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Abstract

We investigate Birkhoff normal forms for the periodic nonlinear Schrédinger equation with dispersion management. The
normalization we describe is related to averaging arguments considered in the literature, and has the advantage of producing
fewer resonant couplings between high spatial frequency modes. One consequence is that the normal form equations have
invariant subspaces of large but finite dimension, where we can find several classes of periodic orbits. The formal arguments
apply to other related dispersive systems, and to normal forms of high order. We also present a rigorous version of the normal
form calculation and show that solutions of the quartic normal form equations remain close to solutions of the full system
over a time that is inversely proportional to a small nonlinearity parameter.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The nonlinear Schrodinger equation with dispersion managemest id(r)uxx — 2iy|u|?u, whered(?) is a
periodic real valued function, andis real models the propagation of signals in an optical transmission line whose
dispersive properties vary along the line. The initial conditign, 0) is interpreted as the emitted signal, while
u(x, t) is the signal at a distanagefrom the origin of the transmission line. Varying (“managing”) the dispersion
can lead to more robust propagation of signals of small amplitude (se£.@,23), and the idea has attracted
considerable experimental attention in recent years. Theoretical studies have focused on nonlinear effects, modeled
to lowest order by the cubic NL$ DM system above (see e[§,20]).

The equation has been mainly studied on the line (e.g. with decay boundary conditions), and we will here consider
the periodic case. Theoretical and numerical studies of thefNRI8 equation suggest that its dynamics is nontrivial,
and the periodic system is an example of an infinite dimensional Hamiltonian system of independent interest. Also,

* Present address: Departamento de Matéras y Meénica, IIMAS-UNAM, Apdo. Postal 20-726, 01000 Mexico, DF, Mexico.
Tel.: +52-5556223600; fax+-52-5556223364.
E-mail addressepanos@mym.iimas.unam.mx, panos@colorado.edu (P. Panayotaros).

0167-2789/$ — see front matter © 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.physd.2004.01.037



220 P. Panayotaros/ Physica D 191 (2004) 219-237

the periodic theory can be directly compared to simulations that use periodic boundary conditions and spatial
discretizations that preserve the Hamiltonian structure. Such simulations can be of heuristic value for studying the
equation on line, e.g. in studies of the evolution of well-localized, rapidly decaying solutions, and in finding orbits

that have variational characterizations. We must however emphasize the possible differences in the dynamics of the
periodic and unbounded problems, especially in questions of persistence of approximate solutions and of stability.

We will concentrate on the practically interesting parameter regime where the aveodgbe “dispersion
management functionl(¢), and the nonlinearity parametgiare comparable and small in absolute value. We also
assume that the frequengy of the dispersion management functid) is at least of O(1) in absolute value, and
we will be interested in solutions of O(1).

One of the approaches in studying the NE®M equation on the line has been to formally derive an averaged
model equation that is autonomous (§8€1], also[1]). The averaged equation has the structure of a Schrédinger
equation with a nonlocal cubic nonlinearity. Numerical studies of the averaged equation have indicated the exis-
tence of localized periodic solutions with a Gaussian-like single pulse profile, referred to as DM solitons (see e.g.
[12,17). More recently the existence of periodic solutions for the averaged equation on the line was also proved by
variational methods (fops < 0, se€14,25)), and by a bifurcation argument (fo8 £ 0, se€8]). The variational
characterization of the DM soliton fas < 0 also implies nonlinear stability, and there are also error estimates for
the averaged equations (4@4]). Also note that the problem of averaging of a dispersive system coupled to a fast
oscillator has been also considered in a more abstract setj§]in

In this work we investigate an alternative but related asymptotic theory for the periodic problem. Our first goal is
to modify the approach ¢5,21], and produce a simpler normal form equation. In particular, to recover the averaging
theory of[5,21] we split the full system into an unperturbed and a perturbation part where the unperturbed part has
only one fast oscillating degree of freedom (with frequef®yWe therefore have a very resonant problem, and the
resulting normal form equations are not sparse enough. We here add to the unperturbed part of the system the hig
frequency oscillations corresponding to the high spatial frequency part of the averaged dispersive term. The resulting
Birkhoff normal forms are more involved, but leave fewer resonant terms coupling high spatial frequency modes.
A main observation is that, under a mild condition@nthe quartic normal form equation has a finite dimensional
invariant subspace. The dimension of this subspace may be larg¢/§of@?)), but some aspects of its dynamics
are easier to analyze. For instance, elementary arguments imply the existence of several classes of periodic orbit:
some of which are analogous to the orbits considered in the literature for the averagedDN®quation on the
line. The argument leading to the existence of invariant subspaces applies to higher order normal form equations
and to NLS+ DM equations with higher dispersion (considered recent[{t#)16]). A rough interpretation of the
normalization we describe is that averaging over the fast oscillations of the high spatial frequency modes leads to
invariant subspaces for the slower low spatial frequency motions.

In the second part of the paper we show that the solutions of the alternative quartic normal form we construct
remain Qy) close to solutions of the full system over a time of @~1). The main assumption is that the initial
conditions for the normal form system are of O(1) in an appropriate Sobolev norm (the precise statement is in
Section 4. Our approach follows the spirit of the formal calculations, where we consider thetNDE equation
as an autonomous Hamiltonian systemin an extended phase space. The transformation theory for infinite dimensione
Hamiltonian systems has been developed by many authors (s¢6].@ome points that require attention here
is the low regularity of the dispersion management function (required by the applications), and the fact that the
transformation in the extended phase is not close to the identity in some directions. The error estimates also use th
fact that solutions of the full system cannot grow too much over the|O") time interval of interest. Such control
may not available for longer times, and it is not clear at present whether we can extend the error estimates to the
higher order normal forms. The work [if6] suggests that long time regularity could lead to averaging results over
times that are exponentially long jp| 1.
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The paper is organized as follows.3ection 2we introduce the Hamiltonian structure of the NiE®M system
and establish the notation used in the formal calculations. We also emphasize the parameters of the problem. In
Section 3we formally construct Birkhoff normal forms and study some properties of the normal form systems. In
Section 4we give a rigorous version of the first order normal form calculation and estimate the distance between
solutions of the quartic normal form system and the dispersion managed NLS equation.

2. Hamiltonian structure

We consider the initial value problem for the nonautonomous equation
uy = id(Duxx — 2iy|u|2u (2.2)

with u(x, r) a complex valued function satisfying periodic boundary conditigixsr) = u(x + 27, t). The “disper-
sion management” functio#(r) and the parameter are real. As remarked iBection lthe “time”z in (2.1)is the
distance from the point where we emit the signal, while the “spatial variabdé'(2.1)is physically the time. The
“initial condition” u(x, 0) for (2.1)is the signal we send, and is assumedsep2riodic. Also, the functior(z) in
(2.1)will be T-periodic, and we decompose it as

- , 1 /T
dt) =8+d() with §= ?/ d(s) ds, (2.2)
0

the average. Lettingg = 2/ T we assume thar?| > O(1). We will further assume thaé| ~ |y| <« 1. Note that
since the system is nonautonomous we should consider initial conditiong), 7o € R. Equivalently, we here fix
to = 0 and handle the general case by appropriately shifting

Remark 2.1. The parameterg, 3, 2 are assumed dimensionless. Some physically interesting special cases of the
parameter regime we consider arej(® ~ |y|1, (ii) |£2| ~ |y|~1 with |£2|/h of O(1), and (iii)|£2| ~ |y|~1 with
|£2]/h « 1, whereh is the amplitude ofi(r). Also of interest is the case where (W)X |y|.

Remark 2.2. The dimensional analysis leading to the above parameters is derived for the equation on the line. The
periodic problem is often used in numerical studies of the problem on the line, and this is reasonable for solutions
that have a negligible amplitude (e.g. below 3®for double precision calculations) outside a region of O(1) size.

By (2.1)we can rescale such a region to have lengtth rescaling the “spatial” variabbeto ax and the amplitude

of the dispersion functiod to «2d without changing qualitatively the assumptions on the relative sizes of the
parameters in the previous remark.

It is easy to see thdq. (2.1)has the structure of a nonautonomous Hamiltonian system. To perform normal
form calculations it will be convenient to first rewri(2.1) using certain “amplitude” variables, and then make the
system autonomous by introducing an additional angle variable. For the first step, we denote the Fourier transform
of u(x, r) by ux(¢), and use the notation ¢2.2)to define the variables, (r), k € Z by

. ~ t~
ap(t) = up() €40 with wp = k%, A@) = / d(s) ds. (2.3)
0

From(2.1), the variablesi(k, t) then evolve according to

ay = —idwpay — 2iy Z aklakzaZ38k1+k2*k3*k e_l(wkl+wk2_wk3_wk)A(t), keZ, (2.4)
k1,kp,k3eZ
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wheres, = 1if r = 0, and 0 otherwise. The initial conditiondg(0) = u;(0), k € Z. By the definition ofA the
right hand side of2.4)is T-periodic. The time dependence is therefore absorbed in the nonlinear term. To eliminate
the explicit dependence on time(2.4) we consider an angl¢ € [0, 2r), and add tq2.4) the equation

¢ =8 with ¢(0) =¢o=0. (2.5)
We also define the function by A(¢) = A(t(¢)) = A(p/$2), and note thatt is 27-periodic with zero average.
Then, the nonautonomous systétm)is equivalent to the autonomous system consistir{g.d)with A(r) replaced

by A(¢), and(2.5). Adding an “action” variablg € R, we further define the Poisson brackeldn pairs of functions
F, G of the variablesy, aj, k € Z and¢, J by

. oF 0G  OF 0G 0F 0G  dF 0G
[F’G]=_|Z(__*__*_>+_____’ (2.6)
Py Oay day;  day day aJ d¢p ap dJ

A straightforward calculation then shows the following proposition.

Proposition 2.3. The evolution equation for the variableg, k € Z, and¢, J above is the Hamiltonian system

ar =lax. Hl, keZ, ¢=I[¢ Hl. J=I[J H], (2.7)
where the Hamiltonian H is
H=9$ Z a)k|ak|2 —2J+y Z ei”¢aklak2az3az4l(k1, ko, k3, ka, n), (2.8)
keZ k1,k2,k3,kq,neZ

and the coefficients(ky, ko, k3, k4, n) are given by

I(ky, k2, k3, ka, 1) = Fn (1) Sky+ky—ks—ka> (2.9)
2 . .
m= i, + wp, — kg — Ok, Jn(n) = (277)_1/2/0 g MA@ gmind de. (2.10)

Note the equation fo¥ gives us the rate of change of the “energ’+ £2J (up to a factor2—1).

Remark 2.4. The HamiltonianH in (2.8) shows that the parameter range we are considering describes a system
with small dispersion and small nonlinearity. The “weakly nonlinear” parameter regime \éhere 2| ~ O(1)

and|y| <« 1 will be considered elsewhere. Note that the weakly nonlinear regime poses some interesting problems
related to the works d,7,19]on weakly perturbed 1D NLS equations (with Dirichlet boundary conditions). As

we see in the next section, the special parameter ranges (iii) and Rgrofirk 2.1also lead to “near-integrable”
systems (sef,22], respectively, for the two limits).

The above setup can be generalized to other dispersion relatio@sd to the case where the parametés
replaced by a time-dependent real function. Also, we can easily extend the formalism to quasi-periodic dispersion
management function&). A practically important example where the coefficiefitsn) in (2.10)can be evaluated
in closed form is the piecewise constdhperiodic dispersion management function

{6+A,WIEDJL
d@t) =

o (2.11)
8§+ B, ifte[t,D

with At + B(T — 1) = 0, i.e. the average af(r) over [Q T] is 8. Another interesting example is the real analytic
dispersion management function

d() = 8 + Asinr, (2.12)
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whose coefficient§m (n) are Bessel functions. For general dispersion management functions we can also obtain
some information about the coefficienfs(n) by asymptotic arguments, e.g. in the lajgg limit. The coefficients
are discussed further in the next section.

3. Quartic Birkhoff normal forms

In this section we split the Hamiltonian into two parts, the “unperturbed part” and the “perturbation”, and seek to
simplify the perturbation part by a near-identity canonical transformation. Near-identity canonical transformations
smoothly connected to the identity can be constructed by composing time-1 maps of Hamiltonian vector fields,
and we will consider transformations leading to the well-known Birkhoff normal forms. The assumed ranges of
parameters?, §, y suggest two possible splittings of the Hamiltonian. First, sinegis (at least) of O(1), and
|8] and|y| are small we can take the “unperturbed part” of the Hamiltoifaof (2.8)to be —£2J. The resulting
Birkhoff normal form equations are (the periodic analogues of) the averaged equat[briald{see als¢l]). We
briefly rederive this averaging theory using the language of normal forms below. Our main goal here is to investigate
an alternative splitting of the Hamiltoniati where the unperturbed part consists-a®J plus the quartic terms of
H that describe oscillations with frequencies that are at least of O(1). We will show that the normal form equations
derived using the second splitting can have finite dimensional invariant subspaces.

To recover the averaging theory f,21] we write the HamiltonianH of (2.8)asH = —$2J + Ho + Hy
with Ho and H, the quadratic and quartic parts, respectively. We seek a fungtioauch that the canonical
transformation obtained by the time-1 m@é,l of the Hamiltonian flow ofyr; simplifies the “perturbation part”

H> + Ha. Specifically, we formally write

Ho @) = exp(Ady, H) = —2J + Ha + Hy+ [Y1. —2J] + 11 (3.1)
with Y7 representing the remaining terms. By the definition of the Poisson bracket we see that each monomial
yI(ky, ko, k3, ka, n)aklakzazaaz4 gne, 3.2
in Hy is eliminated by a monomial

iy(n§2) "M (ke k2, ks, ka, n)ar,ax,al,ar, €7, (3.3)
in ¢r1. Consequently, the resonance condition for the faris

n2=0, ki+ko—ka—ks=0, [fn(n)#0, ki,....ks, neZ (3.4)
with m = wy, + wr, — wi; — wi,. We immediately see that the resonant gastof Hy is

Hy=vy Z aklakzazsaz4fm (0)6k1+k2—k3—k4- (35)
k1,k2,k3,kacZ

We also easily see that the quadratic géstis resonant. Choosing

In(k1, ko, k3, k4, n)

- (3.6)

=i * %
Y1 =iy Z a, ar, @i ay,
k1,kp,k3,ka€Z,neZ*

the quartic normal form Hamiltonian 8, + Hj.
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Regarding the structure &f, + Hy, let A,, be the set of all integefg, ky, ks, k4 satisfyingky 4+kp —ks —k4 = 0,
andm = wy, + wr, — wiy — wi,. The level setst,, can be parameterized explicitly by two integers (we omit this
here). The parameterization 8% becomes especially simple and we can wHigas Hy = 1:14,1 + Hy Ny With

Hyr=2yf00) Y laylag,. (3.7)
k1,koeZ
Hani=v Y 1@ Y agandgj,. (3.8)
meZ* k1,k2,k3,ka€ Ay

The partH, ; is integrable (in the sense ofAPoincaré).
Toindicate the structure ofthg coeﬁicie{f},s(O), we first consider the piecewise constant dispersion management
function of (2.11)with t = T/2, A = h, andB = —h. Then
2i
N

and}‘o(O) = +/27. We can see thaV, ni can only vanish for the discrete valuesioivhere(h/$2) € nZ, and also
in the limit 2 — +o0. In comparison, the coefficienys, (0) for the real analytic dispersion management function
of (2.12)with A = h are

In(0) = V2rJo(imh2™Y), mez* (3.10)

A _ihmelr g $2 x
fm(0) = [e Ny meZ, (3.9)

with Jo the Bessel function of order 0. For— +o0, the coeﬁicient§‘m (0),m # 0, of (3.10)decay ashm ~1/2. For
more general integrable dispersion management functions, the definition of the coefﬁgi@)tm (2.10)implies
that }0(0) = /2. The decay of the coefficients in the amplitud®f A(¢) and in|m| % 0 can be found by a
stationary phase argument. For instance A@p) twice differentiable with nondegenerate critical points we expect
alhm~1/2 decay, while forA(¢) Lipschitz but not differentiable we hayem —1 decay (i.e. as in the two examples
above). Forh A(¢) Holder continuous with exponent less than unity, e.g.di@y unbounded but integrable, the
coeﬁicients}m (0) can decay even faster 81 — oco. Thus the nonintegrable part & decays faster ifn| and

h for the more singular dispersion management functions. In theAimit 0, H, + H, reduces to the Hamiltonian
of the cubic NLS. In that limit, it is most natural to view the NESDM system as a small perturbation of the cubic
NLS equation (sefl1,22,23).

A main advantage of the normal form equations above is that they are straightforward to compute and extend to
higher orders. Higher order resonance conditions are also trivial and do not involve any small divisors. Note that
higher order calculations can be further simplified by assumingdhat |y| ~ |$2|~1; this is consistent with the
scales of physical interest in the problem. Although the quartic and higher order normal form systems obtained by
this theory are autonomous, their dynamics are still difficult to analyze (we discuss some known results for the line
below).

In the alternative normalization below we try to eliminate more terms by better controlling the high spatial
frequency nonlinear interactions. In particular, fix= [|5|~/2] and let

Ho = Ho + ho (3.11)
with
Hy=8 Y oilarl®, ha=8_ oxlaxl. (3.12)
|k|>N |k|<N

The “unperturbed part” of the Hamiltonian, denotedigy will now be ho = Ho — §2J and will thus contain only
the fast oscillators iy, i.e. the ones with frequencies that are greater than unity. The “perturbation part” will
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beho 4+ Hy, i.e. it will contain “small” terms of @5) and ((y). As before, we seek to eliminate the lowest order
nonresonant part df2 + Ha by a canonical transformatio;ﬁ}(1 that is the time-1 map of an appropriate function
x1- We will have

Ho @ = exp(Ady, H) = ho+ ha + Ha + [x1. ho] + R1 (3.13)
with R the remainder. It is easy to see thatis resonant, and that each monomial
yI(ky. ko, k3, ka, n)ar,ax,af,af, €9, (3.14)

in Hy is eliminated by a monomial

iy[n$2 — 8ok, + @k, — Py — Brg)] (k1. k2. k3, ka, n)ag, ar,af ar, €m0 (3.15)
in x1, where
o ifk =N, (3.16)
wi  if |k| > N. '

The resonance conditions for the quartic terms are therefore
nQ2—6m=0, ki+ky—ks—ks=0, [fnu(m)#0, ki,....ks neZ (3.17)

with m = @, + @r, — wr; — ok,. We will not give a full analysis 0{3.17), although it is quite remarkable that
we can here obtain a complete picture of the resonances. The idea is to first parameterize the leviéliseZé of
subject tok1 + k> — k3 — ks = 0, and then examine the level sets:6? — 87 in Z2. Instead of this we will consider
a partial normalization that eliminates only a subset of the nonresonant mode interactions. The resulting “partial”
normal form, denoted big + h2 + Ny, is simple to produce and gives some interesting insights into the dynamics
of the system.

The main observation is that the subspace spanned by the mpdéth |k| < N can be invariant under the
evolution of hg + ho + Ny4. To see this we consider “low” and “high” frequency mode index €&ts= {k €
Z : |k| < NyandUy = Z\U., and decomposg* into disjoint products of the two sets. We use the notation
Uiin = Up x Up x Up x Uy, Uil = U x U x Uy x Uy, etc., and subdividg&# into 2* disjoint subregions.
Accordingly, we also decompos#, into 2* parts coupling different combinations of quartets of low and high index
modes. We now seek to eliminate all quartic nonresonant terms involving only low modes, and quartic nonresonant
interactions involving one high frequency mode and three low frequency modes. The corresponding farts of
will be denoted byHqa (111, and Ha,LLiLH, HaLLHL, HaLHLL, HaHLLL, respectively. To eliminatéls | we use

the functiony1 L given by the expression ¢8.6), with summation oveky, ... , k4 in Ur. The resonant part of
HypiiLis
Natil =v ) Gyakdi,dg, fn (00t thp—ks—ka» (3.18)
k1,ko,k3,kq€U],
and we denote the nonresonant parfafi . by H4,|_|_|_|_. To eliminateHa LLLH, - - . , HaHLLL We examine the
resonance conditio(8.17)in Uy H, ... , UnLLL, respectively. For instance, i | 4 (3.17)reduces to
n.Q-i—Ski =0, ki+ky—kz—kgs=0, ki,kp,kzec Uy, kaecUyg, neZ (3.19)

with }m (n) # 0. We see that resonant terms can only involve high modes with inklice$N, 3N]. Then

|22| > 10|8| N2, (3.20)
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implies|n$2 + 8k§| > 1,foralln € Z, i.e.(3.20)implies that the paris | H can be formally eliminated using an
appropriate functiory1, L 1. The resonance conditions for the other partélgfcoupling three low index modes
to one high index mode are similar, and condit{8®20) on |£2| guarantees the absence of resonances and small

divisors. We denote the functions that eliminate| | i, . .. , HaHiLL BY x1.LLHL, - - -, X1, HLLL, respectively. Then
letting
X1 = XLLLLL + XLLLLH + XLLLHL + XLLHLL + X1HLLL (3.21)

(note thaty; is real valued) we consider the transformed Hamiltonian

Ho @) = exp(Ady, H) = ho+ ha+ Na+ Ry (3.22)
with

Na = Hay— (Ha il + Haoun + Haone + Hanoe + Hano)- (3.23)

The remainderR; contains higher order terms, of(§), and Qy?). (The parthg + ho + N4 in (3.22) will be
referred to as the normal form part, although it is more accurately a “partial normal form”.) Denoting the (complex)
span of the modeg, with |k| < N by M; we have the following observation.

Proposition 3.1. Let|£2| > 10/§|N?, and defineH o 05)1(1 as aboveThen the subspad¥, is invariant under the
flow of Hamilton’s equations for the normal form part Hamiltonieg+ #2 + N4 of (3.22) The restriction of the
flow to M, is the Hamiltonian system corresponding to the Hamiltoriar- N4 (| .

Proof. It is enough to check that the equations égrwith |k| > N do not include any monomials of the form
alla12a7‘3 with I, I, I3 € Uy. Such terms can only come frofds | 1 and Ha L HL, Which, however have been
eliminated. The equations af; are clearly Hamilton’s equations fer§2J + hp + N4 1L, and sincei; and
Na 1L are independent @f, i.e. seg3.5), the term—£2J can be omitted form the Hamiltonian ad. . O

Note that the quartic normal form parts Hfo dﬁil, andH o cb)l(l, restricted to the subspadég; , are the same,
the difference being thalf; is an invariant subspace for the quartic normal form Hamiltonian system obtained by
the second procedure. The dynamics on this subspace can be complicated and interesting. Of special interest al
some special periodic solutions that have a variational interpretation.

Proposition 3.2. Let|$2| > 10/8| N2. Then the Hamiltonian flow of the quartic normal Hamiltonian+ 4o + N4
of (3.22)has at leas2N + 1 families of periodic orbits on each level S8, 7 lax|?> = C, C > 0.

Proof. We examine Hamilton’s equations fg + 2 + N4 on the invariant subspaadé; . We have the autonomous
system

. .0
ay = —laa—*(hz + NaLw), keUg, (3.24)

and we look for solutions of the form, = €* Ay, k € Uy, with A real. The equation for thé; = gx + i px has the
structure of the constrained variational problem
T 9V 0T 9V

AW T aE_Y reu, (3.25)
ogr  Iqk opr  Opk
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with

I= Z @2+ pd, V=ho+ NaiL- (3.26)
keUp,

Note thatZ areV are both invariant under the circle action generated by the Hamiltonian fléhaofl that the
quotient of the spher§?~1, v = 2N + 1 by the circle action i€P"~1. On the other hand, by a proposition of
Weinstein[24] and Mose|[13] a smooth function ofP'~* must have at leastcritical points. O

Remark 3.3. In the argument above we can also look for solution§3o24) that have the more general form
ar = &8 Ay k € Uy, with g satisfyinggr, + gk, — 8ks — 8k, = 0 for all ky, k2, k3, k4 in Ur. Some choices ofy
however, for instancg, = k, do not lead to compact level séfs= C, and the existence of solutions (&.25)is
not guaranteed.

We can alternatively proveroposition 3.y noting thai3.24)has families of exact “monochromatic” solutions

of the formAg €0 withkg = —N, —N+1, ..., N.For|Ag|?2 = C these solutions are critical points¥bnZ = C.
At the same time some of the critical points¥fre expected to coincide with the DM soliton (i.e. “bump-like”)
solutions found in simulations with periodic boundary conditions (sed®gl5], unpublished work in progress).
The numerical results therefore suggest that the number of families of critical poitsxahe level hypersurfaces
of Zis greater that & + 1.

The rapidly decaying, Gaussian-like DM soliton solutions found numerically in the periodic problem motivate
some comparisons with results on solutions for the equation on the line. The methods employed there seek solutions
that decay at infinity and concern the analogue of the quartic normal form system with HamiligniarH, in
(3.5) for the line (i.e. with summation over thig replaced by integration). In the cadg < 0 the DM soliton is
interpreted as a minimum (fgr > 0, maximum fory < 0) of H + Hy over functions with fixed., norm (see
[21]). An existence proof based on this variational characterization of the DM soliton25jnThe functional
is extremized in the Sobolev spag (R, C). The analogous solution here is possibly the minimum gfof 0,
maximum fory < 0) of V over the spheres = C in (3.26) This scenario is consistent with numerical calculations
where we see that ford < 0 the value of) for the numerical DM soliton is smaller than the valuelobf all
the monochromatic solutions (on the same level surfad.dofhe assumptiody < 0 is crucial in the variational
argument of25], but irrelevant in Proposition 5.2, where some of the critical point¥ afay be related to the
localized solutions shown to exist 8] for 8y # 0 (by a bifurcation argument). Fg@ > 0 our comparisons of
for the numerical DM solitons and the monochromatic waves suggest that the DM solitons are not global extrema
of V. It should be emphasized that this numerical work is still in progress and will be reported elsewhere. (We have
also recently seen a variational argumen{3jffor § = 0, obtained fromsy — 0~, with y fixed. Note that the
second normal form construction we presented is inapplicable£06, while the first averaging procedure is still
meaningful.)

Remark 3.4. The comparison of the solutions(@.24)with solutions of an analogous equation on the line is natural
for the DM solitons seen numerically in the periodic problem, but is heuristic. Note for example that solutions of
(3.24)such as the monochromatic waves have no clear variational interpretation on the line. FORemagk 2.2

it will be interesting to study the localized solutions(8f24)as|$| decreases.

Conservation of the quartic normal form Hamiltonign+ Na L and theL? norm on the invariant subspace
M|, implies that the minima and maxima ofin Proposition 3.2are nonlinearly stable on the invariant subspace
M. We therefore still have the possibility of high frequency instabilities for more general initial conditions. In
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comparison, the variational characterization of the DM soliton solutioéyfer 0 in [21] implies nonlinear stability
(se€[14,25)). Note however that i3.11) and (3.12)we can splitH> into H, + h» differently, by makingV larger.
Assuming|£2| > 10/§|N?, i.e. assuming large2|, and following the arguments above verbatim we have an
invariant subspac#f; with larger dimension. Thus, if the solutions®ifoposition 3.2re inside the domain where
we expect the second normal form procedure to be validgsetion 4 and the remark at the end of that section)
possible high frequency instabilities will not be detected in spectral numerical simulation&withdim(M )
modes.

The splitting of the quadratic Hamiltonian into low and high frequency parts can be also used for more general
dispersion relationsy, (a cubic dispersion is considered[i4,15)). For instance, letvi, M1 > 0 with §M1 of
O(1), and assume that, : R™ — R is strictly increasing fok > N1, diverges a& — +o0, and is bounded
by M; for k < N1. Also extendw; to R to be even or odd. For such a dispersion relation the arguments above
apply with minor modifications, and lead to the existence of an invariant subspace with periodic and quasi-periodic
solutions.

Itis also straightforward to find conditions under which the subspgcabove is invariant for higher order partial
normal form systems. First, we see that we can always eliminate the angle dependent part of the Hamiltonian that
couples only low modes. Also, the resonance conditionsfewave interactions coupling one high mode with-21
low modes have a simple form that is similar(821) Note that higher order terms always couple an even number
of modes, and are sums of monomials of the fagn . .akna,’gn+l .. 'aIZn withky + -+ +k, —kyy1—-+- — ko =
0. A resonant monomial with indices,, ... ,kp,—1 € UL, kp, € Uy must satisfys2 — (Skgn = 0, and by
lkan| < (2n — 1)N, we can avoid resonances and small divisors by requiring fjat- §(2n — 1)2N2+1. Similar
considerations apply to all terms coupling 2 1 low modes with one high mode. We thus see that the formal
argument is the same for higher orders, [s2it must be assumed larger, increasing quadratically in the order of the
normal form. Alternatively, resonant interactions between-2L low modes and one high mode can be avoided by
assuming thaf2/4 is irrational. In that case one must however examine possible small divisors.

4. Error estimatesfor the normal form equations

In this section we estimate the distance between solutions of the full sy2t&jn(2.4) and the quartic normal
form equation by making the formal calculations of the previous section rigorous.
To state the error estimates for the quartic (partial) normal form equation we write the full SZstgas

a=Lla+ Fa,n, a(0) =ag (4.1)

with L = i8dxx, and F(a, t) the nonlinearity. We also write Hamilton’s equation for the quartic normal form
Hamiltonianhg + ko + N4 in (3.22)as

b=Lb+G(b,1, b(0) = bho. (4.2)

We are here writing the normal form equation as a nonautonomous system; the action component is omitted, anc
t = 2~ 1¢. The two equations can be considered in the Sobolev sgates> 1/2, of complex valued2-periodic
functions. The norm of a functiomin H* will be

luellZ =Y (@4 k1% || (4.3)
kezZ

with u; the Fourier coefficients af. First, we have the following basic local existence theorem.
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Proposition4.1. Lets > 1/2, 8 > 0,with 8 ~ O(1), and assume thak(¢) is locally absolutely integrable. Consider
the initial value problems of4.1) and (4.2) with initial conditions satisfyind|aolls, [1bolls < O(1). Then for|y]|
sufficiently small there exists a positive constant= C(||aolls, l|bolls, ) ~ O(1) and a timer; > C|y|~1 for
which (4.1), (4.2) have unique solutions(r), b(r) € Ry(11, yo, B), WhereR,(t1, yo, B) = {y(t) € C°([0, t1], H®) :
ly(@® — yolls < B}-

Notation. We use the shorthand(®© for positive constants that are independent¢f|§|, and|s2]|.

Thus, assuming initial conditions of(@), solutions exist for a “long” time of Qy|~1), and their size remains of
O(1) during that intervalProposition 4.Xollows from a standard fixed point argument. The operator relating the
Fourier coefficients (r) anday (¢) in (2.4)is an isometry inH*, and the map$(u, r) are Lipschitz inz, uniformly
in ¢. In particular, we have

| Fu, 1) — F(v, )lly < Lr(lulls, vl llu —vlls, s> (4.4)

NI

with Lr(llulls. [lvlls) = [YIC2(lull? + llullsllvls + [v]2), andC; a constant satisfyinguv|l; < Cyllull,|v]s for

s > 1/2. The Lipschitz constarit is precisely the one for the map— iy|u|?u in the cubic nonlinear Schrédinger
equation. Similar considerations apply to the n@ag4.2). Lipschitz constants for the part &f that is eliminated
by the canonical transformatiociit)l(l are obtained readily following the argumentslafmma 4.4below. Since
the Lipschitz constants faF and G and the size of the initial conditions ¢4.1), (4.2) are close, we choose for
convenience to state the local existence theorem for the two initial value problems with the same congtafves
now state our estimate for the distance between the solutions of the full si¢&tBrand the quartic normal form
Eq. (4.2)

Theorem 4.2. Lets > 1,and letO < |§] < c;|y| for somers ~ O(1). Also assume that2| > 10|§| N2 and that the
(dilated) periodic dispersion management functié@s2—1) is in L2. Consider a solutiorb(r) of (4.2) with initial
condition||bglly < po, Withs’ = s+ 2, pg ~ O(1), and a solutiom(?) of (4.1) with initial conditionag = bg. Then
there exist constaniSg, C1 of O(1), andyg for which|y| < yo implies

lla(y = b®)s < Colyl, Vi €0, Colyl™]. (4.5)

The constant§, C1, andyg depend on, |£2], cs, and pg.

Remark 4.3. The constant€, Co, o do not change significantly d$2| diverges. This is seen inemma 4.4
below. Also, the constants are independent of the ampliiuafehe dispersion management functiém). Thus the
estimate applies to all the physically interesting parameter range3| ahd’ discussed ilRemark 2.1but there
are no ranges leading to significant improvements of the error estimate.

The main ingredients of the proof @heorem 4.2are estimates for the canonical transformam)}g defined
formally in the previous section, and a bound for the Hamiltonian vector field of the rematader(3.22) We
start by making the Hamiltonian structure(df1) precise, and proceed with an outline of the argument.

We consider the Sobolev spadé$ of 2z-periodic complex valued functions, viewed as real Hilbert spaces with
the inner product

(u,v)s = ReY (L+ |kI®) uvj, (4.6)
keZ

whereuy, v; denote the Fourier coefficients of v, respectively. The norm if* is given by(4.3), while the ball
of radiusp around the origin is denoted B8/ (o). We also let{u, v) = (u, v)o. Functions onH* can be extended
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to the complexificatiorfZ; of H* by letting the real and imaginary parts of the Fourier coefficiaptef u € H;
become complex.

For f : B*(p) — R FréchetC1 smoothinB*(p), we define the gradientmapf : B*(p) — H by (V f(u), v) =
Df(u)v, with D the Fréchet derivative, ande H*. Also, J = —i defines a symplectic structure H*, and we
denote the Hamiltonian vector fielfV f of aC? function f by V¢. The time-dependent Hamiltonian for the system
of (2.4)is h(a, t) = H(a, 21, J) + £2J, with H as in(2.8). I d(¢) is integrablef : H* xR - R,s > 1,isClin
the variablez, for all r € R, and(4.1) can be written as the nonautonomous Hamiltonian system

a= JVh(a, 1 = Vy(a,rb. 4.7)

The extended phase space will be the satef[x1, x2, x3] € H® x R x R, where the second and third components
correspond to the angleand action/, respectively (the angle is defined on the covering space of the circle). The
spaces?’® x R? can be considered as real Hilbert spaces with the inner product

(X, ¥)(s,2) = (X1, y1)5 + X2y2 + x3Y3. (4.8)

The norm inH* x RZ is denoted by lls,2), and we letk*(p) = B*(p) x R2. As above, we use the inner product in
HO° x R? to define the gradier¥ for smooth functions oif* x R2. The symplectic structure ali* x RZ, denoted
by 7, will be the tensor product off with the standard symplectic structureR?, i.e. compare with the Poisson
bracket in(2.6). Also, we letV, = 7Vg. If the dispersion management functig(r) is C* then the Hamiltonian
H = H(a, ¢, J) of (2.8)is Ctin H* x R2, s > 1, and Hamilton’squations (2.7¢an be written as

i = JVH®x) = Vg (x). (4.9)
Following the previous section, we want to construct a one-parameter family of canonical transforagtiens*
by integrating

d -
2T O=Vor(TO), T =y (4.10)

with x1 as in(3.25) The components of € in H* x R x R will be denoted by7¢, i = 1, 2, 3. Sincey; does not
depend on the actioys, the second component of the equation is integrated trivially yiel@ig) = 75 (y2) = y2,
for all ¢, i.e. the angle variable does not change. The existence of soluti¢phs @) for |y| sufficiently small and
appropriate initial conditions is shown iiemma 4.4elow, where we also show tk@(y) andy; are Qy|) close
in HS. To exhibit the normal form equation and the remainder we write the Hamiltonian syst@n®)ds

k= Lx+ Vi, (x) (4.11)
with Lx = Vjo44,(x). EQ. (4.11)is then written in the new variabbg x = 7(y), as
y=Ly+ V() + Ve, (), (4.12)

where we are using the notation(8t26)for the HamiltonianH o 7% = Ho cb)l(l, and the fact tha* is symplectic.
The remaindeR of (3.26)is

Ri=(h20T" = hp) + (Hao T — Ha) + (ho o T* — ho — [x1, ha)), (4.13)
and the quartic normal form system is
z=Lz+ Vy,2). (4.14)

An elegant way of comparing solutions of the normal form and the full system is to consider the evolution of the
“error” r(r) = x(t) — T*(z(1)) (see[3]). In particular, combining4.11), (4.12) and (4.14ye obtain

F=Lr+ (Vi,(0) = Vi, (T2(2))) + [DT )]V, (2). (4.15)
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The existence oD7? is shown in Lemma 6.4. We will considét.15) with the initial conditionr(0) = z(0) —
T1(z(0)). Note that we are interested in the size of the first compongnt of (). We will denote the three
components of/f in H* x R x R by \7; i =1,2,3. Also, we letD1, D, D3 denote the Fréchet derivatives along
each the three componentsifi x R x R. Observe thaR(z) depends on the first two componentg ohly. This is
clear for the first two terms a®1 in (4.13)sincehg and H4 depend on the first two componentsif x R x R only,
andTi(y) = Ti(y1, y2), T3(y) = y2. For the third term in(4.13) the observation follows from the cohomology
equation 1, ho] = G4, with G4 = N4 — Hy, and

1 d 1 1
(hoo T — ho) () = /0 Sho(T (1) de = /0 Lw, ol (T<(y)) de = /0 Ga(T<(y)) de. (4.16)

The second component 6&1, andDgTi(z) therefore vanish, and the first componen{4f.5)becomes
1= Lr1 4 (Vi (x) = Vg (TH@) + [D171 ()] Vi, (2) (4.17)

with Lr1 = Vjg44,(r1). The vector field Dﬂ'll(z)] VR, (z) is estimated usingemmas 4.5 and 4.Below, and we
will conclude the proof by estimating the sizerafr) from (4.17) We start by solving4.10)and showing that the
first component of/ ! is near-identity.

Lemma4.4. Letp > 0,1 € (0, 1), and seto; = a1p. Assume that > 1/2, |£2| > 10|8| N2, and thatd(z2~1) e
HO. Then for|y| < yi(s, |£2|, p, @o), the initial value problem(4.10)with y € K*(p1) has a unique solution
T(y), € € [0, 1], and its flow defines a one-parameter family of canonical transformafiénsk*(p1) — K*(p).
Moreovet we have

sup 177 (») — yills < €Cilyl, €€][0,1] (4.18)
yeK(p1)

with C1 = p3C(s, |£2|) a constant of(1) for p of O(1).

Proof. We first consider the equation for the rate of chang@&*pfThe right hand side i¥_,, = —J7V x1. Since
x1 is independent of the actioyy and the anglg» does not change, we can consiget y, as a parameter. We
will show thatV,, is real analytic iny1, uniformly in y». Denote the Fourier coefficients of by ax, and let(Vy)

be thekth Fourier component of the vector field. The definition ofy; in the previous section leads readily to
explicit expressions, and we have

Fu(¢)
Vot 21 Y kg Qaoliy 18k ko —ks—k mg¢ . kel (4.19)
k1,k2,k3elUL
with
Tn@®)
F, = S dnd, 4.20
n () ij - (4.20)

Note that(V_,, L)k = O0fork ¢ Up. Also

fn©) G, ka)
|(V_yo,Leidil < 1yl > |k, iy, |8ky +kp—k—ka f.’;kz ’”Q : (4.21)
k1,k2€UL, k4| €[N,3N] 10Ky
if ke Uy, and
Fn () Gu(g, k)
[(V_yq,LLLHk ] = 7 Z |tk Ay 0 |8k ks in(;kz mg , 4.22)
k1,kp,k3eUy,
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if |k| € [N, 3N], where

Gl k en?. 4.23
m($, k) = Z T T (4.23)
All other Fourier components df_,, (11 vanish. We also have similar estimates for the symplectic gradients of
X1,LLHL> X1,LHLL, @ndy1 HLee. To boundF,, (¢) we note that

|Fn(91) — Fin(¢2)] < V27| F),llo < V2r|e7™g = 2x, (4.24)

#1, p2 € [0, 27) (with prime the derivative with respect ). By |£2| > 95N2 and k| € [N, 3N] we see that
11+ 8k2/(n$2)|~1 > 2, and we similarly obtainG,, (¢1, k) — G (¢2, k)| < 4, for all ¢1, 2 € [0, 27) and all
admissiblek, m. Since the functiong;,, andG,, are continuous ig and have zero average, we therefore have

| Fin (@)| < 4, |Gm(9, k)| = 8r, V¢ €0, 2n), (4.25)

and all admissiblé, m. In (4.21)we also note tha| < 1/2 implies|j‘m(0)||5k2| < 2, uniformly inm € Z and
k € [N, 3N].

Estimating the discrete convolutions (#.19), (4.21) and (4.22and in similar expressions for the symplectic
gradients of¢1,LLHL, x1,LHLL, @andx1 HLLL, and using similar bounds on the coefficiefs G,, above, we therefore
have

IV_galls < Clylllyal, s> 3 (4.26)

with a constan€ of O(1) that depends onand|$2| and is decreasing iif2|. Complexifying the real and imaginary
parts of Fourier coefficients; (anda;, with the obvious abuse of notation), we obtain a similar inequality in
H}, s > 1/2 with a slightly larger constant of O(1) that depends om and|£2|. It is also immediate from the
convolution estimates that the complexificatioriof,, is bounded and weakly analytic, and therefore analytic (see
[18], Appendix A). The estimates are also uniform in the parameterhus, giverp, o1 as in the statement we can
choosdy| sufficiently small so that the integral curv@s(yz, y2) exist for ally; € B*(p1), € € [0, 1], andy, € R.
Note that7;(y1, y2) is also real analytic iry; ande, for all y» € R (see e.g[6, Chapter 1},

The distance betweeh (y1, y2) andy; can be estimated using

€
Ty, y2) = 1 +/0 Vi (T9(y1, y2), y2)do, y2 € R. (4.27)

We easily see fron4.27) and (4.26%hat|y| < (1 — a1)/Cp?, with C as in(4.26), implies that ify; € B*(p1) then
T (y1, y2) stays inB*(p) for all € € [0, 1] andy,. Using(4.27)again we obtairf4.18)
The third component gf4.10)is

—T50) = —(D2x)(T 1, y2), y2),  T30) = »3, (4.28)
and it suffices to integrate the right hand side with respeet e have

/
IDoxaiiil < vl D ek @k, al, 8k +ko—ka—kal Fp (D). (4.29)
ky,k2,k3,kaeUL

|Daxaiiml < lyl > |k W@, |0k —ka—ka | G o (B, k)] (4.30)
k1,k2,k3eUr ,kaeUpy

with prime the derivative with respect#o For A(¢) € H® with s > 1/2, the serie&, (¢) is absolutely convergent
and|F,,(¢)| is bounded uniformly imn sincem takes a finite number of values (#.29) Similarly, |2| > 10/8| N2
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and|ks| € [N, 3N] imply that G, (¢, ks) is bounded uniformly inn, k4. Analogous statements hold for the other
terms of D, x1. By the real analyticity of/f (y1, y2) in €, the right hand side of4.28)is therefore real analytic in
¢, forall y1 € B5(p1), andys € R. |

We now consider the derivative of the canonical transformatidnsVe are especially interested in the derivative
along theH* direction. In what follows| A ||y ; denotes the operator norm of a linear mfapH‘Y’ — Hf,andlj is
the identity inH*.

Lemma 4.5. Let p, p1, and s as in theLemma 4.4and assume that\(¢) is in H?,q > 5/2, and that|y| <
y2(s, |82|, p). Then the canonical transformationg : K*(p1) — H* defined above are Fréchet differentiable and
we have

sup [[(D1T DM ls.s < 1+ €Calyl. (4.31)
YEK*(p1)

Alsq the mapsD17{(y), y € K*(p1) in (4.31)are invertible and satisfy

sup (D17 D Wlls,s < 1+ €Calyl, (4.32)
yeK*(p1)
sup (DT 1) — Lillss < €Calyl. (4.33)
yeK3(p1)

The constant, = Ca(s, |£2], p) is of O(1) for p of O(1).

Proof. By

€

TeO) =y + /O V., (T (7)) do (4.34)

and Lemma 4.4differentiability of the maps7“(y) with y € K*(p1) will follow from the differentiability of
the vector fieIdf/Xl(y) for y € K*(p). Note thatsz/EX1 = 1, and that the only other nonvanishing partial
derivatives, namel;lef%l, DZ\N/)%l, Dl\N/fl, aﬂdD3‘~/§1 of V,, involve up to two derivatives (i) of the functions
Fn(9), G (¢, k) in Lemma 4.4 The condition onA(¢) on the other hand implies that the series for the third
derivatives of F,,,(¢), G, (¢, k) are absolutely convergent for all admissilake k. Thus the above four partial
derivatives off/X:L are well-defined and continuousyn. Continuity of the four partial derivatives iy comes from
the real analyticity ofy1, and the existence ciDV_Xl(y) follows immediately. Lettingy| sufficiently small and
integrating\N/X1 as inLemma 4.4we also obtain differentiable transformations<, ¢ € [0, 1]. Moreover, we have
T=E(T(y) = T(T () = v, therefore(DT)~"1(y) = DT ¢(T¢(y)). Viewing (DT €)(y) and its inverse as

3 x 3 block matrices applied to vectors Hi* x R x R, we see that the 1, 1 entry/p7)~1(y)]1.1 must equal
(D1TH) () = D17 (T<(y)). Also note that

€

T =y+ /0 Vi (TT (1, y2), y2) do, (4.35)

and
1D1Vy, (Mglls < C|V|||V1"§”g”s’ s > % (4.36)

with C = C(s, |£2|) of O(1). Differentiating(4.35)with respect to the first component, takifj norms, and using
Gronwall’s inequality we then obtain

sup (D17 D Wl < (L+€G €9, (4.37)
YeK*(p1)
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sup (D179 1) — hllss < €G(L+€G e°) (4.38)
YEK*(p1)
with
G < sup [V, Wlis < CGs, 1200y, (4.39)
yekKs(p)
i.e.(4.32) and (4.33)Estimatg(4.31)follows from similar arguments. O

Remark 4.6. Note that the size of the partial derivativBgVy, . D1V3

73
10 D3V, may be large.

Next we estimate the Hamiltonian vector field of the remairRiein (4.13)

Lemmad.7. Lets, p, p1, ¥, and A(¢) as inLemma 4.5Consider the transformatiorng above and the remainder
Ry of (4.13) Alsg lets’ = s + 2. Then

sup Ve, W5 < Calyl? (4.40)
yek* (p1)

with C3 = C3(s, |£2], p, a1, ¢s) a constant oD(1).

Proof. The vector fieldf/Rl has three parts, each corresponding to the three parenthé4el3nWe first consider
the terms involvingi» andH;. Let f be Fréchet! in K*(p), and considep € K*(p1). By Lemma 4.4and the fact
that the transformatiorng*© are symplectic we have

Viere(3) = [(DTHTWIVATEG)).  €€[0,1]. (4.41)
Observe thaD37; “(y) vanishes sincg1(y) = x1(y1, y2). Then, iff/j% vanishes(4.41)becomes

Vi = [((D1T) T OIVHT o), (4.42)
using [DT)~1(»]11 = (D177)~1(y) (see the proof okemma 4.5. We write (4.42)as

(Viore = V() = [(D1TH) OV (TG = Vi) + [(D1TH ) — V(). (4.43)
Restrictingy to k¥ (p1) with s’ > s, taking H® norms, and usin@.32) and (4.33jn Lemma 4.5 (4.43)yields

IV =V Wls = (1 + CalyD Is(lff) ) VAT = Vills + C2lylVe) s (4.44)

YeK® (p1

forally € K% (p1), s > s.
We now consider the cases whefis h, and Ha, respectively. Note that? andVZ, vanish. The vector field;,,,

viewed as a function front*’ to H*, s’ = s + 2, is uniformly Lipschitz, with Lipschitz constant|. The estimate
for the distance betweeft (y) andy; in Lemma 4.4(4.44)with f = hy yield
sup  [[(Vi,ort = Vi) Wls = (1 + C2lyDI8ICalyl + C2lylI8]p1. (4.45)
yek¥ (p1)
Also,Vy,(y1, y2) : B*(p1) xR — H*, s > 1/2,isLipschitziny1, uniformly iny,. Moreover, ifp; is of O(1) then the
Lipschitz constants are bounded by a quantity ¢fQ). Combining(4.44)for f = H4 with Lemma 3.4, we obtain
sup (Ve o T = Vi )0 ls < (L+ CalyDClyI? + Cly? (4.46)
yek* (p1)
with C(s, p1) of O(1).
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To estimate the third term iﬁRl, let G4 = N4 — Hy and recall that 1, ho] = G4. Using(4.16) and (4.41yvith
f = G4, we have

1
Vioo T —o—lxaho] ) = /0 (DT MV (T() = Vi, () de. (4.47)
Sincef/(z;4 vanishes, we can argue as before that the first componétiddf)is
1
Vioo T —ho—Lxnhg) ) = /0 (D17 WM V6u(TE() — Vi (1)) de. (4.48)
Splitting the integrand as i@.43) and using the derivative estimates friiemma 4.5 (4.48)leads to

1 1
WVasornoteng Dl < /O €Cll (Ve (T*(3)) — Vo, ()l de + /0 €Caly111 Vg, (1 de (4.49)

for all y € K*(p1). Arguing as forVy, above Vg, (y1, y2) : B*(p1) x R — H* is Lipschitz iny1, uniformly in y»,
with Lipschitz constants bounded by a quantity af)). Combining this with.emma 4.4 (4.49)implies

1
SUD V71 g = [ Celyi?e (4.50)

yek¥ (p1) 0
with C = C(s, p1) of O(1). Collecting the estimate@.45) (4.46) (4.50)for the three parts o¥/g, and using
|8] < csly| in (4.45) we therefore have the statement. O

Proof of Theorem 4.2. Fix s > 1, and assume thdtr2~1) € H?, g > 3/2. We want to estimate the sizemafr)

in (4.17) The initial condition will ber1(0) = z1(0) — 7%(1(0)). Lets’ = s + 2, and considelProposition 4.with
po = B of O(1). Applying Proposition 4.1o the first component of the quartic normal foixq. (4.14) we can
choosgy| sufficiently small so that1(0) € B* (po) impliesz(r) € B* (2po) for a time interval of Qly|~hH. We
also have existence iH* for the full system(4.1) with the initial conditionx;(0) = z1(0) € H*', also over a time
interval of O(|y|~1). In particular, theH* norm ofx1(¢) remains of Q1) over that time. We set; = 2pg, a1 = 3/2,
and let|y| < yo so thatLemmas 4.4 and 4.&pply. Thusﬂ(zl(t), 1) is well-defined over the time interval of the
local existence theory. DefirfR1(r) by r1(r) = €-R1(r) and note that the operatdh = €' is an isometry inH*
and commutes witlk (in a dense subset @f*). By (4.17) R1(¢) then satisfies

Ry = U_(Vig,(x) — Vi, (Ti(2))) + U—[D1T3(2)] Vi, (2). (4.51)

Note thatVy, (y1, y2) : B(¢’) x R = H*, s’ > 1/2, is Lipschitz continuous iz, uniformly in y,, and that foro’
of O(1) the Lipschitz constants are of([9]), e.g. se€4.4). From(4.51)we then have that farin the time interval
of the local existence theorem we have

t t
R1)lls < IR1(0) |5 +/0 CI)/IIIRl(t)IlsdTvL/O ||D17%(Z(f))lls,x||VRl(z(T))Ilsdf (4.52)
with C = C(s, p1) of O(1). BoundingR1(0), Dﬂ% andVg, by Lemmas 4.4, 4.5 and 4.7espectively, and using
Gronwall’s inequality(4.52)yields
Ira®lly = IR1® s < Colyl, € [0, Colyl™] (4.53)

with Co, Co that depend om, |£2|, po, cs and are of @1).
To extend the error estimate i{r2~1) € L2, consider two dispersion management functidi®17) in
HY,q > 3/2,d1($27) in L? with the same average(and periodl’ = 27/£2). Also let A1(H) = 3 di(o) do
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(following the notation 0{2.4)). The nonlinearities of4.1) and (4.2with A(r) replaced byA1(r) are denoted by
F1, G1, respectively, and we compare the solutiongof= Lay + Fi (a1, f) andby = Lby+G1(b1, 1), with the initial
conditionsa; (0) = b1(0) = a(0) (= b(0) € HY,s' =s+2,as above) to solutions ¢f.1) and (4.2)Define A by

A =VT|d@) —di(®)]lo > |A®) — A1(1)]. (4.54)

Choosingd(t$2~1) that is close tal;(t£271), i.e. lettingA > 0 small, we observe th#t.53)is uniform in A. This
is because the estimates frand D175 only required(2~1r) € L2, and the extra derivatives were used to make
DT well-defined, but do not appear in the quantities involve@is3) From

llar(®) — b1y < lar(®) —a®lls + lla@®) — b@)|ls + 116() — b1 (D) |ls, (4.55)

it then suffices to check that by choosing> 0 sufficiently small the first and third terms @.55)can be made of
O(|y|) over a time interval of Qy|~1). To see this, we let/, = €, A(r) = U_,a(r), A1(f) = U_,a1(f), and use
(4.54)to obtain

[F(UA(7), ©) — F1(U: A1(D), Dlls = Cr([[A(D) — A1(Dls + CAAD)ly) (4.56)

with L a constant that is quadratic j ||, ||A1]ls, andC of O(1). The H* norms ofA and A1 remain of Q1)
over a time of @Q|y|~1), and by(4.56)we see that

la(®) — a1y < O(A) (4.57)

for a time of Q|y|~1). Similar arguments apply to the third term(#55) O

As noted in[3], (4.15)allows us to estimate the remainder on the solutions of the normal form equation for
which we have more information. On the other hand(4irb2) we had to use the fact that the solution of the full
system remains of Q) in H over the time interval of interest. This control of the solutions of the full system for
all s > 1/2 comes from the local existence theory, and may not be available for longer times. It appears that the
possible growth of the norms is one of the main problems in extending the formal theory to higher orders.

The extension of heorem 4.20 more general dispersion relations is straightforward, with the indexermined
by the number of derivatives in the low and high frequency regions of the dispersion.

We also expect that there is an alternative way of obtaiifingorem 4.2by following the first normalization
procedure oSection 3in a sufficiently large Galerkin projection ¢4.1). Although we do not obtain an invariant
subspace this way, we can use the regularity of the solution to see that the error of the Gakerkin approximation
and the remainder of the finite dimensional normal form are comparable and small. This strategy is developed in
[16] for a general dispersive PDEs coupled to a fast oscillator, where it is shown that under appropriate regularity
assumptions on the solution one can decouple the PDE and the oscillator up to an exponentially small error. At the
same time we can view the second normalizatioBedtion 3as a generalization of works on averaging a dispersive
system coupled to a fast oscillator, in that we have considered the coupling of a “fast” system of oscillators to a
“slow” system (that here is finite dimensional). The result is not decoupling but rather an invariant manifold for
the slow system. When the size of the oscillations of the fast system remains small, e.g. due to the regularity of
solutions in the case where the fast system describes the high spatial modes of a PDE, the decoupling result, and tt
existence of an invariant manifold are practically the same, i.e. the slow motions are the same up to a small error.

At present, there is a gap betwe€&heorem 4.2and the periodic orbits dProposition 3.%ince we have not
estimated any higher Sobolev norms of these solutions for fiXatbrm. It is possible that some of these solutions
have oscillations, and that we will need to decrease their amplitude to bring them inside the domain where the
normal form equation is valid. We expect that this question can be partially addressed with some numerical work
in progress.
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