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Abstract

We study analytically and numerically localized breather solutions in the averaged discrete nonlinear Schrödinger equation (NLS)
fraction management, a system that models coupled waveguide arrays with periodic diffraction management geometries. Localized br
be characterized as constrained critical points of the Hamiltonian of the averaged diffraction managed NLS. In addition to local ext
find numerically more general solutions that are saddle points of the constrained Hamiltonian. An interesting class of saddle points a
bump” solutions that are close to superpositions of translates of simpler breathers. In the case of zero residual diffraction and small
management, the existence of multibumps can be shown rigorously by a continuation argument.
 2005 Elsevier B.V. All rights reserved.
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1. Introduction

In this Letter we study breather and multi-breather so
tions in the averaged diffraction managed NLS equation, a
tice system describing optical signals in an array of coup
waveguides with the zigzag geometry introduced in[11]. Our
starting point is the parametrically forced (nonautonomous)
crete NLS model proposed by[4] and we study breather solu
tions in an approximate autonomous discrete system derive
an asymptotic averaging argument. The averaged system
vides a good approximation to the original model of[4] and is
also of independent interest since it describes an infinite-ra
nonlinear coupling between lattice sites.

Localized breather solutions of the averaged diffract
managed NLS system are spatially decaying periodic orbi
a special form that can be also characterized as critical p
of the Hamiltonian of the averaged system over the set of
figuration of constant power. For certain ranges of the para
ters the global minima of the constrained variational prob
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are attained (see[20]). These extrema correspond to solutio
that may be termed ground state or minimal breathers. In
present work we consider more general breathers and als
termine their local variational type (i.e. whether they are lo
extrema or saddles) by examining the Hessian at the cri
point. This information is interesting since, by the conserva
of the Hamiltonian and the power in the averaged discrete N
isolated circles of local extrema are orbitally stable. Also,
iterative numerical methods we used do not appear to us
variational structure of the problem explicitly. The variation
type of the numerical solutions must be therefore determ
a posteriori.

A first class of numerical solutions that we find are lo
minima of the Hamiltonian; these are likely to approximate
global minima suggested by the existence argument. Also
find numerically a variety of other solutions that are saddle
the constrained functional. A special class of such solutions
close to sums of translates of other breather solutions, e.
breathers that are local minima. These “multi-bump” breath
are seen for a wide range of parameters, and in the ca
zero residual diffraction and small diffraction management t
existence is also shown rigorously. These solutions are co
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qua-
uations of certain multi-peak solutions of the anti-continu
system, specifically solutions with aπ2 phase difference be
tween neighboring sites. Related ideas have been used in[5,16].
The proof here relies on the specific form of the nonlinear
teraction between the different lattice sites. The argument
applies to higher-dimensional lattices although our numer
study concerns the one-dimensional lattice only. We note
the zero residual diffraction case, while special, is of partic
physical importance and in some sense motivates the stu
the system.

The Letter is organized as follows. In Section2 we introduce
the averaged equation, review some relevant results on bre
solutions, and show the existence of multi-bump breathers
zero residual diffraction. In the third section we describe v
ous types of numerically computed breathers and discuss
variational type.

2. Breather solutions of the averaged equation

We consider the lattice of integersZ, and complex valued
functionsu(t) on Z that evolve according to the nonauton
mous system

(2.1)∂tu = iD(t)�u − 2iγg(u),

where

(2.2)(�u)j = uj+1 − 2uj + uj−1, gj (u) = |uj |2uj ,

andfj is the value off : Z → C at the sitej . The functionD

is real valued andγ is a real constant. We further assume t
D is T -periodic, and we decompose it as

(2.3)D(t) = δ + d̃(t), with δ = 1

T

T∫
0

D(τ)dτ

the average (or residual) diffraction. Physically,t in (2.1) is
the distance along the waveguides, whilej is the index of the
waveguide (see[4,11], also [7,18] for further information on
the discrete NLS). Also,uj is the complex amplitude of (any
one of the components of the electric field at the sitej . The ini-
tial conditionu(t0) for (2.1) is the emitted light and we ma
consider initial data att0 = 0, shiftingD(t) if necessary.

In this work we study an averaged version of(2.1). To obtain
the averaged equation we first define the new variablea by

u(t) = Lta(t),

(2.4)with Lt = eiΛ̃(t)� andΛ̃(t) =
t∫

0

d̃(τ ) dτ.

By (2.1) and (2.4), the evolution equation fora(t) is then

(2.5)∂ta = iδ�a − 2iγL−1
t g(Lta),

with the initial conditiona(0) = u(0). The time dependence
therefore absorbed in the nonlinear term. The averaged equ
is then
-
o
l
t

r
of

er
r

-
ir

on

∂ta = iδ�a − 2iγ ḡL(a),

(2.6)with ḡL(a) = 1

T

T∫
0

L−1
τ g(Lτ a) dτ.

Similar averaging arguments have been first used for the
tinuous version of(2.1), see[3,13].

We consider solutions of(2.5), (2.6)in the space of square
summable complex valued functions onZ. Specifically, con-
sider the hermitian inner product〈u,v〉h = ∑

n∈Z unv
∗
n on

pairs of complex valued functionsu,v on Z. We let X be
l2 = l2(Z,C), the real Hilbert space of square summable co
plex valued functions onZ with the inner product〈u,v〉 =
Re〈u,v〉h, u,v ∈ X. Also,‖u‖ = ‖u‖l2 = (〈u,u〉) 1

2 denotes the
norm ofu ∈ X. We also assume thatD is piecewise continuou
and bounded in[0, T ], i.e. has at most a finite number of (finit
jump discontinuities.

As a preliminary step we check that mild solutions of(2.5),
(2.6) in X exist for all time; these are continuous,l2-valued
functions oft ∈ R that satisfy the corresponding integral equ
tions. This follows from the Lipschitz continuity of the righ
hand sides (uniformly int ) and the fact that thel2 norm of the
solutions of(2.5), (2.6)is conserved. We can furthermore sh
the following averaging theorem.

Proposition 2.1. Let |γ |, |δ| � C1ε, and Ω = 2π
T

> C2 and
consider solutionsa1(t) of (2.5), and a2(t) of (2.6), corre-
sponding to an initial conditiona0 ∈ X. Then, there exist
ε0 > 0 and constantsC3, C4 > 0 for which |ε| � ε0 implies

(2.7)
∥∥a1(t) − a2(t)

∥∥ � C3ε, ∀t ∈ [
0,C4ε

−1].
Note that the constantsC3, C4 depend onC1, C2, ‖a0‖, and

ε0. The idea is therefore that forT sufficiently small, or equiva
lently |γ |

Ω
, |δ|

Ω
of O(ε), ε small, the solutions of(2.5), (2.6)stay

O(ε) close in thel2 sense over a time interval ofO(ε−1). The
proof follows from standard averaging arguments. For insta
the Lipschitz continuity inX of right-hand sides, and the loc
existence theory allow us to apply the arguments of[10] (see
also[23, Chapter 3]) to the infinite-dimensional setting.

We now look for nontrivial solutions of(2.6) that have the
form a = e−iλtA, with λ ∈ R. We refer to these periodic o
bits as breathers. Equivalently, by(2.6)breathers are nontrivia
functionsA : Z → C that satisfy the equation

(2.8)λA = −δ�A + 2γ ḡL(A).

The definition can be augmented by conditions on the beha
of A at infinity. A natural choice here is to consider breath
that also belong toX. This is suggested by the existence the
above, and the variational interpretation of the breather e
tion (2.8)below.

To see the variational interpretation of(2.8) we let‖u‖4
l4

=∑
n∈Zd |un|4 and define the functional̄H onX by

(2.9)H̄ (v) = δ‖D+v‖2
l2

+ γ
1

T

T∫
‖Lτv‖4

l4
dτ,
0
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whereD+vj = vj+1 − vj . Then, the solutions of(2.8) are the
critical points of H̄ in the setXc = {v ∈ X: ‖v‖l2 = c}: we
check that the Euler–Lagrange equation corresponding to
constrained variational problem is precisely(2.8). We are here
using the fact thatL−1

t = e−iΛ̃(t)� = L
†
t , the adjoint ofLt in X.

Also note thatLt is an isometry,∀t . In [20] we have shown the
following:

Theorem 2.2. Consider the functional̄H above withδ � 0 and
γ < 0. Assume that(i) D is piecewise continuous, and(ii) that
given c > 0, there existsµ > 0 for which |γ |

δ
> µ. Then the

infimum ofH̄ onXc is attained. Furthermore, let̃a ∈ Xc satisfy
H̄ (ã) = infv∈Xc H̄ (v). Then there existsλ ∈ R for whichA = ã

satisfies(2.8).

Remark 2.2.1. The constantµ depends on the functioñd , and
c. The sign, and relative size assumptions onδ, γ imply that,
given anyc > 0, the infimum ofH̄ on Xc is strictly negative.
This property is crucial for the proof since otherwise the
fimum is not attained. Analogous results on suprema hold
δ � 0, γ > 0 (see[20]).

Note thatH̄ and thel2 norm are invariant under (i) transla
tions inZ, and (ii) the circle actionv → eiφv, φ ∈ R. Thus, if ã
is a minimizer ofH̄ onXc the integer translates ofã, and points
on the circleeiφã, φ ∈ R are also minimizers. Also, forD ≡ δ,
i.e. constant, we recover the (local) discrete NLS equation.

A question that is not addressed byTheorem 2.2is whether
the circles of minimizers are isolated sets. The numerical
dence in the next section suggests that this is likely to be
case, at least in the range of parameters examined.

Remark 2.2.2. The problem of finding breather solutions wh
δ
γ

< 0 is fixed andc varies, e.g. settingγ = −1 and fixingδ > 0

is more subtle and for some values ofc the infimum ofH̄ on
Xc may fail to be strictly negative. In the case of the (loc
discrete NLS it was shown in[24] that if d � 2 then the infi-
mum ofH̄ onXc is strictly negative only ifc is above a certain
threshold. These results were recently extended to the dif
tion managed discrete NLS in[15]. Also, a different variationa
existence proof whereλ is fixed is given in[22].

In the next section we see numerically that in addition to
minimizers, the breather equation has other solutions, som
which are saddles of̄H on Xc. An interesting type of breathe
solutions are “nonlinear superpositions” of minimizers, i.e.
lutions that are close to sums of integer translates of minim
ers. More generally, one can also consider analogous nonl
superpositions of any type of breather solutions. We refe
such “compound” breathers as multi-bump breathers. (The
multi-breathers is used loosely in the literature; here it me
critical points that are not local extrema.)

We can describe two simple constructions of multi-bum
for the special cases of (i) the local discrete NLS, and (ii)
diffraction managed discrete NLS with zero average diffr
tion. In both cases the solutions are obtained by continua
e
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n

from solutions of theD ≡ 0 limit of the breather equation(2.8).
These solutions are also seen numerically in the next secti

For the case (i) of the local discrete NLS,D ≡ δ = const, we
decomposeZ into disjoint setsU+, U−, andU0, with U+, U−
finite and consider the local discrete NLS withδ = 0,γ 	= 0 (the
anti-continuous limit). Then for anyλ with λγ > 0 and anyU+,
U− the corresponding breather equation(2.8)has the solutions

Aj = ±
√

λ
2γ

for j ∈ U±, Aj = 0 for j ∈ U0. We denote any

such solution byA(λ,U+,U−). These solutions belong toXR ,
the set of real-valued square integrable functions onZ. XR is
clearly a subspace ofX. We have the following:

Proposition 2.3. Consider λ, γ with λγ > 0, and a solu-
tion A(λ,U+,U−) of the local discrete breather equation wi
δ = 0, as above. Then there exists aδ0 > 0 for which the lo-
cal discrete breather equation with|δ| < δ0 has a unique rea
solutionAδ(λ,U+,U−) ∈ XR satisfying

(2.10)
∥∥Aδ(λ,U+,U−) − A(λ,U+,U−)

∥∥ → 0 asδ → 0.

Proof. Fix λ,γ,λγ > 0 and let F(δ,A) = λA + δ�A −
2γg(A) (the dependence onλ is suppressed from the notation
We note thatF(δ,A) ∈ XR for A ∈ XR . We can therefore see
solutions ofF(δ,A) = 0 that belong toXR . The linearization
D2F of F (in XR) at a solutionδ = 0,A = A(λ,U+,U−) ∈ XR

is diagonal in the orthonormal basis{ê(k)}k∈Z of elementŝe(k)

of XR that vanish outside the sitek, specifically the(k, k) di-
agonal entry ofD2F is λ, if k ∈ U0, and−2λ, if k ∈ U+ ∪ U−.
The inverse ofD2F therefore exists and is a bounded opera
in XR . It is also easy to check thatF andD2F are continu-
ous in a neighborhood of(0,A(λ,U+,U−)) in R × XR . The
statement then follows from the implicit function theorem.�

For small|δ| we thus have breather solutions that are uni
continuations of the breather solutions of the anti-continu
limit breathers. Note that the sign ofδ is here irrelevant. A sim
ilar argument also applies to the special case (ii) of the dis
sion managed breather equation with zero average dispe
In particular, consider a piecewise continuousT -periodic real
function D(t) = εd̃(t), with

∫ T

0 D(s)ds = 0 and letLt(ε) =
eiεΛ̃(t)�, with Λ̃(t) = ∫ t

0 d̃(τ ) dτ . Also, let

(2.11)F̄ (ε,A) = λA − 2γ ḡL(ε)(A)

with ḡL(ε)(A) as in(2.6), andLτ = Lτ (ε), L†
τ = L†

τ (ε). The
breather equation(2.8) with δ = 0 andD(t) = εd̃(t) is then
written asF̄ (ε,A) = 0 (λ will be fixed and is suppressed fro
the notation). Defining the subspace

(2.12)Y = {u ∈ X: u2n ∈ R, u2n+1 ∈ iR,∀n ∈ Z}
we observe thatY is invariant underF̄ for all realε and we can
therefore try to continue solutions of̄F(0,A) = 0 in Y . The
invariance ofY is seen by the following:

Lemma 2.4. The operatorLt = eiΛ̃(t)� of (2.3) is given by

(2.13)(Ltu)n =
∑

Gt(n − m)um, n ∈ Z,
m∈Z
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(2.14)Gt(k) = e−2iΛ̃(t)(i)|k|J|k|
(
2Λ̃(t)

)
, k ∈ Z,

whereJp is the Bessel function of integer orderp � 0. More-
over, ifA ∈ Y thenF̄ (ε,A) ∈ Y , ∀ε ∈ R.

Proof. To obtain(2.13) and (2.14)we first calculate the Fourie
transform ofLtu and then use the inverse Fourier transfo
and the definition of the Bessel functions. Details are in[20].
By (2.13) and (2.14)we observe that ifA ∈ Y then LtA ∈
e−2iΛ̃(t)Y , g(LtA) ∈ LtA ∈ e2iΛ̃(t)Y and L

†
t A ∈ e2iΛ̃(t)Y .

In L
†
t g(LtA) the t -dependent global phases then cancel

L
†
t g(LtA) ∈ Y for A ∈ Y . Since integration, and multiplicatio

by a real constant also preserveY , F̄ (ε,A) will also be inY ,
∀ε ∈ R. �

As before we decomposeZ into disjoint setsVr,+, Vr,−,
Vi,+, Vi,−, andV0, with Vr,±, Vi,± finite and consider the dis
crete NLS withε = 0,γ 	= 0 (the anti-continuous limit), and th
corresponding local breather equation for some fixedλ satisfy-
ing λγ > 0. Then for anyVr,±, Vi,± we have the solutionsAj =
±

√
λ

2γ
for j ∈ Vr,±, Aj = ±i

√
λ

2γ
for j ∈ Vi,±, Aj = 0 for j ∈

V0. We denote any such solution byA(λ,Vr,+,Vr,−,Vi,+,Vi,−)

and note that it belongs toY .

Proposition 2.5. Considerλ, γ with λγ < 0, and a solution
A(λ,Vr,+,Vr,−,Vi,+,Vi,−) of F̄ (0,A) = 0, as above. Then
there existsε0 > 0 for which the breather equation̄F(ε,A) =
0 with |ε| < ε0 has a unique solutionAε(λ,Vr,+,Vr,−,Vi,+,

Vi,−) ∈ Y satisfying∥∥Aε(λ,Vr,+,Vr,−,Vi,+,Vi,−)

(2.15)− A(λ,Vr,+,Vr,−,Vi,+,Vi,−)
∥∥ → 0 asε → 0.

Proof. Fix λ, γ , λγ > 0 and defineh :XR → Y by h(xk) = xk ,
for k even,h(xk) = ixk , for k odd. Also defineF̃ : R × XR →
XR by F̃ (ε, x) = h−1(F̃ (ε, h(x))), i.e. we identifyY with XR

and work with F̃ . The linearizationD2F̃ of F̃ (in XR) at a
solutionε = 0, h−1(A(λ,Vr,+,Vr,−,Vi,+,Vi,−)) ∈ XR is diag-
onal in the orthonormal basis{ê(k)}k∈Z of elementsê(k) of
XR that vanish outside the sitek, specifically the(k, k) diag-
onal entry ofD2F0 is λ, if k ∈ V0, and −2λ, if k ∈ Vr,+ ∪
Vr,− ∪ Vr,+ ∪ Vr,−. The inverse ofD2F̃ therefore exists an
is a bounded operator inXR . To check the regularity prop
erties of F̃ we note that sinceh is C1 and Y a subspace o
X it is enough to consider the regularity ofF : R × X → X

near(0,A(λ,Vr,+,Vr,−,Vi,+,Vi,−)). Letting B(X) be the set
of bounded linear operators inX, we note that for any fixed
t ∈ R the semigroupLt(ε) : R → B(X) is norm-continuous
and hence differentiable inε (see e.g.[12, Chapter 7.1]). The
same applies toL†

t (ε). Also for any fixedε ∈ R the semi-
group Lt(ε) : [0, T ] → B(X) (and similarlyL

†
t (ε)) is norm-

continuous int in the intervals whereD is continuous. With
these two observations and the fact thatg :X → X is C1 it is
routine to check thatF and D2F are continuous in a neigh
d

borhood of(0,A(λ,Vr,+,Vr,−,Vi,+,Vi,−)). The statement the
follows from the implicit function theorem. �

Eqs. (2.1), (2.6)and the breather equation(2.8) can also
considered in thed-dimensional integer latticesZd by letting
� = ∑d

k=1 Dk,+Dk,−, with Dk,+ (Dk,−) the forward (back-
ward) first order difference operators along thekth direction.
We also readily generalize the Hilbert spaceX by consider-
ing square summable complex functions onZd . To generalize
Proposition 2.3we work as before with real valued functio
on Zd . For Proposition 2.5, the analogue of the subspaceY of
functions that are invariant under the functionF̄ of (2.11)is the
set of functions that take real values at sites with coordin
[n1, . . . , nd ] ∈ Zd that satisfyn1 + · · · + nd even, and imag
inary values at the remaining sites. This defines a “chec
board” pattern where the values of neighboring sites ha
±π

2 phase difference. The invariance of this subspace ofX fol-
lows from thed-dimensional expression forLt in Lemma 2.4
(given in [20]). The proofs ofPropositions 2.3, 2.5then gen-
eralize to higher dimensions with minor modifications: in b
cases the linearization around the respective multi-peak s
tions of the anti-continuous discrete NLS is diagonal and
bounded inverse in the corresponding subspace, while the
ularity properties of the breather equation functions are a
d = 1.

It is clear that global phase shifts of the solutions discus
above are also solutions. Looking for breathers with prescr
phase differences between neighboring sites had the effe
eliminating the zero eigenvalues obtained by linearizing aro
the anti-continuous limit multi-peak solutions in the full spa
X.

3. Numerical breathers and their variational type

The solve the breather equation(2.8) numerically we con-
sider a lattice withN nodes. The starting point is then(2.1)with
periodic boundary conditionsuj+N+1 = uj and we can repea
the averaging argument above to obtain the periodic analo
of (2.6), and the breather equation(2.8). Further, we approxi
mate the integral in̄gL of (2.6)by a finite sum, thus considerin
the approximate breather equation

(3.1)

λA = −δ�A + 2γ g̃L(A), g̃L(A) = 1

M

M−1∑
m=0

L
m T

M
g
(
L

†
m T

M

A
)
,

with Aj+N+1 = Aj . The integral was here approximated by t
trapezoidal rule for simplicity. The solutions of(3.1)are critical
points of

(3.2)H̄ (v) = δ

N−1∑
j=0

∣∣(D+v)j
∣∣2 + γ

M

M−1∑
m=0

N−1∑
j=0

∣∣(L
m T

M
v)j

∣∣
over functions v that satisfy vj+N+1 = vj and ‖v‖ =∑N−1

j=0 |vj |2 = c for somec > 0. Thus the variational structur
of the breather equation is preserved under these approx
tions. Note that in(3.1), (3.2)the respective dependence ofg̃L,
H̄ on M is suppressed from the notation. We also remark
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Eq.(3.1) is solved numerically withλ fixed. Thel2 norm of the
solutions is therefore a priori unknown.

To solve the(3.1) we use Netlib’s minpack implementatio
of Powell’s hybrid Newton method (see[17,19]) where we min-
imize the residual

(3.3)
∥∥A − (λI + δ�)−12γ g̃L(A)

∥∥.

We typically accept the result when the residual enters the r
10−16–10−14. We have also used the Petviashvili iteration (
[3,21])

Aj+1 = µj (λI + δ�)−12γ g̃L(Aj ),

(3.4)with µj =
∣∣∣∣ 〈g̃L(Aj ),Aj 〉

〈Aj ,Aj 〉
∣∣∣∣
σ

, σ = 3

2
,

where now〈u,v〉 = ∑N−1
j=0 ujv

∗
j . The iteration is stopped whe

‖An+1−An‖ and|µn −1| are to within the range 10−16–10−15.
Note that the frequencyλ is always chosen outside the spectr
of −δ�. Also, in each run we increaseM until the results be
come independent ofM (to the l2 accuracies of 10−16–10−15

above). This typically occurs after aboutM = 30.
To determine the local variational type of the numeri

breather solutions we consider the Hessian of the constra
functionalH̄ at the critical point. Ifv is a numerical solution o
(3.1)for a discretization onN nodes andS the(2N −1)-sphere
in R2N , the Hessian∇2H̄ |S of the restriction ofH̄ to S can be
computed by first specifying a local coordinate systemy around
v and then approximating the derivatives∂yiyj

H̄ |S(v) by finite
differences. Although we are here using a coordinate-depen
definition of the Hessian, we are interested in intrinsic pr
erties of the Hessian that characterizeH̄ |S near the critical
pointv. First note that by the phase invariance ofH̄ , the Hessian
will always have at least one zero eigenvalue that is along
phase symmetry direction. Then, we have that (i) if∇2H̄ (v)

has both positive and negative eigenvalues thenv is not a local
extremum ofH̄ . Also, (ii) if the eigenvalues are nonnegati
(nonpositive) and there is only one zero eigenvalue, thenv is a
local minimum (maximum).

A convenient class of coordinate systems in a neighborh
U of v ∈ S is obtained by projectingU radially to the tan-
gent hyperplanev + E of S at v and then mappingE to R2N

by choosing an orthonormal basis{b1, . . . , b2N−1} of E. Let-
ting x ∈ v + E andF(x) = H̄ (

‖v‖
‖x‖x), the Hessian∇2H̄ |S(v)

will be the matrix with entries∂i∂jF (v), where∂i is the par-
tial derivative along the direction of the basis vectorbi . Note
that the spectrum of∇2H̄ |S(v) is independent of the choic
of the orthonormal basis, and only depends on the partic
choice of the chart fromU to v + E. The Hessian is evalu
ated numerically by replacing the partial derivatives by fin
differences, in particular the derivative along a directionbi is
evaluated by centered finite differences using the value ofF at
pointsu ± hbi, u ± 2hbi , etc. To avoid numerical instability a
h → 0, we useh in a range for which we see agreement
tween the partial derivatives calculated with finite differen
of different orders, and with differenth. We typically compare
centered difference formulas ofO(h2) andO(h4) and see tha
e

ed

nt
-

e

d

r

we can work in the rangeh ∼ 10−7–10−5. Finally, the eigenval-
ues of the numerical Hessian are computed using routines
eispack (available athttp://www.netlib.org, see also[9]).

In the simulations below we have used a diffraction mana
ment function

(3.5)D(t) =
{

δ + C, if t ∈ [0, T
2 );

δ − C, if t ∈ [T
2 , T ),

and we vary the parametersw = λ
γ

, χ = δ
γ

, andα = C
Ω

. Equiv-
alently, we setγ = −1, Ω = 1 and varyδ, andC. In the case
α = 0 we have the local discrete NLS, while the caseχ = α = 0
corresponds to the anti-continuous limit. The results below c
cern the caseχ � 0 where, by the previous section, the infimu
of H̄ on Xc is attained (for|χ | sufficiently small). The nu-
merical results we present below were obtained forN = 128.
IncreasingN we obtained practically the same breather so
tions with small additional run times. However, the evaluat
of the Hessian is computationally expensive and we have
at mostN = 256 nodes. We argue below that this truncat
can give sufficiently accurate results on the spectrum. We
classified the numerical solutions into three types.

Type I. A first type of numerical breathers can be char
terized as local minima of the constrained functionalH̄ . For
|χ |, |α| small these solutions also appear to be continuat
of the one-peak breather of the anti-continuous limit. For
ample, for χ ∈ [−0.1,0.0], α ∈ [0.0,0.4], the amplitude of
|A| attains its maximum at a singe node and decays rap
to zero. An example is seen inFig. 1(a). As we increaseα,
the width of the breather increases, and we eventually se
appearance of two maxima, as inFig. 2(a). These solution
are symmetric, and their amplitude is concentrated in a s
consecutive nodes. The spectrum of the Hessian for the tw
amples above are inFigs. 1(b), and 2(b), respectively. In both
cases we see one near-zero eigenvalue (less than 4× 10−3 in
absolute value) that we interpret as the zero eigenvalue. Th
maining eigenvalues are positive and well separated from
(larger than 1.25 in Fig. 2(b)). These solutions can be ther
fore characterized as local minima ofH̄ on the constraint an
are likely to be periodic approximants of the global extrema
Theorem 2.2. The existence of a clear gap between the z
and smallest positive eigenvalue suggests that the corresp
ing circles of constrained minimizers are isolated. Moreo
the Peierls–Nabarro barrier for such breathers is nontrivial,
the fact that translates of a minimizer are also minimizers s
gests (at least forN finite) the existence of min–max critica
points on the constraint. Here, the Peierls–Nabarro barri
the infimum of the maxima of̄H over all continuous curves o
the constraint that connect a minimal breather to its translat
one site (see also[14] for the local discrete NLS). As we doub
N we see practically no change in the spectrum of the Hes
In particular, the new eigenvalues are very near the value
A possible explanation is given below. We also note that th
solutions were found by both the Powell and Petviashvili al
rithms, i.e. both iterations converge to the same solution.

Type II. We have also seen solutions that are also con
trated in a set of consecutive nodes but do not appear t

http://www.netlib.org
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(a) (b)

Fig. 1. (a) Breather obtained forw = −10.0, χ = 0.013,γ = −1.0, A = 0.1, Ω = 1.0. (b) Hessian of breather in (a). Lowest eigenvaluesr0 = −0.00012,r1 = 18.4.

(a) (b)

Fig. 2. (a) Breather obtained forw = −10.0, χ = 0.013,γ = −1.0, A = 0.75,Ω = 1.0. Same parameters as inFig. 1(a), except for largerA. (b) Hessian of breathe
in (a). Lowest eigenvaluesr0 = −0.0041,r1 = 1.25.
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local extrema ofH̄ on the constraint. These breathers w
seen for larger values ofα ∈ [0.5,1.0]. An example is shown
in Fig. 3(a). The main feature of this example is its lack
reflection symmetry and we have also obtained another s
tion that is the reflection the one shown. Another exampl
shown inFig. 4(a). Here we have taken as initial condition tw
nearby single-peak configurations. The spectrum of the Hes
for the two examples are inFigs. 3(b), 4(b), respectively, and
we see clearly the appearance of negative eigenvalues. As
breathers of the first type, increasingN has the effect of produc
ing eigenvalues that are very near the value 20. The solutio
the second type have been obtained by Powell’s method on

Type III. A third type of solutions are close to sums
translates of (possibly globally phase-shifted) copies of
-
s

n

he

of

or more of solutions of the two types above. These are m
bump breather solutions and were also obtained by Pow
method only. First, settingδ = 0 we see numerically multi
bumps that correspond to the solutions in the subspaceY of
Proposition 2.3. An example is shown inFig. 5(a). In this and
other similar examples the initial guess belongs toY and the it-
erates stay inY up to 10−7, i.e. the phase differences betwe
neighboring sites are±π

2 up to 10−6. We have also seen se
eral nonlocal multibump solutionsδ 	= 0, d̃ 	≡ 0, i.e. cases no
covered byProposition 2.3. An example is shown inFig. 6(a).
In these more general solutions the amplitude in the reg
between the peaks is small, but significantly above the con
gence threshold for the residual. To avoid overlap that is
small we have considered translations of at most a few m
ples of the rough width of the single breather. As we move a
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(a) (b)

Fig. 3. (a) Breather obtained forw = −10.0,χ = 0.013,γ = −1.0,A = 0.75,Ω = 1.0. Asymmetric soliton, same parameters as inFig. 2(a). (b) Hessian of breathe
in (a). Lowest eigenvaluesr0 = −1.76, r1 = −0.0036,r2 = 0.70.

(a) (b)

Fig. 4. (a) Breather obtained forw = −10.0, χ = 0.013,γ = −1.0, A = 0.6, Ω = 1.0. Twin-peaked breather. (b) Hessian of breather in (a). Lowest eigenv
r0 = −39.9, r1 = −3.18, r2 = −2.84, r3 = −1.19, r4 = −0.0016,r5 = 3.24.
ite
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from δ = 0 the phase difference between neighboring s
moves slowly away fromπ

2 , for instance forχ ∈ [0.50,0.55]
we see phase differences ofπ

2 up to 0.06. The correspondin
spectra of the Hessian are shown inFigs. 5(b), 6(b). The ap-
pearance of negative eigenvalues (near the value−40) indicates
that these solutions are not local extrema. Moreover, for|χ |, |α|
sufficiently small, the computed eigenvalues of the Hessia
a n-bump solution seem to follow a simple pattern: there
n − 1 negative eigenvalues (near−40), n eigenvalues of sma
absolute value (one of which should correspond to the
eigenvalue due to the phase symmetry), while the remai
eigenvalues are positive and accumulate at the value 20. AN

is increased we again see that the new eigenvalues will be
near 20.
s

t

o
g

ry

Remark 3.1. The rationale behind distinguishing the type
solutions is that one could hope to establish their existenc
some general argument, e.g. assuming sufficiently large se
tion between the constituent breathers. This seems more l
for solutions in the subspaceY of (2.12) where we can hop
to show the existence of near-superpositions of translate
breathers that are isolated critical points without using the s
diffraction management assumption ofProposition 2.5. Some
possibly relevant ideas are developed in[1,2,6,8].

Remark 3.2. The version of the Petviashvili algorithm we us
could not converge to any of the solutions that are saddle p
(i.e. of types II, III). For instance, in the case where we s
the iteration at some configuration with several well separ
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(a) (b)

Fig. 5. (a) Breather obtained forw = −10.0, χ = 0.0, γ = −1.0, A = 0.2, Ω = 1.0. Three-peaked breather. (b) Hessian of breather in (a). Lowest eigenv
r0 = −40.0, r1 = −39.99, r2 = −0.0011,r3 = 0.0002,r4 = 0.0007,r5 = 14.51.

(a) (b)

Fig. 6. (a) Breather obtained forw = −10.0, χ = 0.013, γ = −1.0, A = 0.1, Ω = 1.0. Two-peak multi-bump breather. (b) Hessian of breather in (a). Low
eigenvaluesr0 = −39.9, r1 = −0.00048,r2 = 0.00056,r3 = 18.8.
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peaks the Petviashvili algorithm converges to a solution th
concentrated at one of the peaks.

The observed pattern in the spectrum of the multi-bump
lutions (type III) appears to be related to the spectrum of m
peak breathers of the anti-continuous limit discrete NLS.
these trivial solutions the spectrum of the Hessian can be c
puted explicitly since we can find a natural basis that makes
matrix diagonal. The basis vectors are normal to the brea
v and therefore also form a basis for the tangent hyperp
v + E. For instance, setD ≡ 0, ε = 0, fix λ, γ and consider a
breather solutionA(λ,Vr,+,Vr,−,Vi,+,Vi,−) ∈ Y (in the nota-
tion of Proposition 2.5) where the setVr,+ ∪ Vr,− ∪ Vi,+ ∪ Vi,−
consists ofn sites (n finite). The Hessian is seen to have a z
s

-
-
r
-

e
er
e

eigenvalue of multiplicityn, an eigenvalue 4λγ of multiplic-
ity n − 1 and an eigenvalue−2λγ of infinite multiplicity. The
zero eigenvalues are due to the phase symmetry at each
site, while the 4λγ eigenvalues correspond to then − 1 vectors
that are normal tov and whose components vanish inV0. In-
tuitively, for γ < 0, moving along these directions makes
configuration more concentrated and decreasesH̄ . The remain-
ing eigenvalues correspond to the vectors that are zero exc
the real or imaginary component of a single site inV0. Again,
for γ < 0, moving along these directions makes the confi
ration less concentrated and increasesH̄ . A similar conclusion
follows for the solutionsA(λ,U+,U−) of Proposition 2.3. In
the numerical results shown in the figures we have setγ = −1,
λ = 10 and as we move away fromδ = ε = 0 see that the
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infinite multiplicity eigenvalue−2λγ = 20 now becomes a
accumulation point of the spectrum. A possible interpreta
of this is that varyingδ andε perturbs the Hessian by a com
pact operator and thus preserves the essential spectrum
compactness of the operator is probably due to the rapid
cay of the breather solutions, i.e.v only changes appreciab
at a few sites from itsδ = ε = 0 configuration. This scenari
is also consistent with the observation that numerical solut
with more nodes only add new eigenvalues near the app
accumulation point of the spectrum and suggests that the e
values that determine the variational type of the critical po
can be computed accurately at least nearδ = ε = 0 with a few
nodes. It is also interesting that the same accumulation po
present for parameters that are further from theδ = ε = 0 limit;
one possibility is that these solutions can be eventually c
tinued to the multi-peak solutions of the anti-continuous li
system.

4. Discussion

We have considered breather and multi-breather solut
for the averaged diffraction managed discrete NLS. The
oretical part of our work used the fact that in the case of z
residual diffraction the breather equation can be solved in
subspace of configurations with aπ2 phase difference betwee
neighboring sites. This observation allows us to continue tri
multi-peak solutions of the anti-continuous limit to the wea
nonlocal problem and may also be useful far from the triv
limit. The existence of multibump solutions for nonzero aver
diffraction is an interesting open problem. Numerically, we c
find a wider class of breather solutions. Their variational t
can be determined by calculating the spectrum of the Hes
on the constraint. For example, in the case of local minima
size of the spectral gap gives us a rough idea of the siz
the Peierls–Nabarro barrier. Several features of the spectru
the Hessian can be also understood qualitatively by conside
the anti-continuous limit. A corresponding rigorous pertur
tion result would also be of interest.
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