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1. Introdu
tionWe 
onsider a parti
le of massmmoving on the plane under the in
uen
e of a �nite numberof �xed masses mi lo
ated at points �i, i = 1; : : : ; n (i.e. the planar n�
enter problem).The equations of motion for the position x(t) of the parti
le are mx00 = �rU(x), withthe potential U being the �nite sum of 
entral for
e Newtonian potentials, i.e. U(x) =�Pni=1mijx � �ij�1. We show that for any E � 0, any two points a, b outside thesingularities �1; : : : ; �n 
an be 
onne
ted by a traje
tory of Newton's equations that avoidsthe singularities of the potential, has total energy E and minimizes the Ja
obi a
tion. Thepre
ise statement is given in se
tion 2.The present work is inspired by re
ent variational 
onstru
tions in the n�body prob-lem. While the main fo
us has been on the existen
e of periodi
 orbits that avoid 
ollisions,the problem involves the question of �nding open 
ollision-free traje
tories with pres
ribedendpoints. This question is mu
h simpler for potentials with 1r� , � � 2 singularities(\strong for
e" potentials), where the a
tion of any test path passing through a 
ollisiondiverges (see e.g. [P℄, [G℄, [CGMS℄). This fa
t leads to several existen
e results for peri-odi
 
ollision-free orbits via the dire
t method of the 
al
ulus of variations (see [Mon1℄,[CGMS℄). There is also a signi�
ant body of literature on more general 
riti
al points of amodi�ed Ja
obi a
tion (see e.g. [ACZ℄) where the \strong for
e" assumption is also usedto avoid 
ollisions.For the Newtonian potential, we should not in general expe
t to ex
lude 
ollisionsby minimizing the a
tion over 
lasses of loops (see [G℄, [V℄, [Mon2℄, [C1℄). On the otherhand, it was re
ently shown in [M1℄ (see also [C2℄) that minimizers of the a
tion overpaths with pres
ribed endpoints in the planar and spatial Newtonian n�body problemsavoid 
ollisions. This is a generalization of earlier partial results on 
ollision-free a
tionminimizers in the Newtonian n-body problem (see [D℄), and we note that some spe
ialresults of this type were also used in works on the \�gure-8" periodi
 orbit of the equalmass planar 3-body problem (see [CM℄, [Ch1℄), a generalization to the equal mass planar4-body problem (see [Ch2℄), and a new periodi
 orbit in the spatial equal mass 3-bodyproblem (see [M2℄). These works suggest a general strategy for 
ombining variationaland symmetry arguments in problems with singular potentials that may lead to furtherdynami
ally interesting 
onstru
tions (see [C2℄ for an overview and some earlier relatedworks).In this work we 
onsider the existen
e of 
ollision-free minimizers for the Ja
obi a
tion2



(ar
-length) where instead of pres
ribing the time interval we pres
ribe the total energyof the path 
onne
ting two given points. We are not aware of any analogous resultsfor Ja
obi minimizers in the n�body problem, and we here 
onsider the simpler planarn�
enter problem. In parti
ular we start with the Ja
obi a
tion R �2�1 [2(E�U)℄ 12 jx0jd� overpaths with given endpoints a = x(�1) and b = x(�2) and show the existen
e of minimizersusing arguments of the dire
t method of the 
al
ulus of variations (see Se
tion 3). We usesome basi
 notions from metri
 geometry and look for minimizers of an indu
ed lengthde�ned for 
ontinuous 
urves 
onne
ting two given points a, b. Compa
tness follows fromthe existen
e of parameterization by ar
-length, the fa
t that we in
lude paths that maypass through the singularities, and the divergen
e of the length for paths wandering toofar from the endpoints. In the E = 0 
ase, the last property is a 
onsequen
e of the slowde
ay at in�nity of the Newtonian potential.To show that minimizers of the Ja
obi length avoid singularities, we assume that aminimizer passes through a singularity, and produ
e 
ontinuous 
urves with the same end-points that avoid the singularity and have smaller Ja
obi length. To 
onstru
t shorter de-formed 
urves we study the geometry of 
ollision and eje
tion traje
tories using Sundman'sregularization, and we see that the approa
h to the singularities is very nearly \radial"(in a sense made pre
ise in Se
tion 4). This allows us to de�ne small deformations o� thesingularity in a rather expli
it way, estimate the �rst variation of the Ja
obi ar
-length,and see that moving o� the singularities de
reases the length. The strategy be
omes verysimple in the test problem where we have only one singularity. There the approa
h tothe singularity is radial and the variation of the length as we deform o� the singularityis estimated easily (e.g. deforming in a dire
tion normal to the 
ollision traje
tories). By
ontrolling the geometry of the approa
h to the singularities, we see that similar estimatesare also valid for the 
ase of n singularities (see se
tion 4).After 
ompleting this work we have found that the existen
e of Ja
obi geodesi
s 
on-ne
ting two points in the planar n�
enter problem 
an be shown by a di�erent method(see [B℄, [KK℄, and [BT℄, [K℄ for a generalization to the spatial 
ase). We believe thatthe approa
h in these works also leads to the existen
e of minimal 
ollision-free geodesi
s.Also, the idea of 
onsidering lo
al deformations o� the singularities was used by [D℄ fora
tion minimizers, it is interesting however that the deformations used there do not allowus to 
on
lude that Ja
obi minimizers avoid 
ollisions (see remarks in [D℄).The main result is stated in Se
tion 2, where we also set the notation. In Se
tion 3we extend the Ja
obi length to a larger 
lass of admissible paths and prove the existen
e3



of minimizers 
onne
ting two given points. In Se
tion 4 we analyze the approa
h tothe singularities, and prove the main theorem. We 
on
lude by dis
ussing some possibleextensions in Se
tion 5.2. The Ja
obi a
tionWe 
onsider the 
on�guration spa
e M = R2 with Cartesian 
oordinates x = (x1; x2), andLagrangians L of the form(2:1) L = K(x0)� U(x); with K = 12mjx0j2; U = � nXi=1 mijx� �ij :The set of the n distin
t points �1; : : : ; �n will be denoted by �. The massesm, m1; : : : ;mnare positive.The a
tion A(x) of a suÆ
iently smooth path x : [t1; t2℄!M n � is(2:2) A(x) = Z t2t1 L(x(t); x0(t))dt;and a general strategy for �nding traje
tories of the system (2.1) joining two points a,b 2 M n � is to look for extrema of the a
tion A(x) over a suitable 
lass of paths x :[t1; t2℄!M n � with x(t1) = a, x(t2) = b. By a 
lassi
al argument, an extremum of A(x)that is C2 in [t1; t2℄ will be a solution of the Euler-Lagrange equations for the system of(2.1).A related approa
h is based on the Maupertuis prin
iple, where we extremize thea
tion over paths with �xed total energy E = K + U . In parti
ular, �x E 2 R andlet the Hill's region HE be the set of points in M n � where E � U(x) > 0. Also, letx : [�1; �2℄! HE be a suÆ
iently smooth parameterized 
urve with x(�1) = a, x(�2) = b,and de�ne the Ja
obi ar
-length (or Ja
obi a
tion) l(x) of the path x by(2:3) l(x) = Z �2�1 [2(E � U(x(�))℄1=2jx0(�)jd�:Then, a C2 
urve extremizing the a
tion A(x) over paths x : [t1; t2℄! HE with x(t1) = a,x(t2) = b and satisfying K(x0) + U(x) = E is, after a suitable reparameterization, ageodesi
 of the Ja
obi metri
(2:4) gE(x) = 2Xi;j=1 2(E � U(x))Æijdxidxj ; x 2 H4



(see e.g. [A℄). Conversely, we 
an obtain traje
tories of the Euler-Lagrange equations fromgeodesi
s of the Ja
obi metri
.Proposition 2.1 Let x(�) : [�1; �2℄ ! HE be a C2 geodesi
 of the Ja
obi metri
above, and let t(�) satisfy(2:5) dtd� = ����dx(�)d� ���� [2(E � U(x(�))℄� 12 :Then, x(t) = x(t(�)) satis�es the Euler-Lagrange equations for the Lagrangian L = K�Uof (2.1), and has energy K + U = E.Proof: The geodesi
 x(�) must satisfy the geodesi
 equations for gE , whi
h redu
e to(2:6) dd� �2(E � U)dxid� � = � ��xi (E � U)� ����dxd� ����2 ; i = 1; 2:In addition, x(�) must be parameterized by a multiple of the Ja
obi ar
-length, thussatisfying(2:7) [2(E � U(x(�))℄ 12 ����dx(�)d� ���� = 
; with 
 > 0:Combining (2.5) and (2.7), the geodesi
 equations (2.6) be
ome(2:8) 
[2(E � U)℄� 12 d2xidt2 = � �U�xi ����dxd� ���� ; i = 1; 2:By (2.5), equations (2.8) are the Euler-Lagrange equations for the Lagrangian of (2.1).Also, using (2.5) to express jdxdt j in terms of jdxd� j at t = t(�), the energy K(x0(t))+U(x(t))at t = t(�1) is E, and remains 
onstant by the Euler-Lagrange equations.
Remark 2.1 By (2.5), the fun
tion t(�) is stri
tly in
reasing, and the traje
tory x(t)obtained from the geodesi
 x(�) joins the points x(�1), x(�2) in a time interval t(�2)�t(�1).Therefore, to 
onne
t any two points a, b 2M n � by a traje
tory of the Lagrangiansystem of (2.1) that avoids � it is suÆ
ient to �x some E � 0 and �nd a C2 Ja
obi geodesi
in M n � that 
onne
ts the two points. Our main result is that this is possible.Theorem 2.1 Let E � 0 and a, b 2 M n �. Then there exists a C2 
urve x :[�1; �2℄ ! M n � that is a minimal geodesi
 of the Ja
obi metri
 gE of (2.4) and hasendpoints x1(�1) = a, x(�2) = b. 5



To show the theorem we will minimize a fun
tional related to the Ja
obi ar
-lengthover a suitable 
lass of 
urves 
onne
ting the two points a, b (Se
tion 3), and show thatthe minimizers are C2 Ja
obi geodesi
s that avoid the singularity set (Se
tion 4). ByProposition 2.1, we will then have a family of traje
tories joining a, b, at least one traje
toryfor ea
h value of E � 0.Remark 2.2 It will be seen that the theorem also holds in the 
ase where the endpointsa, b are in �, i.e. we then show the existen
e of a Ja
obi length minimizing traje
torythat avoids � at all intermediate times. In the 
ase where E < 0, the Hill's region HE isa bounded subset of M , and the metri
 vanishes at �HE . We 
onsider that in this 
ase,the strategy of seeking traje
tories joining pairs of points in HE by minimizing the Ja
obiar
-length is only appropriate for points that are suÆ
iently far from �HE .3. Minimizers of the Ja
obi ar
-lengthIn this se
tion we show the existen
e of a 
ontinuous 
urve that joins any two points a ,b 2M n � and minimizes a length fun
tional indu
ed by the Ja
obi ar
-length.We start with an outline of the argument. We �rst de�ne a 
lass P (a; b) of 
ontinuous,pie
ewise C2 parameterized 
urves joining points a and b 2M n� for whi
h the the Ja
obiar
-length l of (2.3) is well de�ned. The Ja
obi ar
-length over su
h 
urves is used to de�nea metri
 �l in M , and from this metri
 we obtain an indu
ed length l̂, de�ned for any
ontinuous 
urve joining a and b. The indu
ed length we use is a well-known 
onstru
tionin metri
 spa
es, and is lower semi-
ontinuous in the C0 topology. The existen
e of aminimizer will follow from the fa
t that the indu
ed length of 
urves that join a and b and
ross a 
ir
le of (a suÆ
iently large) radius R are bounded below by a fun
tion f(R) thatdiverges as R!1. This is shown in Lemma 3.2, and implies that minimizing sequen
esof 
urves will have their image in a 
ompa
t subset of M . A standard appli
ation ofthe Arzela-As
oli theorem for 
urves parameterized by ar
-length will then show that theminimum of l̂ is attained (Theorem 3.1). The regularity of the minimizers of the Ja
obilength will be 
onsidered in the next se
tion.Remark 3.1 Note that the indu
ed length l̂ 
an be also de�ned for 
ontinuous pathsthat may pass through �. In the 
ase E = 0 where the Ja
obi metri
 vanishes at in�nity,Lemma 3.2 relies on the slow de
ay of the Newtonian potential.We 
onsider M with the Eu
lidean metri
 �E . A 
ontinuous parameterized 
urve6




 : [�1; �2℄!M is never-lo
ally-
onstant if there exists no interval [�; � 0℄ � [�1; �2℄, � 6= � 0for whi
h 
j[�;� 0℄ is 
onstant.De�nition 3.1 Let a, b 2M , and P (�1; �2; a; b) be the set of C0, pie
ewise C2, never-lo
ally-
onstant 
urves 
 : [�1; �2℄ ! M , 
(�1) = a, 
(�2) = b whose image interse
ts �for a dis
rete set of points � 2 [�1; �2℄. Also, let P (a; b) = [[�1;�2℄�RP (�1; �2; a; b), andP = [(a;b)2M�MP (a; b)The above sets are non-empty, moreover P (a; b) is 
losed under C0, pie
ewise C2reparameterizations (C0, pie
ewise C2 homeomorphisms between intervals). Also, thatfa
t that the image of every 
 2 P (a; b) interse
ts � for a dis
rete set of points of itsdomain allows us to de�ne the Ja
obi length of these paths in a natural way.De�nition 3.2 Let 
 : [�1; �2℄ ! M be in P (a; b) for some pair a, b 2 M , and �xE � 0. Then the (Ja
obi) length l : P (a; b)! R+ [ f1g is de�ned by(3:1) l(
) = Z �2�1 [2(E � U(
(�))℄1=2j
0(�)jd�;with the notation of se
tion 2.Notation: >From now on we suppress from the notation the dependen
e of l and the
orresponding Ja
obi metri
 on the energy E. What follows will hold for any �xed E � 0.Also, we set all masses m, m1; : : : ;mn to unity; all arguments below will be valid forarbitrary positive masses.We 
he
k that l is additive, depends 
ontinuously on restri
tions to subintervals, andis bounded away from zero for admissible paths 
onne
ting any a 2M with points outsideany ball radius � > 0 around a. Moreover, we 
an easily see that l is invariant under C0,pie
ewise C2 reparameterizations of paths in P (a; b), i.e. as in the 
ase where the metri
is smooth, and regardless of whether l is �nite or in�nite.Proposition 3.1 Let a, b 2M . Then �l(a; b) = inf
2P (a;b) l(
) is a metri
 on M .Proof: The symmetry of �l and the triangle inequality follow immediately from thede�nition of �l, and we also have �l(a; b) > 0 for any a 6= b 2 M , and �l(a; a) = 0,8a 2 M n �. For a 2 �, let the 
urve 
~a be the 
on
atenation of two line segments, froma 2 � to ~a =2 � and ba
k respe
tively, both traversed with 
onstant (Eu
lidean) speed.The singularity in l(
~a) is integrable, and we easily estimate that l(
~a) is of O(ja� ~aj 12 ),and therefore vanishes as ~a tends to a. 7



We 
an use the metri
 �l to de�ne a length fun
tional l̂ on 
ontinuous parameterized
urves. Unless otherwise spe
i�ed, the topology on M in the de�nition of 
ontinuity of
urves will be the one indu
ed by the Eu
lidean metri
 �E . We then let C0(I;M) denotethe set of 
ontinuous parameterized 
urves 
 : I = [�1; �2℄!M .De�nition 3.3 Let 
 2 C0(I;M), and let Y denote the set of all �nite partitionsy = fy0 = �1 � y1 � : : : � yN�1 = �2g of the interval I = [�1; �2℄. Then the indu
edJa
obi ar
-length l̂(
) is de�ned by(3:2) l̂(
) = supy2Y N�2Xj=0 �l(
(yj); 
(yj+1)):Theorem 3.1 Consider the set C0(I;M) of 
ontinuous parameterized 
urves withendpoints a, b 2 M . Then, for every pair a, b 2 M there exists a 
ontinuous 
urve
 : I !M joining a and b whose length l̂(
) attains the in�mum of l̂ over the set.To show the theorem we 
olle
t a number of intermediate statements. The prooffollows the general outline of the dire
t method. First, we 
onsider a minimizing sequen
eof 
urves f
ig 2 C0(I;M) 
onne
ting a and b, and seek a subsequen
e that 
onvergesuniformly. We need to show that the 
urves of the minimizing sequen
e have their imagein a bounded subset of M . We observe that a radial 
urve that rea
hes a point on a 
ir
leof a suÆ
iently large radius R has length l of least O(R) if E > 0, and O(R 12 ) if E = 0.In Lemma 3.2 we show a similar statement for arbitrary 
ontinuous 
urves. We will usethe following result on \short geodesi
s":Lemma 3.1 Let x 2 M n �, and 
onsider an open set Ux � M n � and an open(Eu
lidean) dis
 Bx(Æ) � Ux of radius Æ > 0 around x. Then for Æ suÆ
iently smalland any points x1, x2 2 Bx(Æ) there exists a unique C2 Ja
obi geodesi
 � : [0; 1℄ ! Uxminimizing the ar
 length l over all 
ontinuous, pie
ewise C2 paths with endpoints x1, x2and image in Ux.The lemma follows from the general lo
al theory of the exponential map for smoothmetri
s (see e.g. [M, par. 10℄).Lemma 3.2 Let 
 : I = [�1; �2℄ ! M be a C0 parameterized 
urve with 
(�1) = a,
(�2) = b and �nite length l̂(
). Fix R0 > 2 su
h that the open disk of radius R02 
entered8



at the origin 
ontains a, b, and the singularity set �, and assume that there exist � 2 I andR > R0 for whi
h j
(�)j � R. Then, l̂(
) > h(R), with h an in
reasing fun
tion satisfyingh(R)! +1 as R! +1.Proof: Fix R0 as above, and 
hoose �R0 < �R satisfying j
(�R0)j = R0 and 
(�R) = Rrespe
tively, with R > R0. Also, let IA be the interse
tion of [�R0 ; �R℄ with the preimageunder 
 of the 
losed annulus between R0 and R. Denoting the restri
tion of 
 to IA by
A, we have l̂(
A) < l̂(
).To estimate l̂(
A) we 
over its image by a �nite 
olle
tion C of (Eu
lidean) open dis
sof radius �. Sin
e 
A is 
ontinuous we 
an 
over its image by a �nite sub
olle
tion C, forany � > 0. We also partition IA as follows: let y0 = �R0 , and B0 2 C a dis
 
ontaining
A(y0). Also, let y1 be the largest � 2 IA for whi
h 
A(�) 2 B0. Let B1 be a dis
 in C
ontaining 
A(y1). By the assumption that C is an open 
over su
h a disk exists, moreover,B1 6= B0 by the de�nition of y1. We indu
tively de�ne yj+1 to be the largest � 2 IA forwhi
h 
A(�) 2 Bj , and letting Bj+1 be a disk in C 
ontaining 
A(yj+1). When yj+1 = �Rthe pro
ess terminates. Note that for ea
h j we have Bj+1 6= B0; : : : ; Bj. We thereforehave a �nite partition y = fy0 = �R0 � y1 � : : : � yN�1 = �Rg, N � 
ard(C), where everypair of points 
A(yj), 
A(yj+1) belongs to the same 
losed disk Bj .We 
an 
hoose � suÆ
iently small so that, by Lemma 3.1 all pairs 
A(yj), 
A(yj+1)
an be 
onne
ted by a short geodesi
 of the Ja
obi metri
. The short geodesi
s are theunique C2 
urves whose Ja
obi length l attains �l(
A(yj); 
A(yj+1)). Reparameterizingea
h short geodesi
 that 
onne
ts 
A(yj) to 
A(yj+1) by an appropriate multiple of theJa
obi ar
-length so that its domain is [yj; yj+1℄, and 
on
atenating the short geodesi
s,we then obtain a parameterized 
urve z : IA ! M n �. By 
onstru
tion, z has the sameendpoints as 
A, and is C0 and pie
ewise C2. By the de�nition of l̂ we have that(3:3) l̂(
A) � N�2Xj=0 �l(
A(yj); 
A(yj+1)) = l(z);and we 
an now bound l(z) below by dire
t 
al
ulation: �rst, assuming without loss ofgenerality that one of the singularities is at the origin, we have 2(E � U(x)) � �2U(x) �jxj�1. Also, for � suÆ
iently small jz(�)j > R02 > 1, 8� 2 IA, hen
e(3:4) l(z) � p2 ZIA jz0jjzj 12 d�:Using polar 
oordinates r, � we 
an write z0 = r0êr + r�0ê� (êr points outward). Sin
e z ispie
ewise C2 and R > R0, the set I+A � IA where r0 � 0 is a non-empty 
ountable union9



of 
losed intervals with non-empty interior. Sin
e jz0j � jr0j = r0 in I+A , (3.4) be
omes(3:5) ZIA jz0jjzj 12 d� � ZI+A r0r 12 d� � 12 (R 12 �R 120 );sin
e at the maximum and minimum of I+A , we have r � R and r � R0 respe
tively. >From(3.3), we therefore have l̂(
) > l(
A) � CR 12 , with C depending on R0, i.e. on the pointsa, b and the singularity set �.
Therefore, if f
ig is a minimizing sequen
e, then there exists R > 0 and a 
losed dis
B0(R) = fx 2M : jxj � Rg su
h that 
i 2 C0(I; B0(R)), for all i after some N . Note thatby the de�nition of l̂, if 
 is 
ontinuous, pie
ewise C2 and avoids � then l̂(
) � l(
) (the twolengths are in fa
t equal for su
h 
urves, but we do not need this here). The in�mum of l̂over the 
urves of interest is therefore �nite, and the 
urves 
i of the minimizing sequen
emust be uniformly equi
ontinuous, for i after some N 0. To see this, �rst note that the
urves 
i are also 
ontinuous as fun
tions from I to M with the topology of �l. Then,sin
e l̂(
i) < +1 for all i, the 
urves 
i admit a 
onstant velo
ity parameterization (see[BBI℄, 
h.2), i.e. parameterizations by ar
-length. Reparameterizing the 
i by ar
-lengthwe then have �l(
i(�); 
i(� 0)) � l̂(
ij[�;� 0℄) � 
j� 0 � � j, for all � , � 0 2 I, and all i. Also,letting 
�1R be the maximum of [2(E�U)℄� 12 in B0(R), we see that �E(x; x0) � 
R�l(x; x0),for all x, x0 in the image of the 
i. Therefore, the minimizing sequen
e f
ig, with the
i parameterized by ar
-length, satis�es the assumptions of the following version of theArzela-As
oli theorem:Lemma 3.3 Consider a sequen
e f
ig of parameterized 
urves 
i 2 C0(I;M) withendpoints a, b 2M . Also, suppose that there exist 
onstants R, C su
h that for all i(3:6) j
i(�)j � R; 8� 2 I; and j
i(�)� 
i(� 0)j � Cj� � � 0j; 8�; � 0 2 I:Then the sequen
e f
ig has a subsequen
e that 
onverges uniformly to a 
urve 
 2 C(I;M)with endpoints a and b.To show that the limit of the 
onvergent subsequen
e of the minimizing sequen
e f
igattains the in�mum of l̂ we show below that l̂ is lower-semi
ontinuous in C0. The argumentis well-known (see e.g. [BBI℄, 
h.2), a small di�eren
e here is that we are 
onsidering
ontinuous 
urves for M with the topology of the Eu
lidean metri
 �E .10



Lemma 3.4 The indu
ed Ja
obi length l̂ is lower semi-
ontinuous on C0(I;M) withthe C0 (uniform 
onvergen
e) topology.Proof: Consider a sequen
e f
ig 2 C0(I;M) 
onverging to 
 in C0. Fix a partition y =fy0 = �1 � y1 � : : : � yN�1 = �2g of I for whi
h l̂(
)�PN�2j=0 �l(
(yj); 
(yj+1)) < �. Ea
h
i(yj) 
onverges to 
(yj) in �E , and by the de�nition of �l and the fa
t that we have a �niteset of points we 
an 
hoose i large enough so that �l(
(yj); 
i(yj)) < �, 8j = 0; : : : ; N � 1.Then, the triangle inequality yields �l(
(yj); 
(yj+1)) � �l(
i(yj); 
i(yj+1)) + 2� , and wetherefore havel̂(
) < N�2Xj=0 �l(
(yj); 
(yj+1)) + � � 2N�+ N�2Xj=0 �l(
i(yj); 
i(yj+1)) + � � l̂(
i) + (2N + 1)�;for all � > 0.
Proof of Theorem 3.1: By the lower-semi
ontinuity of l̂, the limit 
 of an appropriatesubsequen
e of a minimizing sequen
e f
ig has length l̂(
) = lim infi!1 l̂(
i).

4. Collisionless Ja
obi geodesi
sWe now show that the minimizers of the indu
ed Ja
obi ar
-length l̂ are smooth, and thatthey 
an not pass though the singularity set �.As a preliminary step, we �rst show that minimizers of l̂ are C2 geodesi
s of theJa
obi metri
 as long as their image is outside the singularity set �. By Proposition 2.1this implies that the minimizers are solutions of the Euler-Lagrange equations outside �.We also see that the Ja
obi length l and indu
ed Ja
obi length l̂ of the minimizers 
oin
ide.To see that minimizers of l̂ avoid �, we will argue that allowing a minimizer to passthrough � leads to a 
ontradi
tion. In parti
ular, assuming that a minimizer 
 of l̂ passesthrough � we will produ
e paths with smaller length l̂ that avoid the singularity set.The argument uses the fa
t that 
 
an be reparameterized to satisfy the Euler-Lagrangeequations outside �. To study the approa
h of 
 to the singularity set �, we use a variantof Sundman's result on the \bran
h regularization" of binary 
ollisions (Lemma 4.2). We11



see that the approa
h to � is almost \radial", in the sense that the angular velo
ityde
reases rapidly as we approa
h the singularity (see Lemmas 4.3, 4.4). This quite simplegeometry of the minimizers near the singularities allows us to de�ne one-parameter familiesof small deformations of 
 normal to 
 that avoid �. The deformations alter 
 only nearthe singularity set, and using the information on the geometry of the approa
h to �, weestimate the �rst variation of the ar
-length with respe
t to the deformation parameter inLemma 4.5. We show that deforming o� the singularities de
reases the Ja
obi ar
-length.The deformations used in Lemma 4.5 generally produ
e dis
ontinuous 
urves. In Lemma4.6 we show that by 
hoosing the deformations appropriately, the shorter 
urves o� thesingularities have self-interse
tions, and 
an therefore be \glued" to yield 
ontinuous 
urves
onne
ting the given endpoints.The see that Ja
obi minimizers are regular o� the singularity set � we will use theproperties of short geodesi
s stated in Lemma 3.1.Lemma 4.1 Let 
 2 C0(I;M) with endpoints a, b 2 M n � be a minimizer ofthe indu
ed Ja
obi ar
-length l̂ over all 
ontinuous parameterized 
urves with the sameendpoints. Also, assume that l̂(
) < +1. Then, 
 is a C2 Ja
obi geodesi
 for all � 2 Isu
h that 
(�) 2M n �. Moreover, l̂(
) = l(
).Proof: Consider ~� 2 I su
h that ~x = 
(~�) 2 M n �. Also, let D~x(Æ) � M n � be anopen (Eu
lidean) dis
 of radius Æ around ~x, and pi
k �1 < ~� < �2 su
h that 
j[�;� 0℄ � D~x(Æ).By Lemma 3.1, we 
an 
hoose Æ > 0 suÆ
iently small so that the points x1 = 
(�1) andx2 = 
(�2) 
an be 
onne
ted by a short geodesi
 of the Ja
obi metri
. Denoting the shortgeodesi
 by �, we 
an be reparameterize � so that �(�1) = x1, �(�2) = x2. We want toshow that 
j[�1;�2℄ and � 
oin
ide. By the de�nitions of � and l̂ we have that l̂(�) = l(�),and also l̂(
j[�1;�2℄) � l(�) = �l(x1; x2). On the other hand, l̂(
j[�1;�2℄) � l̂(�) sin
e 
 is aminimizer. Therefore l̂(
j[�1;�2℄) = l̂(�). Suppose now that there exists y in the image of
j[�1;�2℄ that is not in the image of �. Consider the 
urve ~� made by 
on
atenating twoshort geodesi
s 
onne
ting x1 to y and y to x2 respe
tively, and reparameterize ~� so that~�(�1) = x1, ~�(�2) = x2. By the de�nition of l̂ we have l̂(~�) = l(~�), and l̂(
j[�1;�2℄) � l(~�).Moreover, sin
e the parameterized 
urves � and ~� are C2 they di�er in some open subsetof [�1; �2℄. By the uniqueness of � we then have l(~�) > l(�), hen
e l̂(
j[�1;�2℄) > l̂(�), a
ontradi
tion. Thus 
j[�1;�2℄ and � are the same 
urve. The argument applies to any point
(�) =2 �, and the �rst statement of the lemma follows.To see that l̂(
) = l(
), we �rst observe that the set of times �j 2 I for whi
h12




(�j) 2 � is �nite. Consider a union I 0� of neighborhoods of size � around ea
h su
h �j.Using the �rst statement of the lemma, we have l̂(
jInI0�) = l(
jInI0�). Then, l̂(
) < +1implies that l(
) < +1, and hen
e l(
jI0�) ! 0 as � ! 0. Similarly, l̂(
jI0�) ! 0 as� ! 0, by the 
ontinuity of l̂ with respe
t to endpoints. Letting � ! 0 we 
an thus makejl̂(
)� l(
)j = jl̂(
jI0�)� l(
jI0�)j arbitrarily small.
Therefore, a C0 parameterized 
urve 
 : I !M joining a, b 2M n � that minimizesl̂ over all 
ontinuous 
urves with the same endpoints is a C2 geodesi
 of the Ja
obi metri
for all � 2 I for whi
h 
(�) 62 �, and 
an be reparameterized to solve the Euler-Lagrangeequations for (2.1).We are assuming that there are � 2 I for whi
h 
(�) 2 �. The set T� of all su
h � isdis
rete: sin
e 
 is a minimizer and the length between points of � is bounded away fromzero, any a

umulation point in T� would 
orrespond to loops around a point of �. Thusea
h � 2 T� has an open neighborhood where the 
urve 
 does not pass through �, andwe want to study some of the geometri
 properties of the minimizer 
 as it approa
hes asingularity time � 2 T�. The goal is eventually to show that there exists a 
urve ~
 whi
hdoes not pass through the singularity set � and satis�es l̂(~
) < l̂(
). To produ
e the 
urve~
 we study 
 in neighborhoods of the points � 2 T�. This is a lo
al analysis of l̂ near su
hpoints, and it is suÆ
ient to des
ribe it for any given � 2 T�. We will also assume withoutloss of generality that one of the singularities of the potential U is lo
ated x = 0, and thatthere exists �� 2 T� for whi
h 
(��) = 0. Otherwise, given a, b 2M n �, and a minimizer
 with 
(��) = �i for some �i 2 �, �� 2 I, we 
an translate our system of 
oordinates sothat �i goes to the origin, produ
e the shorter 
urve ~
 that avoids the origin (and othersingularities), and translate ba
k to the original 
oordinate system. The pro
edure 
an beperformed for any singularity en
ountered by 
. The 
hanges of 
oordinates are justi�edby the fa
t that the Ja
obi length is invariant under translations.We 
an also 
onsider the minimizer 
 parameterized by t so that 
(t) satis�es theEuler-Lagrange equations for all t with 
(t) 2 M n �. Assuming that � 2 I above de�nesa parameterization of 
 satisfying (2.6), and setting t = 0 when � = 0, we easily seethat l(
) < +1 and (2.5), (2.6) imply that t� < +1. By translating the variable tappropriately, we may simplify the notation by also assuming that t� = 0.Lemma 4.2 Suppose that 
(t) ! 0 2 � as t ! 0, where 
(t) satis�es the Euler-13



Lagrange equations for (2.1) for t 6= 0. Then, for jtj suÆ
iently small, 
(t) 
an be expressedas(4:1) 
(t) = t 23�(~�); ~� = t 13 ;where �(~�) is analyti
 in a suÆ
iently small neighborhood of ~� = 0, and satis�es j�(0)j 6= 0.Note that the fun
tion � depends on the initial 
ondition, i.e. 
(t0) and 
0(t0) forsome t0 6= 0. The lemma is a slight modi�
ation of Sundman's bran
h regularization ofbinary 
ollisions in the Newtonian 3-body problem, and we shall only sket
h the proof,referring to [SM, I.6-I.8℄ for more details.Proof of Lemma 4.2: The equations of motion for (2.1) 
an be written as Hamilton'sequations for the position and momentum q(t), p(t) respe
tively. Denote the Hamiltonianby H, and de�ne the new \time" � by �(t) = R tt0 j
(~t)j�1d~t. We 
an see that q(�), p(�)satisfy the Hamiltonian system(4:2) dqd� = dFdp ; dpd� = �dFdq ; with F = jqj(H � E); E 2 R;if and only if q(t), p(t) are traje
tories of Hamilton's equations for (2.1) with total energyE. De�ning the new variables �, � by the symple
ti
 transformation(4:3) � = qjpj2 � 2p(q � p); � = pjpj�2;and writing H = 12 jpj2 � jqj�1 � f(q), with f smooth near jqj = 0, the Hamiltonian Fbe
omes(4:4) F (�; �) = 12 j�j � 1 + j�jj�j2(f(�; �)� E)):By 
onservation of energy, as �, jq(�)j ! 0, the norm of the momentum jpj diverges.Therefore, by (4.2), as we approa
h the origin, we have � ! [0; 0℄, and j�j ! 1. By thelo
al existen
e theory for �(�), �(�), and the fa
t that �(�), �(�) remain bounded in a setwhere F is analyti
 as � ! 0, �(�), �(�) are analyti
 for j�j small enough (i.e. at � = 0as well). Moreover, as � ! 0, � has a limit �0, with j�0j = 1. Mat
hing powers of � in(4.4), and using (4.3), we also have �(�) = � 12�0� + O(�2), q(�) = � 12�0�2 + O(�3), andtherefore j�(0)j 6= 0. Also, by the de�nition of � we have t = 16�3+ : : :, and inverting near� = 0, we have that � is analyti
 in ~� = t 13 .14



Corollary 4.1 Suppose that 
(t) ! 0 2 � as t ! 0, where 
(t) satis�es the Euler-Lagrange equations for (2.1) for t 6= 0. Then, there exist ~t1 < 0 < ~t2 for whi
h r(t) = j
(t)jis de
reasing in [~t1; 0℄ and in
reasing in [0; ~t2℄.Proof: Let �0 = �(0) and r(t) = j
(t)j. >From (4.1) we immediately have ddt (r2) =t 13 (43 j�0j2+O(t 13 )) for jtj small, i.e. ddt (r2) negative and positive respe
tively as t in
reases
hanging sign.
The fa
t that the radius r = j
j de
reases and then in
reases monotoni
ally as wepass the singularity allows us to reparameterize a segment of the 
urve near the originby a multiple of r. Consider the times ~t1, ~t2 in Corollary 4.1, and pi
k � > 0 satisfyingj
(~t1)j > � and j
(~t2)j > �. Then de�ne t1 < t2 by j
(t1)j = j
(t2)j = �, and parameterizethe segment of 
j[t1;t2℄ by the s
aled radius s(t), de�ned by s(t) = ���1r(t), for t 2 [t1; 0℄,and s(t) = ��1r(t), for t 2 [0; t2℄. The minimizer 
 is now parameterized by s 2 [�1; 1℄,with 
(0) = 0, and 
(s) 2M n� if s 6= 0. Clearly, 
 is smooth in [�1; 0)[ (0; 1℄. Also, thereparameterization does not 
hange the length l of the segment.Lemma 4.3 Let 
(t)! 0 as t! 0, where 
(t) satis�es the Euler-Lagrange equationsof (2.1) if t 6= 0. Also let r(t), �(t) denote the polar 
oordinates of 
(t). Then, (i)L = 
 � d
dt ! 0, ddtL ! 0, and (ii) r 12 d�dt ! 0.Proof: Let prime denote the derivative with respe
t to t. For x near the origin wehave E � U(x) = 1r + f(x) with f � 0 and smooth. By the 
onservation of energy,(4:5) j
0j = �2r + 2f� 12 ;and using Corollary 4.1, jLj � j
jj
0j � Cr 12 , with C some 
onstant as t ! 0. Thus jLjvanishes as we approa
h the singularity. Also, L0 = 
�
00 = 
�rf by the Euler-Lagrangeequations. By Corollary 4.1 we then have jL0j � C 0j
j, with C 0 some 
onstant as t ! 0.Hen
e L0 also vanishes as we approa
h the origin. To see (ii) we use polar 
oordinates,where(4:6) d�dt = 
 � 
0j
j2 :Expanding 
(t) as 
(t) = �0t 23 + �1t+ �2t 43 + : : :15



(for appropriate �i), we 
al
ulateL = 
 � 
0 = 13(�0 � �1)t 23 + 23 (�0 � �2)t+ O(t 43 );L0 = 29 (�0 � �1)t� 13 + 23 (�0 � �2) + O(t 13 );where using Lemma 4.2 all series are absolutely 
onvergent for jtj small. On the otherhand, sin
e L0 ! 0 as t! 0 we must have �0 � �1 = �0 � �2 = 0. Therefore, L is O(t 43 )as t ! 0. >From j�0j 6= 0, we also have that j
j2 is O(t 43 ) as t ! 0, so that by (4.6) theangular velo
ity �0 is bounded as t! 0.
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[−] Figure 1To 
onstru
t families of 
urves near 
j[�1;1℄ that avoid the singularity, we now deform
j[�1;0℄ and 
j[0;1℄ in the dire
tion of unit ve
tors that are normal to the position ve
tor 
.Spe
i�
ally, by the smoothness of 
 for s 6= 0 there exist (exa
tly) two C1 one-parameterfamilies of unit ve
tors n[�℄1 (s), n[�℄2 (s), s 2 [�1; 0) that are normal to 
(s) for all s 2 [�1; 0)(see e.g. Fig. 1). Similarly, there exist (exa
tly) two C1 one-parameter families n[+℄1 (s),n[+℄2 (s), s 2 (0; 1℄, of unit ve
tors normal to 
(s) for all s 2 (0; 1℄. Noti
e that n[�℄1 = �n[�℄2 ,i.e. the indi
es i are arbitrary at this point.Lemma 4.4 Let 
(s) be as above. Then, as s ! 0, we have (i) jd
ds j ! �, (ii)ddsn[�℄i ! 0, and (iii) d
ds � n[�℄i ! 0, i = 1; 2.Proof: Let prime and dot denote the derivative with respe
t to t and s respe
tively.Using polar 
oordinates, j
0j2 = (r0)2 + r2(�0)2, and by Lemma 4.3 (ii), the se
ond termvanishes as s ! 0. Then, j _
(s)j = j
0jjs0j�1 = �j
0jjr0j�1 ! � as s ! 0. To see (ii), westart with j _n[�℄i j = j(n[�℄i )0jjs0j�1, i = 1; 2. Conservation of energy implies js0j�1 � Cr� 12for some 
onstant C. Also note that j(n[�℄i )0j � j�0j, i = 1; 2. Combining with Lemma 4.316



(ii), we therefore have j _n[�℄i j � Cr 12 j�0j ! 0, i = 1; 2. To see (iii), we use 
 � n[�℄i = 0, 8s.Then j _
 � n[�℄i j � j
jj _n[�℄i j, and the statement follows by (ii).
The families n[�℄i (s), n[+℄i (s), i = 1; 2 are therefore C1 in [�1; 0℄, [0; 1℄ respe
tively. ByLemma 4.4 (iii), we 
an de�ne two one-parameter families of 
losed half-dis
s H [�℄� , H [+℄� ,� > 0, with radius � and 
enter at the origin that in addition satisfy: (i) the diameters ofH [�℄� , H [+℄� are along n[�℄1 (0), n[+℄1 (0) respe
tively, (ii) H [�℄�1 � H [�℄�2 for 0 < �1 < �2 � �,and (iii) H [�℄� , H [+℄� interse
t 
j[��;0℄, 
j[0;�℄ respe
tively for all � > 0.Letting H [�℄ = H [�℄1 , noti
e that if n[�℄1 (0), n[+℄1 (0) are 
ollinear, then H [�℄ \H [+℄ iseither H [�℄ = H [+℄ or a line segment along n[�℄1 (0). If n[�℄1 (0), n[+℄1 (0) are not 
ollinear,the boundary of H [�℄ \ H [+℄1 
ontains one of the n[�℄i (0) and one of the n[+℄j (0) (see e.g.Fig. 2).

H
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(0)n
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Figure 2With this notation we de�ne the one parameter families of unit ve
tors n[�℄ : [�1; 0℄!S1 and n[+℄ : [�1; 0℄ ! S1 as follows: in the 
ase where n[�℄1 (0) and n[+℄1 (0) are 
ollinearwe let(4:7) n[�℄ = n[�℄1 ; n[+℄ = n[+℄i ; with n[+℄i su
h that n[+℄i (0) = n[�℄1 (0);i.e. n[�℄ is 
hosen arbitrarily, and then determines n[+℄ uniquely. In the 
ase where n[�℄1 (0)and n[+℄1 (0) are not 
ollinear we let(4:8) n[�℄ = (n[�℄1 ; if n[�℄1 (0) 2 H [�℄ \H [+℄;n[�℄2 ; otherwise,(4:9) n[+℄ = (n[+℄1 ; if n[+℄1 (0) 2 H [�℄ \H [+℄;n[+℄2 ; otherwise.17



For example, in Fig. 2 we would set n[�℄ = n[�℄2 and n[+℄ = n[+℄1 .Then, for � � 0 we de�ne 
[�℄� : [�1; 0℄!M , 
[+℄� : [0; 1℄!M by(4:10) 
[�℄� (s) = 
(s) + ��(1 + s)n[�℄(s); s 2 [�1; 0℄;(4:11) 
[+℄� (s) = 
(s) + ��(1� s)n[+℄(s); s 2 [0;�1℄respe
tively. Note that s 6= 0 implies that j
[�℄� (s)j = [�2s2 + �2�2(1 + s)2℄ 12 6= 0, andj
[+℄� (s)j 6= 0. Also, we 
an 
hose �0, �0 so that if � � �0, � � �0, the 
urves 
[�℄� , 
[+℄� donot en
ounter any singularities other than the origin.The 
urves 
[�℄� , 
[+℄� with � > 0 (dotted lines in Fig. 3), are the desired \de
e
tions"of the segments 
j[�1;0℄ = 
[�℄0 , 
j[0;1℄ = 
[+℄0 respe
tively (solid lines in Fig. 3). In Lemma4.5 below we show that if � is positive and suÆ
iently small, then l(
[�℄� ) < l(
[�℄0 ) andl(
[+℄� ) < l(
[+℄0 ). The de�nition of the ve
tors n[�℄, n[+℄ from the respe
tive n[�℄i , n[+℄i ,i = 1; 2 above is meant to simplify the last part of the argument, where we must also showthat the shorter de
e
ted segments 
an be 
hosen to interse
t.
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Figure 3Lemma 4.5 There exists ~� > 0 for whi
h l(
[�℄� ) and l(
[+℄� ) de
rease as � in
reasesin [0; ~�℄.Proof: We will show the statement for the family 
[�℄� , sin
e the proof for the 
[+℄� issimilar. To simplify the notation, let 
� = 
[�℄� , 
 = 
[�℄0 = 
j[�1;0℄, and n = n[�℄. Withthis notation and (4.10), we then have the family of 
urves(4:12) 
�(s) = 
(s) + ��(1 + s)n(s); s 2 [�1; 0℄; � � 0;with � > 0 �xed. 18



Let l(�) = l(
�). For � > 0, the 
urves 
� avoid the singularity, and the integrand ofl(�) is smooth. Thus l(�) is di�erentiable in � for � > 0, and we 
an take the derivativeinside the integral. We �rst estimate l0 = dld� and show that it is negative as �! 0+. >From(4.10) we have(4:13) l(�) = Z 0�1[�2s2 + �2�2(1 + s)2℄� 14 [1 + j
�jf(
�)℄ 12 j _
�jds; � � 0:Letting u = s2 + �2(1 + s)2, we have l0(�) = I1 + I2, where(4:14) I1 = � 12a� 12 � Z 0�1 u� 54 (1 + s)2[1 + �u 12 f(
�)℄ 12 j _
�jds;(4:15) I2 = Z 0�1 u� 14 dd� n[1 + �u 12 f(
�)℄ 12 j _
�jo ds;with � > 0. We will show that as � ! 0+ the �rst integral I1 is negative and of O(�� 12 ),while the se
ond integral I2 is bounded uniformly in �. Letting � = �u 12 f , and w 12 =��1j _
�j, the integral I2 is further de
omposed as I2 = I2A + I2B + I2C , with(4:16) I2A = � 32 � Z 0�1 u� 34 (1 + s)2[1 + �℄� 12 fw 12 ds;I2B = 12� 32 Z 0�1 u 12 [1 + �℄� 12 f 0�w 12 ds; I2C = � 12 � Z 0�1 u� 14 [1 + �℄ 12w� 12 dwd� ds;where f = f(
�(s)) and f 0� = dd�f(
�(s)).To estimate the integrals we assume that � 2 (0; �0℄, � 2 [0; �0℄ with �0 and �0 su
hthat the only singularity of the potential U en
ountered by the segments 
� is the one atthe origin. It follows from this assumption that there exist M , M 0 > 0 satisfying(4:17) jf j �M; jf 0�j �M 0in (4.14)-(4.16) above. Also, by Lemma 4.4 there exist N , m > 0 satisfying(4:18) j _nj � N; js _�j < m:We further restri
t �0 and �0 to satisfy(4:19) (i) �0(14 + �20)M � 12 ; (ii) �0N � 14 ; (iii) �20N � 18 ;19



Fixing � 2 (0; �0℄, we now see that the essential term in ea
h of the four integralsis the one involving u (to some power). All other terms 
an be bounded uniformly ins 2 [�1; 0℄ and � 2 [0; �0℄. In parti
ular, using (4.10) and 
(s) � n(s) = 0, 8s 2 [�1; 0), we
al
ulate(4:20) w 12 = [1 + s2 _�2 + �2 + �2(1 + s)2j _nj2 + 2a�1�s(
 � _n) + 2�2(1 + s)2(n � _n)℄ 12 :Then, from s 2 [�1; 0℄, j
j = jsj�, and 
onditions (4.19) (ii), (iii) we havej2a�1�s(
 � _n)j � 14 ; j2�2(1 + s)2(n � _n)j � 14respe
tively, hen
e(4:21) w 12 � 2� 12 :Similarly, s 2 [�1; 0℄, the de�nition of m, and 
onditions (4.19) (ii), (iii) imply(4:22) w 12 � (2 +m2 + �20) 12 :In addition, the de�nition of � and 
ondition (4.19) (i) imply(4:23) � � 12 :Then, from (4.14), and (4.21), (4.23) we havejI1j � � 122 � Z 0� 12 u� 54 (1 + s)2[1 + �u 12 f(
�)℄ 12 j _
�jds � � 1224 Z 0� 12 �[s2 + �2℄� 54 ds;so that setting v = tan�1 s� in the last integral we obtain(4:24) jI1j � �� 12 � 1224 Z 0� tan�1 12� 
os 12 vdv � C1�� 12 ;with C1 > 0 a 
onstant uniform in � as � ! 0+. For the integrals of (4.16) we similarlyuse (4.21)-(4.23), obtaining(4:25) I2A �M(2 +m2 + �20) 12� 32 Z 0�1 �u� 34 ds ��2M(2 +m2 + �20) 12� 32 "� 12 Z 0� tan�1 1� 
os� 12 vdv + � Z � 12�1 u� 34 ds# ;20



(4:26) I2B � M 02 (2 +m2 + �20) 12� 32 Z 0�1 u 12 ds; I2C � 4(1 +m+N + �0)� 12 Z 0�1 u� 14 ds:We 
he
k from (4.25)-(4.26) that I2A, I2B, I2C are bounded uniformly in � 2 [0; �0℄.Colle
ting the bounds on the four integrals we therefore have that as �! 0+(4:27) l0(�) � �C1�� 12 + C2;with C1, C2 positive 
onstants.Choosing �1 suÆ
iently small, l(�) is therefore de
reasing for � 2 (0; �1℄. For the
ontinuity of l(�) at � = 0, we let l(�) = R 0�1 F�(s)ds, with F� the integrand of (4.12). Using(4.17)-(4.22), we see thatF�(s) � a 12Cjsj� 12 ; 8s 2 [�1; 0℄; 8� 2 [0; �1℄;with some C > 0 independent of �. Thus the fun
tions F� are uniformly bounded by anintegrable fun
tion, and by the dominated 
onvergen
e theorem we havel(�)! Z 0�1 F0(s)ds = l(0) as �! 0+:In a similar way, we 
an �nd �2 > for whi
h l(
[+℄� ) de
reases for � 2 [0; �2℄. Then thestatement follows with ~� = minf�1; �2g.
Remark 4.1 In the test 
ase where � 
onsists of only one singularity lo
ated at theorigin, 
onservation of the angular momentum 
�
0 implies that all 
ollision and eje
tionorbits are radial. The image of the 
urve 
 is then the union of two linear segments, froma to the origin and then to b respe
tively, while the ve
tors n[�℄(s) above are 
onstant andnormal to 
 for all s. The integrals in (4.14)-(4.16) simplify and we again obtain (4.27).The 
hoi
e of the n[�℄ ensures that the de
e
ted 
urves interse
t.Remark 4.2 The above test 
ase also suggests a simpler way of deforming 
 o� �that seems however to require a similar analysis. Spe
i�
ally, 
onsider two intermediatepoints a0, b0 with ja0j = jb0j = � on ea
h of the two radial segments of 
, and let � be theangle between the segments. The Ja
obi lengths of the 
ir
ular ar
 
onne
ting a0 to b0 andof the two line segments from a0 to the origin and then to b0 are �� 12 and 4� 12 respe
tively21



(up to a 
ommon 
onstant), i.e. too 
lose for � near �. In the n-
enter 
ase we wouldtherefore need a rather pre
ise 
ontrol of the geometry of approa
h to the singularities.Remark 4.3 Repla
ing any of the two families n[�℄, n[+℄ by �n[�℄, �n[+℄ respe
tivelydoes not a�e
t the proof of Lemma 4.5. Su
h a 
hange is also equivalent to reversing thesign of � in the segments 
[�℄� , 
[+℄� . We have therefore also shown that the lengths of 
[�℄�and 
[+℄� de
rease as � de
reases in [�~�; 0℄.By Lemma 4.5, Remark 4.3, and noting that 
[�℄� (0) = 
[�℄0 (0) and 
[+℄� (1) = 
[+℄0 (1),8� 2 R, we 
an 
omplete the argument by �nding ~�1, ~�2 2 [�~�; ~�℄ for whi
h the images ofthe 
orresponding segments 
[�℄~�1 and 
[+℄~�2 interse
t at a point other than the origin.Lemma 4.6 Let C� be the set of all 
onvex linear 
ombinations of the ve
tors bn[�℄(0),bn[+℄(0), with b 2 [0; �℄. We 
an �nd � > 0 suÆ
iently small so that for every x 2 C� nf0gthere exist unique pairs [~�1; s1℄ 6= [0; 0℄, [~�2; s2℄ 6= [0; 0℄ with s1 2 [�1; 0℄, s2 2 [0; 1℄satisfying x = 
[�℄~�1 (s1) = 
[+℄~�2 (s2):Moreover, as jxj ! 0 we have ~�1, ~�2 ! 0 and s1 ! 0�, s2 ! 0+.Proof: In the 
ase where n[�℄(0) = n[+℄(0), the 
oni
al region C� degenerates to theset of all points bn[�℄(0) with b 2 [0; �℄. The de�nitions of 
[�℄� and 
[+℄� immediately yield
[�℄� (0) = 
[+℄� (0) = �n[�℄(0), 8� 2 R, and the statement follows.For the 
ase where n[�℄(0) 6= n[+℄(0), we will show the statement for 
[�℄� . The prooffor 
[+℄� is similar. In essen
e, we want to solve the equation 
�(s) = x for any givenx 2 C� n f0g, and we will use the fa
t that 
0(0) = 0 and the impli
it fun
tion theorem.To simplify the notation we let 
� = 
[�℄� and 
 = 
0. Also, let N(s) = n[�℄(s), N = N(0),and M = n[+℄(0). We know that 
0 and N are 
ontinuously di�erentiable at s = 0, andthat s ! 0� implies _
�(s) � N(s) ! 0 and j _
j ! �. We 
an then apply an orthogonaltransformation to our 
oordinate system so that _
(0) = �ê1 = �[1; 0℄, N = [0; 1℄, andM = [M1;M2℄ with M1 < 0, M2 > 0 and jM j = 1. Note that the signs of M1, M2 followfrom the de�nition of n[�℄ and n[+℄.We �rst 
onsider a simpler version of 
�(s) = x. Let~
�(s) = �sê1 + �(1 + s)N; s 2 [�1; 0℄; � � 0:Then, writing x 2 C� as x = b�N + b(1 � �)M , with b 2 [0; �℄, � 2 [0; 1℄, the equation22



~
�(s) = x has the unique solutions = b� (1� �)M1; � = b�(1 + s)M2; 8x 2 C� :By the signs of M1, M2 above we therefore have that for any � < � there exists a neigh-borhood Q� of [0; 0℄ in the s � 0, � � 0 quadrant whose image under ~
�(s) in
ludes C� .Moreover, [s; �℄! [0; 0℄ as � ! 0.To solve 
�(s) = x for x 2 C� it is enough to show that if [�; Æ℄ 2 Q�, and � issuÆ
iently small, the equation(4:28) F (s; �; �; Æ) = 
�(s)� ~
Æ(�) = 0has a solution s(�; Æ) 2 [�1; 0℄, �(�; Æ) that depends 
ontinuously on � and Æ. Sin
eF (0; 0; 0; 0) = 0, showing that the solution is also unique will imply that if x 6= 0 (andhen
e [�; Æ℄ 6= [0; 0℄), then [s; �℄ 6= [0; 0℄. To solve (4.28) we note that the derivative D1F ofF with respe
t to the �rst two arguments at [0; 0; 0; 0℄ isD1F (0; 0; 0; 0) = � _
1(0) _
2(0)N1 N2 � ;with 
 = [
1; 
2℄. By _
�N = 0 and j _
(0)j = �, we see that det(D1F (0; 0; 0; 0)) = _
(0)�N =�2 6= 0. Also, F 
an be extended to a neighborhood of [0; 0; 0; 0℄: we 
an let �, � , Æ 2 Rabove, and 
�(s) = asê1 for s > 0. The extended fun
tion is C1 near [0; 0; 0; 0℄, and by theimpli
it fun
tion theorem we have unique C1 fun
tions s(�; Æ), �(�; Æ), with � , Æ near theorigin. By 
ontinuity and our 
on
lusions on the simpli�ed equation ~
Æ(�) = x, we havethat s, � ! 0 as x approa
hes the origin. Also, by the de�nition of the extension of F ,for small � > 0 we have the unique solution s(�; Æ) = � > 0. On the other hand, solving~
Æ(�) = x, x 2 C� , we had � � 0. Therefore, 
�(s) = x, x 2 C� , 
an only be satis�ed withs 2 [�1; 0℄.
Proof of Theorem 2.1: Assuming that a minimizer 
 of l̂ passes through some � 2 �,we 
an apply Lemma 4.5 (and Remark 4.3) to obtain \de
e
ted" segments 
[�℄�1 , 
[+℄�2 thatavoid � and have smaller length l. By Lemma 4.6 we 
an 
hoose �1 and �2 arbitrarily smallso that the images of the two de
e
ted segments interse
t. Con
atenating appropriaterestri
tions of 
[�℄�1 and 
[+℄�2 we then obtain a 
ontinuous 
urve ~
 joining a and b with23



length l̂(~
) � l(~
) < l̂(
), a 
ontradi
tion. The argument applies to any singularity � 2 �.Minimizers of l̂ therefore avoid the singularity set �, and by Lemma 4.1 and Proposition2.1, are traje
tories of the Euler-Lagrange equation joining a and b.
Remark 4.4 Note that the above argument does not give us any information on thehomotopy 
lass of the de
e
ted shorter 
urve ~
.5. Dis
ussionPossible extensions will be 
onsidered in future work. Some dire
tions are periodi
 lat-ti
es, higher dimensions, other types of point singularities, and singularity sets of higherdimension. For instan
e, we 
an 
onsider Ja
obi geodesi
s in a planar periodi
 latti
e ofpotentials with 1r singularities and fast de
ay at in�nity. Arranging the potential energy Uto be �nite o� the singularities, negative, and su
h that the perturbation to the approa
hto a singularity by other sites is analyti
, the arguments will be the same.Regarding higher dimensions, it is 
lear that the arguments leading to the existen
e ofminimal geodesi
s do not involve the dimension ofM . The same is also true for the analysisof the approa
h to the singularities in Lemmas 4.1 and 4.2. However, the 
onstru
tionof de
e
tions o� the singularities is spe
ial to the two dimensional 
ase, and must begeneralized.Also, the de�nition of the indu
ed length l̂ in Se
tion 3 is meaningful for 1r� , � < 2singularities, while Lemma 3.2 applies to all potentials that de
ay as 1r� with � � 2. Thusthe existen
e of minimizers of the Ja
obi length (with E � 0) 
an be extended to potentialswith 1r� , � < 2 singularities. The arguments of Se
tion 4 must be modi�ed however.Also of interest are minimal Ja
obi geodesi
s in 
on�guration spa
es with singularitysets of higher dimension, e.g. the shape spa
e of the planar 3-body problem with totalangular momentum ! = 0.6. A
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omments. The author is supported by NSF grant DMS-9810751.24
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