)is equivalent to the autonomous system consisting of(2.4)with Λ̃(t) replaced
byΛ(φ), and(2.5). Adding an “action” variableJ ∈ R, we further define the Poisson bracket [, ] on pairs of functions
F,G of the variablesak, a∗

k, k ∈ Z andφ, J by

[F,G] = −i
∑
k∈Z

(
∂F

∂ak

∂G

∂a∗
k

− ∂F

∂a∗
k

∂G

∂ak

)
+ ∂F

∂J

∂G

∂φ
− ∂F

∂φ

∂G

∂J
. (2.6)

A straightforward calculation then shows the following proposition.

Proposition 2.3. The evolution equation for the variablesak, k ∈ Z, andφ, J above is the Hamiltonian system

ȧk = [ak,H ], k ∈ Z, φ̇ = [φ,H ], J̇ = [J,H ], (2.7)

where the Hamiltonian H is

H = δ
∑
k∈Z

ωk|ak|2 − ΩJ + γ
∑

k1,k2,k3,k4,n∈Z

einφak1ak2a
∗
k3
a∗
k4
I(k1, k2, k3, k4, n), (2.8)

and the coefficientsI(k1, k2, k3, k4, n) are given by

I(k1, k2, k3, k4, n) = f̂m(n)δk1+k2−k3−k4, (2.9)

m = ωk1 + ωk2 − ωk3 − ωk4, f̂m(n) = (2π)−1/2
∫ 2π

0
e−imΛ(φ) e−inφ dφ. (2.10)

Note the equation foṙJ gives us the rate of change of the “energy”H + ΩJ (up to a factorΩ−1).

Remark 2.4. The HamiltonianH in (2.8) shows that the parameter range we are considering describes a system
with small dispersion and small nonlinearity. The “weakly nonlinear” parameter regime where|δ| ∼ |Ω| ∼ O(1)
and|γ| 
 1 will be considered elsewhere. Note that the weakly nonlinear regime poses some interesting problems
related to the works of[2,7,19]on weakly perturbed 1D NLS equations (with Dirichlet boundary conditions). As
we see in the next section, the special parameter ranges (iii) and (iv) ofRemark 2.1also lead to “near-integrable”
systems (see[1,22], respectively, for the two limits).

The above setup can be generalized to other dispersion relationsωk, and to the case where the parameterγ is
replaced by a time-dependent real function. Also, we can easily extend the formalism to quasi-periodic dispersion
management functionsd(t). A practically important example where the coefficientsf̂m(n) in (2.10)can be evaluated
in closed form is the piecewise constantT -periodic dispersion management function

d(t) =
{
δ + Ã, if t ∈ [0, τ),

δ + B̃, if t ∈ [τ, T)
(2.11)

with Ãτ + B̃(T − τ) = 0, i.e. the average ofd(t) over [0, T ] is δ. Another interesting example is the real analytic
dispersion management function

d(t) = δ + Ã sinΩt, (2.12)
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whose coefficientŝfm(n) are Bessel functions. For general dispersion management functions we can also obtain
some information about the coefficientsf̂m(n) by asymptotic arguments, e.g. in the large|m| limit. The coefficients
are discussed further in the next section.

3. Quartic Birkhoff normal forms

In this section we split the Hamiltonian into two parts, the “unperturbed part” and the “perturbation”, and seek to
simplify the perturbation part by a near-identity canonical transformation. Near-identity canonical transformations
smoothly connected to the identity can be constructed by composing time-1 maps of Hamiltonian vector fields,
and we will consider transformations leading to the well-known Birkhoff normal forms. The assumed ranges of
parametersΩ, δ, γ suggest two possible splittings of the Hamiltonian. First, since|Ω| is (at least) of O(1), and
|δ| and|γ| are small we can take the “unperturbed part” of the HamiltonianH of (2.8) to be−ΩJ . The resulting
Birkhoff normal form equations are (the periodic analogues of) the averaged equations of[5,21] (see also[1]). We
briefly rederive this averaging theory using the language of normal forms below. Our main goal here is to investigate
an alternative splitting of the HamiltonianH where the unperturbed part consists of−ΩJ plus the quartic terms of
H that describe oscillations with frequencies that are at least of O(1). We will show that the normal form equations
derived using the second splitting can have finite dimensional invariant subspaces.

To recover the averaging theory of[5,21] we write the HamiltonianH of (2.8) asH = −ΩJ + H2 + H4

with H2 andH4 the quadratic and quartic parts, respectively. We seek a functionψ1 such that the canonical
transformation obtained by the time-1 mapΦ1

ψ1
of the Hamiltonian flow ofψ1 simplifies the “perturbation part”

H2 + H4. Specifically, we formally write

H ◦ Φ1
ψ1

= exp(Adψ1H) = −ΩJ + H2 + H4 + [ψ1,−ΩJ ] + Y1 (3.1)

with Y1 representing the remaining terms. By the definition of the Poisson bracket we see that each monomial

γI(k1, k2, k3, k4, n)ak1ak2a
∗
k3
a∗
k4

einφ, (3.2)

in H4 is eliminated by a monomial

iγ(nΩ)−1I(k1, k2, k3, k4, n)ak1ak2a
∗
k3
a∗
k4

einφ, (3.3)

in ψ1. Consequently, the resonance condition for the partH4 is

nΩ = 0, k1 + k2 − k3 − k4 = 0, f̂m(n) �= 0, k1, . . . , k4, n ∈ Z (3.4)

with m = ωk1 + ωk2 − ωk3 − ωk4. We immediately see that the resonant partH̄4 of H4 is

H̄4 = γ
∑

k1,k2,k3,k4∈Z

ak1ak2a
∗
k3
a∗
k4
f̂m(0)δk1+k2−k3−k4. (3.5)

We also easily see that the quadratic partH2 is resonant. Choosing

ψ1 = iγ
∑

k1,k2,k3,k4∈Z,n∈Z∗
ak1ak2a

∗
k3
a∗
k4

I1(k1, k2, k3, k4, n)

nΩ
, (3.6)

the quartic normal form Hamiltonian isH2 + H̄4.
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Regarding the structure ofH2+H̄4, letΛm be the set of all integersk1, k2, k3, k4 satisfyingk1+k2−k3−k4 = 0,
andm = ωk1 + ωk2 − ωk3 − ωk4. The level setsΛm can be parameterized explicitly by two integers (we omit this
here). The parameterization ofΩ0 becomes especially simple and we can writeH̄4 asH̄4 = H̄4,I + H̄4,NI with

H̄4,I = 2γf̂0(0)
∑

k1,k2∈Z

|ak1|2|ak2|2, (3.7)

H̄4,NI = γ
∑
m∈Z∗

f̂m(0)
∑

k1,k2,k3,k4∈Λm

ak1ak2a
∗
k3
a∗
k4
. (3.8)

The partH̄4,I is integrable (in the sense of Poincaré).
To indicate the structure of the coefficientsf̂m(0), we first consider the piecewise constant dispersion management

function of(2.11)with τ = T/2, Ã = h, andB̃ = −h. Then

f̂m(0) = 2i√
2π

[e−ihmΩ−1π − 1]
Ω

hm
, m ∈ Z∗, (3.9)

andf̂0(0) = √
2π. We can see thatN4,NI can only vanish for the discrete values ofh where(h/Ω) ∈ πZ, and also

in the limit h → +∞. In comparison, the coefficientŝfm(0) for the real analytic dispersion management function
of (2.12)with Ã = h are

f̂m(0) =
√

2πJ0(|m|hΩ−1), m ∈ Z∗ (3.10)

withJ0 the Bessel function of order 0. Forh → +∞, the coefficientŝfm(0),m �= 0, of(3.10)decay as|hm|−1/2. For
more general integrable dispersion management functions, the definition of the coefficientsf̂m(0) in (2.10)implies
that f̂0(0) = √

2π. The decay of the coefficients in the amplitudeh of Λ(φ) and in |m| �= 0 can be found by a
stationary phase argument. For instance, forΛ(φ) twice differentiable with nondegenerate critical points we expect
a |hm|−1/2 decay, while forΛ(φ) Lipschitz but not differentiable we have|hm|−1 decay (i.e. as in the two examples
above). ForhΛ(φ) Hölder continuous with exponent less than unity, e.g. ford(t) unbounded but integrable, the
coefficientsf̂m(0) can decay even faster as|hm| → ∞. Thus the nonintegrable part ofH̄4 decays faster in|m| and
h for the more singular dispersion management functions. In the limith → 0, H2 + H̄4 reduces to the Hamiltonian
of the cubic NLS. In that limit, it is most natural to view the NLS+ DM system as a small perturbation of the cubic
NLS equation (see[11,22,23]).

A main advantage of the normal form equations above is that they are straightforward to compute and extend to
higher orders. Higher order resonance conditions are also trivial and do not involve any small divisors. Note that
higher order calculations can be further simplified by assuming that|δ| ∼ |γ| ∼ |Ω|−1; this is consistent with the
scales of physical interest in the problem. Although the quartic and higher order normal form systems obtained by
this theory are autonomous, their dynamics are still difficult to analyze (we discuss some known results for the line
below).

In the alternative normalization below we try to eliminate more terms by better controlling the high spatial
frequency nonlinear interactions. In particular, fixN = [|δ|−(1/2)] and let

H2 = H̃2 + h2 (3.11)

with

H̃2 = δ
∑

|k|>N
ωk|ak|2, h2 = δ

∑
|k|≤N

ωk|ak|2. (3.12)

The “unperturbed part” of the Hamiltonian, denoted byh0, will now beh0 = H̃2 − ΩJ and will thus contain only
the fast oscillators inH2, i.e. the ones with frequencies that are greater than unity. The “perturbation part” will
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beh2 + H4, i.e. it will contain “small” terms of O(δ) and O(γ). As before, we seek to eliminate the lowest order
nonresonant part ofh2 + H4 by a canonical transformationΦ1

χ1
that is the time-1 map of an appropriate function

χ1. We will have

H ◦ Φ1
χ1

= exp(Adχ1H) = h0 + h2 + H4 + [χ1, h0] + R1 (3.13)

with R1 the remainder. It is easy to see thath2 is resonant, and that each monomial

γI(k1, k2, k3, k4, n)ak1ak2a
∗
k3
a∗
k4

einφ, (3.14)

in H4 is eliminated by a monomial

iγ[nΩ − δ(ω̃k1 + ω̃k2 − ω̃k3 − ω̃k4)]
−1I(k1, k2, k3, k4, n)ak1ak2a

∗
k3
a∗
k4

einφ, (3.15)

in χ1, where

ω̃k =
{

0 if |k| ≤ N,

ωk if |k| > N.
(3.16)

The resonance conditions for the quartic terms are therefore

nΩ − δm̃ = 0, k1 + k2 − k3 − k4 = 0, f̂m(n) �= 0, k1, . . . , k4, n ∈ Z (3.17)

with m̃ = ω̃k1 + ω̃k2 − ω̃k3 − ω̃k4. We will not give a full analysis of(3.17), although it is quite remarkable that
we can here obtain a complete picture of the resonances. The idea is to first parameterize the level sets ofm̃ in Z4

subject tok1 + k2 − k3 − k4 = 0, and then examine the level sets ofnΩ− δm̃ in Z2. Instead of this we will consider
a partial normalization that eliminates only a subset of the nonresonant mode interactions. The resulting “partial”
normal form, denoted byh0 + h2 +N4, is simple to produce and gives some interesting insights into the dynamics
of the system.

The main observation is that the subspace spanned by the modesak with |k| ≤ N can be invariant under the
evolution ofh0 + h2 + N4. To see this we consider “low” and “high” frequency mode index setsUL = {k ∈
Z : |k| ≤ N} andUH = Z\UL, and decomposeZ4 into disjoint products of the two sets. We use the notation
ULLLH = UL ×UL ×UL ×UH,ULLHL = UL ×UL ×UH ×UL, etc., and subdivideZ4 into 24 disjoint subregions.
Accordingly, we also decomposeH4 into 24 parts coupling different combinations of quartets of low and high index
modes. We now seek to eliminate all quartic nonresonant terms involving only low modes, and quartic nonresonant
interactions involving one high frequency mode and three low frequency modes. The corresponding parts ofH4

will be denoted byH4,LLLL, andH4,LLLH, H4,LLHL, H4,LHLL, H4,HLLL, respectively. To eliminateH4,LLLL we use
the functionχ1,LLLL given by the expression of(3.6), with summation overk1, . . . , k4 in UL. The resonant part of
H4,LLLL is

N4,LLLL = γ
∑

k1,k2,k3,k4∈UL

ak1ak2a
∗
k3
a∗
k4
f̂m(0)δk1+k2−k3−k4, (3.18)

and we denote the nonresonant part ofH4,LLLL by H̃4,LLLL. To eliminateH4,LLLH, . . . , H4,HLLL we examine the
resonance condition(3.17)in ULLLH, . . . , UHLLL, respectively. For instance, inULLLH (3.17)reduces to

nΩ + δk2
4 = 0, k1 + k2 − k3 − k4 = 0, k1, k2, k3 ∈ UL, k4 ∈ UH, n ∈ Z (3.19)

with f̂m(n) �= 0. We see that resonant terms can only involve high modes with indicesk4 ∈ [N,3N]. Then

|Ω| > 10|δ|N2, (3.20)
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implies|nΩ+ δk2
4| > 1, for alln ∈ Z, i.e.(3.20)implies that the partH4,LLLH can be formally eliminated using an

appropriate functionχ1,LLLH. The resonance conditions for the other parts ofH4 coupling three low index modes
to one high index mode are similar, and condition(3.20)on |Ω| guarantees the absence of resonances and small
divisors. We denote the functions that eliminateH4,LLHL, . . . , H4,HLLL byχ1,LLHL, . . . , χ1,HLLL, respectively. Then
letting

χ1 = χ1,LLLL + χ1,LLLH + χ1,LLHL + χ1,LHLL + χ1,HLLL (3.21)

(note thatχ1 is real valued) we consider the transformed Hamiltonian

H ◦ Φ1
χ1

= exp(Adχ1H) = h0 + h2 + N4 + R1 (3.22)

with

N4 = H4 − (H̃4,LLLL + H4,LLLH + H4,LLHL + H4,LHLL + H4,HLLL). (3.23)

The remainderR1 contains higher order terms, of O(δγ), and O(γ2). (The parth0 + h2 + N4 in (3.22) will be
referred to as the normal form part, although it is more accurately a “partial normal form”.) Denoting the (complex)
span of the modesak with |k| ≤ N byML we have the following observation.

Proposition 3.1. Let |Ω| > 10|δ|N2, and defineH ◦ Φ1
χ1

as above. Then the subspaceML is invariant under the
flow of Hamilton’s equations for the normal form part Hamiltonianh0 + h2 + N4 of (3.22). The restriction of the
flow toML is the Hamiltonian system corresponding to the Hamiltonianh2 + N4,LLLL.

Proof. It is enough to check that the equations forȧk with |k| > N do not include any monomials of the form
al1al2a

∗
l3

with l2, l2, l3 ∈ UL. Such terms can only come fromH4,LLLH andH4,LLHL, which, however have been
eliminated. The equations onML are clearly Hamilton’s equations for−ΩJ + h2 + N4,LLLL, and sinceh2 and
N4,LLLL are independent ofφ, i.e. see(3.5), the term−ΩJ can be omitted form the Hamiltonian onML. �

Note that the quartic normal form parts ofH ◦ Φ1
ψ1

, andH ◦ Φ1
χ1

, restricted to the subspaceML, are the same,
the difference being thatML is an invariant subspace for the quartic normal form Hamiltonian system obtained by
the second procedure. The dynamics on this subspace can be complicated and interesting. Of special interest are
some special periodic solutions that have a variational interpretation.

Proposition 3.2. Let |Ω| > 10|δ|N2. Then the Hamiltonian flow of the quartic normal Hamiltonianh0 + h2 +N4

of (3.22)has at least2N + 1 families of periodic orbits on each level set
∑

k∈Z |ak|2 = C,C > 0.

Proof. We examine Hamilton’s equations forh0+h2+N4 on the invariant subspaceML. We have the autonomous
system

ȧk = −i
∂

∂a∗ (h2 + N4,LLLL), k ∈ UL, (3.24)

and we look for solutions of the formak = eiλtAk, k ∈ UL, with λ real. The equation for theAk = qk + ipk has the
structure of the constrained variational problem

λ
∂I

∂qk
= ∂V

∂qk
, λ

∂I

∂pk
= ∂V

∂pk
, k ∈ UL (3.25)
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with

I =
∑
k∈UL

(q2
k + p2

k), V = h2 + N4,LLLL. (3.26)

Note thatI areV are both invariant under the circle action generated by the Hamiltonian flow ofI and that the
quotient of the sphereS2ν−1, ν = 2N + 1 by the circle action isCPν−1. On the other hand, by a proposition of
Weinstein[24] and Moser[13] a smooth function onCPν−1 must have at leastν critical points. �

Remark 3.3. In the argument above we can also look for solutions of(3.24) that have the more general form
ak = eigktAk, k ∈ UL, with gk satisfyinggk1 + gk2 − gk3 − gk4 = 0 for all k1, k2, k3, k4 in UL. Some choices ofgk
however, for instancegk = k, do not lead to compact level setsI = C, and the existence of solutions of(3.25)is
not guaranteed.

We can alternatively proveProposition 3.2by noting that(3.24)has families of exact “monochromatic” solutions
of the formA0 eik0x with k0 = −N,−N+1, . . . , N. For|A0|2 = C these solutions are critical points ofV onI = C.
At the same time some of the critical points ofV are expected to coincide with the DM soliton (i.e. “bump-like”)
solutions found in simulations with periodic boundary conditions (see e.g.[14,15], unpublished work in progress).
The numerical results therefore suggest that the number of families of critical points ofV on the level hypersurfaces
of I is greater that 2N + 1.

The rapidly decaying, Gaussian-like DM soliton solutions found numerically in the periodic problem motivate
some comparisons with results on solutions for the equation on the line. The methods employed there seek solutions
that decay at infinity and concern the analogue of the quartic normal form system with HamiltonianH2 + H̄4 in
(3.5) for the line (i.e. with summation over theki replaced by integration). In the caseδγ < 0 the DM soliton is
interpreted as a minimum (forχ > 0, maximum forχ < 0) of H2 + H̄4 over functions with fixedL2 norm (see
[21]). An existence proof based on this variational characterization of the DM soliton is in[25]. The functional
is extremized in the Sobolev spaceH1(R,C). The analogous solution here is possibly the minimum (forχ > 0,
maximum forχ < 0) ofV over the spheresI = C in (3.26). This scenario is consistent with numerical calculations
where we see that forχδ < 0 the value ofV for the numerical DM soliton is smaller than the value ofV of all
the monochromatic solutions (on the same level surface ofI). The assumptionδγ < 0 is crucial in the variational
argument of[25], but irrelevant in Proposition 5.2, where some of the critical points ofV may be related to the
localized solutions shown to exist in[8] for δγ �= 0 (by a bifurcation argument). Forχδ > 0 our comparisons ofV
for the numerical DM solitons and the monochromatic waves suggest that the DM solitons are not global extrema
of V. It should be emphasized that this numerical work is still in progress and will be reported elsewhere. (We have
also recently seen a variational argument of[9] for δ = 0, obtained fromδγ → 0−, with γ fixed. Note that the
second normal form construction we presented is inapplicable forδ = 0, while the first averaging procedure is still
meaningful.)

Remark 3.4. The comparison of the solutions of(3.24)with solutions of an analogous equation on the line is natural
for the DM solitons seen numerically in the periodic problem, but is heuristic. Note for example that solutions of
(3.24)such as the monochromatic waves have no clear variational interpretation on the line. FollowingRemark 2.2,
it will be interesting to study the localized solutions of(3.24)as|δ| decreases.

Conservation of the quartic normal form Hamiltonianh2 + N4,LLLL and theL2 norm on the invariant subspace
ML implies that the minima and maxima ofV in Proposition 3.2are nonlinearly stable on the invariant subspace
ML. We therefore still have the possibility of high frequency instabilities for more general initial conditions. In
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comparison, the variational characterization of the DM soliton solution forδγ < 0 in [21] implies nonlinear stability
(see[14,25]). Note however that in(3.11) and (3.12), we can splitH2 into H̃2 + h2 differently, by makingN larger.
Assuming|Ω| > 10|δ|N2, i.e. assuming larger|Ω|, and following the arguments above verbatim we have an
invariant subspaceML with larger dimension. Thus, if the solutions ofProposition 3.2are inside the domain where
we expect the second normal form procedure to be valid (seeSection 4, and the remark at the end of that section)
possible high frequency instabilities will not be detected in spectral numerical simulations withK ≤ dim(ML)

modes.
The splitting of the quadratic Hamiltonian into low and high frequency parts can be also used for more general

dispersion relationsωk (a cubic dispersion is considered in[14,15]). For instance, letN1,M1 > 0 with δM1 of
O(1), and assume thatωk : R+ → R is strictly increasing fork > N1, diverges ask → +∞, and is bounded
by M1 for k ≤ N1. Also extendωk to R to be even or odd. For such a dispersion relation the arguments above
apply with minor modifications, and lead to the existence of an invariant subspace with periodic and quasi-periodic
solutions.

It is also straightforward to find conditions under which the subspaceML above is invariant for higher order partial
normal form systems. First, we see that we can always eliminate the angle dependent part of the Hamiltonian that
couples only low modes. Also, the resonance conditions for 2n-wave interactions coupling one high mode with 2n−1
low modes have a simple form that is similar to(3.21). Note that higher order terms always couple an even number
of modes, and are sums of monomials of the formak1 . . . akna

∗
kn+1

. . . a∗
k2n

with k1 + · · · + kn − kn+1 − · · · − k2n =
0. A resonant monomial with indicesk1, . . . , k2n−1 ∈ UL, k2n ∈ UH must satisfyδΩ − δk2

2n = 0, and by
|k2n| ≤ (2n − 1)N, we can avoid resonances and small divisors by requiring that|Ω| > δ(2n − 1)2N2+1. Similar
considerations apply to all terms coupling 2n − 1 low modes with one high mode. We thus see that the formal
argument is the same for higher orders, but|Ω| must be assumed larger, increasing quadratically in the order of the
normal form. Alternatively, resonant interactions between 2n− 1 low modes and one high mode can be avoided by
assuming thatΩ/δ is irrational. In that case one must however examine possible small divisors.

4. Error estimates for the normal form equations

In this section we estimate the distance between solutions of the full system(2.1), (2.4)and the quartic normal
form equation by making the formal calculations of the previous section rigorous.

To state the error estimates for the quartic (partial) normal form equation we write the full system(2.4)as

ȧ = La + F(a, t), a(0) = a0 (4.1)

with L = iδ∂xx, andF(a, t) the nonlinearity. We also write Hamilton’s equation for the quartic normal form
Hamiltonianh0 + h2 + N4 in (3.22)as

ḃ = Lb + G(b, t), b(0) = b0. (4.2)

We are here writing the normal form equation as a nonautonomous system; the action component is omitted, and
t = Ω−1φ. The two equations can be considered in the Sobolev spacesHs, s > 1/2, of complex valued 2π-periodic
functions. The norm of a functionu in Hs will be

‖u‖2
s =

∑
k∈Z

(1 + |k|2)s|uk|2 (4.3)

with uk the Fourier coefficients ofu. First, we have the following basic local existence theorem.
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Proposition 4.1. Lets > 1/2, β > 0,withβ ∼ O(1), and assume thatd(t) is locally absolutely integrable. Consider
the initial value problems of(4.1) and (4.2) with initial conditions satisfying‖a0‖s, ‖b0‖s ≤ O(1). Then for|γ|
sufficiently small there exists a positive constantC = C(‖a0‖s, ‖b0‖s, β) ∼ O(1) and a timet1 ≥ C|γ|−1 for
which (4.1), (4.2)have unique solutionsa(t), b(t) ∈ Rs(t1, y0, β), whereRs(t1, y0, β) = {y(t) ∈ C0([0, t1], Hs) :
‖y(t) − y0‖s ≤ β}.

Notation. We use the shorthand O(1) for positive constants that are independent of|γ|, |δ|, and|Ω|.

Thus, assuming initial conditions of O(1), solutions exist for a “long” time of O(|γ|−1), and their size remains of
O(1) during that interval.Proposition 4.1follows from a standard fixed point argument. The operator relating the
Fourier coefficientsuk(t) andak(t) in (2.4)is an isometry inHs, and the mapsF(u, t) are Lipschitz inu, uniformly
in t. In particular, we have

‖F(u, t) − F(v, t)‖s ≤ LF(‖u‖s, ‖v‖s)‖u − v‖s, s > 1
2 (4.4)

with LF(‖u‖s, ‖v‖s) = |γ|C2
s (‖u‖2

s + ‖u‖s‖v‖s + ‖v‖2
s ), andCs a constant satisfying‖uv‖s ≤ Cs‖u‖s‖v‖s for

s > 1/2. The Lipschitz constantLF is precisely the one for the mapu �→ iγ|u|2u in the cubic nonlinear Schrödinger
equation. Similar considerations apply to the mapG (4.2): Lipschitz constants for the part ofF that is eliminated
by the canonical transformationΦ1

χ1
are obtained readily following the arguments ofLemma 4.4below. Since

the Lipschitz constants forF andG and the size of the initial conditions of(4.1), (4.2) are close, we choose for
convenience to state the local existence theorem for the two initial value problems with the same constantsC, β. We
now state our estimate for the distance between the solutions of the full system(4.1)and the quartic normal form
Eq. (4.2).

Theorem 4.2. Lets ≥ 1,and let0 < |δ| ≤ cδ|γ| for somecδ ∼ O(1). Also assume that|Ω| > 10|δ|N2 and that the
(dilated) periodic dispersion management functiond(tΩ−1) is in L2. Consider a solutionb(t) of (4.2)with initial
condition‖b0‖s′ ≤ ρ0, with s′ = s+ 2,ρ0 ∼ O(1), and a solutiona(t) of (4.1)with initial conditiona0 = b0. Then
there exist constantsC0, C1 of O(1), andγ0 for which|γ| ≤ γ0 implies

‖a(t) − b(t)‖s < C0|γ|, ∀t ∈ [0, C̃0|γ|−1]. (4.5)

The constantsC0, C1, andγ0 depend ons, |Ω|, cδ, andρ0.

Remark 4.3. The constantsC0, C̃0, γ0 do not change significantly as|Ω| diverges. This is seen inLemma 4.4
below. Also, the constants are independent of the amplitudeh of the dispersion management functiond(t). Thus the
estimate applies to all the physically interesting parameter ranges of|Ω| andh discussed inRemark 2.1, but there
are no ranges leading to significant improvements of the error estimate.

The main ingredients of the proof ofTheorem 4.2are estimates for the canonical transformationΦ1
χ1

defined
formally in the previous section, and a bound for the Hamiltonian vector field of the remainderR1 in (3.22). We
start by making the Hamiltonian structure of(4.1)precise, and proceed with an outline of the argument.

We consider the Sobolev spacesHs of 2π-periodic complex valued functions, viewed as real Hilbert spaces with
the inner product

〈u, v〉s = Re
∑
k∈Z

(1 + |k|2)sukv∗
k, (4.6)

whereuk, vk denote the Fourier coefficients ofu, v, respectively. The norm inHs is given by(4.3), while the ball
of radiusρ around the origin is denoted byBs(ρ). We also let〈u, v〉 = 〈u, v〉0. Functions onHs can be extended
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to the complexificationHs
c of Hs by letting the real and imaginary parts of the Fourier coefficientsuk of u ∈ Hs

become complex.
Forf : Bs(ρ) → R FréchetC1 smooth inBs(ρ), we define the gradient map∇f : Bs(ρ) → H−s by〈∇f(u), v〉 =

Df(u)v, with D the Fréchet derivative, andv ∈ Hs. Also,J = −i defines a symplectic structure inHs, and we
denote the Hamiltonian vector fieldJ∇f of aC1 functionf byVf . The time-dependent Hamiltonian for the system
of (2.4) is h(a, t) = H(a,Ωt, J) + ΩJ , with H as in(2.8). If d(t) is integrable,h : Hs × R → R, s ≥ 1, isC1 in
the variablea, for all t ∈ R, and(4.1)can be written as the nonautonomous Hamiltonian system

ȧ = J∇h(a, t) = Vh(a, t). (4.7)

The extended phase space will be the set ofx = [x1, x2, x3] ∈ Hs ×R ×R, where the second and third components
correspond to the angleφ and actionJ , respectively (the angle is defined on the covering space of the circle). The
spacesHs × R2 can be considered as real Hilbert spaces with the inner product

〈x, y〉(s,2) = 〈x1, y1〉s + x2y2 + x3y3. (4.8)

The norm inHs × R2 is denoted by‖ ‖(s,2), and we letKs(ρ) = Bs(ρ)× R2. As above, we use the inner product in
H0 × R2 to define the gradient̃∇ for smooth functions onHs × R2. The symplectic structure onHs × R2, denoted
by J̃, will be the tensor product ofJ with the standard symplectic structure inR2, i.e. compare with the Poisson
bracket in(2.6). Also, we letṼg = J̃ ∇̃g. If the dispersion management functiond(t) is C1 then the Hamiltonian
H = H(a, φ, J) of (2.8) isC1 in Hs × R2, s ≥ 1, and Hamilton’sequations (2.7)can be written as

ẋ = J̃∇̃H(x) = ṼH(x). (4.9)

Following the previous section, we want to construct a one-parameter family of canonical transformationsΦε
χ1

= Tε
by integrating

d

dε
T ε(y) = Ṽ−χ1(T

ε(y)), T 0(y) = y (4.10)

with χ1 as in(3.25). The components ofT ε in Hs × R × R will be denoted byT ε
i , i = 1,2,3. Sinceχ1 does not

depend on the actiony3, the second component of the equation is integrated trivially yieldingT ε
2 (y) = T ε

2 (y2) = y2,
for all ε, i.e. the angle variable does not change. The existence of solutions to(4.10)for |γ| sufficiently small and
appropriate initial conditions is shown inLemma 4.4below, where we also show thatT1

1(y) andy1 are O(|y|) close
in Hs. To exhibit the normal form equation and the remainder we write the Hamiltonian system of(4.9)as

ẋ = L̃x + ṼH4(x) (4.11)

with L̃x = Ṽh0+h2(x). Eq. (4.11)is then written in the new variabley, x = T 1(y), as

ẏ = L̃y + ṼN4(y) + ṼR1(y), (4.12)

where we are using the notation of(3.26)for the HamiltonianH ◦T 1 = H ◦Φ1
χ1

, and the fact thatT 1 is symplectic.
The remainderR1 of (3.26)is

R1 = (h2 ◦ T 1 − h2) + (H4 ◦ T 1 − H4) + (h0 ◦ T 1 − h0 − [χ1, h0]), (4.13)

and the quartic normal form system is

ż = L̃z + ṼN4(z). (4.14)

An elegant way of comparing solutions of the normal form and the full system is to consider the evolution of the
“error” r(t) = x(t) − T 1(z(t)) (see[3]). In particular, combining(4.11), (4.12) and (4.14)we obtain

ṙ = L̃r + (ṼH4(x) − ṼH4(T
1(z))) + [DT 1(z)]ṼR1(z). (4.15)
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The existence ofDT 1 is shown in Lemma 6.4. We will consider(4.15)with the initial conditionr(0) = z(0) −
T 1(z(0)). Note that we are interested in the size of the first componentr1(t) of r(t). We will denote the three
components of̃Vf in Hs × R × R by Ṽ i

f , i = 1,2,3. Also, we letD1,D2,D3 denote the Fréchet derivatives along
each the three components inHs×R×R. Observe thatR1(z) depends on the first two components ofz only. This is
clear for the first two terms ofR1 in (4.13)sinceh0 andH4 depend on the first two components ofHs ×R ×R only,
andT 1

1 (y) = T 1
1 (y1, y2), T

1
2 (y) = y2. For the third term in(4.13), the observation follows from the cohomology

equation [χ1, h0] = G4, with G4 = N4 − H4, and

(h0 ◦ T 1 − h0)(y) =
∫ 1

0

d

dε
h0(T

ε(y))dε =
∫ 1

0
[χ1, h0](T ε(y))dε =

∫ 1

0
G4(T

ε(y))dε. (4.16)

The second component ofṼR1, andD3T
1
1(z) therefore vanish, and the first component of(4.15)becomes

ṙ1 = Lr1 + (VH4(x) − VH4(T
1(z))) + [D1T

1
1 (z)]VR1(z) (4.17)

with Lr1 = Vh0+h2(r1). The vector field [D1T
1
1 (z)]VR1(z) is estimated usingLemmas 4.5 and 4.7below, and we

will conclude the proof by estimating the size ofr1(t) from (4.17). We start by solving(4.10)and showing that the
first component ofT 1 is near-identity.

Lemma 4.4. Letρ > 0,α1 ∈ (0,1), and setρ1 = α1ρ. Assume thats > 1/2, |Ω| > 10|δ|N2, and thatd(tΩ−1) ∈
H0. Then for |γ| ≤ γ1(s, |Ω|, ρ, α0), the initial value problem(4.10) with y ∈ Ks(ρ1) has a unique solution
T ε(y), ε ∈ [0,1], and its flow defines a one-parameter family of canonical transformationsT ε : Ks(ρ1) → Ks(ρ).
Moreover, we have

sup
y∈Ks(ρ1)

‖T ε
1 (y) − y1‖s ≤ εC1|γ|, ε ∈ [0,1] (4.18)

withC1 = ρ3C(s, |Ω|) a constant ofO(1) for ρ of O(1).

Proof. We first consider the equation for the rate of change ofT ε1. The right hand side isV−χ1 = −J∇χ1. Since
χ1 is independent of the actiony3 and the angley2 does not change, we can considerφ = y2 as a parameter. We
will show thatVχ1 is real analytic iny1, uniformly in y2. Denote the Fourier coefficients ofy1 by ak, and let(Vf )k
be thekth Fourier component of the vector fieldVf . The definition ofχ1 in the previous section leads readily to
explicit expressions, and we have

|(V−χ1,LLLL)k| ≤ 2|γ|
∑

k1,k2,k3∈UL

|ak1ak2a
∗
k3

|δk1+k2−k3−k

∣∣∣∣Fm(φ)Ω

∣∣∣∣ , k ∈ UL (4.19)

with

Fm(φ) =
∑
n∈Z∗

f̂m(n)

in
einφ. (4.20)

Note that(V−χ1,LLLL)k = 0 for k /∈ UL. Also

|(V−χ1,LLLH)k| ≤ |γ|
∑

k1,k2∈UL,|k4|∈[N,3N]

|ak1ak2a
∗
k4

|δk1+k2−k−k4

∣∣∣∣∣ f̂m(0)iδk2
4

+ Gm(φ, k4)

Ω

∣∣∣∣∣ , (4.21)

if k ∈ UL, and

|(V−χ1,LLLH)k| ≤ |γ|
∑

k1,k2,k3∈UL

|ak1ak2a
∗
k3

|δk1+k2−k3−k

∣∣∣∣∣ f̂m(0)iδk2
+ Gm(φ, k)

Ω

∣∣∣∣∣ , (4.22)
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if |k| ∈ [N,3N], where

Gm(φ, k) = Ω
∑
n∈Z∗

f̂m(n)

i(nΩ + δk2)
einφ. (4.23)

All other Fourier components ofV−χ1,LLLH vanish. We also have similar estimates for the symplectic gradients of
χ1,LLHL, χ1,LHLL, andχ1,HLLL. To boundFm(φ) we note that

|Fm(φ1) − Fm(φ2)| ≤
√

2π‖F ′
m‖0 ≤

√
2π‖e−imA‖0 = 2π, (4.24)

φ1, φ2 ∈ [0,2π) (with prime the derivative with respect toφ). By |Ω| ≥ 9δN2 and |k| ∈ [N,3N] we see that
|1 + δk2/(nΩ)|−1 ≥ 2, and we similarly obtain|Gm(φ1, k) − Gm(φ2, k)| ≤ 4π, for all φ1, φ2 ∈ [0,2π) and all
admissiblek,m. Since the functionsFm andGm are continuous inφ and have zero average, we therefore have

|Fm(φ)| ≤ 4π, |Gm(φ, k)| ≤ 8π, ∀φ ∈ [0,2π), (4.25)

and all admissiblek,m. In (4.21)we also note that|δ| ≤ 1/2 implies|f̂m(0)||δk2| ≤ 2, uniformly inm ∈ Z and
k ∈ [N,3N].

Estimating the discrete convolutions in(4.19), (4.21) and (4.22), and in similar expressions for the symplectic
gradients ofχ1,LLHL,χ1,LHLL, andχ1,HLLL, and using similar bounds on the coefficientsFm,Gm above, we therefore
have

‖V−χ1‖s ≤ C|γ|‖y1‖3
s , s > 1

2 (4.26)

with a constantC of O(1) that depends ons and|Ω| and is decreasing in|Ω|. Complexifying the real and imaginary
parts of Fourier coefficientsak (anda∗

k , with the obvious abuse of notation), we obtain a similar inequality in
Hs
c , s > 1/2 with a slightly larger constantC of O(1) that depends ons and |Ω|. It is also immediate from the

convolution estimates that the complexification ofV−χ1 is bounded and weakly analytic, and therefore analytic (see
[18], Appendix A). The estimates are also uniform in the parametery2. Thus, givenρ, α1 as in the statement we can
choose|γ| sufficiently small so that the integral curvesT ε

1 (y1, y2) exist for ally1 ∈ Bs(ρ1), ε ∈ [0,1], andy2 ∈ R.
Note thatT ε

1 (y1, y2) is also real analytic iny1 andε, for all y2 ∈ R (see e.g.[6, Chapter 1]).
The distance betweenT1(y1, y2) andy1 can be estimated using

T ε
1 (y1, y2) = y1 +

∫ ε

0
Vχ1(T

σ
1(y1, y2), y2)dσ, y2 ∈ R. (4.27)

We easily see from(4.27) and (4.26)that|γ| ≤ (1− α1)/Cρ
2, with C as in(4.26), implies that ify1 ∈ Bs(ρ1) then

T ε
1 (y1, y2) stays inBs(ρ) for all ε ∈ [0,1] andy2. Using(4.27)again we obtain(4.18).
The third component of(4.10)is

d

dε
T ε

3(y) = −(D2χ1)(T
ε(y1, y2), y2), T 0

3(y) = y3, (4.28)

and it suffices to integrate the right hand side with respect toε. We have

|D2χ1,LLLL| ≤ |γ|
∑

k1,k2,k3,k4∈UL

|ak1ak2a
∗
k3
a∗
k4

|δk1+k2−k3−k4|F ′
m(φ)|, (4.29)

|D2χ1,LLLH| ≤ |γ|
∑

k1,k2,k3∈UL,k4∈UH

|ak1ak2a
∗
k3
a∗
k4

|δk1+k2−k3−k4|G′
m(φ, k4)| (4.30)

with prime the derivative with respect toφ. ForΛ(φ) ∈ Hs with s > 1/2, the seriesF ′
m(φ) is absolutely convergent

and|F ′
m(φ)| is bounded uniformly inm sincem takes a finite number of values in(4.29). Similarly, |Ω| > 10|δ|N2
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and|k4| ∈ [N,3N] imply thatG′
m(φ, k4) is bounded uniformly inm, k4. Analogous statements hold for the other

terms ofD2χ1. By the real analyticity ofT ε
1 (y1, y2) in ε, the right hand side of(4.28)is therefore real analytic in

ε, for all y1 ∈ Bs(ρ1), andy2 ∈ R. �

We now consider the derivative of the canonical transformationsT 1. We are especially interested in the derivative
along theHs direction. In what follows‖A‖s′,s denotes the operator norm of a linear mapA : Hs′ → Hs, andI1 is
the identity inHs.

Lemma 4.5. Let ρ, ρ1, and s as in theLemma 4.4and assume thatΛ(φ) is in Hq, q > 5/2, and that|γ| ≤
γ2(s, |Ω|, ρ). Then, the canonical transformationsT ε : Ks(ρ1) → Hs defined above are Fréchet differentiable and
we have

sup
y∈Ks(ρ1)

‖(D1T
ε
1)(y)‖s,s ≤ 1 + εC2|γ|. (4.31)

Also, the mapsD1T
ε
1(y), y ∈ Ks(ρ1) in (4.31)are invertible and satisfy

sup
y∈Ks(ρ1)

‖(D1T
ε
1)

−1(y)‖s,s ≤ 1 + εC2|γ|, (4.32)

sup
y∈Ks(ρ1)

‖(D1T
ε
1)

−1(y) − I1‖s,s ≤ εC2|γ|. (4.33)

The constantC2 = C2(s, |Ω|, ρ) is of O(1) for ρ of O(1).

Proof. By

T ε(y) = y +
∫ ε

0
Ṽ−χ1(T

σ(y))dσ, (4.34)

and Lemma 4.4differentiability of the mapsT ε(y) with y ∈ Ks(ρ1) will follow from the differentiability of
the vector fieldṼχ1(y) for y ∈ Ks(ρ). Note thatD2Ṽ

2−χ1
= 1, and that the only other nonvanishing partial

derivatives, namelyD1Ṽ
1
χ1
,D2Ṽ

1
χ1
,D1Ṽ

3
χ1

, andD3Ṽ
3
χ1

of Ṽχ1 involve up to two derivatives (inφ) of the functions
Fm(φ),Gm(φ, k) in Lemma 4.4. The condition onΛ(φ) on the other hand implies that the series for the third
derivatives ofFm(φ),Gm(φ, k) are absolutely convergent for all admissiblem, k. Thus the above four partial
derivatives ofṼχ1 are well-defined and continuous iny2. Continuity of the four partial derivatives iny1 comes from
the real analyticity ofχ1, and the existence ofDṼ−χ1(y) follows immediately. Letting|γ| sufficiently small and
integratingṼχ1 as inLemma 4.4we also obtain differentiable transformationsT −ε, ε ∈ [0,1]. Moreover, we have
T −ε(T ε(y)) = T ε(T −ε(y)) = y, therefore(DT ε)−1(y) = DT −ε(T ε(y)). Viewing (DT ε)(y) and its inverse as
3 × 3 block matrices applied to vectors inHs × R × R, we see that the 1, 1 entry [(DT ε)−1(y)]1,1 must equal
(D1T

ε
1 )

−1(y) = D1T
−ε

1 (T ε(y)). Also note that

T−ε
1 (y) = y +

∫ ε

0
Vχ1(T

σ
1(y1, y2), y2)dσ, (4.35)

and

‖D1Vχ1(y)g‖s ≤ C|γ|‖γ1‖2
s‖g‖s, s > 1

2 (4.36)

with C = C(s, |Ω|) of O(1). Differentiating(4.35)with respect to the first component, takingHs norms, and using
Gronwall’s inequality we then obtain

sup
y∈Ks(ρ1)

‖(D1T
ε
1)

−1(y)‖s,s ≤ (1 + εGeεG), (4.37)
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sup
y∈Ks(ρ1)

‖(D1T
ε
1)

−1(y) − I1‖s,s ≤ εG(1 + εGeεG) (4.38)

with

G ≤ sup
y∈Ks(ρ)

‖Vχ1(y)‖s ≤ C(s, |Ω|)ρ3|γ|, (4.39)

i.e. (4.32) and (4.33). Estimate(4.31)follows from similar arguments. �

Remark 4.6. Note that the size of the partial derivativesD2Ṽ
1
χ1
,D1Ṽ

3
χ1
,D3Ṽ

3
χ1

may be large.

Next we estimate the Hamiltonian vector field of the remainderR1 in (4.13).

Lemma 4.7. Lets, ρ, ρ1, γ, andΛ(φ) as inLemma 4.5. Consider the transformationsT ε above, and the remainder
R1 of (4.13). Also, let s′ = s + 2. Then

sup
y∈Ks′ (ρ1)

‖VR1(y)‖s ≤ C3|γ|2 (4.40)

withC3 = C3(s, |Ω|, ρ, α1, cδ) a constant ofO(1).

Proof. The vector fieldṼR1 has three parts, each corresponding to the three parentheses in(4.13). We first consider
the terms involvingh2 andH4. Letf be FréchetC1 in Ks(ρ), and considery ∈ Ks(ρ1). By Lemma 4.4and the fact
that the transformationsT ε are symplectic we have

Ṽf◦T ε (y) = [(DT ε)−1(y)]Ṽf (T
ε(y)), ε ∈ [0,1]. (4.41)

Observe thatD3T
−ε
1 (y) vanishes sinceχ1(y) = χ1(y1, y2). Then, ifṼ 2

f vanishes,(4.41)becomes

Ṽ 1
f◦T ε (y) = [(D1T

ε
1)

−1(y)]Ṽ 1
f (T

ε(y)), (4.42)

using [(DT ε)−1(y)]1,1 = (D1T
ε

1 )
−1(y) (see the proof ofLemma 4.5). We write(4.42)as

(Vf◦T ε − Vf )(y) = [(D1T
ε

1 )
−1(y)](Vf (T

ε(y)) − Vf (y)) + [(D1T
ε

1 )
−1(y) − I]Vf (y). (4.43)

Restrictingy toKs′(ρ1) with s′ ≥ s, takingHs norms, and using(4.32) and (4.33)in Lemma 4.5, (4.43)yields

‖(Vf◦T1 − Vf )(y)‖s ≤ (1 + C2|γ|) sup
y∈Ks′ (ρ1)

‖Vf (T 1(y)) − Vf (y)‖s + C2|γ|‖Vf (y)‖s (4.44)

for all y ∈ Ks′(ρ1), s
′ ≥ s.

We now consider the cases wheref ish2 andH4, respectively. Note that̃V 2
h2

andṼ 2
H4

vanish. The vector fieldVh2,

viewed as a function fromHs′ to Hs, s′ = s + 2, is uniformly Lipschitz, with Lipschitz constant|δ|. The estimate
for the distance betweenT1

1(y) andy1 in Lemma 4.4, (4.44)with f = h2 yield

sup
y∈Ks′ (ρ1)

‖(Vh2◦T1 − Vh2)(y)‖s ≤ (1 + C2|γ|)|δ|C1|γ| + C2|γ||δ|ρ1. (4.45)

Also,VH4(y1, y2) : Bs(ρ1)×R → Hs, s > 1/2, is Lipschitz iny1, uniformly iny2. Moreover, ifρ1 is of O(1) then the
Lipschitz constants are bounded by a quantity of O(|γ|). Combining(4.44)for f = H4 with Lemma 3.4, we obtain

sup
y∈Ks′ (ρ1)

‖(VH4 ◦ T1 − VH4)(y)‖s ≤ (1 + C2|γ|)C|γ|2 + C|γ|2 (4.46)

with C(s, ρ1) of O(1).
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To estimate the third term iñVR1, letG4 = N4 −H4 and recall that [χ1, h0] = G̃4. Using(4.16) and (4.41)with
f = G4, we have

Ṽh0◦T1−h0−[χ1,h0](y) =
∫ 1

0
([(DT ε)−1(y)]ṼG4(T

ε(y)) − ṼG4(y))dε. (4.47)

SinceṼ 2
G4

vanishes, we can argue as before that the first component of(4.47)is

Vh0◦T1−h0−[χ1,h0](y) =
∫ 1

0
([(D1T

ε
1)

−1(y)]VG4(T
ε(y)) − VG4(y))dε. (4.48)

Splitting the integrand as in(4.43), and using the derivative estimates fromLemma 4.5, (4.48)leads to

‖Vh0◦T1−h0−[χ1,h0](y)‖s ≤
∫ 1

0
εC2‖(VG4(T

ε(y)) − VG4(y))‖s dε +
∫ 1

0
εC2|γ|‖V

G̃4
(y)‖s dε (4.49)

for all y ∈ Ks(ρ1). Arguing as forVH4 above,VG4(y1, y2) : Bs(ρ1)× R → Hs is Lipschitz iny1, uniformly in y2,
with Lipschitz constants bounded by a quantity of O(|γ|). Combining this withLemma 4.4, (4.49)implies

sup
y∈Ks′ (ρ1)

‖Vh0◦T1−h0−[χ1,h0](y)‖s ≤
∫ 1

0
Cε|γ|2 dε (4.50)

with C = C(s, ρ1) of O(1). Collecting the estimates(4.45), (4.46), (4.50) for the three parts ofVR1 and using
|δ| ≤ cδ|γ| in (4.45), we therefore have the statement. �

Proof of Theorem 4.2. Fix s ≥ 1, and assume thatd(tΩ−1) ∈ Hq, q > 3/2. We want to estimate the size ofr1(t)
in (4.17). The initial condition will ber1(0) = z1(0)− T1

1(z(0)). Let s′ = s + 2, and considerProposition 4.1with
ρ0 = β of O(1). Applying Proposition 4.1to the first component of the quartic normal formEq. (4.14), we can
choose|γ| sufficiently small so thatz1(0) ∈ Bs′(ρ0) impliesz(t) ∈ Bs′(2ρ0) for a time interval of O(|γ|−1). We
also have existence inHs′ for the full system(4.1)with the initial conditionx1(0) = z1(0) ∈ Hs′ , also over a time
interval of O(|γ|−1). In particular, theHs norm ofx1(t) remains of O(1) over that time. We setρ1 = 2ρ0, α1 = 3/2,
and let|γ| ≤ γ0 so thatLemmas 4.4 and 4.5apply. ThusT1

1(z1(t),Ωt) is well-defined over the time interval of the
local existence theory. DefineR1(t) by r1(t) = etLR1(t) and note that the operatorUt = etL is an isometry inHs

and commutes withL (in a dense subset ofHs). By (4.17),R1(t) then satisfies

Ṙ1 = U−t(VH4(x) − VH4(T1(z))) + U−t [D1T
1
1(z)]VR1(z). (4.51)

Note thatVH4(y1, y2) : Bs(ρ′)× R → Hs, s′ > 1/2, is Lipschitz continuous iny1, uniformly in y2, and that forρ′

of O(1) the Lipschitz constants are of O(|γ|), e.g. see(4.4). From(4.51)we then have that fort in the time interval
of the local existence theorem we have

‖R1(t)‖s ≤ ‖R1(0)‖s +
∫ t

0
C|γ|‖R1(t)‖s dτ +

∫ t

0
‖D1T

1
1(z(τ))‖s,s‖VR1(z(τ))‖s dτ (4.52)

with C = C(s, ρ1) of O(1). BoundingR1(0), D1T
1
1 andVR1 by Lemmas 4.4, 4.5 and 4.7, respectively, and using

Gronwall’s inequality,(4.52)yields

‖r1(t)‖s = ‖R1(t)‖s ≤ C0|γ|, t ∈ [0, C̃0|γ|−1] (4.53)

with C0, C̃0 that depend ons, |Ω|, ρ0, cδ and are of O(1).
To extend the error estimate tod(tΩ−1) ∈ L2, consider two dispersion management functionsd(Ω−1t) in

Hq, q > 3/2, d1(Ω
−1t) in L2 with the same averageδ (and periodT = 2π/Ω). Also let Λ̃1(t) = ∫ t

0 d1(σ)dσ
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(following the notation of(2.4)). The nonlinearities of(4.1) and (4.2)with Λ̃(t) replaced byΛ̃1(t) are denoted by
F1,G1, respectively, and we compare the solutions ofȧ1 = La1+F1(a1, t) andḃ1 = Lb1+G1(b1, t), with the initial
conditionsa1(0) = b1(0) = a(0) (= b(0) ∈ Hs′ , s′ = s + 2, as above) to solutions of(4.1) and (4.2). Define∆ by

∆ =
√
T‖d̃(t) − d̃1(t)‖0 ≥ |Λ̃(t) − Λ̃1(t)|. (4.54)

Choosingd(tΩ−1) that is close tod1(tΩ
−1), i.e. letting∆ > 0 small, we observe that(4.53)is uniform in∆. This

is because the estimates forTε1 andD1T
ε
1 only required(Ω−1t) ∈ L2, and the extra derivatives were used to make

DT ε well-defined, but do not appear in the quantities involved in(4.53). From

‖a1(t) − b1(t)‖s ≤ ‖a1(t) − a(t)‖s + ‖a(t) − b(t)‖s + ‖b(t) − b1(t)‖s, (4.55)

it then suffices to check that by choosing∆ > 0 sufficiently small the first and third terms of(4.55)can be made of
O(|γ|) over a time interval of O(|γ|−1). To see this, we letUt = etL, A(t) = U−ta(t), A1(t) = U−ta1(t), and use
(4.54)to obtain

‖F(UτA(τ), τ) − F1(UτA1(τ), τ)‖s ≤ CF(‖A(τ) − A1(τ)‖s + CE‖A(τ)‖s′) (4.56)

with LF a constant that is quadratic in‖A‖s, ‖A1‖s, andC of O(1). TheHs′ norms ofA andA1 remain of O(1)
over a time of O(|γ|−1), and by(4.56)we see that

‖a(t) − a1(t)‖s ≤ O(∆) (4.57)

for a time of O(|γ|−1). Similar arguments apply to the third term in(4.55). �

As noted in[3], (4.15) allows us to estimate the remainder on the solutions of the normal form equation for
which we have more information. On the other hand, in(4.52)we had to use the fact that the solution of the full
system remains of O(1) in Hs over the time interval of interest. This control of the solutions of the full system for
all s > 1/2 comes from the local existence theory, and may not be available for longer times. It appears that the
possible growth of the norms is one of the main problems in extending the formal theory to higher orders.

The extension ofTheorem 4.2to more general dispersion relations is straightforward, with the indexs determined
by the number of derivatives in the low and high frequency regions of the dispersion.

We also expect that there is an alternative way of obtainingTheorem 4.2, by following the first normalization
procedure ofSection 3in a sufficiently large Galerkin projection of(4.1). Although we do not obtain an invariant
subspace this way, we can use the regularity of the solution to see that the error of the Gakerkin approximation
and the remainder of the finite dimensional normal form are comparable and small. This strategy is developed in
[16] for a general dispersive PDEs coupled to a fast oscillator, where it is shown that under appropriate regularity
assumptions on the solution one can decouple the PDE and the oscillator up to an exponentially small error. At the
same time we can view the second normalization ofSection 3as a generalization of works on averaging a dispersive
system coupled to a fast oscillator, in that we have considered the coupling of a “fast” system of oscillators to a
“slow” system (that here is finite dimensional). The result is not decoupling but rather an invariant manifold for
the slow system. When the size of the oscillations of the fast system remains small, e.g. due to the regularity of
solutions in the case where the fast system describes the high spatial modes of a PDE, the decoupling result, and the
existence of an invariant manifold are practically the same, i.e. the slow motions are the same up to a small error.

At present, there is a gap betweenTheorem 4.2and the periodic orbits ofProposition 3.2since we have not
estimated any higher Sobolev norms of these solutions for fixedL2 norm. It is possible that some of these solutions
have oscillations, and that we will need to decrease their amplitude to bring them inside the domain where the
normal form equation is valid. We expect that this question can be partially addressed with some numerical work
in progress.
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