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Abstract

We study analytically and numerically localized breather solutions in the averaged discrete nonlinear Schrédinger equation (NLS) with dif-
fraction management, a system that models coupled waveguide arrays with periodic diffraction management geometries. Localized breathers ¢
be characterized as constrained critical points of the Hamiltonian of the averaged diffraction managed NLS. In addition to local extrema, we
find numerically more general solutions that are saddle points of the constrained Hamiltonian. An interesting class of saddle points are “multi-
bump” solutions that are close to superpositions of translates of simpler breathers. In the case of zero residual diffraction and small diffractior
management, the existence of multibumps can be shown rigorously by a continuation argument.
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1. Introduction are attained (seR20]). These extrema correspond to solutions
that may be termed ground state or minimal breathers. In the
In this Letter we study breather and multi-breather solyPresent work we consider more general breathers and also de-

tions in the averaged diffraction managed NLS equation, a |att€rmine their local variational t_ype (i.e. Wheth_er they are I(_)(_:al
tice system describing optical signals in an array of couple@Xféma or saddles) by examining the Hessian at the critical
waveguides with the zigzag geometry introducedlit]. Our point. This information is interesting since, by the conservation
starting point is the parametrically forced (nonautonomous) dis?f the Hamiltonian and the power in the averaged discrete NLS,
crete NLS model proposed ti#] and we study breather solu- isolated circles of local extrema are orbitally stable. Also, the
tions in an approximate autonomous discrete system derived Hirative numerical methods we used do not appear to use the
an asymptotic averaging argument. The averaged system prgananonal structure of the problem explicitly. The variational
vides a good approximation to the original mode[4ff and is type of the numerical solutions must be therefore determined

also of independent interest since it describes an infinite-rang POSteriori. _ _ _
nonlinear coupling between lattice sites. A first class of numerical solutions that we find are local

Localized breather solutions of the averaged diffractionminima of the Hamiltonian; these are likely to approximate the

managed NLS system are spatially decaying periodic orbits Oglobal mini_ma suggegted by the existe_nce argument. Also, we
a special form that can be also characterized as critical poinfi"d numerically a variety of other solutions that are saddles of

of the Hamiltonian of the averaged system over the set of Cont_he constrained functional. A special class of such solutions are
figuration of constant power. For certain ranges of the paramé:_lose to sums of translates of other breather solutions, e.g. of

ters the global minima of the constrained variational problenPreathers that are local minima. These “multi-bump” breathers
are seen for a wide range of parameters, and in the case of

zero residual diffraction and small diffraction management their
E-mail addresspanos@mym.iimas.unam.nf®. Panayotaros). existence is also shown rigorously. These solutions are contin-

0375-9601/$ — see front mattét 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.physleta.2005.09.055


http://www.elsevier.com/locate/pla
mailto:panos@mym.iimas.unam.mx
http://dx.doi.org/10.1016/j.physleta.2005.09.055

P. Panayotaros / Physics Letters A 349 (2006) 430-438 431

uations of certain multi-peak solutions of the anti-continuousd;a =idAa — 2iy g (a),

system, specifically solutions with § phase difference be- T
tween neighboring sites. Related ideas have been u$gd 6i. with g, (a) = 1 f L=Ye(L,a)dx. (2.6)
The proof here relies on the specific form of the nonlinear in- T ! ‘

teraction between the different lattice sites. The argument also 0

applies to higher-dimensional lattices although our numericafimilar averaging arguments have been first used for the con-
study concerns the one-dimensional lattice only. We note thdtnuous version of2.1), se€[3,13].
the zero residual diffraction case, while special, is of particular We consider solutions dR.5), (2.6)in the space of square-
physical importance and in some sense motivates the study §immable complex valued functions @n Specifically, con-
the system. sider the hermitian inner produgit, v), = ), .7 unv; 0ON
The Letter is organized as follows. In Sect@we introduce  pairs of complex valued functions, v on Z. We let X be
the averaged equation, review some relevant results on breather=/2(Z, C), the real Hilbert space of square summable com-
solutions, and show the existence of multi-bump breathers foplex valued functions orZ with the inner productiu, v) =
zero residual diffraction. In the third section we describe vari-Re(u, vy, u, v € X. Also, |lul| = |lull;, = ((u, u))% denotes the
ous types of numerically computed breathers and discuss theiiorm ofu € X. We also assume thél is piecewise continuous
variational type. and bounded ifi0, 71, i.e. has at most a finite number of (finite)
jump discontinuities.
2. Breather solutions of the averaged equation As a preliminary step we check that mild solutiong21),
(2.6) in X exist for all time; these are continuous;valued
We consider the lattice of integeBs and complex valued functions ofr € R that satisfy the corresponding integral equa-
functionsu(r) on Z that evolve according to the nonautono- tions. This follows from the Lipschitz continuity of the right-

mous system hand sides (uniformly im) and the fact that th& norm of the
solutions of(2.5), (2.6)is conserved. We can furthermore show

u=iD(t)Au —2iyg(u), (2.1) the following averaging theorem.

where

Proposition 2.1. Let |y|, [§] < C1e, and 2 = & > C; and

i lutionsiy () of (2.5), and ax(¢) of (2.6), corre-
A = et — 2us - O — 12 29 consml_erso 1511 ) :
(Au)j = jsr = 2uj +utj-1, 8 ) = uj\uj, (2:2) sponding to an initial conditiorug € X. Then, there exists
and f; is the value off :Z — C at the sitej. The functionD € > 0 and constant€’s, C4 > 0 for which|e| < g implies
is real valued and is a real constant. We further assume that

-1
D is T-periodic, and we decompose it as Ja1()) —aa)] < Cze, Ve [0, Cas™]. @.7)
T Note that the constantssz, C4 depend orCq, C», |lagll, and

D()=8+d(), withs= 1 / D(r)dt (2.3)  ¢o- The idea s therefore that fat sufficiently small, or equiva-
T lently %’ 'g—' of O(¢), ¢ small, the solutions of2.5), (2.6)stay

0 ) L
O (¢) close in the» sense over a time interval @f(¢~1). The

the average (or residual) diffraction. Physicallyin (2.1)is  proof follows from standard averaging arguments. For instance,
the distance along the waveguides, whijlés the index of the  the Lipschitz continuity inX of right-hand sides, and the local
waveguide (se¢4,11], also[7,18] for further information on  ayistence theory allow us to apply the argument§l6] (see

the discrete NLS). Alsay; is the complex amplitude of (any) gaiso[23, Chapter 3Jto the infinite-dimensional setting.

one of the components of the electric field at the git€he ini- We now look for nontrivial solutions of2.6) that have the
tial conditionu(io) for (2.1)is the emitted light and we may form 4 = ¢=i* A, with A € R. We refer to these periodic or-
consider initial data ab = 0, shifting D(z) if necessary. bits as breathers. Equivalently, t8.6) breathers are nontrivial

In this work we study an averaged versior(2fl). To obtain  fynctionsA:Z — C that satisfy the equation
the averaged equation we first define the new varialtlg
M =—-5AA+2yg1(A). (2.8)
u(t) =Lia(1),

. The definition can be augmented by conditions on the behavior

. iAa - - of A at infinity. A natural choice here is to consider breathers
with L, = e andA (1) = /d(f) dr. (2.4)  that also belong t& . This is suggested by the existence theory
0 above, and the variational interpretation of the breather equa-

tion (2.8) below.
To see the variational interpretation &.8) we let ||u||f‘4 =

da=i8Aa —2iyL tg(L.a), (2.5)  Y,cz4 lup|* and define the functiona¥ on X by

By (2.1) and (2.4)the evolution equation far(z) is then

with the initial conditiona(0) = u#(0). The time dependence is 1 T
therefore absorbed in the nonlinear term. The averaged equatign(y) = 8||D+v||122 + YT / ||Lr”||ﬁ1 dr, (2.9)
is then

0
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whereDiv; =v;+1 — v;. Then, the solutions of2.8) are the
critical points of H in the setX, = {v € X: |v|l;, = c}: we
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from solutions of theD = 0 limit of the breather equatiqf2.8).
These solutions are also seen numerically in the next section.

check that the Euler-Lagrange equation corresponding to the For the case (i) of the local discrete NL8 = § = const, we

constrained variational problem is preciséy8). We are here
using the fact thak ! = e =402 = LT the adjoint ofL, in X.
Also note thatZ, is an isometryyz. In [20] we have shown the
following:

Theorem 2.2. Consider the functionalf above withs > 0 and
y < 0. Assume thafi) D is piecewise continuous, arfi) that
givenc > 0, there existsu > 0 for which “(g—‘ > wu. Then the
infimum ofH on X. is attained. Furthermore, It € X, satisfy
H(a) =infyex, H(v). Then there exists € R for whichA = a
satisfieq2.8).

Remark 2.2.1. The constany depends on the functiaf, and
c¢. The sign, and relative size assumptionssory imply that,
given anyc > 0, the infimum ofH on X, is strictly negative.
This property is crucial for the proof since otherwise the in-

fimum is not attained. Analogous results on suprema hold fo

3 <0,y >0 (seg20]).

Note thatH and thel> norm are invariant under (i) transla-
tions inZ, and (ii) the circle action — ¢/®v, ¢ € R. Thus, ifa
is a minimizer ofH on X, the integer translates 6f and points
on the circlee’?a, ¢ € R are also minimizers. Also, fab =,

i.e. constant, we recover the (local) discrete NLS equation.

A question that is not addressed blgeorem 2.4s whether
the circles of minimizers are isolated sets. The numerical evi
dence in the next section suggests that this is likely to be th
case, at least in the range of parameters examined.

Remark 2.2.2. The problem of finding breather solutions when
3 < Oisfixed and- varies, e.g. setting = —1 and fixingé > 0

is more subtle and for some valuesofhe infimum of # on

X. may fail to be strictly negative. In the case of the (local)
discrete NLS it was shown if24] that if 4 > 2 then the infi-
mum of H on X.. is strictly negative only it is above a certain

decompos& into disjoint setsJ/, U_, andUp, with U, U_
finite and consider the local discrete NLS wéth= 0,y # 0 (the
anti-continuous limit). Then for anywith Ay > 0 and anyU.,
U_ the corresponding breather equat{@B) has the solutions

A= i\/% for j e Uy, A; =0 for j € Up. We denote any
such solution byA (A, Uy, U-). These solutions belong g,
the set of real-valued square integrable functionZoX y is
clearly a subspace df. We have the following:

Proposition 2.3. Consider i, y with Ay > 0, and a solu-
tion A(A, Uy, U_) of the local discrete breather equation with
8 =0, as above. Then there exist@> 0 for which the lo-
cal discrete breather equation witli| < 8o has a unique real
solutionAs (A, Uy, U-) € Xy satisfying

|As(L, Uy, UZ) — AL, Uy, UZ)| -0 as§— 0.  (2.10)
Proof. Fix A,y7,Ay > 0 and let F(5, A) = LA + SAA —
2y g(A) (the dependence dnis suppressed from the notation).
We note thatF' (5, A) € X for A € Xx. We can therefore seek
solutions of F(§, A) = 0 that belong taX . The linearization
DyF of F (in Xg) atasolutiol =0,A =AM, U, U_) € Xg

is diagonal in the orthonormal bagi&(k)}r<z of elements (k)

of X that vanish outside the site specifically the(k, k) di-
agonal entry oD, F is A, if k € Up, and—2,if ke Uy UU_.
The inverse ofDo F therefore exists and is a bounded operator
in Xg. It is also easy to check thd and D, F are continu-
Bus in a neighborhood a0, A(A, U, U-)) in R x Xg. The
statement then follows from the implicit function theorenm

For small|§| we thus have breather solutions that are unique
continuations of the breather solutions of the anti-continuous
limit breathers. Note that the sign &is here irrelevant. A sim-
ilar argument also applies to the special case (ii) of the disper-
sion managed breather equation with zero average dispersion.
In particular, consider a piecewise continudtigeriodic real

threshold. These results were recently extended to the diffragunction D () = ed(r), with foT D(s)ds =0 and letL,(¢) =

tion managed discrete NLS [h5]. Also, a different variational
existence proof wherg is fixed is given in22].

In the next section we see numerically that in addition to th
minimizers, the breather equation has other solutions, some
which are saddles off on X.. An interesting type of breather
solutions are “nonlinear superpositions” of minimizers, i.e. so
lutions that are close to sums of integer translates of minimiz
ers. More generally, one can also consider analogous nonline

superpositions of any type of breather solutions. We refer to
such “compound” breathers as multi-bump breathers. (The tertff

multi-breathers is used loosely in the literature; here it mean
critical points that are not local extrema.)

We can describe two simple constructions of multi-bumps
for the special cases of (i) the local discrete NLS, and (ji) the-€Mma 2.4. The operatorL; = e
diffraction managed discrete NLS with zero average diffrac—(Ltu) _ Z G, (n —mu neZ
n — no ’

tion. In both cases the solutions are obtained by continuatio

#

i< AOA with A(r) = 3 d(v)d. Also, let

F(e,A) =AA —2yg1(€)(A) (2.11)

ith g.(e)(A) as in(2.6), andL, = L (¢), LT = LI(e). The

reather equatio2.8) with § =0 and D (1) = ed(1) is then
written asF (e, A) = 0 (A will be fixed and is suppressed from

the notation). Defining the subspace

®={ueX: upy, €R,up,11€iR,Vn e} (2.12)

e observe that is invariant unde for all reale and we can
gherefore try to continue solutions @ (0, A) =0 in Y. The
invariance ofY is seen by the following:

A0 of (2.3)is given by

(2.13)

n meZ
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with

G (k) = e 240 ()M 7 (2A@)), keZ, (2.14)

whereJ), is the Bessel function of integer ordpr> 0. More-
over,ifA eY thenF(e,A) eY,Ve eR.

Proof. To obtain(2.13) and (2.14yve first calculate the Fourier

transform of L,u and then use the inverse Fourier transform.

and the definition of the Bessel functions. Details ar¢2id.
By (2.13) and (2.14)ve observe that ifA € Y then L;A €

e~2A0Y | o(L,A) € LA € 240y and LTA e 240y,
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borhood of(0, A(A, V. 4+, Vi —, Vi 4+, Vi _)). The statement then
follows from the implicit function theorem. O

Egs. (2.1), (2.6)and the breather equatiq2.8) can also
considered in the/-dimensional integer latticea? by letting
A =YY Dy Dy _, with Dy (D) the forward (back-
ward) first order difference operators along #th direction.
We also readily generalize the Hilbert spakXeby consider-
ing square summable complex functionsZth To generalize
Proposition 2.3ve work as before with real valued functions
on Z¢. For Proposition 2.5the analogue of the subspateof
functions that are invariant under the functibrof (2.11)is the

;
In L,;g(L;A) the r-dependent global phases then cancel andet of functions that take real values at sites with coordinates

L;rg(L A) e Y for A € Y. Since integration, and multiplication
by a real constant also preser¥e F (e, A) will also be inY,
VeeR. O

As before we decomposg into disjoint setsV, , V,_,
Vi+, Vi_, andVp, with V,. 1, V; 1 finite and consider the dis-
crete NLS withe = 0, y # 0 (the anti-continuous limit), and the
corresponding local breather equation for some fixeatisfy-
ing Ay > 0. Then for anyv, +, V; + we have the solutions ; =

i/iforjevi,A-zj:i /i

Vo. We denote any such solutlon By, v,
and note that it belongs .

forjeV,+,A;=0forje
r,+> Vr,—9 Vi,—i—» Vi,—)

Proposition 2.5. Considera, y with Ay < 0, and a solution
A, V.1, V., Viy, Vi) of F(0,A) =0, as above. Then
there existsg > 0 for which the breather equatiof (¢, A) =
0 with |e|] < €g has a unique solutiod (A, V, 1, V, _, V; 4,
Vi.—) € Y satisfying

HAG()‘-a Vr,+, Vr’,, Vi,+, Vi,f)

— AN Vrg Vim Vi, Vi) > 0 ase— 0. (2.15)
Proof. Fix A, vy, Ay > 0anddefinéi: Xp — Y by h(x;) = x,
for k even,h(xy) = ixx, for k odd. Also defineF :R x Xz —
Xg by F(e,x) = h}(F (e, h(x))), i.e. we identifyY with X
and work WlthF The linearizationD-F of F (in Xg) at a
solutione =0, hY(A(A, V.4, Vi, Viy, Vi) € X is diag-
onal in the orthonormal basig(k)}icz of elementse(k) of
X that vanish outside the sife specifically the(k, k) diag-
onal entry of DoFp is A, if k € Vo, and =24, if k € VL U
V,_ UV, UV,_. The inverse ofD,F therefore exists and
is a bounded operator iXg. To check the regularity prop-
erties of F we note that sincé is C! and Y a subspace of
X it is enough to consider the regularity 6f:R x X — X
near(0, A(x, V.4, V. _, Vi, +, Vi _)). Letting B(X) be the set
of bounded linear operators ki, we note that for any fixed
t € R the semigroupL,(¢):R — B(X) is norm-continuous
and hence differentiable ia (see e.g[12, Chapter 7.3] The
same applies tcL,T(e). Also for any fixede € R the semi-
group L;(¢):[0,T] — B(X) (and similarIyL,T(e)) is norm-
continuous int in the intervals where is continuous. With
these two observations and the fact thak — X is Clitis
routine to check tha¥ and Do F are continuous in a neigh-

[n1,...,nq] € Z9 that satisfyny + --- + ng even, and imag-
inary values at the remaining sites. This defines a “checker-
board” pattern where the values of neighboring sites have a
+7% phase difference. The invariance of this subspack fail-

lows from thed-dimensional expression fdt, in Lemma 2.4
(given in[20]). The proofs ofPropositions 2.3, 2.%hen gen-
eralize to higher dimensions with minor modifications: in both
cases the linearization around the respective multi-peak solu-
tions of the anti-continuous discrete NLS is diagonal and has
bounded inverse in the corresponding subspace, while the reg-
ularity properties of the breather equation functions are as in
d=1.

It is clear that global phase shifts of the solutions discussed
above are also solutions. Looking for breathers with prescribed
phase differences between neighboring sites had the effect of
eliminating the zero eigenvalues obtained by linearizing around
the anti-continuous limit multi-peak solutions in the full space
X.

3. Numerical breathersand their variational type

The solve the breather equati@8) numerically we con-
sider a lattice withV nodes. The starting point is th€a 1) with
periodic boundary conditions; y+1 = u; and we can repeat
the averaging argument above to obtain the periodic analogues
of (2.6), and the breather equati¢®.8). Further, we approxi-
mate the integral i, of (2.6)by a finite sum, thus considering
the approximate breather equation

MM =—-8AA+2ygr(A), 8gL(A)=—

3.1)
with A, y41 = A;. The integral was here approximated by the
trapezoidal rule for simplicity. The solutions (&.1) are critical
points of

M—-1N-1

H(v)_az|(D+v),| +—ZZ|(L v

m=0 j=0

(3.2)

over functlons v that satisfy vjiy+1 = v; and ||| =
Z;V:_ol |v;]? = ¢ for somec > 0. Thus the variational structure

of the breather equation is preserved under these approxima-
tions. Note that in(3.1), (3.2)the respective dependencegf,

H on M is suppressed from the notation. We also remark that
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Eq.(3.1)is solved numerically with fixed. Thel, norm of the ~ we can work in the range ~ 10~ '—10-°. Finally, the eigenval-

solutions is therefore a priori unknown. ues of the numerical Hessian are computed using routines from
To solve the(3.1) we use Netlib’s minpack implementation eispack (available dtttp://www.netlib.org see als¢9]).

of Powell’s hybrid Newton method (s¢&7,19) where we min- In the simulations below we have used a diffraction manage-

imize the residual ment function

§+C, ifrel0, )

[A—GI+88) 7 2y8.(A)]. 33) Do) = _ .
§—C, ifrel3;,T),

(3.5)

We typically accept the result when the residual enters the range . 5 c )
10-16-10-14, We have also used the Petviashvili iteration (see2Nd We vary the parameteus= 3, x = 5, anda = 5. Equiv-

[3,21) alently, we sety = —1, £2 =1 and varys, andC. In the case
a = 0 we have the local discrete NLS, while the cgse o« =0
Ajpr=p (A + 5A)712V§L(Aj), corresponds to the anti-continuous Iimit. The r_esults b_elo_w con-
(BLAD AN 3 cernthe casg <O vyhere, by the previous section, the infimum
with j = ‘4 , o=~ (3.4) of H on X, is attained (for|x| sufficiently small). The nu-
(A, Aj) 2 merical results we present below were obtainedNoe 128.

IncreasingN we obtained practically the same breather solu-
o tions with small additional run times. However, the evaluation
IAn+1— Anll @nd|z, — 1 are to within the range 16°-1071°.  of the Hessian is computationally expensive and we have used
Note that the frequencyis always chosen outside the spectruma; mosty = 256 nodes. We argue below that this truncation

of —5A. Also, in each run we increase until the reGsuIts ?se can give sufficiently accurate results on the spectrum. We have
come independent off (to thel, accuracies of 10'°-10 classified the numerical solutions into three types.

above). This typically occurs after abaut = 30. i )
To determine the local variational type of the numerical Type | A first type of numerical breathers can be charac-

breather solutions we consider the Hessian of the constraindfnzed as lollcarll m|n|mT1 of the Iconstramed functiorél For
functional H at the critical point. Ifv is a numerical solution of Ix1, la| small these solutions also appear to be continuations

(3.1)for a discretization oV nodes and the (2N — 1)-sphere of the one-peak breather of the anti-continuous limit. For ex-
in R2V, the Hessiarv2H |5 of the restriction offf to S canbe ~ @MPle, fory € [-0.1,0.0], « € [0.0,0.4], the amplitude of
computed by first specifying a local coordinate systearound 14| attains its maximum at a singe node and decays rapidly
v and then approximating the derivativés,, /s (v) by finite 1 280 An example is seen Hig. 1(a). As we increaser,

differences. Although we are here using a coordinate-dependef{te Width of the breather increases, and we eventually see the

definition of the Hessian, we are interested in intrinsic prop-2PPearance of two maxima, as Hig. 2a). These solutions

erties of the Hessian that characterifids near the critical '€ symmetric, and their amplitude is concen_trated in a set of
pointu. First note that by the phase invariancetfthe Hessian consecutive nodes. The spectrum of the Hessian for the two ex-

will always have at least one zero eigenvalue that is along th@MPles above are ifigs. 1(b), and 2(b)respectively. In both

- _ H 3 .
phase symmetry direction. Then, we have that (iy%H (v)  C2SeS We see one near-zero eigenvalue (less thaf04™ in
has both positive and negative eigenvalues thésinot a local absolute value) that we interpret as the zero eigenvalue. The re-

extremum ofH. Also, (ii) if the eigenvalues are nonnegative maining eigenvalues are positive and well separated from zero

(nonpositive) and there is only one zero eigenvalue, thisna (larger than 125 in Fig. 2b)). These solutions can be there-
local minimum (maximum) fore characterized as local minima Af on the constraint and

A convenient class of coordinate systems in a neighborhoof@'® lIkely to be periodic approximants of the global extrema of
U of v e S is obtained by projectind/ radially to the tan- Theorem 2.2 The existence of a clear gap between the zero

gent hyperplane + E of S atv and then mapping to R2V and smallest positive eigenvalue suggests that the correspond-
by choosing an orthonormal bagis; boy_1} of E. Let- ing circles of constrained minimizers are isolated. Moreover,

ting x € v+ E and F(x) = A ), the Hessiav2H |5 (v) the Peierls—Nabarro barrier for such breathers is nontrivial, and
will be the matrix with entrieé)”-)glFiv) wheres; is the par- the fact that translates of a minimizer are also minimizers sug-
10j ’ i .. . . .
tial derivative along the direction of the basis vecker Note gests (at least foW finite) the existence of min—max critical
that the spectrum oWV2H |s(v) is independent of the choice points on the constraint. Here, the Peierls—Nabarro barrier is
of the orthonormal basis, and only depends on the particuldf'® infimum of the maxima off over all continuous curves on
choice of the chart fronU to v + E. The Hessian is evalu- the constraint that connect a minimal breather to its translate by
ated numerically by replacing the partial derivatives by finiteON€ Site (see a"i[d“] for the local _dlscrete NLS). As we doublg
differences, in particular the derivative along a directipris ¥ We See practically no change in the spectrum of the Hessian.
evaluated by centered finite differences using the valu€ af In particular, the new eigenvalues are very near the value 20.
A possible explanation is given below. We also note that these

pointsu + hb;, u + 2hb;, etc. To avoid numerical instability as ; X -
h — 0, we useh in a range for which we see agreement pe-Solutions were found by both the Powell and Petviashvili algo-

tween the partial derivatives calculated with finite differenced1thms, i.€. both iterations converge to the same solution.
of different orders, and with differerit. We typically compare Type Il We have also seen solutions that are also concen-
centered difference formulas 6f(h%) and O (k%) and see that trated in a set of consecutive nodes but do not appear to be

where now(u, v) = Z;V;Oluj v}. The iteration is stopped when
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Fig. 1. (a) Breather obtained far = —10.0, x = 0.013,y = —1.0, A = 0.1, 2 = 1.0. (b) Hessian of breather in (a). Lowest eigenvalges —0.00012,r1 = 184.

3 T T T T T T 2 . . : .

1.5- 8

25} E
1 |- -

2r 4
05+ 1

=15 B £ 0

-0.5+ -

1 |- -
-1k 4

0.5 ]
-1.5+ -
0 L L L L L _ols L | L ! L L |
0 20 40 60 80 100 120 ~40 -30 -20 -10 0 10 20 30 40

I Re

(@) (b)

Fig. 2. (a) Breather obtained far= —10.0, x = 0.013,y = —1.0, A = 0.75, 2 = 1.0. Same parameters asHig. 1(a), except for largeA. (b) Hessian of breather
in (a). Lowest eigenvalueg = —0.0041,r; = 1.25.

local extrema ofH on the constraint. These breathers wereor more of solutions of the two types above. These are multi-
seen for larger values of € [0.5,1.0]. An example is shown bump breather solutions and were also obtained by Powell’s
in Fig. 3@). The main feature of this example is its lack of method only. First, setting = 0 we see numerically multi-
reflection symmetry and we have also obtained another sollsumps that correspond to the solutions in the subspacé
tion that is the reflection the one shown. Another example isProposition 2.3An example is shown ifrig. 5a). In this and
shown inFig. 4(a). Here we have taken as initial condition two other similar examples the initial guess belong¥ tand the it-
nearby single-peak configurations. The spectrum of the Hessiarates stay i up to 107/, i.e. the phase differences between
for the two examples are iRigs. 3(b), 4(b) respectively, and neighboring sites are-% up to 10°6. We have also seen sev-
we see clearly the appearance of negative eigenvalues. As in tegal nonlocal multibump solutions# 0, d 0, i.e. cases not
breathers of the first type, increasiNghas the effect of produc-  covered byProposition 2.3An example is shown ifig. 6a).
ing eigenvalues that are very near the value 20. The solutions @ these more general solutions the amplitude in the regions
the second type have been obtained by Powell's method only.petween the peaks is small, but significantly above the conver-
gence threshold for the residual. To avoid overlap that is too
Type lll. A third type of solutions are close to sums of small we have considered translations of at most a few multi-
translates of (possibly globally phase-shifted) copies of twales of the rough width of the single breather. As we move away
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Fig. 3. (a) Breather obtained far= —10.0, x = 0.013,y = —1.0, A = 0.75, £2 = 1.0. Asymmetric soliton, same parameters aBim 2(a). (b) Hessian of breather
in (a). Lowest eigenvalueg = —1.76,r1 = —0.0036,r, = 0.70.
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Fig. 4. (a) Breather obtained far = —10.0, x =0.013,y = —1.0, A = 0.6, £2 = 1.0. Twin-peaked breather. (b) Hessian of breather in (a). Lowest eigenvalues
ro=-—399,r1 =—-318,rp = —-2.84,r3=-1.19,r4, = —0.0016,r5 = 3.24.

from § = 0 the phase difference between neighboring siteqlRemark 3.1. The rationale behind distinguishing the type llI
moves slowly away fron%;, for instance fory e [0.50, 0.55] solutions is that one could hope to establish their existence by
we see phase differences $fup to Q06. The corresponding some general argument, e.g. assuming sufficiently large separa-
spectra of the Hessian are shownFigs. 5(b), 6(b) The ap- tion between the constituent breathers. This seems more likely
pearance of negative eigenvalues (near the val@) indicates  for solutions in the subspacé of (2.12) where we can hope
that these solutions are not local extrema. Moreovelfar«| to show the existence of near-superpositions of translates of
sufficiently small, the computed eigenvalues of the Hessian aireathers that are isolated critical points without using the small
a n-bump solution seem to follow a simple pattern: there ardiffraction management assumption Pfoposition 2.5Some

n — 1 negative eigenvalues (nean0), n eigenvalues of small possibly relevant ideas are developedilif?,6,8]

absolute value (one of which should correspond to the zero

eigenvalue due to the phase symmetry), while the remainin®emark 3.2. The version of the Petviashvili algorithm we used
eigenvalues are positive and accumulate at the value 20! As could not converge to any of the solutions that are saddle points
is increased we again see that the new eigenvalues will be vefye. of types I, lll). For instance, in the case where we start
near 20. the iteration at some configuration with several well separated
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Fig. 5. (a) Breather obtained fas = —10.0, x = 0.0, y = —1.0, A = 0.2, 2 = 1.0. Three-peaked breather. (b) Hessian of breather in (a). Lowest eigenvalues
ro=—40.0,r; = —39.99,r, = —0.0011,r3 = 0.0002,r4 = 0.0007,r5 = 14.51.
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Fig. 6. (a) Breather obtained faw = —10.0, x = 0.013,y = —-1.0, A = 0.1, 2 = 1.0. Two-peak multi-bump breather. (b) Hessian of breather in (a). Lowest
eigenvaluesg = —39.9, r; = —0.00048,r» = 0.00056,r3 = 18.8.

peaks the Petviashvili algorithm converges to a solution that igigenvalue of multiplicityz, an eigenvalue ¥y of multiplic-
concentrated at one of the peaks. ity n — 1 and an eigenvalue 21y of infinite multiplicity. The
zero eigenvalues are due to the phase symmetry at each peak

The observed pattern in the spectrum of the multi-bump sosite, while the 4y eigenvalues correspond to the- 1 vectors
lutions (type Ill) appears to be related to the spectrum of multithat are normal taw and whose components vanish¥g. In-
peak breathers of the anti-continuous limit discrete NLS. Fotuitively, for y < 0, moving along these directions makes the
these trivial solutions the spectrum of the Hessian can be contonfiguration more concentrated and decre&sethe remain-
puted explicitly since we can find a natural basis that makes thiag eigenvalues correspond to the vectors that are zero except at
matrix diagonal. The basis vectors are normal to the breathehe real or imaginary component of a single sitéVin Again,
v and therefore also form a basis for the tangent hyperplan®r y < 0, moving along these directions makes the configu-
v+ E. For instance, seb =0, ¢ =0, fix 1, y and consider a ration less concentrated and increaskesA similar conclusion
breather solutiom (A, V, 4, V,._, Vi1, V; ) € Y (in the nota-  follows for the solutionsA(x, Uy, U_) of Proposition 2.3In
tion of Proposition 2.5where the seV, . UV, _UV; L UV, _ the numerical results shown in the figures we have/set—1,
consists of: sites ¢ finite). The Hessian is seen to have a zeroh = 10 and as we move away frolm= ¢ = 0 see that the
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