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Abstract

We consider a finite discrete nonlinear Schrödinger equation with localized forcing, damping,
and nonautonomous perturbations. In the autonomous case these systems are shown numerically
to have multiple attracting spatially localized solutions. In the nonautonomous case we study
analytically some properties of the pullback attractor of the system, assuming that the origin
of the corresponding autonomous system is hyberbolic. We also see numerically the persistence
of multiple localized attracting states under different types of nonautonomous perturbations.

1 Introduction

We study some properties of attractors of a finite discrete nonlinear Schrödinger (DNLS) system
with dissipation, localized forcing, and nonautonomous perturbations. The dynamics of the au-
tonomous dissipative DNLS system exhibits spatial localization and multistability, and we also
examine these phenomena in the presence of nonautonomous perturbations, applying some recent
notions of attractivity for nonautonomous dissipative systems.

The DNLS system we consider is a basic model for coupled waveguide arrays in optics [5], and
there are several physically realizable mechanisms of dissipation and gain. We here consider the
standard cubic DNLS with a linear term that describes linear dissipation or gain at each site,
as well as a cubic dissipative saturation term. The linear part generalizes the non-Hamiltonian
and non-Hermitian linear part of PT-symmetric discrete NLS equations proposed in [16], while
the nonlinear dissipative term leads to the existence a global attractor. The resulting system is
also a discrete 1-D version of the spatially forced dissipative NLS equation considered in [10], see
the related localized gain models of [11], [15]. In these models the mathematical time variable
represents distance along the optical axis. The nonautonomous perturbation is of additive type,
and could model energy “kicks” at different regions along an optical fiber, unequal or noisy “kicks”
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at equally spaced regions of the fiber, and other types of external forcing, e.g. through an input
coupler. Perturbations of the system parameters are generally more interesting since they also
depend on the signal, but are not considered here mainly for mathematical simplicity. We believe
however that they can be eventually included in the framework of sections 2, and 3.

The long time behavior of the autonomous dissipative DNLS system is characterized by its
attractor. In the presence of nonautonomous perturbations we also show that the system has a
pullback attractor. The notion of a pullback attractor, see [1], is a generalization of the notion
of an attractor, applicable to general nonautonomous systems. A recent exposition of the theory
can be found in [4]. Roughly, a section (or “slice”) A (t) of a pullback attractor at time t contains
all possible states observed at time t of a physical process that had started at past time t0, with
t0 → −∞. Information on the detailed structure of the pullback attractor has been so far obtained
for nonautonomous perturbations of wave systems with relatively simple dynamics, e.g. the damped
nonlinear wave equations studied in [1], [2]. The proposed equation is a simple model that shows
more complicated dynamics and motivates further work on these problems.

To obtain information on the geometric structure of the attractor we use a combination of
analytical arguments and numerics. In the case where the origin is a hyperbolic fixed point of the
autonomous system we use results of [3] to see that the pullback attractor of the nonautonomous
perturbation includes nonautonomous analogues of the hyperbolic fixed point and its local unstable
manifold. The condition of hyperbolicity at the origin can be verified theoretically for small intersite
coupling, and we also see numerically that it can hold in the presence of strong intersite coupling.

For small intersite coupling the dynamics and spatial localization pattern of the asymptotic states
of the system contained in the attractor is largely determined by the spatial structure of the linear
forcing and damping term, and we see localization at the forced sites. Increasing the coupling
strength leads to more complicated spatial localization patterns, and multistability. We also see
evidence of asymptotic states that are likely not periodic. Their localized structure also persists
under different nonautonomous perturbations, although the nonautonomous forcing changes the
basins of attraction.

The paper is organized as follows. In Section 2 we define the nonautonomous dissipative DNLS
model, introduce some basic notions of attractivity for nonautonomous systems, and prove the
existence of a pullback attractor. In Section 3 we prove some basic results on the invariant sets of
nonautonomous perturbations of the dissipative DNLS system under the assumption of hyperbol-
icity of the origin. In Section 4 we give numerical examples of attractors for the autonomous and
nonautonomous DNLS system, and provide evidence for the existence of multiple spatially localized
attracting states.

2 Discrete NLS in a finite lattice and pullback attractors

We study a discrete forced and damped cubic NLS equation in a finite lattice J = {1, . . . , N},
written as

d

dt
u = (iC + V )u + F (u) + G(t), (1)
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where u = [u1, . . . , uN ] ∈ C
N ,

(Cu)j = −δuj + γ(uj+1 + uj−1), ∀j ∈ J \ {1, N},

(Cu)1 = −δu1 + γu2, (Cu)N = −δuN + γuN−1,

(V u)j = Vjuj,

(F (u))j = (−ε + ib)|uj |2uj, (G(t))j = gj(t), ∀j ∈ J.

Parameters γ, δ, ε, b are real, and with ε > 0. Also Vj ∈ R and we assume that

|gj(t)|2 ≤ Kj, ∀t ∈ R, ∀j ∈ J. (2)

The term iC describes nearest neighbor coupling between the sites. For δ = 2γ, C is a discrete
analogue of the Dirichlet Laplacian on the interval.

The term (V u)j desribes forcing (Vj > 0) or damping (Vj < 0) at the site j. We denote the set
of sites j ∈ J satisfying Vj > 0 by J+, and the set of sites j ∈ J satisfying Vj < 0 by J−.

The linear operator iC + V is in general non-Hermitian and non-Hamiltonian. For Vj = −V−j

it belongs to the class of PT-symmetric operators, see e.g. [16], and the origin can be elliptic,
although in sections 3 and 4 we are interested in the case where the origin is hyperbolic.

The nonlinear term F (u) contains Hamlitonian and dissipative parts. In the case where iC +V is
PT-symmetric, the nonlinear dissipation term is not, but it may be interesting in the PT-symmetry
context as it provides a mechanism for saturation, and leads to the existence of attractors (see
below).

G(t) is the nonautonomous forcing term. The case G ≡ 0 will be referred to as the autonomous
case. Note that in the autonomous case system (1) is equivariant under global phase change
un 7→ eiθun, but the power P =

∑N
j=1 |uj |2 is not conserved.

We now consider some basic dissipativity properties of (1).

We let X = C
N = R

2N , with the Euclidean norm ‖ · ‖X . We will also assume that G : R → C
N

is Hölder continuous in R.

The existence of a local solution u(t, s;u(s)) = {uj(t, s;u(s))}j∈J of (1) with initial data u(s) ∈ X
(see, for example [9]) is immediate from the fact that G(t) is Hölder continuous and the fact that
the non-linearity F (u) is locally Lipschitz in X, in fact, taking x, y inside a ball of radius R around
the origin in C

N ,
‖F (x) − F (y)‖X ≤

√
3(ε2 + b2)R‖x − y‖X . (3)

In the autonomous case, system (1) has a compact attractor. This follows from the fact that the
norm ‖u(t)‖X of the solution u(t) satisfies

d

dt
‖u‖2

X = 2
∑

j∈J

(

Vj |uj |2 − ε|uj |4
)

≤ −2α‖uj‖2
X + 2

∑

j∈J

(

(Vj + α)|uj |2 − ε|uj |4
)

, (4)

where α = max{|Vj | : j ∈ J−}. Then

d

dt
‖u‖2

X ≤ −2α‖uj‖2
X +

‖Vj + α‖2
X

2ε
,
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using the fact that −ax2 + bx ≤ b2

4a
, ∀x ∈ R. By Gronwall’s Lemma and calling K=

‖Vj+α‖2
X

2ε
,

‖u‖2
X ≤ ‖us‖2

Xe−2α(t−s) + K. (5)

Therefore, there exists a ball in X with radius K which absorbs any solution u(t, s;us) of (1).
This ball is clearly compact. By the theory of global attractors (see [7]), there exists a compact
invariant set that attracts all bounded sets of X.

For the nonautonomous case we recall some basic definitions and results on pullback attractors
and evolution processes, see [1, 2, 4].

Definition 2.1 An evolution process in a metric space (X , dX ) is a family of continuous maps
{S(t, s) : t ≥ s} from X into itself with the following properties

1) S(t, t) = I, for all t ∈ R,

2) S(t, s) = S(t, τ)S(τ, s), for all t ≥ τ ≥ s,

3) {(t, s) ∈ R
2 : t ≥ s} × X ∋ (t, s, x) 7→ S(t, s)x ∈ X is continuous.

For A, B subsets of X let dist(A,B) = supa∈A infb∈B dX (a, b), i.e. dist(A,B) denotes the Haus-
dorff semidistance between A, B.

Definition 2.2 A set B(t) ⊂ X pullback attracts a set C at time t under {S(t, s) : t ≥ s} if

lim
s→−∞

dist(S(t, s)C,B(t)) = 0.

A family {B(t) : t ∈ R} pullback attracts bounded subsets of X under {S(t, s) : t ≥ s} if B(t)
pullback attracts bounded subsets at time t under {S(t, s) : t ≥ s}, for each t ∈ R.

Now, we can define pullback attractors.

Definition 2.3 A family of compact sets {A (t) : t ∈ R} is the pullback attractor for the process
{S(t, s) : t ≥ s} if

i) it is invariant, that is, S(t, s)A (s) = A (t) for all s ≤ t,

ii) attracts all bounded subsets of X in the pullback sense,

iii) is minimal in the sense that if there exists a family of closed sets {C(t) : t ∈ R} such that
pullback attracts bounded sets of X , then A (t) ⊂ C(t), for all t ∈ R.

The above definitions represent one possible way of generalizing the concept of attractor to
nonautonomous dynamical systems, see [4, 14].

First, the notion of process is general enough to include smooth nonautonomous dynamical, as
well as stochastic processes, e.g. ordinary differential equations with additive noise, see [4, 14].
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Also, intuitively, the section (or “slice”) A (t) of a pullback attractor at time t should contain
the states seen at time t in an experiment or physical process that had started in the remote past,
at s → −∞. The dependence of the evolution law on time should, in general, make the outcome
depend on the “observation time” t. Moreover the dissipativity of the system should “collapse”
large sets of initial data to a smaller set, contained in A (t). In the special case of an autonomous
system, the process depends only on t − s. Then A (t) is independent of t and coincides with
the global attractor of an autonomous system. A related concept of “pushforward”, or “future”
attractor can be also defined, but seems to be more difficult to handle, e.g. we do not have an
analogue of Theorem 2.4 below, see [4, 14] for more information.

In the numerical experiments of Section 4 we will consider integration from a set of initial points
u(s) in X, starting at a sufficiently negative time s, and examining the corresponding trajectories
u(t, s;u(s)) at t = 0. The “asymptotic set” of computed u(0, s;u(s)) should approximate a subset
of A (0). In the examples of Section 4, different observation times t seem to give nearby endpoints.

Note that by its definition the pullback attractor can contain nonautonomous analogues of in-
variant unstable sets and their unstable manifolds. This part of the attractor is examined in more
detail in Section 3, but can not be seen directly in simulations. On the other hand, the numerical
experiments of Section 4 should be able to detect the parts of the attractor that are locally attract-
ing. We will not formalize here the notion of local attractivity for nonautonomous systems, and we
will refer to these sets in Section 4 as “asymptotic states”, or “attracting sets”.

The following result from [1, 2] gives sufficient conditions for the existence of the pullback at-
tractor.

Theorem 2.4 Let {S(t, s) : t ≥ s} be an evolution process in a metric space X . Then, the following
statements are equivalent

• {S(t, s) : t ≥ s} possesses a pullback attractor {A (t) : t ∈ R}.

• There exists a family of compact sets {K(t) : t ∈ R} that pullback attracts bounded subsets of
X under {S(t, s) : t ≥ s}.

In the case of system (1) we apply the above framework with X = X = C
N = R

2N , and dX the
Euclidean norm ‖ · ‖X in R

2N .

We now prove the existence of the pullback attractor for (1). By the theorem above, we need to
show the existence of a family of compact absorbing sets in the pullback sense. In this way, we are
going to obtain a estimate for the norm of the solution in X.

Proposition 2.5 System (1) has an absorbing ball B(0,K0) in X = C
N that attracts in the pull-

back sense. Furthermore, system (1) has a pullback attractor {A (t) : t ∈ R} ⊂ R × B(0,K0).
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Proof: Proceeding as in (4) for uj = (u(t, s;u(s)))j ,

d

dt

∑

j∈J

|uj|2 = 2
∑

j∈J

(

Vj |uj|2 − ε|uj |4
)

+ 2
∑

j∈J

Re (gj(t)uj)

≤ 2
∑

j∈J

(

(Vj + 1)|uj |2 − ε|uj |4
)

+ 2
∑

j∈J

|gj(t)|2

≤ 2
∑

j∈J

(

(Vj + 1)|uj |2 − ε|uj |4
)

+ 2
∑

j∈J

K2
j ,

Defining α as in (4),

d

dt

∑

j∈J

|uj|2 ≤ −2α
∑

j∈J

|uj |2 + 2
∑

j∈J

(

(Vj + α + 1)|uj |2 − ε|uj |4
)

+ 2
∑

j∈J

K2
j .

By −ax2 + bx ≤ b2

4a
, ∀x ∈ R,

d

dt

∑

j∈J

|uj |2 ≤ −2α
∑

j∈J

|uj |2 +
1

2ε

∑

j∈J

(Vj + α + 1)2 + 2
∑

j∈J

K2
j ,

and by Gronwall’s Lemma,

∑

j∈J

|uj |2 ≤ e−2α(t−s)
∑

j∈J

|uj|2 +
1

2ε

∑

j∈J

(Vj + α + 1)2 + 2
∑

j∈J

K2
j .

Therefore, there exists a ball B(0,K0) of radius

K0 =
1

2ε

∑

j∈J

(Vj + α + 1)2 + 2
∑

j∈J

K2
j ,

that attracts in the pullback sense.

The existence of the pullback attractor for (1) follows immediately from Theorem 2.4.

3 Hyperbolic global solution and its unstable set

In this section we discuss some features of the pullback attractor of (1). We will consider the case
where the origin of the autonomous version is hyperbolic.

An example of an autonomous system of this type is given by perturbations of the autonomous
uncoupled system

u̇j = Vjuj + (−ε + ib)|uj |2uj , j ∈ J, (6)

i.e. (1) with γ = δ = 0.
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Assuming J+ ∪ J− = J , (6) has solutions of the form

uj(t) ≡ 0, if Vj < 0; uj = Aje
−iωjt, if Vj > 0, (7)

with

|Aj |2 =
Vj

ε
, ωj = −b

Vj

ε
. (8)

The above solutions lie on the invariant m−torus Tm(V ), with m = |J+|. This torus is a normally
hyperbolic local attractor for (6).

System (6) also has an hyperbolic equilibrium in u ≡ 0: the spectrum σ(V ) of V does not intersect
the imaginary axis and σ+ = {λ ∈ σ(V ) : Re λ > 0} is compact. The unstable manifold is the finite
dimensional polydisc Πm

j=1D
2
j , where D

2
j = {z ∈ C : |z|2 ≤ Vj/ε, Vj > 0}, and ∂Πn

j=1D
2
j = Tm(V ).

Clearly, Πn
j=1D

2
j is also the global attractor of this uncoupled system. The stable manifold is the

set {uj = 0 : j ∈ Z, Vj ≥ 0}.
Furthermore, there exists a projection Q0 : X → X defined by

Q0 = Q0(σ
+) =

1

2πi

∫

θ

(λI − V )−1dλ, (9)

where θ is a curve in ρ(V ) ∩ {λ ∈ C : Re λ > 0} (ρ(V ) is the resolvent of the operator V )
oriented counterclockwise and enclosing σ+. This projection defines two subspaces X+

0 = Q0X and
X−

0 = (I − Q0)X such that X = X+
0 ⊕ X−

0 and

‖T0(t − s)|
X+

0

‖L(X+

0
) ≤ eα(t−s), t − s ≤ 0,

‖T0(t − s)|
X−

0

‖L(X−

0
) ≤ e−α(t−s), t − s ≥ 0,

(10)

where {T0(t− s) : t ≥ s} is the semigroup associated to the solution of the linear system d
dt

u = V u.

In what follows we assume a similar hyperbolicity condition at the origin, that is we assume that
there exist a projection Q : X → X, subspaces Z+ = QX, Z− = (I − Q)X, and α̃ > 0, such that
the semigroup {T (t − s) : t ≥ s} associated with the solution of d

dt
u = (iC + V )u satisfies

‖T (t − s)|Z+‖L(Z+) ≤ eα̃(t−s), t − s ≤ 0,

‖T (t − s)|Z−‖L(Z−) ≤ e−α̃(t−s), t − s ≥ 0.
(11)

Also, a global solution of (1) is a function ξ : R → X such that S(t, s)ξ(s) = ξ(t) for all t ≥ s,
∀s, t ∈ R. We then have the following.

Lemma 3.1 Assume (11). Then system (1) has a bounded global solution u∗(t).

Assumption (11) can be easily verified for small coupling. For instance, Gersgorin’s Circle The-
orem (see e.g. [6]) implies that if min{|Vj − iδ| : j ∈ J} > 2γ, then the number of stable and
unstable eigenvalues of the origin is the same as in (6).

In the next section we show examples where by increasing |δ| (γ = 2δ) the number of stable
and unstable directions changes. We can still however keep the spectrum sufficiently far from the
imaginary axis.
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Proof: Let us consider the solution u(t) of (1). By the variation of constants formula and denoting
F(t, u) = F (u) + G(t),

u(t) = T (t − s)u(s) +

∫ t

s

T (t − θ)F(θ, u(θ))dθ,

where T (t − s) is the semigroup associated to the solution of d
dt

u = (V + iC)u.

By (11) we have

Qu(t) =

∫ t

∞
T (t − θ)QF(θ, u(θ))dθ,

(I − Q)u(t) =

∫ t

−∞
T (t − θ)(I − Q)F(θ, u(θ))dθ.

Let us define the functional

G(u)(t) =

∫ t

∞
T (t − θ)QF(θ, u(θ))dθ +

∫ t

−∞
T (t − θ)(I − Q)F(θ, u(θ))dθ.

A global solution of (1) will exist in small neighborhood of 0 if and only if G has a unique fixed
point in B(0, η) = {u : R → X : sup{‖u(t)‖X : t ∈ R} ≤ η} for η > 0 small enough. Let us take
u, v ∈ B(0, η). Using the estimate in (3), we have

∫ t

∞
‖T (t − θ)Q[F(θ, u) −F(θ, v)]‖Xdθ ≤

∫ t

∞
‖T (t − θ)Q‖L(X)‖F (u) − F (v)‖Xdθ

≤
√

3(ε2 + b2)η‖u − v‖X

∫ t

∞
eα̃(t−θ)dθ

=

√
3(ε2 + b2)η

α̃
‖u − v‖X .

In an analogous way, we also obtain that

∫ t

−∞
‖T (t − θ)(I − Q)[F(θ, u) −F(θ, v)]‖Xdθ ≤

√
3(ε2 + b2)η

α̃
‖u − v‖X .

Therefore, taking η < α̃

2
√

3(ε2+b2)
, G is a contraction map and, by the Banach Fixed Point Theorem,

there exists a global bounded solution u∗(t) of system (1) with ‖u∗(t)‖X ≤ η.

Changing variables y(t) = u(t) − u∗(t), we can rewrite our original system as

d

dt
y = B(t)y + h(t, y), (12)

where DF (·) represents the Jacobian matrix of F in R
2N , B(t) = V + iC +DF (u∗(t)) and h(t, y) =

F (y + u∗(t)) − DF (u∗(t))y − F (u∗(t)). The natural generalization of hyperbolicity whithin the
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framework of evolution processes can be found in [9]. Denoting by {S(t, s) : t ≥ s} the evolution
process associated to

d

dt
y = B(t)y, (13)

we say that the linear system (13) has an exponential dichotomy with exponent ω > 0 and bound
M > 0 at y ≡ 0 if there exists a family of projections {Q∗(t) : t ∈ R} in X such that

i) S(t, s)Q∗(s) = Q∗(t)S(t, s),

ii) the restriction S(t, s)|Q∗(s)X , t ≥ s is an isomorphism of Q∗(s)X onto Q∗(t)X,

iii) defining S(t, s) for t ≤ s as the inverse of S(s, t) : Q∗(t)X → Q∗(s)X,

‖S(t, s)Q∗(s)‖L(X) ≤ Meω(t−s), t − s ≤ 0,

‖S(t, s)(I − Q∗(s))‖L(X) ≤ Me−ω(t−s), t − s ≥ 0.
(14)

A global solution u∗(t) of (1) is then a global hyperbolic solution if the linearization (13) has an
exponential dichotomy.

Lemma 3.2 Under the assumptions of Lemma 3.1, there exists a bounded global hyperbolic solution
u∗(t) of system (1) with ω < α̃ and M > 1 where ‖u∗(t)‖X < η, for η > 0 small enough and for all
t ∈ R.

The proof of Lemma 3.2 is a direct application of Theorem 7.6.11 in [9].

Whithin the framework of the evolution processes, the unstable and stable manifolds of a solution
are defined as families of subsets that depend on time and have the same dynamic properties as in
the autonomous case (see [2, 3, 4]).

Definition 3.3 The unstable set of an hyperbolic global solution u∗(t) of system (1) is the set

W u(u∗) = {(s, z) ∈ R × X : there exists a global solution ξ(t) of (12)

satisfying ξ(s) = z and such that lim
t→−∞

‖ξ(t) − u∗(t)‖X = 0}.

The stable set of an hyperbolic global solution u∗(t) of system (1) is the set

W s(u∗) = {(t0, z) ∈ R × X : there exists a solution u(t), t ≥ t0, of (1)

satisfying u(t0) = z and such that lim
t→∞

‖u(t, t0; z) − u∗(t)‖X = 0}.

We denote by W u(u∗)(τ) = {z ∈ X : (τ, z) ∈ W u(u∗)} and W s(u∗)(τ) = {z ∈ X : (τ, z) ∈ W s(u∗)}
the section of the unstable and stable sets respectively.

Note that supt∈R ‖u∗(t)‖X < ∞ implies W u(u∗)(t) ⊂ A (t).
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Also, since A (t) ⊂ B0(0,K0), ∀t ∈ R, the pullback attractor is the union of all bounded global
solutions (see [4]), that is

A (t) = {ξ(t) : ξ : R → X is a bounded global solution}.

We now prove the existence of local stable and unstable sets of u∗(t) as graphs.

Define constants D,L, ρ > 0 and 0 < ν < 1 such that

ρM

ω
≤ D,

ρM

ω
(1 + L) ≤ ν < 1,

ρ2M(1 + L)

ω − ρM(1 + M)
≤ L, ρM +

ρ2M2(1 + L)(1 + M)

2ω − ρM(1 + L)
< ω.

(15)

Denote by LBu(D,L) the complete space of all bounded and globally Lipschitz continuous functions
Σ : R × X → X defined as all (t, y) 7→ Σ(t,Q∗(t)z) ∈ (I − Q∗(t))X satisfying that for all (t, z, z̃) ∈
R × X × X,

sup{‖Σ(t,Q∗(t)y)‖X : (y, t) ∈ X × R} ≤ D,

‖Σ(t,Q∗(t)z) − Σ(t,Q∗(t)z̃)‖X ≤ L‖Q∗(t)(z − z̃)‖X .

Let LBs(D,L) be the complete space of all bounded and globally Lipschitz continuous functions
Σ : R × X → X, defined as all (t, y) 7→ Σ(t, (I − Q∗(t))z) ∈ Q∗(t)X satisfying that for all
(t, z, z̃) ∈ R × X × X,

sup{‖Σ(t, (I − Q∗(t))y)‖X : (t, z) ∈ X × R} ≤ D,

‖Σ(t, (I − Q∗(t))z) − Σ(t, (I − Q∗(t))z̃)‖X ≤ L‖(I − Q∗(t))(z − z̃)‖X .

Proposition 3.4 Under the assumptions of Lemma 3.2, the local unstable set W u
loc(u

∗)(t) and the
local stable set W s

loc(u
∗)(t) of (1) are given by a graph, that is there exist Σu,∗(t, ·) ∈ LBu(D,L)

and Σs,∗(t, ·) ∈ LBs(D,L) a such that

W u
loc(u

∗)(t) = W u(u∗)(t) ∩ V(t) = {u∗(t) + z + Σu,∗(t, z)), z ∈ Q∗(t)X} ∩ V(t),

and
W s

loc(u
∗)(t) = W s(u∗)(t) ∩ V(t){z + (Σs,∗(t, z), z ∈ (I − Q∗(t))X} ∩ V(t),

where V(t) is a neighborhood of u∗(t).

Proof: In order to prove the existence of the stable and unstable sets of u∗(t) we use the results
in [3] (see also [4]). We define y+ = Q∗(t)y and y− = (I − Q∗(t))y, where y(t) is the solution of
(13). These functions y+ and y− verify for the following systems,

ẏ+ = V+(t)y+ + H(t, y+, y−),

ẏ− = V−(t)y− + G(t, y−, y−),
(16)

where

V+(t) = (V + iC + DF (u∗(t)))Q∗(t), V−(t) = (V + iC + DF (u∗(t)))(I − Q∗(t)),

H(t, y+, y−) = Q∗(t)[F (y+ + y−) − DF (u∗(t))(y+ + y−) − F (u∗(t))],

G(t, y+, y−) = (I − Q∗(t))[F (y+ + y−) − DF (u∗(t))(y+ + y−) − F (u∗(t))].
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For a given ρ > 0, there exists a r > 0 such that if ‖y‖l2 = ‖y+ + y−‖l2 < r,

‖H(t, y+, y−)‖l2 < ρ, ‖G(t, y+, y−)‖l2 < ρ

‖H(t, y+
1 , y−1 ) − H(t, y+

2 , y−2 )‖l2 ≤ ρ(‖y+
1 − y+

2 ‖l2 + ‖y−1 − y−2 ‖l2)

‖G(t, y+
1 , y−1 ) − G(t, y+

2 , y−2 )‖l2 ≤ ρ(‖y+
1 − y+

2 ‖l2 + ‖y−1 − y−2 ‖l2).

(17)

Then, by Theorem 8.4 and 8.5 in [4] we can write the local stable and unstable set of the trivial
solution y ≡ 0 of system (12) as a graph.

4 Numerical examples of attracting sets

We consider numerical solutions of system (1) in the autonomous and nonautonomous cases. We
will show evidence for the existence of multiple localized asymptotic states for the autonomous
system, and their persistence under nonautonomous perturbations.

We set δ = 2γ, so that the operator C is the second order finite difference discrete (Dirichlet)
Laplacian. δ is then the intersite coupling constant. We also fix b = 2, ε = 0.01, and consider a
lattice with N = 19 sites.

We will generally force a few sites at the center of the lattice, and damp all other sites.

The linear stability of the origin is determined by the spectrum of V + iC, and some examples
are shown in Figures 1, 2.

The spectra of Figure 1 correspond to a realatively weakly damping (see caption). The damping
can be stronger or comparable to the coupling constant |δ|. Increasing |δ| increases the imaginary
part of the eigenvalues, moreover as |δ| becomes comparable to the damping, the hyperbolicity
condition becomes harder to satisfy, as many eigenvalues pass to the right of the imaginary axis,
i.e. compare Figures 1 (a), (b).

In Figure 1 (a) the coupling is weaker than the damping. The forcing is such that frequencies of
the uncoupled nonlinear oscillators of the forced sites, see (8), are large compared to the coupling.
The forced sites then have approximate periodic motions, and seem to evolve independently from
each other. This seems to be a more tractable regime analytically and will be studied elsewhere.

In Figure 2 we use stronger damping, so that we can also use a stronger coupling and still keep
the condition of hyperbolicity at the origin. In Figures 2 (a), (b) we see that we can increase
the coupling parameter and keep the eigenvalues away from the imaginary axis. The number of
unstable eigenvalues in Figures 2 (a), (b) is 6. In Figure 2 (c) we have larger coupling, δ = −1.0,
and the number unstable eigenvalues is 4. The eigenvalues are still relatively far from the imaginary
axis, i.e. compare to Figure 1 (b).

In the autonomous case, the dynamics corresponding to the parameters of Figures 2 (b), (c), i.e.
weaker and stronger coupling respectively, are different.

In Figure 3 we show the asymptotic profile of the mode amplitudes for the weaker coupling
δ = −0.4 of Figure 2 (b). The asymptotic profile shown in Figure 3 is typical: we used 100
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Figure 1: (color online) Spectrum of V + iC for different values δ, for N = 19 sites, and δ = 2γ,
V9 = 0.5, V10 = 0.6, V11 = 0.3, Vj = −0.01, j /∈ I = {9, 10, 11}. (a) δ = −0.02. Eigenvalues are
near the values of the Vj : 6 eigenvalues with positive real part, all other eigenvalues have real part
below −0.005 (b) δ = −0.2. 22 unstable eigenvalues, 6 with real part above 0.25 (real parts are
close to Vj, j ∈ I, to whithin 20%), other unstable eigenvalues have real part below 0.181.

pseudorandom initial conditions with power P = 160 (generated as described in [12]) and saw in all
cases convergence to the amplitude profile shown in Figure 3. In all examples the power approached
an approximate value 140.0± 0.1, while the amplitudes of the forced modes apporached an almost
constant value, with a small time variation of at most 5% of what we see in the figure.

In Figure 4 we see results from a similar experiment, using instead the stronger coupling δ = −1.0,
as in Figure 2 (c). All initial conditions lead to asymptotic states of slowly varying total power
and mode amplitudes, as in Figure 3. Here however we see several different asymptotic amplitude
profiles. There is thus evidence of several attracting sets and multistability.

We have so far detected at least 5 different possible attractors. Most initial conditions (about
90%) asymptote to an attractor localized in the three forced modes n = 9, 10, 11, as seen in Figure
4 (a). Figures 4 (b), (c), (d) show three less common asymptotic profiles. In Figure 4 (b) we see
that the site n = 8 is also excited. Figures 4 (c), (d) show localization at two sites. In Figure 4 (d)
the amplitudes at n = 9, and 10 approach a constant common value.

The asymptotic amplitude profiles shown above have been observed with different integrators and
time steps. In Figure 4 (d) we see some evidence for phase locking between u9(t) and u10(t). This
fact is however only observed using a higher order integrator such as a sixth-seventh order variable
step Runge-Kutta. A fourth order Runge-Kutta with timestep 10−4 shows the same asymptotically
constant amplitudes at n = 9, 10, but no phase locking.

Note that (1) can in principle have solutions of the “breather” form un = eiωtAn, with ω real,
and An independent of time. These can be obtained by first finding breather solutions of the
Hamiltonian system (1) with V = 0, ǫ = 0, and choosing appropriate V , see e.g. [10]. Their
existence for generic V does not seem obvious.

The above attractors do not seem to be periodic. Evidence for this comes from projections of
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Figure 2: (color online) Spectrum of V + iC for different values δ, for N = 19 sites, and δ = 2γ,
V9 = 0.5, V10 = 0.6, V11 = 0.3, Vj = −0.3, j /∈ I = {9, 10, 11}. (a) δ = −0.02. Eigenvalues are
near the values of the Vj : we have 6 eigenvalues with positive real part, all other eigenvalues have
real part below −0.26. (b) δ = −0.4 Real parts of eigenvalues realatively near the values of the
Vj , larger imaginary parts. Number of stable and unstable directions as in (a). (c) δ = −1.0, 4
unstable eigenvalues (two conjugate pairs that are very close), all other eigenvalues have real part
below −0.4.

the points on the attractor to planes, checking for recurrences, and from Fourier spectra.

In the examples shown in Figure 4, the Fourier transform of the uj(t), at the sites j of largest
amplitude, is strongly peaked. For instance the Fourier transforms of (real and imaginary parts of)
u9(t), u10(t), and u11(t) from Figure 4 (a), are strongly peaked at ω9 = 106.8993, ω10 = 106.8993,
and ω11 = 58.3392 respectively. We thus see both resonance, and possibly incommensurate frequen-
cies. For instance, we have |k1ω10 + k2ω11| > 10−6, for all integers |k1|, |k2| ≤ 1000; this implies
a lower bound on a possible period T > 1000(2π/ω10) ∼ 58.7 (for motion on a torus with these
frequencies).

In the attractor of Figure 5 (b), u8(t), u9(t), u10(t) and u11(t) have spectra peaked at ω8 =
17.0655, ω9 = 17.0655, ω10 = 117.9727, and ω11 = 58.0036 respectively. and we have 2 possibly
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Figure 3: (color online) Amplitude |un| v.s. n at time t = 0, integration interval [−400, 0] for
autonomous system with parameters of Figure 2 (b), i.e. coupling δ = −0.4. The amplitude shown
is typical for 100 initial conditions considered. The modes u9, u10, u11 oscillate with approximately
constant amplitudes near those shown in the figure: |u9| = 7.1 ± 0.3, |u10| = 7.6 ± 0.3, |u11| =
5.6 ± 0.2, for all initial conditions.

incommensurate frequencies. For instance, we have either |k1ω9 + k2ω10| > 10−6, for all integers
|k1|, |k2| ≤ 1000, or |m1ω10 +m2ω11| > 10−6, for all integers |m1|, |m2| ≤ 1000; this implies a lower
bound on a possible period T > 1000(2π/ω10) ∼ 53.2 (for motion on a torus with these frequencies).
Also, these frequencies are far from the ones predicted for the uncoupled system, see (8).

Small nonautonomous perturbations of additive type of the system of Figures 3, 4 do not seem to
affect the presence of multiple, well localized asymptotic states, although they can alter the basins
of attraction, and make some asymptotic states unobservable.

Figures 5 (a), (b) shows asymptotic amplitude profiles at t = 0 for the system of Figure 4 with
a nonautonomous perturbation, see caption of Figure 5. The initial time was s = −400. The
justification for considering s = −400 sufficiently negative is the observed convergence of the power
P and the amplitudes |uj | to approximately constant values at about t = −200. In Figure 5 (a) we
see an amplitude profile that is close to that of Figure 4 (a), it is obtained however from the initial
condition of Figure 4 (c). In Figure 5 (b) we start with the initial condition of Figure 4 (b), and
obtain a similar localized profile.

Figure 6 compares the Fourier spectra of the higher amplitude modes in the autonomous and
nonautonmous cases, seen in Figures 4 (b), and 5 (b) respectively. They are in both cases strongly
peaked, with some slight differences in the peak frequencies seen at some sites.

The simulations of Figure 5 used periodic, and “chaotic” additive perturbations, with gj nonzero
only at the endpoints j = 1, 19 of the lattice. We typically have supt |gj(t)| ≤ 2, j = 1, 19.
This forcing is not small but is not transmitted efficiently to the forced sites at the center of the
lattice. Note that the “chaotic” perturbation, e.g. the function f in the caption of Figure 5,
is a component of a numerical trajectory of the Hamiltonian discrete NLS equation discussed in
[13]. We used parameter values for which the numerical trajectories exhibit fast “equipartition of
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Figure 4: (color online) Figures 4 (a), (b), (c), (d) show amplitudes |un| v.s. n at time t = 0 obtained
from three different initial conditions for autonomous system with the parameters of Figure 2 (c),
i.e. coupling δ = −1.0. The integration interval was [−400, 0]. For large times the mode amplitude
oscillate slightly around the values shown in the figure. (a) Asymptotic state localized in three
sites. (b) Asymptotic state localized in four sites. (c) Asymptotic state localized in two sites. (d)
Asymptotic state localized at sites n = 10, 11, mode amplitudes at these sites approach equal,
constant values.

power”, as well as significant loss of accuracy for longer time scales, of the order 100. This possible
chaoticity of the underlying system (combined with the likely lack of accuracy over the time scale
used in the simulations here) is considered an advandage for our purposes.

In the experiments reported here it is generally seen that the computed subsets of the sections
A (t) of the pullback attractor at different final times t are not significantly different. This is likely
related to the oscillatory nature of the forcing we have used. The observations then give possibe
examples where the sections A (t) of the pullback attractor have the same topology, ∀t ∈ R.

We have also seen possible examples where the sections A (t) of the pullback attractor of the
nonautonomously perturbed system have the structure of the attractor of the autonomous system;
this seems to be the case for small nonautonomous perturbations of the system of Figure 3. The
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Figure 5: (color online) Figures 5 (a), (b) show amplitudes |un| v.s. n at time t = 0 obtained
from two different initial conditions for nonautonomous system with the parameters of Figure 2
(c), i.e. coupling δ = −1.0 with added forcing g1(t) = sin t, g19(t) = cos(2.5t) + f(t), where f(t)
is a “chaotic signal” satisfying |f(t)| ≤ 1, ∀t, and gj ≡ 0, otherwise. The integration interval was
[−400, 0]. The mode amplitude oscillate slightly around the values shown in the figure, for both
(a), (b).

perturbations of the autonomous system of Figure 4 shown in Figure 5 may give an example where
the A (t), assumed to have the same topology for all t, are different from the attractor of the
autonomous system, for instance in the experiments of Figure 5 we do not see the asymptotic state
of Figure 4 (d).

5 Discussion

We have studied some basic properties of attractors in a spatially forced and damped discrete NLS
model. We have seen that the system can have multiple nontrivial attractors that persist under
nonautonomous perturbations of additive type.

The proposed model has a limit, namely the uncoupled case δ = γ = 0, where the asymptotic
dynamics takes place on normally hyperbolic tori. Our study motivates more detailed studies of
these invariant tori and their internal dynamics, in both the autonomous and nonautonomous cases.
For larger intersite coupling we see evidence of qualitative changes in the asymptotic dynamics that
should be examined in more detail, in both the autonomous and nonautonomous cases.

Also of interest is a study of more general nonautonomous perturbations, such as small pertur-
bations of the system parameters, as well as cases where the hyperbolicity at the origin does not
hold for all times.

16



14 15 16 17 18 19 20
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Frequency (Hz)

|R
e

(û
(8

))
|

14 15 16 17 18 19 20
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Frequency (Hz)

|R
e

(û
(9

))
|

114 115 116 117 118 119 120
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Frequency (Hz)

|R
e

(û
(1

0
))

|

54 55 56 57 58 59 60
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Frequency (Hz)

|R
e

(û
(1

1
))

|

Figure 6: (color online) Superposed Fourier (power) spectra of Re(un(t)) v.s. ω (frequency) from
autonomous, and nonautonomous trajectories, at sites n = 8 (a), 9 (b), 10 (c), 11 (d). Circles show
data corresponding to Figure 4(b) (autonomous), dots show data corresponding to Figure 5(b)
(nonautonomous). In all cases we Fourier transform Re(un(t)), t ∈ [−100, 0]; integration starts at
t0 = −400. Power spectra look identical at n = 8, 9, small changes in peak frequencies at n = 10,
and especially at n = 11.
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