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1. IntrodutionWe onsider a partile of massmmoving on the plane under the inuene of a �nite numberof �xed masses mi loated at points �i, i = 1; : : : ; n (i.e. the planar n�enter problem).The equations of motion for the position x(t) of the partile are mx00 = �rU(x), withthe potential U being the �nite sum of entral fore Newtonian potentials, i.e. U(x) =�Pni=1mijx � �ij�1. We show that for any E � 0, any two points a, b outside thesingularities �1; : : : ; �n an be onneted by a trajetory of Newton's equations that avoidsthe singularities of the potential, has total energy E and minimizes the Jaobi ation. Thepreise statement is given in setion 2.The present work is inspired by reent variational onstrutions in the n�body prob-lem. While the main fous has been on the existene of periodi orbits that avoid ollisions,the problem involves the question of �nding open ollision-free trajetories with presribedendpoints. This question is muh simpler for potentials with 1r� , � � 2 singularities(\strong fore" potentials), where the ation of any test path passing through a ollisiondiverges (see e.g. [P℄, [G℄, [CGMS℄). This fat leads to several existene results for peri-odi ollision-free orbits via the diret method of the alulus of variations (see [Mon1℄,[CGMS℄). There is also a signi�ant body of literature on more general ritial points of amodi�ed Jaobi ation (see e.g. [ACZ℄) where the \strong fore" assumption is also usedto avoid ollisions.For the Newtonian potential, we should not in general expet to exlude ollisionsby minimizing the ation over lasses of loops (see [G℄, [V℄, [Mon2℄, [C1℄). On the otherhand, it was reently shown in [M1℄ (see also [C2℄) that minimizers of the ation overpaths with presribed endpoints in the planar and spatial Newtonian n�body problemsavoid ollisions. This is a generalization of earlier partial results on ollision-free ationminimizers in the Newtonian n-body problem (see [D℄), and we note that some speialresults of this type were also used in works on the \�gure-8" periodi orbit of the equalmass planar 3-body problem (see [CM℄, [Ch1℄), a generalization to the equal mass planar4-body problem (see [Ch2℄), and a new periodi orbit in the spatial equal mass 3-bodyproblem (see [M2℄). These works suggest a general strategy for ombining variationaland symmetry arguments in problems with singular potentials that may lead to furtherdynamially interesting onstrutions (see [C2℄ for an overview and some earlier relatedworks).In this work we onsider the existene of ollision-free minimizers for the Jaobi ation2



(ar-length) where instead of presribing the time interval we presribe the total energyof the path onneting two given points. We are not aware of any analogous resultsfor Jaobi minimizers in the n�body problem, and we here onsider the simpler planarn�enter problem. In partiular we start with the Jaobi ation R �2�1 [2(E�U)℄ 12 jx0jd� overpaths with given endpoints a = x(�1) and b = x(�2) and show the existene of minimizersusing arguments of the diret method of the alulus of variations (see Setion 3). We usesome basi notions from metri geometry and look for minimizers of an indued lengthde�ned for ontinuous urves onneting two given points a, b. Compatness follows fromthe existene of parameterization by ar-length, the fat that we inlude paths that maypass through the singularities, and the divergene of the length for paths wandering toofar from the endpoints. In the E = 0 ase, the last property is a onsequene of the slowdeay at in�nity of the Newtonian potential.To show that minimizers of the Jaobi length avoid singularities, we assume that aminimizer passes through a singularity, and produe ontinuous urves with the same end-points that avoid the singularity and have smaller Jaobi length. To onstrut shorter de-formed urves we study the geometry of ollision and ejetion trajetories using Sundman'sregularization, and we see that the approah to the singularities is very nearly \radial"(in a sense made preise in Setion 4). This allows us to de�ne small deformations o� thesingularity in a rather expliit way, estimate the �rst variation of the Jaobi ar-length,and see that moving o� the singularities dereases the length. The strategy beomes verysimple in the test problem where we have only one singularity. There the approah tothe singularity is radial and the variation of the length as we deform o� the singularityis estimated easily (e.g. deforming in a diretion normal to the ollision trajetories). Byontrolling the geometry of the approah to the singularities, we see that similar estimatesare also valid for the ase of n singularities (see setion 4).After ompleting this work we have found that the existene of Jaobi geodesis on-neting two points in the planar n�enter problem an be shown by a di�erent method(see [B℄, [KK℄, and [BT℄, [K℄ for a generalization to the spatial ase). We believe thatthe approah in these works also leads to the existene of minimal ollision-free geodesis.Also, the idea of onsidering loal deformations o� the singularities was used by [D℄ foration minimizers, it is interesting however that the deformations used there do not allowus to onlude that Jaobi minimizers avoid ollisions (see remarks in [D℄).The main result is stated in Setion 2, where we also set the notation. In Setion 3we extend the Jaobi length to a larger lass of admissible paths and prove the existene3



of minimizers onneting two given points. In Setion 4 we analyze the approah tothe singularities, and prove the main theorem. We onlude by disussing some possibleextensions in Setion 5.2. The Jaobi ationWe onsider the on�guration spae M = R2 with Cartesian oordinates x = (x1; x2), andLagrangians L of the form(2:1) L = K(x0)� U(x); with K = 12mjx0j2; U = � nXi=1 mijx� �ij :The set of the n distint points �1; : : : ; �n will be denoted by �. The massesm, m1; : : : ;mnare positive.The ation A(x) of a suÆiently smooth path x : [t1; t2℄!M n � is(2:2) A(x) = Z t2t1 L(x(t); x0(t))dt;and a general strategy for �nding trajetories of the system (2.1) joining two points a,b 2 M n � is to look for extrema of the ation A(x) over a suitable lass of paths x :[t1; t2℄!M n � with x(t1) = a, x(t2) = b. By a lassial argument, an extremum of A(x)that is C2 in [t1; t2℄ will be a solution of the Euler-Lagrange equations for the system of(2.1).A related approah is based on the Maupertuis priniple, where we extremize theation over paths with �xed total energy E = K + U . In partiular, �x E 2 R andlet the Hill's region HE be the set of points in M n � where E � U(x) > 0. Also, letx : [�1; �2℄! HE be a suÆiently smooth parameterized urve with x(�1) = a, x(�2) = b,and de�ne the Jaobi ar-length (or Jaobi ation) l(x) of the path x by(2:3) l(x) = Z �2�1 [2(E � U(x(�))℄1=2jx0(�)jd�:Then, a C2 urve extremizing the ation A(x) over paths x : [t1; t2℄! HE with x(t1) = a,x(t2) = b and satisfying K(x0) + U(x) = E is, after a suitable reparameterization, ageodesi of the Jaobi metri(2:4) gE(x) = 2Xi;j=1 2(E � U(x))Æijdxidxj ; x 2 H4



(see e.g. [A℄). Conversely, we an obtain trajetories of the Euler-Lagrange equations fromgeodesis of the Jaobi metri.Proposition 2.1 Let x(�) : [�1; �2℄ ! HE be a C2 geodesi of the Jaobi metriabove, and let t(�) satisfy(2:5) dtd� = ����dx(�)d� ���� [2(E � U(x(�))℄� 12 :Then, x(t) = x(t(�)) satis�es the Euler-Lagrange equations for the Lagrangian L = K�Uof (2.1), and has energy K + U = E.Proof: The geodesi x(�) must satisfy the geodesi equations for gE , whih redue to(2:6) dd� �2(E � U)dxid� � = � ��xi (E � U)� ����dxd� ����2 ; i = 1; 2:In addition, x(�) must be parameterized by a multiple of the Jaobi ar-length, thussatisfying(2:7) [2(E � U(x(�))℄ 12 ����dx(�)d� ���� = ; with  > 0:Combining (2.5) and (2.7), the geodesi equations (2.6) beome(2:8) [2(E � U)℄� 12 d2xidt2 = � �U�xi ����dxd� ���� ; i = 1; 2:By (2.5), equations (2.8) are the Euler-Lagrange equations for the Lagrangian of (2.1).Also, using (2.5) to express jdxdt j in terms of jdxd� j at t = t(�), the energy K(x0(t))+U(x(t))at t = t(�1) is E, and remains onstant by the Euler-Lagrange equations.
Remark 2.1 By (2.5), the funtion t(�) is stritly inreasing, and the trajetory x(t)obtained from the geodesi x(�) joins the points x(�1), x(�2) in a time interval t(�2)�t(�1).Therefore, to onnet any two points a, b 2M n � by a trajetory of the Lagrangiansystem of (2.1) that avoids � it is suÆient to �x some E � 0 and �nd a C2 Jaobi geodesiin M n � that onnets the two points. Our main result is that this is possible.Theorem 2.1 Let E � 0 and a, b 2 M n �. Then there exists a C2 urve x :[�1; �2℄ ! M n � that is a minimal geodesi of the Jaobi metri gE of (2.4) and hasendpoints x1(�1) = a, x(�2) = b. 5



To show the theorem we will minimize a funtional related to the Jaobi ar-lengthover a suitable lass of urves onneting the two points a, b (Setion 3), and show thatthe minimizers are C2 Jaobi geodesis that avoid the singularity set (Setion 4). ByProposition 2.1, we will then have a family of trajetories joining a, b, at least one trajetoryfor eah value of E � 0.Remark 2.2 It will be seen that the theorem also holds in the ase where the endpointsa, b are in �, i.e. we then show the existene of a Jaobi length minimizing trajetorythat avoids � at all intermediate times. In the ase where E < 0, the Hill's region HE isa bounded subset of M , and the metri vanishes at �HE . We onsider that in this ase,the strategy of seeking trajetories joining pairs of points in HE by minimizing the Jaobiar-length is only appropriate for points that are suÆiently far from �HE .3. Minimizers of the Jaobi ar-lengthIn this setion we show the existene of a ontinuous urve that joins any two points a ,b 2M n � and minimizes a length funtional indued by the Jaobi ar-length.We start with an outline of the argument. We �rst de�ne a lass P (a; b) of ontinuous,pieewise C2 parameterized urves joining points a and b 2M n� for whih the the Jaobiar-length l of (2.3) is well de�ned. The Jaobi ar-length over suh urves is used to de�nea metri �l in M , and from this metri we obtain an indued length l̂, de�ned for anyontinuous urve joining a and b. The indued length we use is a well-known onstrutionin metri spaes, and is lower semi-ontinuous in the C0 topology. The existene of aminimizer will follow from the fat that the indued length of urves that join a and b andross a irle of (a suÆiently large) radius R are bounded below by a funtion f(R) thatdiverges as R!1. This is shown in Lemma 3.2, and implies that minimizing sequenesof urves will have their image in a ompat subset of M . A standard appliation ofthe Arzela-Asoli theorem for urves parameterized by ar-length will then show that theminimum of l̂ is attained (Theorem 3.1). The regularity of the minimizers of the Jaobilength will be onsidered in the next setion.Remark 3.1 Note that the indued length l̂ an be also de�ned for ontinuous pathsthat may pass through �. In the ase E = 0 where the Jaobi metri vanishes at in�nity,Lemma 3.2 relies on the slow deay of the Newtonian potential.We onsider M with the Eulidean metri �E . A ontinuous parameterized urve6



 : [�1; �2℄!M is never-loally-onstant if there exists no interval [�; � 0℄ � [�1; �2℄, � 6= � 0for whih j[�;� 0℄ is onstant.De�nition 3.1 Let a, b 2M , and P (�1; �2; a; b) be the set of C0, pieewise C2, never-loally-onstant urves  : [�1; �2℄ ! M , (�1) = a, (�2) = b whose image intersets �for a disrete set of points � 2 [�1; �2℄. Also, let P (a; b) = [[�1;�2℄�RP (�1; �2; a; b), andP = [(a;b)2M�MP (a; b)The above sets are non-empty, moreover P (a; b) is losed under C0, pieewise C2reparameterizations (C0, pieewise C2 homeomorphisms between intervals). Also, thatfat that the image of every  2 P (a; b) intersets � for a disrete set of points of itsdomain allows us to de�ne the Jaobi length of these paths in a natural way.De�nition 3.2 Let  : [�1; �2℄ ! M be in P (a; b) for some pair a, b 2 M , and �xE � 0. Then the (Jaobi) length l : P (a; b)! R+ [ f1g is de�ned by(3:1) l() = Z �2�1 [2(E � U((�))℄1=2j0(�)jd�;with the notation of setion 2.Notation: >From now on we suppress from the notation the dependene of l and theorresponding Jaobi metri on the energy E. What follows will hold for any �xed E � 0.Also, we set all masses m, m1; : : : ;mn to unity; all arguments below will be valid forarbitrary positive masses.We hek that l is additive, depends ontinuously on restritions to subintervals, andis bounded away from zero for admissible paths onneting any a 2M with points outsideany ball radius � > 0 around a. Moreover, we an easily see that l is invariant under C0,pieewise C2 reparameterizations of paths in P (a; b), i.e. as in the ase where the metriis smooth, and regardless of whether l is �nite or in�nite.Proposition 3.1 Let a, b 2M . Then �l(a; b) = inf2P (a;b) l() is a metri on M .Proof: The symmetry of �l and the triangle inequality follow immediately from thede�nition of �l, and we also have �l(a; b) > 0 for any a 6= b 2 M , and �l(a; a) = 0,8a 2 M n �. For a 2 �, let the urve ~a be the onatenation of two line segments, froma 2 � to ~a =2 � and bak respetively, both traversed with onstant (Eulidean) speed.The singularity in l(~a) is integrable, and we easily estimate that l(~a) is of O(ja� ~aj 12 ),and therefore vanishes as ~a tends to a. 7



We an use the metri �l to de�ne a length funtional l̂ on ontinuous parameterizedurves. Unless otherwise spei�ed, the topology on M in the de�nition of ontinuity ofurves will be the one indued by the Eulidean metri �E . We then let C0(I;M) denotethe set of ontinuous parameterized urves  : I = [�1; �2℄!M .De�nition 3.3 Let  2 C0(I;M), and let Y denote the set of all �nite partitionsy = fy0 = �1 � y1 � : : : � yN�1 = �2g of the interval I = [�1; �2℄. Then the induedJaobi ar-length l̂() is de�ned by(3:2) l̂() = supy2Y N�2Xj=0 �l((yj); (yj+1)):Theorem 3.1 Consider the set C0(I;M) of ontinuous parameterized urves withendpoints a, b 2 M . Then, for every pair a, b 2 M there exists a ontinuous urve : I !M joining a and b whose length l̂() attains the in�mum of l̂ over the set.To show the theorem we ollet a number of intermediate statements. The prooffollows the general outline of the diret method. First, we onsider a minimizing sequeneof urves fig 2 C0(I;M) onneting a and b, and seek a subsequene that onvergesuniformly. We need to show that the urves of the minimizing sequene have their imagein a bounded subset of M . We observe that a radial urve that reahes a point on a irleof a suÆiently large radius R has length l of least O(R) if E > 0, and O(R 12 ) if E = 0.In Lemma 3.2 we show a similar statement for arbitrary ontinuous urves. We will usethe following result on \short geodesis":Lemma 3.1 Let x 2 M n �, and onsider an open set Ux � M n � and an open(Eulidean) dis Bx(Æ) � Ux of radius Æ > 0 around x. Then for Æ suÆiently smalland any points x1, x2 2 Bx(Æ) there exists a unique C2 Jaobi geodesi � : [0; 1℄ ! Uxminimizing the ar length l over all ontinuous, pieewise C2 paths with endpoints x1, x2and image in Ux.The lemma follows from the general loal theory of the exponential map for smoothmetris (see e.g. [M, par. 10℄).Lemma 3.2 Let  : I = [�1; �2℄ ! M be a C0 parameterized urve with (�1) = a,(�2) = b and �nite length l̂(). Fix R0 > 2 suh that the open disk of radius R02 entered8



at the origin ontains a, b, and the singularity set �, and assume that there exist � 2 I andR > R0 for whih j(�)j � R. Then, l̂() > h(R), with h an inreasing funtion satisfyingh(R)! +1 as R! +1.Proof: Fix R0 as above, and hoose �R0 < �R satisfying j(�R0)j = R0 and (�R) = Rrespetively, with R > R0. Also, let IA be the intersetion of [�R0 ; �R℄ with the preimageunder  of the losed annulus between R0 and R. Denoting the restrition of  to IA byA, we have l̂(A) < l̂().To estimate l̂(A) we over its image by a �nite olletion C of (Eulidean) open dissof radius �. Sine A is ontinuous we an over its image by a �nite subolletion C, forany � > 0. We also partition IA as follows: let y0 = �R0 , and B0 2 C a dis ontainingA(y0). Also, let y1 be the largest � 2 IA for whih A(�) 2 B0. Let B1 be a dis in Containing A(y1). By the assumption that C is an open over suh a disk exists, moreover,B1 6= B0 by the de�nition of y1. We indutively de�ne yj+1 to be the largest � 2 IA forwhih A(�) 2 Bj , and letting Bj+1 be a disk in C ontaining A(yj+1). When yj+1 = �Rthe proess terminates. Note that for eah j we have Bj+1 6= B0; : : : ; Bj. We thereforehave a �nite partition y = fy0 = �R0 � y1 � : : : � yN�1 = �Rg, N � ard(C), where everypair of points A(yj), A(yj+1) belongs to the same losed disk Bj .We an hoose � suÆiently small so that, by Lemma 3.1 all pairs A(yj), A(yj+1)an be onneted by a short geodesi of the Jaobi metri. The short geodesis are theunique C2 urves whose Jaobi length l attains �l(A(yj); A(yj+1)). Reparameterizingeah short geodesi that onnets A(yj) to A(yj+1) by an appropriate multiple of theJaobi ar-length so that its domain is [yj; yj+1℄, and onatenating the short geodesis,we then obtain a parameterized urve z : IA ! M n �. By onstrution, z has the sameendpoints as A, and is C0 and pieewise C2. By the de�nition of l̂ we have that(3:3) l̂(A) � N�2Xj=0 �l(A(yj); A(yj+1)) = l(z);and we an now bound l(z) below by diret alulation: �rst, assuming without loss ofgenerality that one of the singularities is at the origin, we have 2(E � U(x)) � �2U(x) �jxj�1. Also, for � suÆiently small jz(�)j > R02 > 1, 8� 2 IA, hene(3:4) l(z) � p2 ZIA jz0jjzj 12 d�:Using polar oordinates r, � we an write z0 = r0êr + r�0ê� (êr points outward). Sine z ispieewise C2 and R > R0, the set I+A � IA where r0 � 0 is a non-empty ountable union9



of losed intervals with non-empty interior. Sine jz0j � jr0j = r0 in I+A , (3.4) beomes(3:5) ZIA jz0jjzj 12 d� � ZI+A r0r 12 d� � 12 (R 12 �R 120 );sine at the maximum and minimum of I+A , we have r � R and r � R0 respetively. >From(3.3), we therefore have l̂() > l(A) � CR 12 , with C depending on R0, i.e. on the pointsa, b and the singularity set �.
Therefore, if fig is a minimizing sequene, then there exists R > 0 and a losed disB0(R) = fx 2M : jxj � Rg suh that i 2 C0(I; B0(R)), for all i after some N . Note thatby the de�nition of l̂, if  is ontinuous, pieewise C2 and avoids � then l̂() � l() (the twolengths are in fat equal for suh urves, but we do not need this here). The in�mum of l̂over the urves of interest is therefore �nite, and the urves i of the minimizing sequenemust be uniformly equiontinuous, for i after some N 0. To see this, �rst note that theurves i are also ontinuous as funtions from I to M with the topology of �l. Then,sine l̂(i) < +1 for all i, the urves i admit a onstant veloity parameterization (see[BBI℄, h.2), i.e. parameterizations by ar-length. Reparameterizing the i by ar-lengthwe then have �l(i(�); i(� 0)) � l̂(ij[�;� 0℄) � j� 0 � � j, for all � , � 0 2 I, and all i. Also,letting �1R be the maximum of [2(E�U)℄� 12 in B0(R), we see that �E(x; x0) � R�l(x; x0),for all x, x0 in the image of the i. Therefore, the minimizing sequene fig, with thei parameterized by ar-length, satis�es the assumptions of the following version of theArzela-Asoli theorem:Lemma 3.3 Consider a sequene fig of parameterized urves i 2 C0(I;M) withendpoints a, b 2M . Also, suppose that there exist onstants R, C suh that for all i(3:6) ji(�)j � R; 8� 2 I; and ji(�)� i(� 0)j � Cj� � � 0j; 8�; � 0 2 I:Then the sequene fig has a subsequene that onverges uniformly to a urve  2 C(I;M)with endpoints a and b.To show that the limit of the onvergent subsequene of the minimizing sequene figattains the in�mum of l̂ we show below that l̂ is lower-semiontinuous in C0. The argumentis well-known (see e.g. [BBI℄, h.2), a small di�erene here is that we are onsideringontinuous urves for M with the topology of the Eulidean metri �E .10



Lemma 3.4 The indued Jaobi length l̂ is lower semi-ontinuous on C0(I;M) withthe C0 (uniform onvergene) topology.Proof: Consider a sequene fig 2 C0(I;M) onverging to  in C0. Fix a partition y =fy0 = �1 � y1 � : : : � yN�1 = �2g of I for whih l̂()�PN�2j=0 �l((yj); (yj+1)) < �. Eahi(yj) onverges to (yj) in �E , and by the de�nition of �l and the fat that we have a �niteset of points we an hoose i large enough so that �l((yj); i(yj)) < �, 8j = 0; : : : ; N � 1.Then, the triangle inequality yields �l((yj); (yj+1)) � �l(i(yj); i(yj+1)) + 2� , and wetherefore havel̂() < N�2Xj=0 �l((yj); (yj+1)) + � � 2N�+ N�2Xj=0 �l(i(yj); i(yj+1)) + � � l̂(i) + (2N + 1)�;for all � > 0.
Proof of Theorem 3.1: By the lower-semiontinuity of l̂, the limit  of an appropriatesubsequene of a minimizing sequene fig has length l̂() = lim infi!1 l̂(i).

4. Collisionless Jaobi geodesisWe now show that the minimizers of the indued Jaobi ar-length l̂ are smooth, and thatthey an not pass though the singularity set �.As a preliminary step, we �rst show that minimizers of l̂ are C2 geodesis of theJaobi metri as long as their image is outside the singularity set �. By Proposition 2.1this implies that the minimizers are solutions of the Euler-Lagrange equations outside �.We also see that the Jaobi length l and indued Jaobi length l̂ of the minimizers oinide.To see that minimizers of l̂ avoid �, we will argue that allowing a minimizer to passthrough � leads to a ontradition. In partiular, assuming that a minimizer  of l̂ passesthrough � we will produe paths with smaller length l̂ that avoid the singularity set.The argument uses the fat that  an be reparameterized to satisfy the Euler-Lagrangeequations outside �. To study the approah of  to the singularity set �, we use a variantof Sundman's result on the \branh regularization" of binary ollisions (Lemma 4.2). We11



see that the approah to � is almost \radial", in the sense that the angular veloitydereases rapidly as we approah the singularity (see Lemmas 4.3, 4.4). This quite simplegeometry of the minimizers near the singularities allows us to de�ne one-parameter familiesof small deformations of  normal to  that avoid �. The deformations alter  only nearthe singularity set, and using the information on the geometry of the approah to �, weestimate the �rst variation of the ar-length with respet to the deformation parameter inLemma 4.5. We show that deforming o� the singularities dereases the Jaobi ar-length.The deformations used in Lemma 4.5 generally produe disontinuous urves. In Lemma4.6 we show that by hoosing the deformations appropriately, the shorter urves o� thesingularities have self-intersetions, and an therefore be \glued" to yield ontinuous urvesonneting the given endpoints.The see that Jaobi minimizers are regular o� the singularity set � we will use theproperties of short geodesis stated in Lemma 3.1.Lemma 4.1 Let  2 C0(I;M) with endpoints a, b 2 M n � be a minimizer ofthe indued Jaobi ar-length l̂ over all ontinuous parameterized urves with the sameendpoints. Also, assume that l̂() < +1. Then,  is a C2 Jaobi geodesi for all � 2 Isuh that (�) 2M n �. Moreover, l̂() = l().Proof: Consider ~� 2 I suh that ~x = (~�) 2 M n �. Also, let D~x(Æ) � M n � be anopen (Eulidean) dis of radius Æ around ~x, and pik �1 < ~� < �2 suh that j[�;� 0℄ � D~x(Æ).By Lemma 3.1, we an hoose Æ > 0 suÆiently small so that the points x1 = (�1) andx2 = (�2) an be onneted by a short geodesi of the Jaobi metri. Denoting the shortgeodesi by �, we an be reparameterize � so that �(�1) = x1, �(�2) = x2. We want toshow that j[�1;�2℄ and � oinide. By the de�nitions of � and l̂ we have that l̂(�) = l(�),and also l̂(j[�1;�2℄) � l(�) = �l(x1; x2). On the other hand, l̂(j[�1;�2℄) � l̂(�) sine  is aminimizer. Therefore l̂(j[�1;�2℄) = l̂(�). Suppose now that there exists y in the image ofj[�1;�2℄ that is not in the image of �. Consider the urve ~� made by onatenating twoshort geodesis onneting x1 to y and y to x2 respetively, and reparameterize ~� so that~�(�1) = x1, ~�(�2) = x2. By the de�nition of l̂ we have l̂(~�) = l(~�), and l̂(j[�1;�2℄) � l(~�).Moreover, sine the parameterized urves � and ~� are C2 they di�er in some open subsetof [�1; �2℄. By the uniqueness of � we then have l(~�) > l(�), hene l̂(j[�1;�2℄) > l̂(�), aontradition. Thus j[�1;�2℄ and � are the same urve. The argument applies to any point(�) =2 �, and the �rst statement of the lemma follows.To see that l̂() = l(), we �rst observe that the set of times �j 2 I for whih12



(�j) 2 � is �nite. Consider a union I 0� of neighborhoods of size � around eah suh �j.Using the �rst statement of the lemma, we have l̂(jInI0�) = l(jInI0�). Then, l̂() < +1implies that l() < +1, and hene l(jI0�) ! 0 as � ! 0. Similarly, l̂(jI0�) ! 0 as� ! 0, by the ontinuity of l̂ with respet to endpoints. Letting � ! 0 we an thus makejl̂()� l()j = jl̂(jI0�)� l(jI0�)j arbitrarily small.
Therefore, a C0 parameterized urve  : I !M joining a, b 2M n � that minimizesl̂ over all ontinuous urves with the same endpoints is a C2 geodesi of the Jaobi metrifor all � 2 I for whih (�) 62 �, and an be reparameterized to solve the Euler-Lagrangeequations for (2.1).We are assuming that there are � 2 I for whih (�) 2 �. The set T� of all suh � isdisrete: sine  is a minimizer and the length between points of � is bounded away fromzero, any aumulation point in T� would orrespond to loops around a point of �. Thuseah � 2 T� has an open neighborhood where the urve  does not pass through �, andwe want to study some of the geometri properties of the minimizer  as it approahes asingularity time � 2 T�. The goal is eventually to show that there exists a urve ~ whihdoes not pass through the singularity set � and satis�es l̂(~) < l̂(). To produe the urve~ we study  in neighborhoods of the points � 2 T�. This is a loal analysis of l̂ near suhpoints, and it is suÆient to desribe it for any given � 2 T�. We will also assume withoutloss of generality that one of the singularities of the potential U is loated x = 0, and thatthere exists �� 2 T� for whih (��) = 0. Otherwise, given a, b 2M n �, and a minimizer with (��) = �i for some �i 2 �, �� 2 I, we an translate our system of oordinates sothat �i goes to the origin, produe the shorter urve ~ that avoids the origin (and othersingularities), and translate bak to the original oordinate system. The proedure an beperformed for any singularity enountered by . The hanges of oordinates are justi�edby the fat that the Jaobi length is invariant under translations.We an also onsider the minimizer  parameterized by t so that (t) satis�es theEuler-Lagrange equations for all t with (t) 2 M n �. Assuming that � 2 I above de�nesa parameterization of  satisfying (2.6), and setting t = 0 when � = 0, we easily seethat l() < +1 and (2.5), (2.6) imply that t� < +1. By translating the variable tappropriately, we may simplify the notation by also assuming that t� = 0.Lemma 4.2 Suppose that (t) ! 0 2 � as t ! 0, where (t) satis�es the Euler-13



Lagrange equations for (2.1) for t 6= 0. Then, for jtj suÆiently small, (t) an be expressedas(4:1) (t) = t 23�(~�); ~� = t 13 ;where �(~�) is analyti in a suÆiently small neighborhood of ~� = 0, and satis�es j�(0)j 6= 0.Note that the funtion � depends on the initial ondition, i.e. (t0) and 0(t0) forsome t0 6= 0. The lemma is a slight modi�ation of Sundman's branh regularization ofbinary ollisions in the Newtonian 3-body problem, and we shall only sketh the proof,referring to [SM, I.6-I.8℄ for more details.Proof of Lemma 4.2: The equations of motion for (2.1) an be written as Hamilton'sequations for the position and momentum q(t), p(t) respetively. Denote the Hamiltonianby H, and de�ne the new \time" � by �(t) = R tt0 j(~t)j�1d~t. We an see that q(�), p(�)satisfy the Hamiltonian system(4:2) dqd� = dFdp ; dpd� = �dFdq ; with F = jqj(H � E); E 2 R;if and only if q(t), p(t) are trajetories of Hamilton's equations for (2.1) with total energyE. De�ning the new variables �, � by the sympleti transformation(4:3) � = qjpj2 � 2p(q � p); � = pjpj�2;and writing H = 12 jpj2 � jqj�1 � f(q), with f smooth near jqj = 0, the Hamiltonian Fbeomes(4:4) F (�; �) = 12 j�j � 1 + j�jj�j2(f(�; �)� E)):By onservation of energy, as �, jq(�)j ! 0, the norm of the momentum jpj diverges.Therefore, by (4.2), as we approah the origin, we have � ! [0; 0℄, and j�j ! 1. By theloal existene theory for �(�), �(�), and the fat that �(�), �(�) remain bounded in a setwhere F is analyti as � ! 0, �(�), �(�) are analyti for j�j small enough (i.e. at � = 0as well). Moreover, as � ! 0, � has a limit �0, with j�0j = 1. Mathing powers of � in(4.4), and using (4.3), we also have �(�) = � 12�0� + O(�2), q(�) = � 12�0�2 + O(�3), andtherefore j�(0)j 6= 0. Also, by the de�nition of � we have t = 16�3+ : : :, and inverting near� = 0, we have that � is analyti in ~� = t 13 .14



Corollary 4.1 Suppose that (t) ! 0 2 � as t ! 0, where (t) satis�es the Euler-Lagrange equations for (2.1) for t 6= 0. Then, there exist ~t1 < 0 < ~t2 for whih r(t) = j(t)jis dereasing in [~t1; 0℄ and inreasing in [0; ~t2℄.Proof: Let �0 = �(0) and r(t) = j(t)j. >From (4.1) we immediately have ddt (r2) =t 13 (43 j�0j2+O(t 13 )) for jtj small, i.e. ddt (r2) negative and positive respetively as t inreaseshanging sign.
The fat that the radius r = jj dereases and then inreases monotonially as wepass the singularity allows us to reparameterize a segment of the urve near the originby a multiple of r. Consider the times ~t1, ~t2 in Corollary 4.1, and pik � > 0 satisfyingj(~t1)j > � and j(~t2)j > �. Then de�ne t1 < t2 by j(t1)j = j(t2)j = �, and parameterizethe segment of j[t1;t2℄ by the saled radius s(t), de�ned by s(t) = ���1r(t), for t 2 [t1; 0℄,and s(t) = ��1r(t), for t 2 [0; t2℄. The minimizer  is now parameterized by s 2 [�1; 1℄,with (0) = 0, and (s) 2M n� if s 6= 0. Clearly,  is smooth in [�1; 0)[ (0; 1℄. Also, thereparameterization does not hange the length l of the segment.Lemma 4.3 Let (t)! 0 as t! 0, where (t) satis�es the Euler-Lagrange equationsof (2.1) if t 6= 0. Also let r(t), �(t) denote the polar oordinates of (t). Then, (i)L =  � ddt ! 0, ddtL ! 0, and (ii) r 12 d�dt ! 0.Proof: Let prime denote the derivative with respet to t. For x near the origin wehave E � U(x) = 1r + f(x) with f � 0 and smooth. By the onservation of energy,(4:5) j0j = �2r + 2f� 12 ;and using Corollary 4.1, jLj � jjj0j � Cr 12 , with C some onstant as t ! 0. Thus jLjvanishes as we approah the singularity. Also, L0 = �00 = �rf by the Euler-Lagrangeequations. By Corollary 4.1 we then have jL0j � C 0jj, with C 0 some onstant as t ! 0.Hene L0 also vanishes as we approah the origin. To see (ii) we use polar oordinates,where(4:6) d�dt =  � 0jj2 :Expanding (t) as (t) = �0t 23 + �1t+ �2t 43 + : : :15



(for appropriate �i), we alulateL =  � 0 = 13(�0 � �1)t 23 + 23 (�0 � �2)t+ O(t 43 );L0 = 29 (�0 � �1)t� 13 + 23 (�0 � �2) + O(t 13 );where using Lemma 4.2 all series are absolutely onvergent for jtj small. On the otherhand, sine L0 ! 0 as t! 0 we must have �0 � �1 = �0 � �2 = 0. Therefore, L is O(t 43 )as t ! 0. >From j�0j 6= 0, we also have that jj2 is O(t 43 ) as t ! 0, so that by (4.6) theangular veloity �0 is bounded as t! 0.
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[−] Figure 1To onstrut families of urves near j[�1;1℄ that avoid the singularity, we now deformj[�1;0℄ and j[0;1℄ in the diretion of unit vetors that are normal to the position vetor .Spei�ally, by the smoothness of  for s 6= 0 there exist (exatly) two C1 one-parameterfamilies of unit vetors n[�℄1 (s), n[�℄2 (s), s 2 [�1; 0) that are normal to (s) for all s 2 [�1; 0)(see e.g. Fig. 1). Similarly, there exist (exatly) two C1 one-parameter families n[+℄1 (s),n[+℄2 (s), s 2 (0; 1℄, of unit vetors normal to (s) for all s 2 (0; 1℄. Notie that n[�℄1 = �n[�℄2 ,i.e. the indies i are arbitrary at this point.Lemma 4.4 Let (s) be as above. Then, as s ! 0, we have (i) jdds j ! �, (ii)ddsn[�℄i ! 0, and (iii) dds � n[�℄i ! 0, i = 1; 2.Proof: Let prime and dot denote the derivative with respet to t and s respetively.Using polar oordinates, j0j2 = (r0)2 + r2(�0)2, and by Lemma 4.3 (ii), the seond termvanishes as s ! 0. Then, j _(s)j = j0jjs0j�1 = �j0jjr0j�1 ! � as s ! 0. To see (ii), westart with j _n[�℄i j = j(n[�℄i )0jjs0j�1, i = 1; 2. Conservation of energy implies js0j�1 � Cr� 12for some onstant C. Also note that j(n[�℄i )0j � j�0j, i = 1; 2. Combining with Lemma 4.316



(ii), we therefore have j _n[�℄i j � Cr 12 j�0j ! 0, i = 1; 2. To see (iii), we use  � n[�℄i = 0, 8s.Then j _ � n[�℄i j � jjj _n[�℄i j, and the statement follows by (ii).
The families n[�℄i (s), n[+℄i (s), i = 1; 2 are therefore C1 in [�1; 0℄, [0; 1℄ respetively. ByLemma 4.4 (iii), we an de�ne two one-parameter families of losed half-diss H [�℄� , H [+℄� ,� > 0, with radius � and enter at the origin that in addition satisfy: (i) the diameters ofH [�℄� , H [+℄� are along n[�℄1 (0), n[+℄1 (0) respetively, (ii) H [�℄�1 � H [�℄�2 for 0 < �1 < �2 � �,and (iii) H [�℄� , H [+℄� interset j[��;0℄, j[0;�℄ respetively for all � > 0.Letting H [�℄ = H [�℄1 , notie that if n[�℄1 (0), n[+℄1 (0) are ollinear, then H [�℄ \H [+℄ iseither H [�℄ = H [+℄ or a line segment along n[�℄1 (0). If n[�℄1 (0), n[+℄1 (0) are not ollinear,the boundary of H [�℄ \ H [+℄1 ontains one of the n[�℄i (0) and one of the n[+℄j (0) (see e.g.Fig. 2).
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Figure 2With this notation we de�ne the one parameter families of unit vetors n[�℄ : [�1; 0℄!S1 and n[+℄ : [�1; 0℄ ! S1 as follows: in the ase where n[�℄1 (0) and n[+℄1 (0) are ollinearwe let(4:7) n[�℄ = n[�℄1 ; n[+℄ = n[+℄i ; with n[+℄i suh that n[+℄i (0) = n[�℄1 (0);i.e. n[�℄ is hosen arbitrarily, and then determines n[+℄ uniquely. In the ase where n[�℄1 (0)and n[+℄1 (0) are not ollinear we let(4:8) n[�℄ = (n[�℄1 ; if n[�℄1 (0) 2 H [�℄ \H [+℄;n[�℄2 ; otherwise,(4:9) n[+℄ = (n[+℄1 ; if n[+℄1 (0) 2 H [�℄ \H [+℄;n[+℄2 ; otherwise.17



For example, in Fig. 2 we would set n[�℄ = n[�℄2 and n[+℄ = n[+℄1 .Then, for � � 0 we de�ne [�℄� : [�1; 0℄!M , [+℄� : [0; 1℄!M by(4:10) [�℄� (s) = (s) + ��(1 + s)n[�℄(s); s 2 [�1; 0℄;(4:11) [+℄� (s) = (s) + ��(1� s)n[+℄(s); s 2 [0;�1℄respetively. Note that s 6= 0 implies that j[�℄� (s)j = [�2s2 + �2�2(1 + s)2℄ 12 6= 0, andj[+℄� (s)j 6= 0. Also, we an hose �0, �0 so that if � � �0, � � �0, the urves [�℄� , [+℄� donot enounter any singularities other than the origin.The urves [�℄� , [+℄� with � > 0 (dotted lines in Fig. 3), are the desired \deetions"of the segments j[�1;0℄ = [�℄0 , j[0;1℄ = [+℄0 respetively (solid lines in Fig. 3). In Lemma4.5 below we show that if � is positive and suÆiently small, then l([�℄� ) < l([�℄0 ) andl([+℄� ) < l([+℄0 ). The de�nition of the vetors n[�℄, n[+℄ from the respetive n[�℄i , n[+℄i ,i = 1; 2 above is meant to simplify the last part of the argument, where we must also showthat the shorter deeted segments an be hosen to interset.
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Figure 3Lemma 4.5 There exists ~� > 0 for whih l([�℄� ) and l([+℄� ) derease as � inreasesin [0; ~�℄.Proof: We will show the statement for the family [�℄� , sine the proof for the [+℄� issimilar. To simplify the notation, let � = [�℄� ,  = [�℄0 = j[�1;0℄, and n = n[�℄. Withthis notation and (4.10), we then have the family of urves(4:12) �(s) = (s) + ��(1 + s)n(s); s 2 [�1; 0℄; � � 0;with � > 0 �xed. 18



Let l(�) = l(�). For � > 0, the urves � avoid the singularity, and the integrand ofl(�) is smooth. Thus l(�) is di�erentiable in � for � > 0, and we an take the derivativeinside the integral. We �rst estimate l0 = dld� and show that it is negative as �! 0+. >From(4.10) we have(4:13) l(�) = Z 0�1[�2s2 + �2�2(1 + s)2℄� 14 [1 + j�jf(�)℄ 12 j _�jds; � � 0:Letting u = s2 + �2(1 + s)2, we have l0(�) = I1 + I2, where(4:14) I1 = � 12a� 12 � Z 0�1 u� 54 (1 + s)2[1 + �u 12 f(�)℄ 12 j _�jds;(4:15) I2 = Z 0�1 u� 14 dd� n[1 + �u 12 f(�)℄ 12 j _�jo ds;with � > 0. We will show that as � ! 0+ the �rst integral I1 is negative and of O(�� 12 ),while the seond integral I2 is bounded uniformly in �. Letting � = �u 12 f , and w 12 =��1j _�j, the integral I2 is further deomposed as I2 = I2A + I2B + I2C , with(4:16) I2A = � 32 � Z 0�1 u� 34 (1 + s)2[1 + �℄� 12 fw 12 ds;I2B = 12� 32 Z 0�1 u 12 [1 + �℄� 12 f 0�w 12 ds; I2C = � 12 � Z 0�1 u� 14 [1 + �℄ 12w� 12 dwd� ds;where f = f(�(s)) and f 0� = dd�f(�(s)).To estimate the integrals we assume that � 2 (0; �0℄, � 2 [0; �0℄ with �0 and �0 suhthat the only singularity of the potential U enountered by the segments � is the one atthe origin. It follows from this assumption that there exist M , M 0 > 0 satisfying(4:17) jf j �M; jf 0�j �M 0in (4.14)-(4.16) above. Also, by Lemma 4.4 there exist N , m > 0 satisfying(4:18) j _nj � N; js _�j < m:We further restrit �0 and �0 to satisfy(4:19) (i) �0(14 + �20)M � 12 ; (ii) �0N � 14 ; (iii) �20N � 18 ;19



Fixing � 2 (0; �0℄, we now see that the essential term in eah of the four integralsis the one involving u (to some power). All other terms an be bounded uniformly ins 2 [�1; 0℄ and � 2 [0; �0℄. In partiular, using (4.10) and (s) � n(s) = 0, 8s 2 [�1; 0), wealulate(4:20) w 12 = [1 + s2 _�2 + �2 + �2(1 + s)2j _nj2 + 2a�1�s( � _n) + 2�2(1 + s)2(n � _n)℄ 12 :Then, from s 2 [�1; 0℄, jj = jsj�, and onditions (4.19) (ii), (iii) we havej2a�1�s( � _n)j � 14 ; j2�2(1 + s)2(n � _n)j � 14respetively, hene(4:21) w 12 � 2� 12 :Similarly, s 2 [�1; 0℄, the de�nition of m, and onditions (4.19) (ii), (iii) imply(4:22) w 12 � (2 +m2 + �20) 12 :In addition, the de�nition of � and ondition (4.19) (i) imply(4:23) � � 12 :Then, from (4.14), and (4.21), (4.23) we havejI1j � � 122 � Z 0� 12 u� 54 (1 + s)2[1 + �u 12 f(�)℄ 12 j _�jds � � 1224 Z 0� 12 �[s2 + �2℄� 54 ds;so that setting v = tan�1 s� in the last integral we obtain(4:24) jI1j � �� 12 � 1224 Z 0� tan�1 12� os 12 vdv � C1�� 12 ;with C1 > 0 a onstant uniform in � as � ! 0+. For the integrals of (4.16) we similarlyuse (4.21)-(4.23), obtaining(4:25) I2A �M(2 +m2 + �20) 12� 32 Z 0�1 �u� 34 ds ��2M(2 +m2 + �20) 12� 32 "� 12 Z 0� tan�1 1� os� 12 vdv + � Z � 12�1 u� 34 ds# ;20



(4:26) I2B � M 02 (2 +m2 + �20) 12� 32 Z 0�1 u 12 ds; I2C � 4(1 +m+N + �0)� 12 Z 0�1 u� 14 ds:We hek from (4.25)-(4.26) that I2A, I2B, I2C are bounded uniformly in � 2 [0; �0℄.Colleting the bounds on the four integrals we therefore have that as �! 0+(4:27) l0(�) � �C1�� 12 + C2;with C1, C2 positive onstants.Choosing �1 suÆiently small, l(�) is therefore dereasing for � 2 (0; �1℄. For theontinuity of l(�) at � = 0, we let l(�) = R 0�1 F�(s)ds, with F� the integrand of (4.12). Using(4.17)-(4.22), we see thatF�(s) � a 12Cjsj� 12 ; 8s 2 [�1; 0℄; 8� 2 [0; �1℄;with some C > 0 independent of �. Thus the funtions F� are uniformly bounded by anintegrable funtion, and by the dominated onvergene theorem we havel(�)! Z 0�1 F0(s)ds = l(0) as �! 0+:In a similar way, we an �nd �2 > for whih l([+℄� ) dereases for � 2 [0; �2℄. Then thestatement follows with ~� = minf�1; �2g.
Remark 4.1 In the test ase where � onsists of only one singularity loated at theorigin, onservation of the angular momentum �0 implies that all ollision and ejetionorbits are radial. The image of the urve  is then the union of two linear segments, froma to the origin and then to b respetively, while the vetors n[�℄(s) above are onstant andnormal to  for all s. The integrals in (4.14)-(4.16) simplify and we again obtain (4.27).The hoie of the n[�℄ ensures that the deeted urves interset.Remark 4.2 The above test ase also suggests a simpler way of deforming  o� �that seems however to require a similar analysis. Spei�ally, onsider two intermediatepoints a0, b0 with ja0j = jb0j = � on eah of the two radial segments of , and let � be theangle between the segments. The Jaobi lengths of the irular ar onneting a0 to b0 andof the two line segments from a0 to the origin and then to b0 are �� 12 and 4� 12 respetively21



(up to a ommon onstant), i.e. too lose for � near �. In the n-enter ase we wouldtherefore need a rather preise ontrol of the geometry of approah to the singularities.Remark 4.3 Replaing any of the two families n[�℄, n[+℄ by �n[�℄, �n[+℄ respetivelydoes not a�et the proof of Lemma 4.5. Suh a hange is also equivalent to reversing thesign of � in the segments [�℄� , [+℄� . We have therefore also shown that the lengths of [�℄�and [+℄� derease as � dereases in [�~�; 0℄.By Lemma 4.5, Remark 4.3, and noting that [�℄� (0) = [�℄0 (0) and [+℄� (1) = [+℄0 (1),8� 2 R, we an omplete the argument by �nding ~�1, ~�2 2 [�~�; ~�℄ for whih the images ofthe orresponding segments [�℄~�1 and [+℄~�2 interset at a point other than the origin.Lemma 4.6 Let C� be the set of all onvex linear ombinations of the vetors bn[�℄(0),bn[+℄(0), with b 2 [0; �℄. We an �nd � > 0 suÆiently small so that for every x 2 C� nf0gthere exist unique pairs [~�1; s1℄ 6= [0; 0℄, [~�2; s2℄ 6= [0; 0℄ with s1 2 [�1; 0℄, s2 2 [0; 1℄satisfying x = [�℄~�1 (s1) = [+℄~�2 (s2):Moreover, as jxj ! 0 we have ~�1, ~�2 ! 0 and s1 ! 0�, s2 ! 0+.Proof: In the ase where n[�℄(0) = n[+℄(0), the onial region C� degenerates to theset of all points bn[�℄(0) with b 2 [0; �℄. The de�nitions of [�℄� and [+℄� immediately yield[�℄� (0) = [+℄� (0) = �n[�℄(0), 8� 2 R, and the statement follows.For the ase where n[�℄(0) 6= n[+℄(0), we will show the statement for [�℄� . The prooffor [+℄� is similar. In essene, we want to solve the equation �(s) = x for any givenx 2 C� n f0g, and we will use the fat that 0(0) = 0 and the impliit funtion theorem.To simplify the notation we let � = [�℄� and  = 0. Also, let N(s) = n[�℄(s), N = N(0),and M = n[+℄(0). We know that 0 and N are ontinuously di�erentiable at s = 0, andthat s ! 0� implies _�(s) � N(s) ! 0 and j _j ! �. We an then apply an orthogonaltransformation to our oordinate system so that _(0) = �ê1 = �[1; 0℄, N = [0; 1℄, andM = [M1;M2℄ with M1 < 0, M2 > 0 and jM j = 1. Note that the signs of M1, M2 followfrom the de�nition of n[�℄ and n[+℄.We �rst onsider a simpler version of �(s) = x. Let~�(s) = �sê1 + �(1 + s)N; s 2 [�1; 0℄; � � 0:Then, writing x 2 C� as x = b�N + b(1 � �)M , with b 2 [0; �℄, � 2 [0; 1℄, the equation22



~�(s) = x has the unique solutions = b� (1� �)M1; � = b�(1 + s)M2; 8x 2 C� :By the signs of M1, M2 above we therefore have that for any � < � there exists a neigh-borhood Q� of [0; 0℄ in the s � 0, � � 0 quadrant whose image under ~�(s) inludes C� .Moreover, [s; �℄! [0; 0℄ as � ! 0.To solve �(s) = x for x 2 C� it is enough to show that if [�; Æ℄ 2 Q�, and � issuÆiently small, the equation(4:28) F (s; �; �; Æ) = �(s)� ~Æ(�) = 0has a solution s(�; Æ) 2 [�1; 0℄, �(�; Æ) that depends ontinuously on � and Æ. SineF (0; 0; 0; 0) = 0, showing that the solution is also unique will imply that if x 6= 0 (andhene [�; Æ℄ 6= [0; 0℄), then [s; �℄ 6= [0; 0℄. To solve (4.28) we note that the derivative D1F ofF with respet to the �rst two arguments at [0; 0; 0; 0℄ isD1F (0; 0; 0; 0) = � _1(0) _2(0)N1 N2 � ;with  = [1; 2℄. By _�N = 0 and j _(0)j = �, we see that det(D1F (0; 0; 0; 0)) = _(0)�N =�2 6= 0. Also, F an be extended to a neighborhood of [0; 0; 0; 0℄: we an let �, � , Æ 2 Rabove, and �(s) = asê1 for s > 0. The extended funtion is C1 near [0; 0; 0; 0℄, and by theimpliit funtion theorem we have unique C1 funtions s(�; Æ), �(�; Æ), with � , Æ near theorigin. By ontinuity and our onlusions on the simpli�ed equation ~Æ(�) = x, we havethat s, � ! 0 as x approahes the origin. Also, by the de�nition of the extension of F ,for small � > 0 we have the unique solution s(�; Æ) = � > 0. On the other hand, solving~Æ(�) = x, x 2 C� , we had � � 0. Therefore, �(s) = x, x 2 C� , an only be satis�ed withs 2 [�1; 0℄.
Proof of Theorem 2.1: Assuming that a minimizer  of l̂ passes through some � 2 �,we an apply Lemma 4.5 (and Remark 4.3) to obtain \deeted" segments [�℄�1 , [+℄�2 thatavoid � and have smaller length l. By Lemma 4.6 we an hoose �1 and �2 arbitrarily smallso that the images of the two deeted segments interset. Conatenating appropriaterestritions of [�℄�1 and [+℄�2 we then obtain a ontinuous urve ~ joining a and b with23



length l̂(~) � l(~) < l̂(), a ontradition. The argument applies to any singularity � 2 �.Minimizers of l̂ therefore avoid the singularity set �, and by Lemma 4.1 and Proposition2.1, are trajetories of the Euler-Lagrange equation joining a and b.
Remark 4.4 Note that the above argument does not give us any information on thehomotopy lass of the deeted shorter urve ~.5. DisussionPossible extensions will be onsidered in future work. Some diretions are periodi lat-ties, higher dimensions, other types of point singularities, and singularity sets of higherdimension. For instane, we an onsider Jaobi geodesis in a planar periodi lattie ofpotentials with 1r singularities and fast deay at in�nity. Arranging the potential energy Uto be �nite o� the singularities, negative, and suh that the perturbation to the approahto a singularity by other sites is analyti, the arguments will be the same.Regarding higher dimensions, it is lear that the arguments leading to the existene ofminimal geodesis do not involve the dimension ofM . The same is also true for the analysisof the approah to the singularities in Lemmas 4.1 and 4.2. However, the onstrutionof deetions o� the singularities is speial to the two dimensional ase, and must begeneralized.Also, the de�nition of the indued length l̂ in Setion 3 is meaningful for 1r� , � < 2singularities, while Lemma 3.2 applies to all potentials that deay as 1r� with � � 2. Thusthe existene of minimizers of the Jaobi length (with E � 0) an be extended to potentialswith 1r� , � < 2 singularities. The arguments of Setion 4 must be modi�ed however.Also of interest are minimal Jaobi geodesis in on�guration spaes with singularitysets of higher dimension, e.g. the shape spae of the planar 3-body problem with totalangular momentum ! = 0.6. AknowledgmentsI would like to thank R. Easton, J. Meiss and G. Roberts for helpful disussions andomments. The author is supported by NSF grant DMS-9810751.24
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