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Abstract

We consider the question of persistence of breather solutions of the discrete NLS equation under time-periodic perturbations corresponding to
small amplitude diffraction management. The question is formulated as a problem of continuation of tori in an infinite-dimensional Hamiltonian
system with symmetries and we show that one-peak breathers of the discrete NLS with zero residual diffraction can be continued to periodic
or quasiperiodic solutions of the discrete NLS with small residual diffraction and small amplitude diffraction management, provided that a
nonresonance condition is satisfied. We also present numerical evidence that a similar continuation should be possible for certain single-, and
multi-peak breathers of the discrete NLS with small diffraction.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

In this paper we show the existence of periodic or
quasiperiodic orbits in the discrete cubic NLS equation with
diffraction management, a lattice NLS system with periodic
parametric forcing proposed by Ablowitz and Musslimani [1]
to describe an array of coupled waveguides with the zig–zag
“diffraction management” geometry introduced and studied
experimentally in [5].

Our results concern the special case of small amplitude
parametric forcing. In particular, we consider the question
of persistence of breather solutions of the discrete NLS
equation under periodic perturbations that correspond to small
amplitude diffraction management. The persistence question is
formulated as a question of the continuation of invariant tori in
an infinite-dimensional Hamiltonian system with symmetries.
Using this general framework we show that one-peak breathers
of the discrete NLS with vanishing residual diffraction can
be continued to periodic or quasiperiodic solutions of the
perturbed discrete NLS system of [1], provided that the ratio
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between the breather and forcing frequencies is a noninteger.
We also see numerical evidence that a similar continuation
should be possible for single peak, and a class of multi-peak
breathers of the discrete NLS with small diffraction. A similar
persistence question also arises in the continuous analogue of
the system we study, the cubic NLS with small dispersion
management on the line. There is theoretical and numerical
evidence (see [12]) that the (localized) breather soliton of the
cubic NLS decays in the perturbed system. One interpretation
of the [12] results is that the breather solution cannot be
continued to a solution of the perturbed system, although it is
also possible that the breather can be continued to an unstable
solution.

The Hamiltonian formulation of the persistence problem
allows us to use the ideas of Nekhoroshev [9] and Bambusi and
Gaeta [3] on the continuation of invariant tori in Hamiltonian
systems with additional conserved quantities (see also [6]).
The theory is based on an equivariant version of the Poincare
map and in the present problem we use an infinite-dimensional
generalization (see also [4] for another application). The idea
is to write the full NLS system as an autonomous Hamiltonian
system in an extended phase space and then decompose it to
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an “unperturbed part” with an invariant 2-torus corresponding
to the breather, plus a small perturbation. In order to continue
the 2-torus we must verify a nonresonance condition on the
Floquet spectrum of an appropriate linear combination of the
Hamiltonian vector fields of the unperturbed Hamiltonian and
an additional conserved quantity (the orbits of this linear
combination are periodic on the 2-torus). In the case of one-
peak breathers of the anticontinuous limit system the Floquet
spectrum is understood easily and the above strategy leads to a
proof of existence of invariant tori in the perturbed system. In
the multi-peak case we present some numerical computations
of the Floquet spectrum that suggest that a similar continuation
should also be possible for breather of NLS systems that are
near the anticontinuous limit.

The paper includes a proof of an infinite-dimensional
version of the theorem of Nekhoroshev [9] and Bambusi and
Gaeta [3]. From the proof we see that the existence of invariant
2-tori of the periodically forced NLS implies the existence of
invariant circles of the time-T map of the parametrically forced
system (T is the period of the forcing). These invariant circles
are near the orbits of the breather solutions.

The discrete NLS system of [1] can be also studied in
the regime where the frequency of the parametric forcing
is large. In that regime the system can be approximated by
an averaged equation that is autonomous and has localized
breather solutions (see [7,10,11]). Preliminary results suggest
that certain one-peak breathers of the averaged equation can
also be continued to solutions of the full system, but the
argument is more involved and will be presented elsewhere.
(Some asymptotic and numerical results on the continuous
problem on the line are in [14].)

The paper is organized as follows. In Section 2 we
describe the [1] model, set up the problem of continuation
of breathers and state a general theorem on the continuation
of tori in equivariant Hamiltonian systems. We also use
the theorem to continue single-peak anticontinuous limit
breathers. In Section 3 we present some numerical results
on the continuation of single-, and multi-peak breathers. In
Section 4 we prove the theorem on the continuation of
tori in equivariant Hamiltonian systems. We point out its
geometrical interpretation in the particular problem, and the
extra information it provides on the geometry of the invariant
tori.

2. Continuation of breathers under small amplitude forcing

We consider the parametrically forced discrete cubic
nonlinear Schrödinger equation

∂t u = i D(t)∆u − 2iγ g(u), with (2.1)

(∆u) j = u j+1 − 2u j + u j−1, g j (u) = |u j |
2u j (2.2)

and u a complex valued function on the integers Z. ( f j denotes
the value of f : Z → C at the site j .) Also, γ is a real constant
and D is a T -periodic real valued function (for some T > 0).
We also write

D(t) = D + D̃(t), where D =
1
T

∫ T

0
D(τ )dτ (2.3)
as the average over the period (also referred to as residual
diffraction).

Eqs. (2.1) and (2.2) are a nonautonomous Hamiltonian
system in X = l2(Zd ,C), the set of square-summable complex
valued functions on Z with the norm ‖.‖ = ‖.‖l2 . The
Hamiltonian structure is specified below. Physically, t in (2.1)
is the distance along the waveguides, and u j is the complex
amplitude of (any) one of the components of the electric field at
the waveguide j (see [1,5]). The initial condition u(t0) for (2.1)
is the emitted light.

A general problem for (2.1) is the existence of localized
periodic or quasiperiodic solutions. The solutions we will
consider will be defined indirectly, specifically, we look for
solutions of (2.1) that are close to known localized periodic
solutions of simpler equations whose solutions approximate the
solutions of (2.1) in certain ranges of the parameters.

The simplest construction of this type concerns the case
where D(t) = εd(Ω t), with |ε| small, d a 2π -periodic function,
and Ω =

2π
T , i.e. D(t) is T -periodic in t . The solutions we

seek will be continuations from solutions of (2.1) with D ≡ 0
(the “anticontinuous limit”). First, Eqs. (2.1) and (2.2) with
the initial condition u(t0) = v ∈ X are equivalent to the
autonomous system

∂t u = iεd(φ)∆u − 2iγ g(u), φ̇ = Ω , (2.4)

φ ∈ S1, with the initial condition u(0) = v, φ(0) = φ0. We
view the linear part of (2.1) as a small perturbation of the cubic
term.

Eq. (2.4) can be also written as a Hamiltonian system by
adding an extra variable J ∈ R. The phase space will be
X × S1

× R. The Hamiltonian Hε is

Hε = −Ω J +

∑
j∈Z

(
εd(φ)|u j+1 − u j |

2
+ γ |u j |

4
)
, (2.5)

and we formally obtain (2.4) by the first two of Hamilton’s
equations

∂t u = −i
∂Hε
∂u∗

, φ̇ = −
∂Hε
∂ J

, J̇ =
∂Hε
∂φ

. (2.6)

We consider the case ε = 0. Then for any n0 ∈ Z, A ∈

C \ {0}, and φ0 ∈ S1 we have the “one-peak” breather solution

un0(t) = e−iλt A with λ = 2γ |A|
2
;

un(t) = 0, ∀t ∈ R if n 6= n0;
(2.7)

φ(t) = Ω t + φ0; J (t) = 0, ∀t ∈ R. (2.8)

The choice J = 0 is arbitrary here. Let C(n0, A, φ0) be the set
of points of X × S1

× R in the orbit defined by (2.7) and (2.8).
Also let Λ0(n0, A) = ∪φ0∈S1 C(n0, A, φ0). The set Λ0(n0, A)
is an invariant 2-torus of the ε = 0 system, e.g. foliated by
periodic orbits if λ

Ω is rational. We now consider (2.6) with
|ε| being small. We show that the invariant tori Λ0(n0, A) can
persist, provided that λ and Ω satisfy a nonresonance condition.

Proposition 2.1. Consider n0 ∈ Z, A ∈ C \ {0}, and the set
Λ0(n0, A) as above. Let r be an integer, r ≥ 2, and suppose that
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the 2π -periodic function d above is Cr in R. Assume that λ
Ω 6∈

Z, where λ = 2|γ ||A|
2 (and Ω 6= 0). Then there exist ε0, β0 >

0 such that for any ε with |ε| < ε0 the corresponding system
(2.4) has a Cr 2-parameter family of invariant 2-tori Λε,β ,
with β ∈ (−β0, β0)

2, and Λ0,0 = Λ0(n0, A). The motion on
each torus is periodic or quasiperiodic (with two quasiperiods).
Also, for any ε ∈ (−ε0, ε0) there is a two-parameter family of
Cr functions fε,β : Λ0(n0, A) → X × S1, β ∈ (−β0, β0)

2 with
Λε,β = fε,β(Λ0(n0, A)), and f0,0(Λ0(n0, A)) = Λ0(n0, A).

The proof of the proposition uses Theorem 2.2 which
generalizes results of [9] and [3] on the continuation of invariant
tori in Hamiltonian systems with symmetry.

Note that periodic and quasiperiodic solutions of (2.6) in
X × S1

× R project to periodic and quasiperiodic solutions
of (2.4) in X × S1 (with the same periods and quasiperiods
respectively). This follows from the fact that the respective
right-hand sides of the first two equations of (2.6), i.e. Eqs.
(2.4), do not depend on J .

Remark 2.1.1. The conclusions of Proposition 2.1 are also
valid for less regular 2π -periodic functions d . The proof uses
the Cr regularity of the flow defined by (2.6), but since system
(2.6) comes from a nonautonomous system, the Cr regularity
of the flow can be also shown for d that is less regular, e.g. it
would be sufficient to require that d be piecewise Cr .

To set up Theorem 2.2, let r be an integer, r ≥ 2, and
consider a real Cr Hilbert manifold M modeled on a real
(separable) Hilbert space E with inner product 〈, 〉. Assume that
M also has a weak symplectic structure ω with corresponding
Poisson bracket { , }. Consider s real functions H ε

1 , . . ., H ε
s

on M that have the form H ε
j = H0

j + ε H̃ j , j = 1, . . ., s.

(The parameter ε is real and the H0
j , H̃ j are independent of ε.)

The Hamiltonian vector fields of H ε
j , H0

j , H̃ j are respectively

denoted by X εj , X0
j , X̃ j , j = 1, . . ., s. We are assuming that

s is finite, and in the case of dim(M) = 2n also 1 ≤ s ≤ n.
We further assume that there exists ε̃ > 0 such that for any
ε ∈ (−ε̃, ε̃) the following hold:

AI. The Hamiltonian vector fields X εj of the H ε
j , j = 1, . . . , s

are Cr , and their time-t maps exist and are Cr in M ,
∀t ∈ R.

AII. There exists an s-dimensional torus Λ that is invariant
under the Hamiltonian flows of the H0

j , j = 1, . . ., s.
Moreover, Λ is a Cr submanifold of M and has a Cr

tubular neighborhood in M .
AIII. The H ε

j , j = 1, . . ., s mutually Poisson commute and are
functionally independent in a neighborhood of Λ in M .

We are interested in the flow of H ε
1 , and in particular on

whether the invariant torus Λ of X0
1 can be continued to an

invariant torus of the perturbed system X ε1 for |ε| sufficiently
small. First note that given any α ∈ π1(Λ) ' Zs there exists
a c = [c1, . . . , cs] ∈ Rs such that the integral curves of the
restriction of the vector field K0(α) =

∑s
j=1 c j X0

j to Λ are
1-periodic orbits that belong to the homotopy class α. Denote
the time-1 map of K0(α) by gc

0. The Fréchet derivative Dgc
0(x)
of gc
0 at any x ∈ Λ is a bounded linear operator in E ' Tx M . It

is easily seen that the derivatives at two different points of Λ are
related by a similarity transformation. The spectrum of Dgc

0(x)
in E is therefore independent of the point x ∈ Λ and will be
denoted by σ(Dgc

0).

Theorem 2.2. Consider the functions H ε
j , j = 1, . . ., s

as above and assume that there exist α ∈ π1(Λ) and a
corresponding vector c = c(α) ∈ Rs with the property
that σ(Dgc

0) has exactly s eigenvalues that are unity and that
σ(Dgc

0) \ {1} lies outside an open disc around 1. Then there
exist ε0, β0 > 0 such that for any ε with |ε| < ε0 there exists
an s-parameter family of s-tori Λε,β , β ∈ (−β0, β0)

s , that are
invariant under the flow of each of the X εj , j = 1, . . ., s. The
motion on each Λε,β is periodic or quasiperiodic (with at most
s quasiperiods). The family Λε,β is also Cr in β and there exists
β∗ ∈ (−β0, β0)

s for which Λ0,β∗
= Λ.

A proof of Theorem 2.2 is given in the Section 4. The
geometrical ideas are similar to the ones used by Bambusi and
Gaeta [3] to prove the original version of Nekhoroshev [9].

Proof of Proposition 2.1. Let M = X ×S1
×R, and H ε

1 = Hε ,
with Hε as in (2.5). The corresponding Hamiltonian vector field
is denoted by X ε1. Also, let Λ = Λ0(n0, A), with Λ0(n0, A) as
defined by (2.7). Thus Λ is a 2-torus that is invariant under the
vector field X0

1 . We also let

P =

∑
j∈Z

|u j |
2 (2.9)

and define a second family of functions H ε
2 by H ε

2 = P , for any
ε ∈ R. The corresponding Hamiltonian vector field is denoted
by X ε2. We observe Λ is also invariant under X0

2 and it is easy
to check that the two functions H ε

1 , H ε
2 satisfy the conditions

AI–AIII of Theorem 2.2. In particular, they Poisson commute
and are independent (provided that Ω 6= 0). We now verify the
nonresonance condition for the Floquet map of an appropriate
linear combination of X0

1 , X0
2 . To parametrize Λ ∈ M define

the function A : Z → C by An0 = A, An = 0 for n 6= n0.
Then

Λ = {[eiθA, φ, 0] ∈ X × S1
× R : θ ∈ R, φ ∈ S1

}. (2.10)

Also, given any F : M → R, let gt
F be the time-t maps of the

flows of the Hamiltonian vector field of F . On Λ we then have

gt
H0

1
([eiθA, φ, 0]) = [ei(θ−λt)A, (φ + Ω t)mod 2π, 0], (2.11)

gt
H0

2
([eiθA, φ, 0]) = [ei(θ−t)A, φ, 0]. (2.12)

Also, gt
cF = gct

F , ∀c ∈ R, therefore the time-t map of the
Hamiltonian vector field of c1 H0+c2 P is gc1t

H0
gc2t

P . Using (2.11)
and (2.12) we therefore see that the condition for the orbits of
the Hamiltonian vector field of c1 H0 + c2 P to be 1-periodic on
Λ and to belong to the homotopy class [n1, n2] ∈ Z2 is that

−c1λ− c2 = 2πn1, c1Ω = 2πn2, (2.13)

hence

c1 = n2
2π
Ω
, c2 = −2πn1 − n2

2πλ
Ω
. (2.14)
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To calculate the Floquet map around any such 1-periodic orbit,
i.e. Dgc

0, let

u = e−i(c1λ+c2)t eiθA+ w, φ = c1Ω t + φ0 + ψ,

J = I,
(2.15)

with A as above. Using (2.1), (2.5) and (2.6) and keeping only
linear terms we obtain the variational equation for ẇ, ψ̇ , İ . The
variational equation can be made autonomous by the change of
variables v = ei(c1λ+c2)tw. We obtain

v̇n = ic1λvn, n ∈ Z \ {n0} (2.16)

v̇n0 = −ic1λ(vn0 + v∗
n0
), (2.17)

ψ̇ = 0, İ = 0. (2.18)

Since v = w at t = 1, the Floquet map around the 1-periodic
orbit coincides with the time-1 map of the equations for v̇, ψ̇ ,
İ . The spectrum of the time-1 map of the linear system (2.16)–
(2.18) is calculated readily since the system is block diagonal
with 2 × 2 blocks: (2.18) yields two unit eigenvalues. From
(2.17), we obtain another pair of unit eigenvalues. Finally, Eqs.
(2.16) yield the pair of eigenvalues e±2π in2

λ
Ω for each integer

n 6= n0. Choose [n1, n2] = [−1, 1]. Then, by our assumption
that λ

Ω 6∈ Z we have exactly 4 unit eigenvalues with the rest of
the Floquet spectrum bounded away from unity. Therefore, the
proposition follows from Theorem 2.2. �

The proposition and the proof also generalize to higher-
dimensional lattices. On the other hand, the proof would not
work for a quasiperiodic diffraction management function D
with at least two quasiperiods. Also note that expressions (2.14)
for c1, c2 are independent of the specific form of the functionA.

The proof of Theorem 2.2 provides some additional
information on the invariant tori Λε,β . Let Λε,β denote the
projection of Λε,β to X × S1, the phase space of (2.4).

Proposition 2.3. Let |ε| < ε0, β ∈ (−β0, β0)
2, with ε0, β0

as in Proposition 2.1. Then the intersection of Λε,β with any
X × {φ0}, φ0 ∈ S1, is a circle S1(ε, β, φ0) that belongs to
a plane through the origin of X and whose center is at the
origin of X. The circles S1(ε, β, φ0), φ0 ∈ S1, are invariant
under the time-T map of the flow of (2.4), and Λε,β =

∪φ0∈S1 S1(ε, β, φ0).

The proposition is shown in Section 4. By Λ0,0 = Λ, any
circle S1(0, 0, φ), φ0 ∈ S1, coincides with the unperturbed
breather orbit.

Also note that the strategy above can be used to examine
the continuation of any breather of the discrete NLS. The main
difficulty is that we do not have an adequate understanding of
the Floquet spectra of the different classes of breathers known
to exist (see e.g. [13,8,11]). A first step towards extending
the continuation results to more breathers is to study Floquet
numerically. This is done in the next section.

Remark 2.2.1. One case where the Floquet spectrum is
calculated trivially is the one of the trivial “k-peak” breather
solutions of the anticontinuous limit. These solutions have the
form un(t) = e−iλt A, λ = 2γ |A|
2 for n in some U ⊂ Z that

contains k sites (k finite), and un(t) ≡ 0 at all other sites (with
φ, J as in (2.8)). The argument of Proposition 2.1 does not
apply for k > 1 since each peak contributes to a block of the
form (2.17), i.e. a pair or unit eigenvalues.

3. Numerical Floquet spectra

We now examine the continuation question numerically. We
start by considering (2.1)–(2.3) with D(t) = D + εd̃(t) and |ε|

small. The function d̃ is 2π -periodic, and Ω =
2π
T . Note that

|D| is not assumed a priori small and the system we consider
can be viewed as a small time-periodic perturbation of the
discrete NLS. Eqs. (2.1) and (2.2) with the initial condition
u(t0) = v ∈ X are then written as

∂t u = iD∆u − 2iγ g(u)+ iεd̃(φ)∆u, φ̇ = Ω , (3.1)

φ ∈ S1, with the initial condition u(0) = v, φ(0) = φ0. As
before, φ ∈ S1 and the Hamiltonian structure is as in (2.5) and
(2.6).

We are interested in continuing solutions of the discrete NLS
that have the “breather” form

u(t) = e−iλtA, with λ ∈ R, (3.2)

andA : Z → C a function that decays at infinity. The breathers
correspond to solutions

u(t) = e−iλtA; φ(t) = Ω t + φ0;

J (t) = 0, ∀t ∈ R
(3.3)

of Eq. (3.1) with ε = 0. The invariant 2-torus of the unperturbed
system is Λ0(A) = ∪φ0∈S1 C(A, φ0), where C(A, φ0) is the set
of points of X × S1

× R in the orbit defined by (3.3).
Although there are several theoretical results on the

existence of breather solutions (see e.g. [13,7,11]), we here
compute breathers numerically. To do this we fix λ and solve
the nonlinear system resulting from (3.2) and (3.1) using
minpack routines. As in the proof of Proposition 2.1, given
any homotopy class α we have a c = [c1, c2] ∈ R2 for which
solutions of the form of (3.3) correspond to 1-periodic solutions
of the modified system

ut = c1[i D∆u − 2iγ g(u)] + c2[−iu], φ̇ = c1Ω ,

J̇ = 0.
(3.4)

The modified Floquet map is obtained by integrating
numerically the variational equation around any such 1-periodic
solution. Integration of the equations for φ̇, J̇ yield a trivial
Floquet 2 × 2 block and we refer to the remaining (infinite
dimensional) block as the nontrivial (Floquet) block. The
spectrum of the nontrivial block is obtained numerically using
eispack routines. Note that since the first equation of (3.4)
is Hamiltonian, the spectrum of the nontrivial block should
include at least two unit eigenvalues, while the φ̇, J̇ block
contributes another pair of unit eigenvalues. Thus the criterion
for continuation is that the spectrum of the nontrivial block has
exactly two unit eigenvalues.
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Fig. 1(a). Spectrum of (nontrivial modified) Floquet map for single-peak
breather. The unit eigenvalue is double. D = −0.01.

Fig. 1(b). Single-peak breather. D = −0.01.

We first consider single-peak breathers. Typical examples
of spectra of the corresponding nontrivial Floquet blocks are
shown in Figs. 1(a), 2(a) and 3(a). The corresponding breathers
are shown in Figs. 1(b), 2(b) and 3(b). Here we are using
the homotopy class [n1, n2] = [−1, 1], with c as in (2.14).
Also, γ = 1, λ = 10, Ω = 13. In all the figures we see
an isolated double unit eigenvalue, and this suggests that the
corresponding breathers can be continued. For D = 0 we
obtain two more eigenvalues e±2π i λΩ , in agreement with the
computation in the proof of Proposition 2.1. As we increase
|D| with D < 0, we see the appearance of two “arcs” of nearby
Floquet eigenvalues on the unit circle, extending from e2π i λΩ ,
and e−2π i λΩ respectively towards 1. The arcs are interpreted as a
continuous Floquet spectrum and become wider as we increase
|D|, e.g. as in Figs. 1(a), 2(a) and 3(a). For D > 0 we see
a similar widening of the arcs on the unit circle, this time from
e2π i λΩ and e−2π i λΩ respectively towards −1. As we increase |D|

further, the convergence to the breather solution slows down
and the existence of single-peak breathers becomes less certain
(the existence of these breathers is shown for small |D|, see
[11]).

For |D| sufficiently small we also find numerically multi-
peak breather solutions. The existence of multi-peak breathers
ig. 2(a). Spectrum of (nontrivial modified) Floquet map for single-peak
reather. The unit eigenvalue is double. D = −0.1.

Fig. 2(b). Single-peak breather. D = −0.1.

ig. 3(a). Spectrum of (nontrivial modified) Floquet map for single-peak
reather. The unit eigenvalue is double. D = −0.4.

an be shown by an implicit function argument (see [8,11]),
.e. by continuation from the multi-peak breathers of the
nticontinuous limit system. However, by Remark 2.2.1,
he modified Floquet spectrum of k-peak breathers of the
nticontinuous limit system has 2k unit eigenvalues and
his does not allow us to continue to solutions of the full
ystem by the argument of Proposition 2.1. On the other
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Fig. 3(b). Single-peak breather. D = −0.4.

ig. 4(a). Spectrum of (nontrivial modified) Floquet map for 2-peak breather.
he unit eigenvalue is double. D = −0.1.

and, in the numerical experiments we considered “in-phase”
-peak breathers (i.e. k-peak breathers with U− empty, see
emark 2.2.1) and found that as we increase |D| away from

he origin, the nontrivial Floquet block has 2k − 2 eigenvalues
hat move away from 1 along the real axis. This suggests that
he k-peak in-phase breathers obtained for nontrivial |D| can be
ontinued, provided that λ

Ω is noninteger.
The first example is shown in Fig. 4(a), where we see the

ontrivial block of the modified Floquet map around the 2-peak
reather of Fig. 4(b). The eigenvalue 1 is double and we have
wo other eigenvalues that have moved off 1. In Fig. 5(a) we
ee the nontrivial block of the modified Floquet map around
he 3-peak breather shown in Fig. 5(b). The eigenvalue 1 is
gain double and we have four other eigenvalues that have
oved off 1. We also observe the appearance of arcs of

ontinuous spectrum on the unit circle. These are similar to
he arcs observed for the single-peak breathers, i.e. one of their
ndpoints is at e±2π i λΩ .

The distance of the real eigenvalues that move off 1 increases
ith |D| and also decreases rapidly as we increase the spacing
etween the peaks. For instance, for a 3-peak soliton obtained
or |D| = 0.4 with a spacing of 4 sites between the peaks,
he distance of the 4 eigenvalues that are supposed to have
Fig. 4(b). 2-peak breather. D = −0.1.

ig. 5(a). Spectrum of (nontrivial modified) Floquet map for 3-peak breather.
he unit eigenvalue is double. D = −0.093.

Fig. 5(b). 3-peak breather. D = −0.093.

oved off 1 cannot be distinguished from numerical error.
t appears therefore that as the (smallest) distance between
onsecutive peaks increases, continuation can only be possible
or a decreasing range of the parameter ε. (Note that the
umerical computation of multi-peak breathers is more reliable
or small |D| and for small separation between the peaks.)
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Remark 3.0.1. The above calculations also suggest that as
we increase |D| away from the origin, the corresponding in-
phase multi-peak breathers become linearly unstable since the
modified Floquet map gives us relative stability information.
This linear instability is more pronounced when the peaks
are near each other. The stability of the “out-of-phase” multi-
peaks (i.e. with both U+, U− nonempty, see Remark 2.2.1) is
not considered here. There is evidence that some out-of-phase
multi-peak breathers are linearly stable.

The continuous spectrum in the modified Floquet map
appears to arise from exponentiating the discrete Laplacian,
which is a bounded operator in X . We can then expect that
in the continuation problem for the breather soliton of the
NLS on the line analogous arcs of continuous spectrum will
“wrap around” the unit circle an infinite number of times and
cannot be “separated” from the unit eigenvalue by varying
the homotopy class. Thus the continuation strategy we used
for the discrete case does not seem directly applicable to the
continuous problem and it is also possible that the continuation
question does not have a positive answer for the problem on the
line. This possibility is consistent with the results of [14,12].

4. Continuation of invariant tori

To prove Theorem 2.2 we follow the notation used in setting
up the theorem in Section 2. Let r be a fixed integer, with
r ≥ 2. Also let gt

i,ε denote the time-t map of the vector field
X εi . Assumption AI implies that the maps gt

i,ε are Cr , ∀t ∈ R.
Letting c = [c1, . . . , cs] ∈ Rs , t ∈ R, we also use the notation
gct
ε = gc1t

1,ε . . . g
cs t
s,ε . By assumption AIII the maps gt

i,ε , gt ′
j,ε

mutually commute, for all i , j ∈ {1, . . . , s}, and t , t ′ ∈ R. Also,
B(Z , Y ) denotes the bounded linear operators from a Banach
space Z to Banach space Y . The operator norm in B(Z , Y ) is
denoted by ‖.‖0 (the spaces Z , Y will be clear from the context
in each case). The ball of radius r around the point x is denoted
by Br (x), and Br if x is the origin (the spaces and norms will
be clear from the context in each case).

The plan is to use the maps gct
ε to construct a version of the

Poincare map from a neighborhood of (each) m in Σm to Σm .
The (family of) invariant tori we seek for ε 6= 0 are identified
with (a family) of fixed points of this map. The first step will
be to define a suitable coordinate system in a neighborhood
of m. This is done in Lemmas 4.1 and 4.2. Lemma 4.3 states
the salient properties of the coordinate system and Lemma 4.4
completes the Poincare map construction. The existence of
fixed points is shown in Lemma 4.5. Lemmas 4.6 and 4.7
show that the fixed points of the Poincare are the invariant tori
we seek. Lemmas 4.1, 4.2 and 4.5 use the implicit function
theorem, in Lemma 4.9. Also, Remarks 4.0.1, 4.1.1 and 4.4.1
describe the geometry of the Poincare map in the particular case
of Proposition 2.1 and are used in the proof of Proposition 2.3.

We first define a system of coordinates around the set Λ.
Note that for any m ∈ Λ there exists a Cr Hilbert submanifold
Σm of M that has codimension s and is transverse to Λ
at m. Moreover, by assumption AII on the existence of a
Cr tubular neighborhood around Λ, we can choose a family
{Σm}m∈Λ of such submanifolds that constitutes a Cr foliation
of a neighborhood U of Λ.

Letting m ∈ Λ we can assume that a neighborhood of Σm
in M has been identified with a neighborhood of the origin
of TmΣm ' E by a Cr chart (that we do not make explicit).
Also, let h0

m = H0
|Σm . Then, in a neighborhood of m in Σm

we can use coordinates (y0, z0), where y0
∈ Y 0, the nullspace

of Dh0
m , and z0

∈ Z0, the orthogonal complement of Y 0 in
TmΣm . Note that Y 0 splits in TmΣm , and that m has coordinates
(0, 0). Also, in a neighborhood of m ∈ Λ we can use Cr

coordinates (y0, z0, w) ∈ Y 0
× Z0

× W , W ' Rs , where
W is the orthogonal complement of Σm in TmΣm . Points with
coordinates (y0, z0, 0) belong to Σm . The dependence of the
coordinates of a given point on m is not made explicit in this
notation.

Remark 4.0.1. In Proposition 2.1 the Σm can be chosen as
follows: let M = X × S1

× R, let m = (A0, φ0, 0) ∈ Λ,
A0 = eiθ0A for some θ0 ∈ R, and let PA0 be a hyperplane in
X that is normal to the breather orbit. We let Σm be the set of
points ($(A0), φ0, J ) with $(A0) points of PA0 that satisfy
‖$(A0)− m‖ < ‖A‖, and J ∈ R. The transverse direction to
Σm are along the angle φ (i.e. second) component, and along
the breather orbit.

Consider H ε
= H0

+ ε H̃ , where H ε
= [H ε

1 , . . . , H ε
s ]

(similarly for H0, H̃ ), and let h̃m = H̃ |Σm . By AI,
D2h0

m(y
0, z0), D2h̃m(y0, z0) are elements of B(Z0,Rs),

i.e. s × s matrices, for any (y0, z0) ∈ Σm . By the
independence of the components of H0, and the definition of
Σm , D2h0

m(y
0, z0) is invertible, for any (y0, z0) ∈ Σm . Then by

the continuity of D2h0
m(y

0, z0) in m ∈ Λ, there exist M1, K1
satisfying

sup
m∈Λ

‖[D2h0
m(0, 0)]−1

‖0 < M1 <
1
2

K1. (4.1)

Also, by the regularity assumption AI, there exists K2 satisfying

sup
m∈Λ

(
sup

(y0,z0)∈Σm

‖D2h̃m(y
0, z0)‖0

)
< K2. (4.2)

Lemma 4.1. There exist an ε1 > 0 and nonempty Σ 1
m ⊂ Σm

such that for |ε| < ε1, and (y0, z0) ∈ Σ 1
m , the map (y0, z0) 7→

(y0, βε) defined by βε = hεm(y
0, z0) is a Cr diffeomorphism in

Σ 1
m , i.e. defines a new Cr coordinate system in Σ 1

m .

Proof. Define φεm : Σm → Y 0
× Rs by φεm(y

0, z0) =

(y0, β(y0, z0)). The map φεm is Cr in Σm and we need a subset
of Σm where the derivative of φεm is an isomorphism. We have

Dφεm =

(
I 0

D1hεm D2hεm .

)
For Dφεm to be an isomorphism it is sufficient that the s × s
matrix D2hεm is invertible. We have

D2hεm = D2h0
m + εD2h̃m . (4.3)
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Let

D2h0
m = M + N , with M = D2h0

m(0, 0),

N = D2h0
m(y

0, z0)− D2hεm(0, 0).
(4.4)

By (4.1), M is invertible. By the continuity of D2h0
m we can

choose Σ 1
m so that

‖M−1 N‖0 <
1
2
, ∀(y0, z0) ∈ Σ 1

m .

Therefore D2h0
m is invertible in Σ 1

m and

‖[D2h0
m(y

0, z0)]−1
‖0 < K1, ∀(y0, z0) ∈ Σ 1

m . (4.5)

Using (4.1), and ε1 < (K1 K2)
−1, we have that if |ε| < ε1 then

|ε|‖[D2h0
m]

−1 D2h̃m‖0 < 1, ∀(y0, z0) ∈ Σ 1
m, (4.6)

i.e. by (4.3) D2hεm is invertible. �

Remark 4.1.1. Following Remark 4.0.1 on the geometry of
Proposition 2.1, we also see that Y 0

= Σ̃m ∩ ker(∇E P(A0)),
where Σ̃m = Σm − m. Using the fact that ∇X H0

1 (m) =

λ∇X H0
2 (m) we also have that Z0 is the real span of ∇E P(A0),

and [0, 0, 1]. Thus Z0 is the orthogonal complement of Y 0 in
Σ̃m . Also, if x = (u, φ, J ) ∈ Σm , then we can let y0(u, φ, J )
be the orthogonal projection of x − m to Y 0, and β0

j (u, φ, J ) =

H0
j (x)− H0

j (m), j = 1, 2.

To define coordinates β0, y0 on Σm , let Σ̃m = Σm − m.
Also let Y 0

= Σ̃m ∩ ker∇E P(A) and let Z0 be the real span
of ∇E P(A), and [0, 0, 1]. Note that by ∇ H0

1 = λ∇ H0
2 the

definitions of Y 0, Z0 coincide with the homonymous subspaces
in the proof of Theorem 2.2 (with a slight abuse of notation)
and that Z0 is the orthogonal complement of Y 0 in Σ̃m . Let
x = (u, φ, J ) ∈ Σm . Then we let y0(u, φ, J ) be the orthogonal
projection of x − m to Y 0. Also let β0

j (u, φ, J ) = H0
j (x) −

H0
j (m), j = 1, 2.

Let gτε (y
0, z0) = gτε (y

0, z0, 0), |ε| < ε1, (y0, z0) ∈ Σ 1
m . Let

[gτε (y
0, z0)]W denote the W -component of gτε (y

0, z0, 0). Also,
consider a point (y0, z0, w) in a neighborhood of Σ 1

m × {0} in
M , and the equation

[gτε (y
0, z0)]W = w (4.7)

for τ ∈ Rs , i.e. (y0, z0, w) is a parameter. We want to find
a neighborhood of Σ 1

m × {0} in M where (4.7) has a unique
solution τ = τ ε(y0, z0). In such a neighborhood we can use
the coordinates (y0, βε, τ ε).

To see that this is possible, let {ŵ1, . . . , ŵs} be a basis for
W . In a neighborhood of m ∈ Λ define the s × s matrices A, B
by

Ai j = 〈ŵi , X0
j 〉, Bi j = 〈ŵi , X̃0

j 〉, i, j ∈ {1, . . .}. (4.8)

The vector fields X0
j , j = {1, . . . , s}, at any m ∈ Λ are along Λ

and independent by assumptions AII, AIII. Therefore A at any
m ∈ Λ is invertible. By the continuity of A in m we can then
choose M2, K3 > 0 satisfying

sup
m∈Λ

‖A(m)‖0 < M2, M2 <
1
2

K3. (4.9)

Similarly, there exists K4 > 0 such that

sup
m∈Λ

(
sup

(y0,z0)∈Σ 1
m

‖B(y0, z0, 0)‖0

)
< K4. (4.10)

Consider the function G(w, τ) = [gτε (y
0, z0)]W − w,

i.e. compare with (4.7), in a subset of the origin in Rs
× Rs .

Note that G(0, 0) = 0. Also, in the case where D2G(0, 0) is
invertible, define the constant µ2 by

µ2 = ‖[D2G(0, 0)]−1
‖0 (4.11)

and consider an r2 > 0 satisfying

‖D2G(w, τ)− D2G(0, 0)‖0 <
1

2µ2
,

∀(w, τ) ∈ B r2
2µ2

× Br2 . (4.12)

By the definition of gτε , D2G is continuous near (0, 0) and such
an r2 > 0 always exists (i.e. we have assumed that µ2 is finite).

Lemma 4.2. There exist ε2 > 0, r2 > 0, and nonempty
Σ 2

m ⊂ Σ 1
m such that for |ε| < ε2, (y0, z0) ∈ Σ 2

m , ‖w‖ < r2
Eq. (4.7) has a unique solution τ ε(y0, z0, w). Moreover, the
function χ εm : Σ 2

m × Br2 → Y 0
× Rs

× Rs defined by
χ εm(y

0, z0, w) = (y0, βε, τ ε) with βε = hεm(y
0, z0), τ ε the

solution of (4.7), is injective and continuous in Σ 2
m ×Br2 . Also,

there exists r̃2 > 0, r̃2 ≤ r2 for which χ εm , restricted to Σ 2
m ×Br̃2

is a Cr diffeomorphism.

Proof. Let m ∈ Λ, (y0, z0) ∈ Σ 1
m . Given w, we seek τ = τ(w)

for which G(w, τ) = 0. We have G(0, 0) = 0 and we want
to apply the implicit function theorem. The partial derivative of
F with respect to τ at (w, τ) = (0, 0) is an s × s matrix with
entries

[D2G(0, 0)]i, j = 〈ŵi , ∂τ j g
τ
ε (y

0, z0)|τ=0〉 = (4.13)

= 〈ŵi , X ε j (y0, z0, 0)〉 = A(y0, z0, 0)+ εB(y0, z0, 0). (4.14)

By the assumption on A(m), we can choose Σ 2
m so that

A(y0, z0, 0) is invertible, ∀(y0, z0) ∈ Σ 2
m . Moreover,

(4.10), |ε| < ε2 imply that D2G(0, 0) is invertible with
‖[D2G(0, 0)]−1

‖0 bounded by some µ2, µ2 < 2. Also,
G(w, 0) = −w and we can choose r2 so that ‖w‖ < r2 implies
that (4.7) has a unique solution τ ε = τ ε(w) that is defined
for all w ∈ Br2 ⊂ W and is Cr in a nontrivial subset of Br2 .
Combining with Lemma 4.1 on coordinates (y0, βε), the lemma
follows. �

Let m ∈ Λ, |ε| < ε2, and (y0, z0) ∈ Σ 2
m . Define the map

φεm : Σ 2
m → Y 0

×Rs by φεm(y
0, z0) = (y0, βε). Also define the

map f εm : (φ0
m)

−1(Σ 2
m) → φεm(Σ

2
m) by f εm = (φ0

m)
−1

◦ φεm . By
the lemma f εm is a Cr diffeomorphism between the coordinates
(y0, β0), and (y0, βε). Let I2 be the set of w ∈ Rs satisfying
‖w‖ < r2. We have the following.
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Lemma 4.3. Let m ∈ Λ. There exists ε3 > 0 (and ε3 ≤ ε2)
such that if |ε| < ε3 then there exists Um ⊂ Σ 2

m × I2 with
the property that any solution of cX ε with initial condition
v(0) ∈ Um satisfies v(1) ∈ Σ 2

m × I2.

The lemma follows from the continuity of the flows gc
ε and

X ε = X0
+ ε X̃ .

Let Φε = gc
ε . Note that the dependence of Φε on the

homotopy class α and c is not made explicit in this notation.
By Lemma 4.2, for any (y0, β0, w) ∈ Σ 2

m × I2 we
can use coordinates yε , βε , τ ε defined by τ ε(y0, β0, w),
βε(y0, β0, w) = hεm(y

0, β0), i.e. as in Lemma 4.2, and
yε(y0, β0, w) = y0. Consider the image Φε(y0, β0, w) of
points of Um under Φε . Using coordinates yε , βε , τ ε we define

ŷε = yε(Φε(yε, βε, τ ε)), β̂ε = βε(Φε(yε, βε, τ ε)),
τ̂ ε = τ ε(Φε(yε, βε, τ ε)).

(4.15)

By Lemma 4.3, ŷε , β̂ε , τ̂ ε are well defined in Um .

Lemma 4.4. Fix m ∈ Λ and let (β̂ε, τ̂ ε, ŷε) be as above. Then
for any (βε, τ ε, yε) ∈ Um we have (i) β̂ε = βε , (ii) τ̂ ε =

τ ε + τ ε0 , where τ ε0 depends on βε , yε , (iii) ŷε is independent of
τ ε .

Proof. Property (i) follows immediately from the fact that the
H ε

j are invariant under the maps gt
j,ε , and that the gt

j,ε mutually
Poisson commute. Property (iii) also follows from the definition
of the coordinate τ ε : for any µ ∈ Rs ,

Φε((βε, τ ε + µ, yε)m) = Φεgµε ((β
ε, τ ε, yε)m)

= gµε Φε((βε, τ ε, yε)m)

= gµε ((β̂
ε, τ̂ ε, ŷε)m)

= (β̂ε, τ̂ ε + µ, ŷε)m, (4.16)

i.e. the third component does not depend on τ ε . From (4.16) we
also see that

τ̂ ε(βε, τ ε + µ, yε) = τ̂ ε(βε, τ ε, yε)+ µ (4.17)

and therefore

τ̂ ε(βε, τ ε, yε) = τ̂ ε(βε, 0, yε)+ τ ε . (4.18)

Setting τ ε0 = τ̂ ε(βε, 0, yε) we obtain (ii). �

Remark 4.4.1. In the case of Proposition 2.1 we note that the
time-1 maps of c1 X ε1, and c2 X ε2 map X×{φ0}×R ⊂ M to itself,
∀φ0 ∈ S1, ε ∈ R, i.e. these sets are invariant under the maps
gc
ε , for any choice of homotopy class α = [n1, n2] ∈ π1(Λ).

(gc1
1,ε advances the second component by n22π = 0mod(2π),

while gc2
2,ε does not change it.) Since φ0 does not change under

the maps gc
ε , we only need to use the time-τ ε2 map of the flow

of X2 to move points Φε(x), x ∈ Σ 3
m , back to Σ 3

m .

By Lemma 4.4 the component ŷε of Φε depends on βε , yε

and we write ŷε = ŷε(βε, yε). We now use the condition on
the spectrum of the derivative of Φ0.

Let m ∈ Λ, |ε| < ε3. Let Σ 3
m , I3 be nonempty subsets of

Σ 2
m , I2 respectively, with the property that Σ 3

m × I3 ⊂ Um . Let
Vm = χ0
m(Σ

3
m × {0}). For (y0, β0) ∈ Vm , define the functions

β, and ŷ by

β(ε, y0, β0) = βε(y0, β0), (4.19)

ŷ(ε, y0, β0) = ŷε(y0, β(ε, y0, β0)) = ŷε(βε(y0, β0)). (4.20)

Also, let

F(ε, y0, β0) = ŷε(y0, βε)− y0
= ŷ(ε, y0, β(ε, y0, β0))− y0,

i.e. F is defined for (y0, β0) ∈ Vm , |ε| < ε3. We may assume
without loss of generality that β0(m) = 0, ∀m ∈ Λ, i.e. by
adding appropriate constants to the H0

j , j = 1, . . . , s. Viewing

F as a function of the two variables x = (ε, β0), y = y0, we
then have F(0, 0) = 0. The function F is Cr in its domain by
the Cr regularity of the flows Φε . Also, by Lemma 4.1 and the
construction of the coordinates (y0, β0), F is Cr in m ∈ Λ.

Let ‖(x, y)‖0 = (|ε|2 + ‖(y0, β0)‖2)
1
2 . In the case where

[D2 F(0, 0)]−1
∈ B(Y 0), let

µ3 = ‖[D2 F(0, 0)]−1
‖0. (4.21)

Lemma 4.5. Let m ∈ Λ, χ εm , Φε as above, and |ε| < ε3. There
exists ε0 > 0 (ε0 ≤ ε3), and for each ε with |ε| < ε0 a βε∗ so
that if |ε| < ε0, βε ∈ Bβε∗ then the equation ŷε(y0, βε) = y0

has a unique solution y0
= ρεm(β

ε). The map ρεm : Bβε∗ → Y 0

is Cr in a nontrivial subset of its domain. Also, the maps ρεm
depend on m in a Cr way, ∀ε ∈ (−ε0, ε0), βε ∈ Bβε∗ .

Proof. We want to solve F(x, y) = 0, i.e. find y(x) for x near
the origin. We have F(0, 0) = 0. Also,

D2 F =
∂ ŷε

∂β

∂β

∂y0 +
∂ ŷ

∂y0 − I. (4.22)

From β(0, y0, β0) = β0 and the continuity of ∂β

∂y0 at the origin
we have that

∂β

∂y0 (0, 0, 0) = 0. (4.23)

Also, at the origin,

∂ ŷ

∂y0 =
∂ ŷ0

∂y0 (0, 0). (4.24)

Therefore

D2 F(0, 0) =
∂ ŷ0

∂y0 (0, 0)− I. (4.25)

Using the coordinates (yε, βε, τ ε) for ε = 0, the derivative of
Φ0 is

DΦ0 =

 ∂y0 ŷ ∂β0 ŷ ∂τ 0 ŷ
∂y0 β̂

0 ∂β0 β̂
0 ∂τ 0 β̂

0

∂y0 τ̂
0 ∂β0 τ̂

0 ∂τ 0 τ̂
0

 . (4.26)

By Lemma 4.4, at β0
= 0, y0

= 0, τ0 = 0 we have

DΦ0(0, 0, 0) =

 ∂y0 ŷ(0, 0) ∂β0 ŷ(0, 0) 0
0 Is 0

∂y0 τ̂
0(0, 0) ∂β0 τ̂

0(0, 0) Is

 , (4.27)
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where Is is the s × s identity matrix. The block 1, 1 is the
operator ∂ ŷ

∂y0 (0, 0) of (4.26). By the block triangular structure
of DΦ0(0, 0), i.e. swap the first and second components, the
spectrum of DΦ0(0, 0) is the union of the spectra of ∂ ŷ

∂y0 (0, 0)
and Is . Therefore σ(DΦ0(0, 0)) contains at least 2s unit
eigenvalues, moreover by the assumption on σ(DΦ0(0, 0)), the

spectrum of ∂ ŷ0

∂y0 (0, 0) belongs to the complement of a disk

around 1. The operator ∂F
∂y0 (0, 0) of (4.26) has thus a bounded

inverse in Y and there exists some µ3 > 0 that satisfies
(4.21). By the Cr regularity of the flows Φε we can apply the
implicit function theorem, i.e. there exists an r1 > 0 such
that for (ε, β0) ∈ Br1 we have a unique map (ε, β0) 7→

ρm(ε, β
0) ∈ Y 0, with F(ε, β0, ρm(ε, β

0)) = 0. The map is
Cr in a nontrivial subset of Br1 . Note that there exist ε > 0,
β0

∗ such that (−ε0, ε0) × (−β0
∗ , β

0
∗)

s
⊂ Br1 , moreover, given

any ε with |ε| < ε0, there exists a βε∗ > 0 such that the set
V ε

m = (−βε∗, β
ε
∗)×{0} ⊂ φεm(Σ

3
m) ⊂ Z0

× Y 0 is mapped to V 0
m

by ( f εm)
−1. We then define ρεm : V ε

m → Y 0 by

ρεm(β
ε) = ρ(ε, ( f εm)

−1(βε, 0)), (4.28)

i.e. ρεm(β
ε) = ρ(ε, β0) with β0

= ( f εm)
−1(βε, 0). By the

definition of the map ρm , and letting β0
= ( f εm)

−1(βε, 0), we
have

ŷε(βε, ρεm(β
ε))− ρεm(β

ε)

= ŷ(ε, β(ε, β0, ρm(ε, β
0)), ρm(ε, β

0))− ρm(ε, β
0)

= F(ε, β0, ρm(ε, β
0)) = 0, (4.29)

as required. Also, for |ε| < ε0, the maps ρεm are Cr in βε , for
all βε in some nontrivial subset of V ε

m . The Cr smoothness of
the ρεm in m follows from the Cr regularity of ρm on m, and
the Cr regularity of the map from the variables (y0, βε) to the
variables (y0, β0). �

Now, let m ∈ Λ and define the map σ εβε : Λ → ∪m∈Λ U ε
m by

χ εm(σ
ε
βε (m)) = (βε, 0, ρβ

ε

m ). (4.30)

Also, let

Λε,βε = ∪m∈Λ(β
ε, 0, ρεm(β

ε))m = σ εβε (Λ). (4.31)

We will see that the set Λε,βε is invariant under the flow of
the X εj , and is diffeomorphic to the torus Λ, i.e. Λε,βε is the
invariant torus we seek. To do this, first let

Mε,βε

m = {p ∈ V ε
m : χ εm(p) = (βε, τ ε, ρεm)}. (4.32)

We have the following.

Lemma 4.6. Let |ε| ≤ ε0, βε ∈ (−βε∗, β
ε
∗). Then Mε,βε

m ⊂

Λε,βε , ∀m ∈ Λ.

Proof. Consider m ∈ Λ, and p ∈ Mε,βε

m . Then

p = (χ εm)
−1((βε, τ ε, yε)), with yε = ρεm(β

ε). (4.33)

If τ ε = 0 then p ∈ Λε,βε , i.e. what we need to show. Suppose
that τ ε 6= 0. There exists some m1 ∈ Λ such that p =
(χ εm′)
−1((βε1 , 0, yε1)) and we want to show that yε1 = ρεm1

(βε1 ).
Note that βε1 = βε . Let

p̂ = Φε(p) = (χ εm)
−1((β̂ε, τ̂ ε, ŷε))

= (χ εm1
)−1((β̂ε, τ̂ ε1 , ŷε1)). (4.34)

We have that

g−(τ̂ ε−τ ε)
ε ( p̂) = p = (χ εm1

)−1((βε, 0, yε1)). (4.35)

Also,

g−(τ̂ ε−τ ε)
ε ( p̂) = (χ εm1

)−1((βε, τ̂ ε1 − (τ̂ ε − τ ε), ŷε1)) (4.36)

since gτε does not change the third component. Comparing the
third components in (4.35) and (4.36) we obtain that ŷε1 = yε1 .
By Lemma 4.3 we therefore have that yε1 = ρεm1

(βε). �

Lemma 4.7. The set Λε,βε is invariant under gτε , ∀τ ∈ Rs and
therefore invariant under the flow of the X εj , j = 1, . . ., s.
Moreover, Λε,βε is Cr diffeomorphic to Λ.

Proof. Let p ∈ Λε,βε . Then there exists some m ∈ Λ such

that p ∈ Mε,βε

m . By the invariance of Mε,βε

m under gτε , ∀τ

(sufficiently near the origin), and Lemma 4.4 we have

gτε (p) ∈ Mε,βε

m ⊂ Λε,βε .

Therefore Λε,βε is invariant under gτε locally and hence globally
in τ .

Furthermore, by (4.33) the function σ β
ε

ε maps Λ onto Λε,βε
and is also injective, for m1 6= m2 implies that Σm1 ∩ Σm2 is
empty. Also, let p ∈ Λε,βε . Then

p = (χ εm)
−1((βε, 0, ρεm(β

ε))), m ∈ Λ.

Since (χ εm)
−1 and ρεm are Cr on m by Lemmas 4.1 and 4.3

respectively, the map defined by the right-hand side is Cr on m.
But this map is σ β

ε

ε , i.e. it is a Cr diffeomorphism of Λ onto its
image.

Lemma 4.8. The motion on each torus Λε,βε above is
conditionally periodic.

To prove the lemma we show that for each torus we can
construct “angular coordinates” φ in which the flow on the torus
is φ̇ = ω. The frequency vector ω ∈ Rn depends on Λε,βε (the
construction is in [2], Ch. 10).

We now combine Lemmas 4.1–4.8, and Remarks 4.0.1, 4.1.1
and 4.4.1 to show Proposition 2.3.

Proof of Proposition 2.3. Consider ε, β as in the hypothesis.
Let (Aε,β(φ0), φ0, Jε,β) ∈ Λε,β be the unique fixed point of Φε
that satisfies (Aε,β(φ0)) = (A0, φ0, 0) = m ∈ Λ. Therefore
(Aε,β(φ0), φ0) ∈ X × {φ0} is a fixed point of P1,2Φε , with P1,2
the projection to the first two components.

Consider the case where Φε = gc
ε , with c = c(α), and α =

[n1, 1] for some n1 ∈ Z. Since the vector field X ε1 is equivariant
under the flow of X ε2, the points (eiθAε,β(φ0), φ0), θ ∈ S1,
are also invariant under Φε . Moreover eiθA0,0(φ0) = eiθA0 by
the uniqueness of the continuation. Thus Λε,β ∩ X × {φ0} =
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{eiθAε,β(φ0) : θ ∈ R}. Observe that this set is a circle lying on
a plane through the origin in X , and that the center of the circle
is also at the origin. Also, since Λε,β ∩ X × {φ0} is invariant
under P1,2gc

ε , P1,2gc2
2,ε , it is also invariant under P1,2gc1

1,ε , the
time-T map of the flow of (2.4). The above arguments are
valid for any φ0 ∈ S1. The proposition then follows by setting
S1(ε, β, φ0) = {eiθAε,β(φ0) : θ ∈ R}. �

Note that the proof of Theorem 2.2 implies the existence of
a unique family of invariant tori Λε,β for any α ∈ π1(Λ) for
which we can check the nonresonance condition on the Floquet
map. The s-tori Λε,β , and ε0, β0 will in general depend on α
(this was not made explicit in the notation so far). In the case
of Proposition 2.1, the condition λ

Ω 6= Z allows us to verify
the nonresonance condition for any α = [n1, 1], n1 ∈ Z,
since (2.16)–(2.18) are independent of n1. However the tori
Λε,β([n1, 1]), and ε0([n1, 1]), β0([n1, 1]) obtained for different
choices of n1 coincide. This follows from the fact that gc

ε ,
c = c([n1, 1]), is independent of n1 ∈ Z. Also, Λε,β([0, 1])

is invariant under the maps gc
ε , c = c(α), for any α ∈ π1(Λ).

This holds because gc1
1,ε , c1 = c1([n1, n2]), is the n2-th iterate

of gc̃1
1,ε , where c̃1 = c1([n1, 1]), regardless of the fact that the

nonresonance may not be satisfied for some choice of n2. In
such a case gc

ε , with c = c([n1, n2]), may have other families
of invariant tori that are continued from Λ.

It is also clear from the proof of Theorem 2.2 that in the
case where the Floquet map obtained for some α ∈ π1(Λ)
has an eigenvalue of finite multiplicity greater than 2s, one
may be able to replace the implicit function argument of
Lemma 4.5 by a Lyapunov–Schmidt reduction statement and
obtain the existence of perturbed invariant tori by analyzing
a bifurcation equation. This may be an alternative (and more
general) approach for analyzing the continuation of the multi-
peak breathers of the anticontinuous limit.

We also include the implicit function theorem (see e.g. [15],
Ch. 4):

Lemma 4.9. Let X, Y be Banach spaces, (x0, y0) a point in
X × Y, and U a neighborhood of (x0, y0) in X × Y. Consider
a function F : U → Y, that satisfies F(x0, y0) = 0. Assume
that F is continuous in U, that D2 F exists and is continuous in
U, and that [D2 F](x0, y0) ∈ B(Y) has a bounded inverse. Let
M2 > 0 satisfy

‖([D2 F](x0, y0))
−1

‖0 < M2 (4.37)

and consider r1, r2 > 0, Br1(x0)× Br2(y0) ⊂ U, satisfying

sup
(x,y)∈Br1 (x0)×Br2 (y0)

‖D2 F(x, y)− D2 F(x0, y0)‖0 <
1

2M2
,

(4.38)

M2 sup ‖F(x, y0)‖Y <
1
2

r2. (4.39)

x∈Br1 (x0)
Then there exists a unique function g : Br1(x0) → Y satisfying
g(x0) = y0, and F(x, g(x)) = 0, ∀x ∈ Br1(x0). Also
g(Br1(x0)) ⊂ Br2(y0). If in addition, F is Cr in U, r ≥ 1,
then g is Cr for x in some Br̃1(x0), where r̃1 > 0.

5. Discussion

We have seen that several types of breathers of the discrete
NLS can be continued to solutions of the discrete NLS with
weak diffraction management. The continuation argument we
gave applies to single-peak breathers of the anticontinuous
limit and we also show numerical evidence that a similar
continuation should be possible for multi-peak breathers of the
discrete NLS with small residual diffraction. A topic for further
work is to obtain asymptotics of the Floquet spectra for multi-
peak breathers. The continuation problem is also interesting for
other types of breathers and in the present work we considered
breathers whose existence and Floquet spectra seem tractable
by perturbation arguments.

Acknowledgments

The author wishes to thank J. Ize for useful comments, and
especially D. Pelinovsky for many useful discussions.

References

[1] M.R. Ablowitz, Z.H. Musslimani, Discrete diffraction managed solitons,
Phys. Rev. Lett. 87 (2001) 254102.

[2] V.I. Arnold, Mathematical Methods in Classical Mechanics, 2nd ed.,
Springer, New York, 1989.

[3] D. Bambusi, G. Gaeta, On persistence of invariant tori and a theorem by
Nekhoroshev, Math. Phys. Electron. J. 8 (2002).

[4] D. Bambusi, D. Vella, Quasi periodic breathers in Hamiltonian lattices
with symmetries, Discrete Contin. Dyn. Syst. Ser. B 2 (2002) 389–399.

[5] H.S. Eisenberg, Y. Silberberg, R. Morandotti, J.S. Aitchison, Diffraction
management, Phys. Rev. Lett. 85 (2000) 1863.

[6] G. Gaeta, The Poincare–Nekhoroshev map, J. Nonlinear Math. Phys. 10
(2003) 51–64.

[7] J.T. Moeser, Diffraction managed solitons: Asymptotic validity and
excitation thresholds, Nonlinearity 18 (2005) 2275–2297.

[8] R.S. MacKay, S. Aubry, Proof of existence of breathers for time-
reversible or Hamiltonian networks of weakly coupled oscillators,
Nonlinearity 7 (1994) 1623–1643.
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