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Abstract.

We show that minimal geodesics of the Jacobi metric for the Newtonian planar
n—center problem avoid collisions and therefore yield classical trajectories of prescribed
energy connecting any two configurations of the system. The proof involves a minimization

argument for the Jacobi arc-length, and an analysis of the approach to collision.
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1. Introduction

We consider a particle of mass m moving on the plane under the influence of a finite number
of fixed masses m,; located at points o;, i = 1,...,n (i.e. the planar n—center problem).
The equations of motion for the position z(¢) of the particle are mz” = —VU(x), with
the potential U being the finite sum of central force Newtonian potentials, i.e. U(x) =
— > m;lz — o;/~1. We show that for any £ > 0, any two points a, b outside the
singularities o4, ..., 0, can be connected by a trajectory of Newton’s equations that avoids
the singularities of the potential, has total energy E and minimizes the Jacobi action. The

precise statement is given in section 2.

The present work is inspired by recent variational constructions in the n—body prob-
lem. While the main focus has been on the existence of periodic orbits that avoid collisions,
the problem involves the question of finding open collision-free trajectories with prescribed
endpoints. This question is much simpler for potentials with T%, o > 2 singularities
(“strong force” potentials), where the action of any test path passing through a collision
diverges (see e.g. [P], [G], [CGMS]). This fact leads to several existence results for peri-
odic collision-free orbits via the direct method of the calculus of variations (see [Monl],
[CGMS]). There is also a significant body of literature on more general critical points of a
modified Jacobi action (see e.g. [ACZ]) where the “strong force” assumption is also used

to avoid collisions.

For the Newtonian potential, we should not in general expect to exclude collisions
by minimizing the action over classes of loops (see [G], [V], [Mon2], [C1]). On the other
hand, it was recently shown in [M1] (see also [C2]) that minimizers of the action over
paths with prescribed endpoints in the planar and spatial Newtonian n—body problems
avoid collisions. This is a generalization of earlier partial results on collision-free action
minimizers in the Newtonian n-body problem (see [D]), and we note that some special
results of this type were also used in works on the “figure-8” periodic orbit of the equal
mass planar 3-body problem (see [CM], [Chl]), a generalization to the equal mass planar
4-body problem (see [Ch2]), and a new periodic orbit in the spatial equal mass 3-body
problem (see [M2]). These works suggest a general strategy for combining variational
and symmetry arguments in problems with singular potentials that may lead to further
dynamically interesting constructions (see [C2] for an overview and some earlier related

works).

In this work we consider the existence of collision-free minimizers for the Jacobi action



(arc-length) where instead of prescribing the time interval we prescribe the total energy
of the path connecting two given points. We are not aware of any analogous results
for Jacobi minimizers in the n—body problem, and we here consider the simpler planar
n—center problem. In particular we start with the Jacobi action f_:;z [2(E—U)]z|z!|dT over
paths with given endpoints a = z(7;) and b = z(7,) and show the existence of minimizers
using arguments of the direct method of the calculus of variations (see Section 3). We use
some basic notions from metric geometry and look for minimizers of an induced length
defined for continuous curves connecting two given points a, b. Compactness follows from
the existence of parameterization by arc-length, the fact that we include paths that may
pass through the singularities, and the divergence of the length for paths wandering too
far from the endpoints. In the F = 0 case, the last property is a consequence of the slow

decay at infinity of the Newtonian potential.

To show that minimizers of the Jacobi length avoid singularities, we assume that a
minimizer passes through a singularity, and produce continuous curves with the same end-
points that avoid the singularity and have smaller Jacobi length. To construct shorter de-
formed curves we study the geometry of collision and ejection trajectories using Sundman’s
regularization, and we see that the approach to the singularities is very nearly “radial”
(in a sense made precise in Section 4). This allows us to define small deformations off the
singularity in a rather explicit way, estimate the first variation of the Jacobi arc-length,
and see that moving off the singularities decreases the length. The strategy becomes very
simple in the test problem where we have only one singularity. There the approach to
the singularity is radial and the variation of the length as we deform off the singularity
is estimated easily (e.g. deforming in a direction normal to the collision trajectories). By
controlling the geometry of the approach to the singularities, we see that similar estimates

are also valid for the case of n singularities (see section 4).

After completing this work we have found that the existence of Jacobi geodesics con-
necting two points in the planar n—center problem can be shown by a different method
(see [B], [KK], and [BT], [K] for a generalization to the spatial case). We believe that
the approach in these works also leads to the existence of minimal collision-free geodesics.
Also, the idea of considering local deformations off the singularities was used by [D] for
action minimizers, it is interesting however that the deformations used there do not allow

us to conclude that Jacobi minimizers avoid collisions (see remarks in [D]).

The main result is stated in Section 2, where we also set the notation. In Section 3

we extend the Jacobi length to a larger class of admissible paths and prove the existence



of minimizers connecting two given points. In Section 4 we analyze the approach to
the singularities, and prove the main theorem. We conclude by discussing some possible

extensions in Section 5.

2. The Jacobi action

We consider the configuration space M = R? with Cartesian coordinates x = (z,,z,), and

Lagrangians L of the form

_ . _ 1 2 _ - m;
The set of the n distinct points o4, ..., o, will be denoted by . The masses m, my,...,m,,

are positive.

The action A(z) of a sufficiently smooth path z : [t;,t,] - M \ ¥ is

(2.2) A(z) = / " L(x(t), 2 (1)) dt,

t1

and a general strategy for finding trajectories of the system (2.1) joining two points a,
b€ M\ X is to look for extrema of the action A(x) over a suitable class of paths x :
[t1,t5] = M\ ¥ with z(¢;) = a, x(t,) = b. By a classical argument, an extremum of A(z)
that is C? in [t;,1,] will be a solution of the Euler-Lagrange equations for the system of
(2.1).

A related approach is based on the Maupertuis principle, where we extremize the
action over paths with fixed total energy £ = K + U. In particular, fix £ € R and
let the Hill’s region H be the set of points in M \ ¥ where E — U(z) > 0. Also, let
x : [1y, 7] = Hg be a sufficiently smooth parameterized curve with z(7,) = a, z(7,) = b,

and define the Jacobi arc-length (or Jacobi action) [(z) of the path z by

2:3) o) = [ 120 - UGatr)) e (1)

1

Then, a C? curve extremizing the action A(x) over paths x : [t,,t,] — Hp with z(t;) = a,
z(ty) = b and satisfying K(z') + U(z) = E is, after a suitable reparameterization, a

geodesic of the Jacobi metric

2
(2.4) gp(@) = > 2(E—U())s;dv,dz;, xeH
i,j=1
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(see e.g. [A]). Conversely, we can obtain trajectories of the Euler-Lagrange equations from

geodesics of the Jacobi metric.

Proposition 2.1 Let =(7) : [1y,7] — Hg be a C? geodesic of the Jacobi metric
above, and let ¢(7) satisfy

dt
dr

dx(T)
dr

(2.5) 2(E — U(a(r))] 2.

Then, z(t) = z(¢(7)) satisfies the Euler-Lagrange equations for the Lagrangian L = K —U
of (2.1), and has energy K + U = F.

Proof: The geodesic z(7) must satisfy the geodesic equations for g5, which reduce to

d dz, B dz |
2.6 — (2(F -U 'l = | —(FE=-U)| |— =1, 2.
(2.6) dT|:( )dT:| [3:1:7( )} dr |’ ’ ’
In addition, x(7) must be parameterized by a multiple of the Jacobi arc-length, thus
satisfying
1 | dx
(2.7) [2(E — U(z(r)))? ”("](T) —c, with ¢>0.
[T

Combining (2.5) and (2.7), the geodesic equations (2.6) become
U

a2 Oz,

dx

dr

(2.8) c2(E — U)|"?

- i=1,2.

3

By (2.5), equations (2.8) are the Euler-Lagrange equations for the Lagrangian of (2.1).
Also, using (2.5) to express || in terms of [2£| at ¢ = £(7), the energy K (2/(t)) + U(z(t))

at t = t(r;) is E, and remains constant by the Euler-Lagrange equations.

Remark 2.1 By (2.5), the function ¢(7) is strictly increasing, and the trajectory x(t)

obtained from the geodesic x(7) joins the points z(7;), 2(7,) in a time interval ¢(7,) — (7).

Therefore, to connect any two points a, b € M \ ¥ by a trajectory of the Lagrangian
system of (2.1) that avoids 3 it is sufficient to fix some F > 0 and find a C? Jacobi geodesic

in M \ ¥ that connects the two points. Our main result is that this is possible.

Theorem 2.1 Let £ > 0 and a, b € M \ X. Then there exists a C? curve z :
[T1,75] — M \ X that is a minimal geodesic of the Jacobi metric g of (2.4) and has

endpoints z,(my) = a, x(75) = b.



To show the theorem we will minimize a functional related to the Jacobi arc-length
over a suitable class of curves connecting the two points a, b (Section 3), and show that
the minimizers are C?2 Jacobi geodesics that avoid the singularity set (Section 4). By
Proposition 2.1, we will then have a family of trajectories joining a, b, at least one trajectory
for each value of £ > 0.

Remark 2.2 It will be seen that the theorem also holds in the case where the endpoints
a, b are in X, i.e. we then show the existence of a Jacobi length minimizing trajectory
that avoids X at all intermediate times. In the case where E' < 0, the Hill's region H is
a bounded subset of M, and the metric vanishes at 0H . We consider that in this case,
the strategy of seeking trajectories joining pairs of points in ‘H by minimizing the Jacobi

arc-length is only appropriate for points that are sufficiently far from 0H .

3. Minimizers of the Jacobi arc-length

In this section we show the existence of a continuous curve that joins any two points a ,

b€ M \ ¥ and minimizes a length functional induced by the Jacobi arc-length.

We start with an outline of the argument. We first define a class P(a, b) of continuous,
piecewise C'2 parameterized curves joining points @ and b € M \ ¥ for which the the Jacobi
arc-length [ of (2.3) is well defined. The Jacobi arc-length over such curves is used to define
a metric p, in M, and from this metric we obtain an induced length f defined for any
continuous curve joining a and b. The induced length we use is a well-known construction
in metric spaces, and is lower semi-continuous in the C9 topology. The existence of a
minimizer will follow from the fact that the induced length of curves that join a and b and
cross a circle of (a sufficiently large) radius R are bounded below by a function f(R) that
diverges as R — oo. This is shown in Lemma 3.2, and implies that minimizing sequences
of curves will have their image in a compact subset of M. A standard application of
the Arzela-Ascoli theorem for curves parameterized by arc-length will then show that the
minimum of [ is attained (Theorem 3.1). The regularity of the minimizers of the Jacobi

length will be considered in the next section.

Remark 3.1 Note that the induced length [ can be also defined for continuous paths
that may pass through . In the case £ = 0 where the Jacobi metric vanishes at infinity,

Lemma 3.2 relies on the slow decay of the Newtonian potential.

We consider M with the Euclidean metric pgz. A continuous parameterized curve
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v 1 [11, 5] = M is never-locally-constant if there exists no interval [7,7/] C [1y,Ty], T # 7’

3

for which v|(, .,y is constant.

Definition 3.1 Let a, b € M, and P(7y, Ty; a, b) be the set of C9, piecewise C2, never-
locally-constant curves v : [7y, 7] = M, v(1;) = a, v(7,) = b whose image intersects ¥

for a discrete set of points 7 € [y, 7,]. Also, let P(a,b) = U, ,1crP (71,21 a,b), and
P =Ug,pemxmP(a;b)

The above sets are non-empty, moreover P(a,b) is closed under C9, piecewise C?
reparameterizations (C°, piecewise C? homeomorphisms between intervals). Also, that
fact that the image of every v € P(a,b) intersects % for a discrete set of points of its

domain allows us to define the Jacobi length of these paths in a natural way.

Definition 3.2 Let v : [1,7,] — M be in P(a,b) for some pair a, b € M, and fix
E > 0. Then the (Jacobi) length I : P(a,b) — R U {oo} is defined by

(31 1) = [ (B - UG )

1

with the notation of section 2.

Notation: ;From now on we suppress from the notation the dependence of [ and the
corresponding Jacobi metric on the energy E. What follows will hold for any fixed £ > 0.
Also, we set all masses m, my,...,m, to unity; all arguments below will be valid for

arbitrary positive masses.

We check that [ is additive, depends continuously on restrictions to subintervals, and
is bounded away from zero for admissible paths connecting any a € M with points outside
any ball radius € > 0 around a. Moreover, we can easily see that [ is invariant under C9,
piecewise C? reparameterizations of paths in P(a,b), i.e. as in the case where the metric

is smooth, and regardless of whether [ is finite or infinite.
Proposition 3.1 Let a, b € M. Then p;(a,b) = inf_cp(, ;) {(7) is a metric on M.

Proof: The symmetry of p, and the triangle inequality follow immediately from the
definition of p;, and we also have p,(a,b) > 0 for any a # b € M, and p,(a,a) = 0,
Va € M \ . For a € 3, let the curve 7, be the concatenation of two line segments, from
a € ¥ toa ¢ ¥ and back respectively, both traversed with constant (Euclidean) speed.
The singularity in [(7,) is integrable, and we easily estimate that I(v,) is of O(|a — a|z),

and therefore vanishes as a tends to a.



We can use the metric p; to define a length functional | on continuous parameterized
curves. Unless otherwise specified, the topology on M in the definition of continuity of
curves will be the one induced by the Euclidean metric p.. We then let CO(1, M) denote

the set of continuous parameterized curves v : I = [1y, 7] — M.

Definition 3.3 Let v € C(I, M), and let Y denote the set of all finite partitions
y={yy =1 <y, <...<yy_, = 7y} of the interval I = [r,7,]. Then the induced
Jacobi arc-length I(v) is defined by

(3.2) I(v) = sup > o(v(;),7(41))-

Theorem 3.1 Consider the set CO(1, M) of continuous parameterized curves with
endpoints a, b € M. Then, for every pair a, b € M there exists a continuous curve

v : I — M joining a and b whose length IA(W) attains the infimum of [ over the set.

To show the theorem we collect a number of intermediate statements. The proof
follows the general outline of the direct method. First, we consider a minimizing sequence
of curves {v;} € COI, M) connecting a and b, and seek a subsequence that converges
uniformly. We need to show that the curves of the minimizing sequence have their image
in a bounded subset of M. We observe that a radial curve that reaches a point on a circle
of a sufficiently large radius R has length [ of least O(R) if E > 0, and O(R2) if E = 0.
In Lemma 3.2 we show a similar statement for arbitrary continuous curves. We will use

the following result on “short geodesics”:

Lemma 3.1 Let © € M \ X, and consider an open set U, C M \ ¥ and an open
(Euclidean) disc B,(d) C U, of radius § > 0 around z. Then for ¢ sufficiently small
and any points x,, x, € B, (J) there exists a unique C? Jacobi geodesic ¢ : [0,1] — U,
minimizing the arc length [ over all continuous, piecewise C? paths with endpoints z,, z,

and image in U .

The lemma follows from the general local theory of the exponential map for smooth

metrics (see e.g. [M, par. 10]).

Lemma 3.2 Let v : I = [y, 7,] — M be a C° parameterized curve with v(7,) = a,

~v(7,) = b and finite length [(7). Fix R, > 2 such that the open disk of radius Bo centered
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at the origin contains a, b, and the singularity set ¥, and assume that there exist 7 € I and
R > R, for which |y()| > R. Then, I(y) > h(R), with h an increasing function satisfying
h(R) — +oc as R — +oc.

Proof: Fix R, as above, and choose 7p < 7p satisfying |y(75,)| = Ry and v(15) = R
respectively, with R > R,. Also, let I, be the intersection of [T , 7] with the preimage

under v of the closed annulus between R, and R. Denoting the restriction of v to I, by
Y, we have I(v,) < (7).

To estimate () we cover its image by a finite collection C of (Euclidean) open discs
of radius €. Since y, is continuous we can cover its image by a finite subcollection C, for
any € > 0. We also partition I, as follows: let y, = 75 , and B? € C a disc containing
v4(yy)- Also, let y; be the largest 7 € I, for which v,(7) € B°. Let B! be a disc in C
containing v, (y,). By the assumption that C is an open cover such a disk exists, moreover,
Bl # B by the definition of y;. We inductively define y,,, to be the largest 7 € I, for
which v, (7) € Fj, and letting B+1 be a disk in C containing v,(y,,,). When y,,, = 75
the process terminates. Note that for each 7 we have Bit1 #£ B0 ... Bi. We therefore
have a finite partition y = {y, =75, <y; < ... <yy_, =T}, N < card(C), where every
pair of points v,4(y;), 74(y;,1) belongs to the same closed disk B.

We can choose € sufficiently small so that, by Lemma 3.1 all pairs v4(y,), 7a(¥;11)
can be connected by a short geodesic of the Jacobi metric. The short geodesics are the
unique C? curves whose Jacobi length [ attains p;(v4(v;),v4(y;11)). Reparameterizing
each short geodesic that connects v,(y;) to v4(y;4,) by an appropriate multiple of the
Jacobi arc-length so that its domain is [yj, ?/_7'+1]= and concatenating the short geodesics,
we then obtain a parameterized curve z : I, — M \ X. By construction, z has the same

endpoints as v,, and is C? and piecewise C2. By the definition of [ we have that

(3.3 i) > 3 a1 000)) = 1),

and we can now bound [(z) below by direct calculation: first, assuming without loss of
generality that one of the singularities is at the origin, we have 2(F — U(z)) > —2U(z) >
lz| . Also, for e sufficiently small |2(7)| > Bo > 1, V7 € I, hence

2]

(3.4) I(z) > V2 dr.

T
J1, |2|2
Using polar coordinates r, § we can write 2z’ = r’é, + rf'¢é, (€, points outward). Since z is

piecewise C? and R > R,, the set Ij{ C I, where r" > 0 is a non-empty countable union
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of closed intervals with non-empty interior. Since |2/| > |r’| =/ in I}, (3.4) becomes

-

O

kd r 1/ p 2

Iy |Z|% I: r2

since at the maximum and minimum of IX, we have r > R and r < R respectively. ;From
(3.3), we therefore have I(y) > I(y,) > CR2, with C depending on R,, i.e. on the points
a, b and the singularity set ..

Therefore, if {7,} is a minimizing sequence, then there exists R > 0 and a closed disc
By(R) = {x € M : |z| < R} such that v, € C°(I, By(R)), for all i after some N. Note that
by the definition of [, if  is continuous, piecewise C2 and avoids ¥ then I(v) < I(7) (the two
lengths are in fact equal for such curves, but we do not need this here). The infimum of [
over the curves of interest is therefore finite, and the curves v, of the minimizing sequence
must be uniformly equicontinuous, for ¢ after some N’. To see this, first note that the
curves vy, are also continuous as functions from I to M with the topology of p,. Then,
since i(’}g) < +oo for all 4, the curves v, admit a constant velocity parameterization (see
[BBI], ch.2), i.e. parameterizations by arc-length. Reparameterizing the v, by arc-length
we then have p;(v,(7),v,(7")) < lA(fyi\[TyT,]) < c|r" = 71|, for all 7, 7" € I, and all i. Also,
letting cz" be the maximum of [2(E — U)]~2 in By(R), we see that pg(z,z') < cpp,(z, z'),
for all z, 2’ in the image of the ~,. Therefore, the minimizing sequence {~,}, with the
v; parameterized by arc-length, satisfies the assumptions of the following version of the

Arzela-Ascoli theorem:

Lemma 3.3 Consider a sequence {v,} of parameterized curves , € C°(I, M) with

endpoints a, b € M. Also, suppose that there exist constants R, C such that for all ¢
(3.6) v,(T)| <R, Vrel, and |y(r)—v(7) <Clr-7, Vr,7"el.

Then the sequence {v,} has a subsequence that converges uniformly to a curve v € C(I, M)

with endpoints a and b.

To show that the limit of the convergent subsequence of the minimizing sequence {+; }
attains the infimum of [ we show below that [ is lower-semicontinuous in C°. The argument,
is well-known (see e.g. [BBI], ch.2), a small difference here is that we are considering

continuous curves for M with the topology of the Euclidean metric pg.

10



Lemma 3.4 The induced Jacobi length | is lower semi-continuous on CO(I, M) with

the CO (uniform convergence) topology.

Proof: Consider a sequence {v,} € C°(I, M) converging to y in C°. Fix a partition y =
I N-2

{yo =71 <y, <...<yy_y =7y} of I for which I() *Zj:o Pl(W(yj)a’Y(?Jj+1)) < e. Each

7:(y;) converges to v(y;) in pg, and by the definition of p; and the fact that we have a finite

set of points we can choose i large enough so that p;(v(y;),7(y;)) <€ Vj=0,...,N —1.

Then, the triangle inequality yields p;(v(y;),7(y;51)) < £i(%:(y;),7i(y;41)) + 2€, and we
therefore have

N—-2 N-—-2

(V) <Y () v (Wp0)) +e < 2Ne+ > py(v;(5,) % (W51) +€ < 1(v;) + (2N + 1)e,
Jj=0 j=0

for all € > 0.

Proof of Theorem 3.1: By the lower-semicontinuity of f, the limit « of an appropriate

~

subsequence of a minimizing sequence {v,} has length I(v) = lim inf, , ()

4. Collisionless Jacobi geodesics

We now show that the minimizers of the induced Jacobi arc-length | are smooth, and that

they can not pass though the singularity set .

As a preliminary step, we first show that minimizers of [ are C2 geodesics of the
Jacobi metric as long as their image is outside the singularity set . By Proposition 2.1
this implies that the minimizers are solutions of the Kuler-Lagrange equations outside X.

We also see that the Jacobi length [ and induced Jacobi length [ of the minimizers coincide.

To see that minimizers of [ avoid Y., we will argue that allowing a minimizer to pass
through 3 leads to a contradiction. In particular, assuming that a minimizer v of l passes
through > we will produce paths with smaller length [ that avoid the singularity set.
The argument uses the fact that v can be reparameterized to satisfy the Euler-Lagrange
equations outside . To study the approach of v to the singularity set 3, we use a variant

of Sundman’s result on the “branch regularization” of binary collisions (Lemma 4.2). We
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see that the approach to X is almost “radial”, in the sense that the angular velocity
decreases rapidly as we approach the singularity (see Lemmas 4.3, 4.4). This quite simple
geometry of the minimizers near the singularities allows us to define one-parameter families
of small deformations of v normal to v that avoid ¥. The deformations alter v only near
the singularity set, and using the information on the geometry of the approach to X, we
estimate the first variation of the arc-length with respect to the deformation parameter in
Lemma 4.5. We show that deforming off the singularities decreases the Jacobi arc-length.
The deformations used in Lemma 4.5 generally produce discontinuous curves. In Lemma
4.6 we show that by choosing the deformations appropriately, the shorter curves off the
singularities have self-intersections, and can therefore be “glued” to yield continuous curves

connecting the given endpoints.

The see that Jacobi minimizers are regular off the singularity set ¥ we will use the

properties of short geodesics stated in Lemma 3.1.

Lemma 4.1 Let v € C%1I, M) with endpoints a, b € M \ ¥ be a minimizer of
the induced Jacobi arc-length [ over all continuous parameterized curves with the same
endpoints. Also, assume that lA(fy) < +o0o. Then, v is a C2 Jacobi geodesic for all 7 € T
such that (r) € M\ . Moreover, I(vy) = I(7).

Proof: Consider 7 € I such that 2 = v(7) € M \ X. Also, let D_(5) C M \ ¥ be an
open (Euclidean) disc of radius § around #, and pick 7y < 7 < 7, such that [, ., C D;(9).
By Lemma 3.1, we can choose 6 > 0 sufficiently small so that the points z; = v(7;) and
xy = y(7,) can be connected by a short geodesic of the Jacobi metric. Denoting the short
geodesic by ¢, we can be reparameterize ¢ so that ¢(my) = x;, ¢(79) = ©,. We want to
(7] and ¢ coincide. By the definitions of ¢ and [ we have that i((ﬁ) = 1(¢),
and also l('y| (r.m]) = U(®) = py(x1,75). On the other hand, l(fy\ (rma]) < I(¢) since 7 is a

minimizer. Therefore [(fy|[T] ) = I(¢). Suppose now that there exists y in the image of

show that |

’Y|[Tl,72] that is not in the image of ¢. Consider the curve ¢ made by concatenating two
short geodesics connecting z,; to y and y to z, respectively, and reparameterize ¢ so that
¢(r)) = @1, ¢(ry) = 5. By the definition of | we have I(¢) = I(¢), and I(~]f,, ,,)) > 1($).
Moreover, since the parameterized curves ¢ and é are C? they differ in some open subset
of [1,,7,]. By the uniqueness of ¢ we then have I(¢) > I(¢), hence l(fy| [r1,ma]) > I($), a

contradiction. Thus fy\ j and ¢ are the same curve. The argument applies to any point

T T2

v(7) ¢ ¥, and the first statement of the lemma follows.

To see that I(y) = I(y), we first observe that the set of times 7; € I for which
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v(7;) € ¥ is finite. Consider a union I of neighborhoods of size ¢ around each such 7.
Using the first statement of the lemma, we have I(v[p\ ;) = I(y[p /). Then, I(y) < +00
implies that {(y) < +oo, and hence I(y[;) — 0 as e — 0. Similarly, I(y[,) — 0 as
e — 0, by the continuity of [ with respect to endpoints. Letting ¢ — 0 we can thus make

i) = 1| = 1i3]1,) = 1(3];,)] arbitranily small.
|

Therefore, a C? parameterized curve v : I — M joining a, b € M \ X that minimizes
[ over all continuous curves with the same endpoints is a C'2 geodesic of the Jacobi metric
for all 7 € I for which v(7) ¢ ¥, and can be reparameterized to solve the Euler-Lagrange

equations for (2.1).

We are assuming that there are 7 € I for which v(7) € ¥. The set T, of all such 7 is
discrete: since <y is a minimizer and the length between points of ¥ is bounded away from
zero, any accumulation point in 7), would correspond to loops around a point of ¥. Thus
each 7 € T, has an open neighborhood where the curve v does not pass through ¥, and
we want to study some of the geometric properties of the minimizer  as it approaches a
singularity time 7 € T',. The goal is eventually to show that there exists a curve v which
does not pass through the singularity set ¥ and satisfies i(i) < f(fy) To produce the curve
v we study < in neighborhoods of the points 7 € T,. This is a local analysis of [ near such
points, and it is sufficient to describe it for any given 7 € T,. We will also assume without
loss of generality that one of the singularities of the potential U is located z = 0, and that
there exists 7, € T, for which v(7,) = 0. Otherwise, given a, b € M \ ¥, and a minimizer
v with y(7,) = o, for some o, € ¥, 7, € I, we can translate our system of coordinates so
that o, goes to the origin, produce the shorter curve 4 that avoids the origin (and other
singularities), and translate back to the original coordinate system. The procedure can be
performed for any singularity encountered by ~. The changes of coordinates are justified

by the fact that the Jacobi length is invariant under translations.

We can also consider the minimizer y parameterized by ¢ so that ~y(¢) satisfies the
Euler-Lagrange equations for all ¢ with v(¢) € M \ 3. Assuming that 7 € I above defines
a parameterization of v satisfying (2.6), and setting ¢ = 0 when 7 = 0, we easily see

that I(y) < 4+oc and (2.5), (2.6) imply that ¢, < +oc. By translating the variable ¢

appropriately, we may simplify the notation by also assuming that ¢, = 0.
Lemma 4.2 Suppose that y(f) — 0 € ¥ as t — 0, where y(t) satisfies the Euler-
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Lagrange equations for (2.1) for ¢ # 0. Then, for |¢| sufficiently small, v(¢) can be expressed

as

ol

(4.1) V(1) =136(5), & =13,
where ¢(7) is analytic in a sufficiently small neighborhood of & = 0, and satisfies |¢(0)| # 0.

Note that the function ¢ depends on the initial condition, i.e. (t,) and ~'(¢,) for
some t, # 0. The lemma is a slight modification of Sundman’s branch regularization of
binary collisions in the Newtonian 3-body problem, and we shall only sketch the proof,

referring to [SM, 1.6-1.8] for more details.

Proof of Lemma 4.2: The equations of motion for (2.1) can be written as Hamilton’s
equations for the position and momentum q(t), p(¢) respectively. Denote the Hamiltonian
by H, and define the new “time” o by o(t) = f; Iv(t)]~1dt. We can see that q(o), p(o)
satisfy the Hamiltonian system
dg dF dp  dF

% with F=l¢/(H—-E), EcR,

4.2 = =
(4:2) do dp’ do dg’

if and only if ¢(¢), p(t) are trajectories of Hamilton’s equations for (2.1) with total energy

E. Defining the new variables &, n by the symplectic transformation

(4.3) ¢ =qlp*—2p(q-p), n=npp 2

and writing H = 1|p|2 — |¢|~! — f(q), with f smooth near |q| = 0, the Hamiltonian F

becomes

(1.4 F(&n) = el - 1+IEIP(f(Em) - B).

By conservation of energy, as o, |¢(c)] — 0, the norm of the momentum |p| diverges.
Therefore, by (4.2), as we approach the origin, we have n — [0,0], and |{] — 1. By the
local existence theory for (o), n(o), and the fact that (o), n(o) remain bounded in a set

where F' is analytic as 0 — 0, (o), n(o) are analytic for |o| small enough (i.e. at 0 =0

as well). Moreover, as ¢ — 0, ¢ has a limit £, with |{,|] = 1. Matching powers of ¢ in
(4.4), and using (4.3), we also have n(c) = —1&0 + O(02), q(0) = —3&,0% 4+ O(03), and
therefore |¢(0)| # 0. Also, by the definition of o we have t = g3 + ..., and inverting near

o = 0, we have that ¢ is analytic in 6 = t5.
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Corollary 4.1 Suppose that v(t) — 0 € ¥ as t — 0, where 7(¢) satisfies the Euler-
Lagrange equations for (2.1) for ¢t # 0. Then, there exist £, < 0 < #, for which r(t) = |y(t)|

is decreasing in [t,, 0] and increasing in [0, ,].

Iy(t)|. ;From (4.1) we immediately have - (r2) =

Proof: Let ¢, = ¢(0) and r(t) = d
ta (5] |2 +O(t7)) for [t| small, i.e. 4 (r2) negative and positive respectively as ¢ increases
changing sign.

The fact that the radius r = |y| decreases and then increases monotonically as we
pass the singularity allows us to reparameterize a segment of the curve near the origin
by a multiple of 7. Consider the times #,, #, in Corollary 4.1, and pick a > 0 satisfying
|y(t,)| > o and |y(t,)| > a. Then define t, < t, by |y(t,)| = |7(t,)| = @, and parameterize
the segment ofﬂ (t1.t,] DY the scaled radius s(?), defined by s(t) = —a~1r(t), for ¢ € [t;,0],
and s(t) = a~1r(t), for t € [0,¢5]. The minimizer 7 is now parameterized by s € [—1,1],
with v(0) = 0, and y(s) € M \ X if s # 0. Clearly, v is smooth in [-1,0) U (0, 1]. Also, the

reparameterization does not change the length [ of the segment.

Lemma 4.3 Let v(t) — 0 as ¢ — 0, where ~y(t) satisfies the Euler-Lagrange equations
of (2.1) if ¢t # 0. Also let r(t), 6(t) denote the polar coordinates of «(#). Then, (i)
L=yx8 0,20, and (ii) r7 % — 0.

Proof: Let prime denote the derivative with respect to ¢t. For x near the origin we
have £ — U(z) = % + f(z) with f > 0 and smooth. By the conservation of energy,

(15) = (2+2r)

and using Corollary 4.1, |£]| < |y||y| < Crz, with C some constant as t — 0. Thus |£|
vanishes as we approach the singularity. Also, L/ = vx~" = v x V f by the Euler-Lagrange
equations. By Corollary 4.1 we then have |£/| < C'|y|, with C” some constant as ¢ — 0.
Hence L’ also vanishes as we approach the origin. To see (ii) we use polar coordinates,
where

g v x

T

(4.6)

Expanding 7(t) as
V() = pot? + ot + Potd + ...
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(for appropriate ¢,), we calculate
2 4
L=yx~ = %(% X ¢p)te + %(% X ¢y)t + O(13),

L= 2(¢, % ¢1)t7% + 2(dg X by) +O(t t4),

where using Lemma 4.2 all series are absolutely convergent for [t| small. On the other
hand, since £’ — 0 as ¢ — 0 we must have ¢, X ¢; = ¢, X ¢ = 0. Therefore, L is O(t%)
as t — 0. ;From |¢,| # 0, we also have that |y|2 is O(£3) as t — 0, so that by (4.6) the
angular velocity 6’ is bounded as ¢t — 0.

nt’ ()
/—\‘ﬂ
0
n.' ()

Figure 1

To construct families of curves near 7\ —11] that avoid the singularity, we now deform
Y|(-1,0) and 7[jg 17 in the direction of unit vectors that are normal to the position vector .
Specifically, by the smoothness of v for s # 0 there exist (exactly) two C'! one-parameter
families of unit vectors n[l_](s), n[g_](s), s € [—1,0) that are normal to y(s) for all s € [—1,0)

(see e.g. Fig. 1). Similarly, there exist (exactly) two C1 one-parameter families n[1+](s),

n[2+](s), s € (0, 1], of unit vectors normal to y(s) for all s € (0, 1]. Notice that n[li] = —n[j],
i.e. the indices ¢ are arbitrary at this point.

Lemma 4.4 Let y(s) be as above. Then, as s — 0, we have (i) [2X| — «, (ii)
Lpl+], — 0, and (iii) 2 -0l 5 0,i=1,2.

Proof: Let prime and dot denote the derivative with respect to ¢ and s respectively.
Using polar coordinates, |y/|? = (r/)2 4+ r2(0")2, and by Lemma 4.3 (ii), the second term
vanishes as s —> 0. Then, |¥(s)| = |¥'||s'|~! = a|y'||r'|=! — a as s — 0. To see (ii), we
start with |nZ | = |(nz ) |s'|~1, i = 1,2. Conservation of energy implies |s'|~1 < Cr 2
for some constant C. Also note that |(n£i])’\ < 10'], i = 1,2. Combining with Lemma 4.3
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(ii), we therefore have \ngi]\ < Crz|0| = 0,i=1,2. To see (iii), we use - ngi] =0, Vs.
Then |7 - ngi]\ < |'y||h£i]|, and the statement follows by (ii).

The families ngf](s), n£+](s), i = 1,2 are therefore C'! in [—1, 0], [0, 1] respectively. By
Lemma 4.4 (iii), we can define two one-parameter families of closed half-discs Hé_], HE],
B > 0, with radius # and center at the origin that in addition satisfy: (i) the diameters of
Hg], HE—] are along n[f](O), n[1+](0) respectively, (ii) H[[;] C H[[;QH for 0 < 8, < By < a,
and (iii) Hé_], HE] intersect ¥[_g o1, V[0, 5] Tespectively for all 8 > 0.

Letting HI# = HIF notice that if nl1(0), n{(0) are collinear, then HI-1n H is
either HI=1 = H*] or a line segment along n[_](O). If n[_](O), n[1+](0) are not collinear,
the boundary of HI=1 N HI™ contains one of the ng_]((]) and one of the nE-H(O) (see e.g.
Fig. 2).

o N,

Figure 2

With this notation we define the one parameter families of unit vectors nl=1: [-1,0] —
S1 and nlt]: [-1,0] — S! as follows: in the case where ”[1_](0) and n[1+](0) are collinear

we let

(4.7) nl=1l = n[f], n*l = n£+], with n£+] such that nEH(O) = n[f]((]),
i.e. n[~]is chosen arbitrarily, and then determines nl+! uniquely. In the case where n[f](O)

and n[1+](0) are not collinear we let

(4.8) nl=l = "[f], if nH(O) € HI-1n HH+];
| n[g_] , otherwise,

(4.9) b [t italt(0) € B A HEL
| S 77[+] otherwise
"2 116 Se.
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For example, in Fig. 2 we would set nl-] = n[;] and nl+] = n[1+].
Then, for € > 0 we define v : [—1,0] — M, ~E [0,1] = M by

(4.10) fyF[_’](s) =v(s) + ea(l + s)nH(s), s € [-1,0],

(4.11) H(s) = v(s) + ea(1 — 5)nF(s), s €0, 1]

respectively. Note that s # 0 implies that \%[__](s)\ = [a2s2 4+ €2a2(1 + 5)2]2 # 0, and
|'y£+](s)\ # 0. Also, we can chose €, o, so that if ¢ < ¢,, @ < «, the curves 'yi_], 'y£+] do

not, encounter any singularities other than the origin.

The curves %[__], fy£+] with € > 0 (dotted lines in Fig. 3), are the desired “deflections”

of the segments [ o = fy([)_], Vo1 = 'y([)H respectively (solid lines in Fig. 3). In Lemma

4.5 below we show that if e is positive and sufficiently small, then l(’yf[_i]) < l(’y[f]) and

1(yF) < 1(7§t)). The definition of the vectors n[=1, nl+] from the respective ng_], nEH,
1 = 1,2 above is meant to simplify the last part of the argument, where we must also show

that the shorter deflected segments can be chosen to intersect.

WMo N U

Figure 3

Lemma 4.5 There exists € > 0 for which l(fye[

in [0, €.

7]) and l(%[ﬂ) decrease as € increases

(+]

[_], since the proof for the ~¢ ' is

Proof: We will show the statement for the family ~

similar. To simplify the notation, let vy, = ’y£7], v = fy[*] = 7\[_1’0], and n = nl-1. With

this notation and (4.10), we then have the family of curves
(4.12) v.(8) =v(s) + ea(l + s)n(s), se[-1,0, €>0,

with o > 0 fixed.
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Let I(e) = I(~,). For € > 0, the curves v, avoid the singularity, and the integrand of

I(€) is smooth. Thus /() is differentiable in € for ¢ > 0, and we can take the derivative

inside the integral. We first estimate I’ = % and show that it is negative as ¢ — 0*. ;From
(4.10) we have

’ 2.2 2 2 27—1 s
(4.13) l&w—/'Ms + (14 )27 1+ [y, F(r)]F i dds, €>0

—1

Letting u = s2 4+ €2(1 + 5)2, we have l'(¢) = I; + I,, where

(4.14) L= —gabe [ umi P au 7001 ds,
-1
0
_1 d 1 1.,
(4.15) L= [ wt g {n aud st s
-1

with € > 0. We will show that as e — 0+ the first integral I, is negative and of O(e~2),
while the second integral I, is bounded uniformly in e. Letting 8 = au%f, and w? =

a~'|9.|, the integral I, is further decomposed as I, = Iy, + Iog + Iy, with

0
(4.16) I 4 —a%e/ u_%(l-I—s)2[1-|-6]_%fw%ds,
0

0
d
IzB:%a%/ us[l+ B % flwsds, Igc:aée/ u*%[1+6]%w’%%ds,
‘ €

—1

where f = f(7.(s)) and f = L f(7.(s)).

To estimate the integrals we assume that € € (0,¢y], @ € [0, o] with ¢, and «; such
that the only singularity of the potential U encountered by the segments _ is the one at
the origin. It follows from this assumption that there exist M, M’ > 0 satisfying

(4.17) IfI<M, [f] <M

in (4.14)-(4.16) above. Also, by Lemma 4.4 there exist N, m > 0 satisfying
(4.18) | < N, |sf] <m.

We further restrict o and ¢, to satisfy

(4.19) () apl+@)M <L, (i) N<2, (i) &N<



Fixing o € (0, ], we now see that the essential term in each of the four integrals

is the one involving u (to some power). All other terms can be bounded uniformly in
s € [-1,0] and € € [0, ¢,]. In particular, using (4.10) and 7(s) - n(s) =0, Vs € [—1,0), we

calculate
(420)  w? =[1+ 5207+ 2+ 2(1+ )20l + 20 es(y - ) + 2¢2(1 + 5)%(n - 0)]?.
Then, from s € [—1,0], |7| = |s|a, and conditions (4.19) (ii), (iii) we have

20 tes(y-n) < 4, [2€2(1+9)*(n- )| <

respectively, hence

N
N

(4.21) wE > 2"
Similarly, s € [—1, 0], the definition of m, and conditions (4.19) (ii), (iii) imply
(4.22) w? < (24 m?+ )7,

In addition, the definition of # and condition (4.19) (i) imply

(4.23) B>

N[ =

Then, from (4.14), and (4.21), (4.23) we have

[N

0 N 0
Lz ate [ e aut o dds > 55 [ et as,

=
N|=

1s

so that setting v = tan™ "~ 2 in the last integral we obtain

0
1
(4.24) 11| > e 2% / cos? vdy > Cie 2,

—tan—!

=
[N

1

2e

with C; > 0 a constant uniform in € as e — 0F. For the integrals of (4.16) we similarly
use (4.21)-(4.23), obtaining

0

Iy, <M(2+m?>+ eg)%a% / eu”Tds <
J-1
(4.25) 0 1
<IM(2+m? + €2)7a? [6% / cos%vdv+6/ u%ds] :
J—tan—11 J—1
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0 0

u? ds, Lo <41+m+ N + 60)(1% / u” T ds.

J—1

(4.26) Iy < M (2+m? + 2)%ak /
J-1

We check from (4.25)-(4.26) that I,,, Iyg, I, are bounded uniformly in e € [0,¢g].

Collecting the bounds on the four integrals we therefore have that as e — 0+

(4.27) U(€) < —Cie 7 + Cy,

with C;, C, positive constants.

Choosing €, sufficiently small, I(¢) is therefore decreasing for ¢ € (0,¢;]. For the
continuity of [(¢) at e = 0, we let I(¢) = fi)l F_(s)ds, with F, the integrand of (4.12). Using
(4.17)-(4.22), we see that

N|=

F(s)<a*Cls|"7, Vse[-1,0], Vee[0,e]

3

with some C > 0 independent of e. Thus the functions F. are uniformly bounded by an

integrable function, and by the dominated convergence theorem we have
0
I(e) — / Fy(s)ds = 1(0) as ¢ - 0.
~1

In a similar way, we can find e, > for which l(%[_ﬂ) decreases for € € [0,€,]. Then the

statement follows with € = min{e;, €, }.

Remark 4.1 In the test case where ¥ consists of only one singularity located at the
origin, conservation of the angular momentum ~ x v/ implies that all collision and ejection
orbits are radial. The image of the curve v is then the union of two linear segments, from
a to the origin and then to b respectively, while the vectors n!*](s) above are constant and
normal to «y for all s. The integrals in (4.14)-(4.16) simplify and we again obtain (4.27).

The choice of the nl£] ensures that the deflected curves intersect.

Remark 4.2 The above test case also suggests a simpler way of deforming v off X
that seems however to require a similar analysis. Specifically, consider two intermediate
points a/, b’ with |a’| = |/| = € on each of the two radial segments of 7, and let § be the
angle between the segments. The Jacobi lengths of the circular arc connecting a’ to b’ and

of the two line segments from a’ to the origin and then to &’ are ez and 4e? respectively
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(up to a common constant), i.e. too close for § near m. In the n-center case we would

therefore need a rather precise control of the geometry of approach to the singularities.

Remark 4.3 Replacing any of the two families nl=1, nl+] by —nl=], —nl+] respectively
does not affect the proof of Lemma 4.5. Such a change is also equivalent to reversing the

sign of € in the segments %[_—]7 'y£+]. We have therefore also shown that the lengths of fyg[__]

and 'y£+] decrease as € decreases in [—¢, 0].
By Lemma 4.5, Remark 4.3, and noting that %[7](0) = 7[7](0) and fy£+](1) = 7([)+](1),

Ve € R, we can complete the argument by finding €,, €, € [—¢, €] for which the images of
(-] [+]
2

the corresponding segments vz ., intersect at a point other than the origin.

and -y

Lemma 4.6 Let Cj be the set of all convex linear combinations of the vectors bnl=1(0),
bnl+1(0), with b € [0, 8]. We can find 8 > 0 sufficiently small so that for every z € Cy\ {0}
there exist unique pairs [€;,5;] # [0,0], [€5, 5] # [0,0] with s; € [-1,0], s, € [0,1]
satisfying

[-]

— +
z =L [+]

(51) = Ve, (52)-

Moreover, as |z| — 0 we have €, €&, — 0 and s; — 0, s, — 0F.

Proof: Tn the case where nl=1(0) = nl*1(0), the conical region Cs degenerates to the
set of all points bnl-1(0) with b € [0, 3]. The definitions of WE] and fy£+] immediately yield
’y£_](0) = ’y£+](0) = enl=1(0), Ve € R, and the statement follows.

For the case where nl=1(0) # n[+1(0), we will show the statement for 4. . The proof

for fy£+] is similar. In essence, we want to solve the equation 7 _(s) = z for any given
x € Cg\ {0}, and we will use the fact that v,(0) = 0 and the implicit function theorem.
To simplify the notation we let v, = v and v = v,. Also, let N(s) = nl-1(s), N = N(0),
and M = n[t1(0). We know that v, and N are continuously differentiable at s = 0, and
that s — 0~ implies 4.(s) - N(s) — 0 and |¥| — «. We can then apply an orthogonal
transformation to our coordinate system so that 4(0) = aé; = «[1,0], N = [0,1], and
M = [M,, M,] with M; < 0, M, > 0 and |[M| = 1. Note that the signs of M, M, follow

from the definition of nl=] and nl+].
We first consider a simpler version of v,(s) = x. Let
¥.(s) = asé; +€(1+s)N, se[-1,0], €>0.
Then, writing x € Cy as © = bAN + b(1 — A\)M, with b € [0, 8], A € [0, 1], the equation
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¥.(s) = x has the unique solution

b b
s=—(1-AM = ——M,, Vze(Cj.
S a( ) 1 € a(l + s) 29 T E 6
By the signs of M,, M, above we therefore have that for any 8 < « there exists a neigh-
borhood Q4 of [0,0] in the s < 0, € > 0 quadrant whose image under 7, (s) includes Cp.

Moreover, [s,e] — [0,0] as 8 — 0.

To solve v.(s) = z for x € Cp it is enough to show that if [7,0] € Qg, and 3 is

sufficiently small, the equation
(4.28) F(s,e;71,0) =~.(s) —5(1) =0

has a solution s(7,d) € [~1,0], ¢(7,0) that depends continuously on 7 and ¢§. Since
F(0,0;0,0) = 0, showing that the solution is also unique will imply that if z # 0 (and
hence [1,d] # [0, 0]), then [s, €] # [0,0]. To solve (4.28) we note that the derivative D F of
F with respect to the first two arguments at [0, 0; 0, 0] is

D,F(0,0;0,0) = (MO) MO)) :

Ny N,

with y = [y1,75)- By 4-N = 0 and |§(0)| = «, we see that det(D,F(0,0;0,0)) = ¥(0)xN =
a? # 0. Also, F' can be extended to a neighborhood of [0,0;0,0]: we can let ¢, 7, § € R
above, and ~,(s) = asé; for s > 0. The extended function is C'! near [0, 0; 0, 0], and by the
implicit function theorem we have unique C' functions s(7,9), €(7,d), with 7, § near the
origin. By continuity and our conclusions on the simplified equation 45(7) = z, we have
that s, € — 0 as x approaches the origin. Also, by the definition of the extension of F,
for small 7 > 0 we have the unique solution s(7,d) = 7 > 0. On the other hand, solving
Y5(1) =z, © € Cg, we had 7 < 0. Therefore, v (s) =z, z € Cg, can only be satisfied with
s € [—1,0].

Proof of Theorem 2.1: Assuming that a minimizer v of l passes through some o € 3,

we can apply Lemma 4.5 (and Remark 4.3) to obtain “deflected” segments %[ ], %[j] that

1
avoid o and have smaller length [. By Lemma 4.6 we can choose €; and €, arbitrarily small

so that the images of the two deflected segments intersect. Concatenating appropriate

(-] [+]

restrictions of v, * and 7.," we then obtain a continuous curve 7 joining a and b with
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length lA(fy) <1y < f(fy) a contradiction. The argument applies to any singularity o € 3.
Minimizers of [ therefore avoid the singularity set >, and by Lemma 4.1 and Proposition

2.1, are trajectories of the Euler-Lagrange equation joining a and b.

Remark 4.4 Note that the above argument does not give us any information on the

homotopy class of the deflected shorter curve 7.

5. Discussion

Possible extensions will be considered in future work. Some directions are periodic lat-
tices, higher dimensions, other types of point singularities, and singularity sets of higher
dimension. For instance, we can consider Jacobi geodesics in a planar periodic lattice of
potentials with % singularities and fast decay at infinity. Arranging the potential energy U
to be finite off the singularities, negative, and such that the perturbation to the approach

to a singularity by other sites is analytic, the arguments will be the same.

Regarding higher dimensions, it is clear that the arguments leading to the existence of
minimal geodesics do not involve the dimension of M. The same is also true for the analysis
of the approach to the singularities in Lemmas 4.1 and 4.2. However, the construction
of deflections off the singularities is special to the two dimensional case, and must be

generalized.

Also, the definition of the induced length [ in Section 3 is meaningful for %,,, a < 2

singularities, while Lemma 3.2 applies to all potentials that decay as %,, with o < 2. Thus
the existence of minimizers of the Jacobi length (with E' > 0) can be extended to potentials

with &, & < 2 singularities. The arguments of Section 4 must be modified however.

ro

Also of interest are minimal Jacobi geodesics in configuration spaces with singularity
sets of higher dimension, e.g. the shape space of the planar 3-body problem with total

angular momentum w = 0.

6. Acknowledgments

I would like to thank R. Easton, J. Meiss and G. Roberts for helpful discussions and
comments. The author is supported by NSF grant DMS-9810751.

24



7. REFERENCES

[A] V.I. Arnold: Mathematical methods in Classical Mechanics, Springer, Berlin (1989)

[ACZ] A. Ambrosetti, V. Coti-Zelati: Periodic solutions of singular Lagrangian systems,
Birkhéuser, Boston (1993)

[B] S.V. Bolotin: Nonintegrability of the problem of n centers for n > 2, Vestnik Moskov.
Univ. Ser. T Mat. Mekh. 3, 65-68 (1984)

[BBI] D. Burago, Y. Burago, S. Ivanov: A Course in Metric Geometry, A.M.S., Providence
(2001)

[BN] S.V. Bolotin, P. Negrini: Regularization and topological entropy for the spatial n-
center problem, Ergodic Th. Dyn. Syst. 21, 383-399 (2001)

[C1] A. Chenciner: Action minimizing periodic solutions of the N-body problem, Contemp.
Math. 292, 71-90 (2002)

[C2] A. Chenciner: Action minimizing solutions of the Newtonian n-body problem: from

homology to symmetry, preprint available at
http//www.bdlfr/Equipes/ASD /person/chenciner/chenciner.html (2002)

[Chl] K.C. Chen: On Chenciner-Montgomery’s orbit in the three-body problem, Disc.
Cont. Dyn. Syst. 7, 85-90 (2001)

[Ch2] K.C. Chen: Action-minimizing orbits in the parallelogram four-body problem with
equal masses, Arch. Rat. Mech. Anal. 158, 293-318 (2001)

[CGMS] A. Chenciner, J. Gerver, R. Montgomery, C. Simé: Simple choreographic motions
of N bodies: a preliminary study, preprint (2001)

[CM] A. Chenciner, R. Montgomery: A remarkable periodic solution of the three-body
problem in the case of equal masses, Ann. of Math. 152, 881-901 (2000)

[D] G. Dell’Antonio: Non-collision periodic solutions of the N-body system, Nonlin. Diff.
Eq. Appl. 5, 117-136 (1998)

[G] W. Gordon: A minimizing property of Keplerian orbits, Am. J. Math. 99, 961-971

25



(1977)

[KK] M. Klein, A. Knauf: Classical planar scattering by Coulombic potentials, Lecture
Notes in Physics m13, Springer-Verlag, Berlin (1992)

[Kn] A. Knauf: The n-centre problem of celestial mechanics for large energies, J. Eur.
Math. Soc. 4, 1-114 (2002)

[M1] C. Marchal: How the method of minimization of action avoids singularities, Celest.
Mech. Dyn. Astron. 83, 325-353 (2002)

[M2] C. Marchal: The family P,, of the three-body problem-the simplest family of periodic
orbits, with twelve symmetries per period, Celest. Mech. Dyn. Astron. 78, 279-298 (2001)

[Mil] J. Milnor: Morse Theory, Princeton University Press, Princeton (1969)

[Monl] R. Montgomery: The N-body problem, the braid group, and action minimizing
periodic orbits, Nonlinearity 11, 363-376 (1998)

[Mon2] R. Montgomery: Action spectrum and collsions in the 3-body problem, Contemp.
Math. 292, 173-184 (2002)

[P] H. Poincare: Sur les solutions periodiques et le principle de moindre action, C.R.A.S.
123, 915-918 (1896)

[SM] C.L. Siegel, J.K. Moser: Lectures on Celestial Mechanics, Springer, Berlin (1971)

[V] A. Venturelli: Une caracterisation variationenelle des solutions de Lagrange du
probléme plan des trois corps, C. R. Acad. Sci. Paris Ser. T Math. 332, 641-644 (2001)

26



