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Abstract

We propose and study a type of non-Hamiltonian, power-preserving perturbation of Hamil-
tonian systems of nonlinear coupled oscillators with a global phase invariance symmetry. Our
results highlight the role of non-conservative perturbations in selecting a preferred dynamically
attracting mode which can be chosen to be highly coherent. The proof of principle described
above should be of interest for optical systems such as fiber laser arrays whose objective is to
produce high power coherent light

1 Introduction

Nonlinear dynamics described by Hamiltonian systems appear in many disciplines in science and
engineering. In the field of nonlinear optics and photonics, many experiments on light propagating
in waveguides are modeled effectively by Hamiltonian systems. Examples include the propagation
of pulses in optical fibers and light localization in coupled waveguide arrays. Of equal relevance
to nonlinear optics are non-conservative systems, the most important being the laser. Here the
dynamical balance of linear and nonlinear conservative and non-conservative properties lead to
attractors representing the lasing state. Finally in some instances, including those mentioned
above, one can improve existing models to account for small effects such as losses, higher order
nonlinearities or dispersion. Here, much has been learned from the theory of perturbed Hamiltonian
systems.

The last few years have witnessed intensive research activity in the area of fiber laser arrays
[1]. The advance in the technology and fabrication of optical fibers, driven by the application in
communications, has led, as a by-product, to a new class of lasers where outputs of several ideally
identical fiber amplifiers are coupled to produce high power coherent beams. It is precisely achieving
high coherence that is the most challenging part in designing fiber lasers. Beam combining can be
done passively or actively, with the earlier one being simpler to implement. Most passive beam
combining schemes are based on linear optical elements and the principle behind the design is one
of mode selectivity [2, 3, 4, 5], so that the lasing super-mode is one of N -coherently combined fields.
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So far in all instances, the literature shows that coherence eventually decreases and is even lost
as the number of elements increases [6]. To be precise in characterizing coherence, we introduce
the efficiency function E = |∑N

k=1
un|/

∑N
k=1

|un| commonly used in fiber laser arrays. Here un

are the complex fields that account for the lasing mode. One can see that maximum coherence,
corresponding to all fields being in phase, is attained when this function is equal to one.

There has been little effort in considering nonlinear beam combining schemes [7], the main
reason being the required high powers on the individual fields. While this indeed constitutes an
engineering challenge, we should be reminded of how robust the phenomenon of synchronization
in coupled nonlinear oscillators is. Generically, one has that individual out of phase oscillators
can lock into an in phase state once a critical power threshold (or nonlinear coupling strength) is
achieved [8]. In the context of fiber lasers, we believe it is important to find a similar behavior.
It is also true that beam combining models neglect losses; again intuitively one expects losses to
be a solely negative factor towards high power output. On the other hand if one can demonstrate
enhanced coherence at minimal cost of energy, this trade-off may prove to be of benefit [9]. Here, in
general terms, while nonlinearity can produce a robust nonlinear coherent mode, losses and gains
can make it a dynamical attractor.

The proposed model is based on the idea of using non-Hamiltonian, power-preserving perturba-
tions of Hamiltonian coupled oscillator systems to drive the perturbed system towards a breather.
The only assumption is that the Hamiltonian is invariant under global phase change. In the present
work breathers are solutions of the form un = e−iωtAn, with ω real, An independent of t (in op-
tics the “time” t represents distance along the optical axis). Breathers are known to exist for a
large variety of Hamiltonian systems of interest, and have been studied extensively for discrete
NLS equations (in finite and infinite lattices), see e.g. Refs. [13], [12], [14], [18]. Stable breathers,
can be obtained by looking for local extrema of the energy over configurations with fixed power.
Furthermore, there exist stable, energy-extremizing breathers with E = 1. In Hamiltonian models,
stability means that the trajectories remain in the vicinity of the breather. To define a perturbation
that makes such a breather into an attractor we first write the Hamiltonian system using a system
of coordinates in which the stable breathers become stable fixed points of a suitable equivalent
reduced Hamiltonian system, see e.g. Ref. [10], ch. 4.3, for a general theory of reduction. We then
add a term that preserves the stable equilibrium of the reduced Hamiltonian system and turns it
into a sink of the perturbed reduced system. Such a perturbed system cannot be Hamiltonian but
preserves the power automatically.

We remark that breathers have been studied extensively, especially in connection to localization
in nonlinear lattices, and they are often also referred to as localized modes, discrete solitons, etc..
Localization does not enter explicitly in the definition of breathers used here, and we can also have
breathers in linear or weakly nonlinear systems, see e.g. [16] on the continuation of breathers as we
vary a nonlinearity parameter. Using this rather general (or more mathematical) notion of breather
we see that we can stabilize E = 1 breathers with different spatial characteristics, depending on
the system and the non-Hamiltonian perturbation we use. We show examples of stabilization
of spatially localized breathers in systems with both strong and weak nonlinearity, and we also
stabilize spatially “delocalized” breathers, e.g. ones for which all sites have the same amplitude.
While the theory behind stabilization is local, we show many examples of breathers that attract
trajectories that start far from the vicinity of the breather. We also see trajectories that start far
from an attracting breather and converge to a more complicated attractor.
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In Section 2 we describe the reduced phase space (see [16], [17]), and discuss perturbations that
stabilize breathers. We propose perturbations expected to stabilize energy-extremizing coherent
breathers with real, sign-definite amplitudes in all models having such breathers. Essentially, these
terms “push” the trajectories towards local maxima or minima of the energy of the unperturbed
reduced Hamiltonian system and can either decrease or increase the energy of the system, e.g. they
dissipate (add) energy if we start in the vicinity of a local minimum (maximum) of the energy. In
Section 3 we test these ideas numerically on one-dimensional discrete NLS equations with cubic
and saturable nonlinearities. We also use different linear couplings and boundary conditions. In
addition to verifying the stabilization effect for initial conditions in the vicinity of many coherent
breathers, we also see cases where the breather attracts trajectories that start far from it. (The
change in energy can be large in such cases.) Such phenomena were seen for weakly nonlinear
lattices with Dirichlet boundary conditions, and also for periodic boundary conditions with both
small and large nonlinearity. The attracting coherent breather can be also localized; attraction
seems more robust in weakly nonlinear lattices with a localized potential term.

2 Reduction and attracting breathers in perturbed Hamiltonian

systems

We consider a Hamiltonian system in CN of the form

u̇n = −i
∂H

∂u∗
n

, n ∈ {1, . . . , N} (2.1)

and assume that the Hamiltonian H is invariant under the global phase change un 7→ eiφun,
n = 1, . . . , N , where φ is independent of n, so that [H,P ] = 0, with P =

∑N
n=1

|un|2 the power, and
[·, ·] the Poisson bracket defined by (2.1). Define polar coordinates Jn, and φn, by un =

√
Jneiφn .

Also define the coordinates In, and θn by

θn = φn+1 − φn, n = 1, . . . , N − 1, θN =

N
∑

n=1

φn (2.2)

J1 = I1 + IN , Jn = In − In−1 + IN , n = 2, . . . , N − 1, JN = IN − IN−1. (2.3)

In vector notation we write (2.2) as θ = Mφ. Then (2.3) implies I = (M−1)T J . The matrix M−1

is given in (2.22) below. Equation (2.1) is then

İn =
∂H

∂θn

, θ̇n = −∂H

∂In

, n ∈ {1, . . . , N}. (2.4)

The Poisson bracket of H and P =
∑N

k=1
Jk vanishes, therefore

[H,P ] = 2

N
∑

k=1

∂H

∂φk

∂P

∂Jk

= 2

N
∑

k=1

∂H

∂φk

= 0. (2.5)

Also, the definition of the θj in (2.2) implies ∂θN
φk = N−1, so that (2.5) yields

∂H

∂θN

=
N

∑

k=1

∂H

∂φk

∂φk

∂θN

=
1

N

N
∑

k=1

∂H

∂φk

= 0. (2.6)
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The Hamiltonian H is therefore independent of θN , and (2.4) becomes

İn =
∂H

∂θn

, θ̇n = −∂H

∂In

, n ∈ {1, . . . , N − 1}, İN = 0, θ̇N = − ∂H

∂IN

. (2.7)

Since İ = 0, we can set IN = c, and solve the first 2(N − 1) equations with H = hc, where hc is H
with the variable IN set to the constant value c. We also have IN = N−1P so that c is interpreted
as the power per site. The first 2(N − 1) equations of (2.7) are referred to as the reduced system.
Once they are solved, the RHS of the equation for θ̇N depends on the In(t), θn(t), n = 1, . . . , N −1,
and the constant c, and can be integrated to find θN (t). Thus the reduced system determines the
nontrivial part of the evolution completely. Finally we may write (2.7) as

İn =
∂hc

∂θn

, θ̇n = −∂hc

∂In

, n ∈ {1, . . . , N − 1}, İN = 0, θ̇N = − ∂H

∂IN

. (2.8)

The above system is well defined for Ik satisfying Jn > 0, n = 1, . . . , N , in (2.3), and some care is
needed when a trajectory passes from a point with Jn = 0 for some n. This is discussed further
below. More information on the underlying theory is in Remark 2.1 and in Ref. [17].

We can instead consider the modified system

İn =
∂hc

∂θn

+ an, θ̇n = −∂hc

∂In

+ bn, n ∈ {1, . . . , N − 1}, İN = 0, θ̇N = − ∂H

∂IN

, (2.9)

with an, bn functions of In, θn, n = 1, . . . , N − 1. Such a perturbation of (2.8) will clearly preserve
IN and the power P = N−1IN . Here we want to choose an, bn so that certain (selected) fixed
points of the reduced Hamiltonian system become attractors. The fixed points of the reduced
system correspond to solutions of (2.1) that have the form un = e−iωtAn, ω real, An independent
of t, i.e. the breather solutions. We consider the case of static solutions of the reduced system
that are the local extrema of the reduced Hamiltonian hc, equivalently local extrema of H over
all configurations with power P = Nc. Such extrema exist under very general conditions and are
nonlinearly stable solutions of the reduced system, see Remark 2.1.

Perturbations that make such fixed points local attractors should be abundant. For example we
can add to the reduced system a small multiple of the gradient of hc. To see this, consider the
following equivalent model problem. Let z = [I1, . . . , IN−1, θ1, . . . , θN−1] ∈ R2N−2, let J be the
symplectic matrix in R2N−2. Let f be a smooth function defined in a neighborhood U of the origin
in R2N−2 that has the origin as an isolated maximum or minimum. Also assume that f(0) = 0.
Consider now the perturbed system

ż = J∇f + ǫ∇f, (2.10)

with ǫ real. By the assumptions on f we have ∇f(0) = 0 so that the origin is an isolated fixed point
for all ǫ. The first term represents the Hamiltonian part of the system, with f the Hamiltonian.
For ǫ = 0 the origin is a stable fixed point of a Hamiltonian system, and trajectories stay in the
vicinity of the origin for all times. The perturbation has the special form of gradient of f and we
can choose the sign of ǫ so that the gradient term pushes the trajectories towards the origin. If for
example the origin is a maximum of f , then f is negative near the origin and we can choose ǫ > 0.
In fact Λ = −f is positive near the origin and

d

dt
Λ = −(∇f)T ż = −(∇f)T J∇f − ǫ(∇f)T∇f = −ǫ||∇f ||2, (2.11)
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where (∇f)T J∇f vanishes identically. Thus for ǫ > 0 the “distance” function Λ is strictly decreas-
ing for z 6= 0, and the trajectories must approach the origin. If the origin is a minimum we use
ǫ < 0, then Λ = f also decreases.

The specific examples we discuss in the next section follow from a related heuristic argument.
We want the same scenario of an extremum of the Hamiltonian part, but will examine instead
what happens when the model is given by a linear Hamiltonian part plus a linear perturbation.
The notation is as in the first example and we let f = ±1

2
zTHz, where H is a positive definite

2(N − 1) × 2(N − 1) real matrix. Let A be a 2(N − 1) × 2(N − 1) real matrix. We consider the
system

ż = J∇f + ǫAz = JHz + ǫAz, (2.12)

with ǫ real. For A = H we have a linear version of the first example with a maximum (minimum)
of f for + (−), but we here consider a more general perturbation. Then for Λ = ±f (> 0 for z 6= 0)
we have

d

dt
Λ = ǫzTHAz. (2.13)

For ǫ < 0, and HA positive definite we have Λ̇ < 0 as in the first example. We may also try
more general A for which zTHAz > 0 for all z not in some nontrivial subspace V . If V is not an
invariant subspace of (2.12) then Λ should also decrease monotonically in time and the trajectories
will eventually go to the origin. In some cases of such more general A we can also establish linear
stability by examining the eigenvalues of JH+ǫA. Observe also that the same A will work for both
maxima and minima: when we start near a maximum (minimum) the energy increases (decreases).

To indicate the use of this type of dissipation we first consider the 2−site system, which in fact
highlights the basic ideas. We have Jn = |un|2, n = 1, 2, and

θ1 = φ2 − φ1, θ2 = φ1 + φ2, I1 =
1

2
(J1 − J2), I2 =

1

2
(J1 + J2). (2.14)

The Hamiltonian H depends on I1, I2, θ1, and we set I2 = c. Also hc(I1, θ1) = H(I1, θ1, c). For the
cubic discrete NLS (see next section) we have

hc = −δ
√

c2 − I2
1

cos θ1 + I2
1 . (2.15)

The domain of I1 is obtained by requiring Jn > 0, n = 1, 2, which yields |I1| < c. The fixed points
of the reduced system for I1, θ1 are seen from the contour plot of hc in Figure 1. We have chosen
δ < 0, with |δ| < 2c. We see three stable fixed points, two at θ1 = 0, and another one at θ = π.
(For |δ| ≥ 2c the three fixed points on θ1 = 0 coalesce.) We will try to make the stable fixed points
on θ1 = 0 into attractors by considering the perturbed reduced system

İ1 =
∂hc

∂θ1

, θ̇1 = −∂hc

∂I1

− αθ1, α > 0. (2.16)

Intuitively, we are pushing towards θ1 = 0, or along the gradient of −1

2
θ2
1. The choice of the sign

of α follows from previous knowledge that the two fixed points at θ1 = 0 are maxima of hc. In this
problem the fixed points and the eigenvalues of the linearization around them can be calculated
explicitly. The eigenvalues are

λ = −α

2
±

√
∆

2
, ∆ = α2 − 2|δ|

(

4c2 − |δ|2
)

. (2.17)
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For α > 0 sufficiently small, and |δ| ≥ 2c, one has asymptotic stability. We note that in the notation
of (2.12) the perturbation used here corresponds to

A =

[

0 0
0 1

]

(2.18)

so that the analogue of HA is not positive definite (also α = −ǫ). If the fixed point we want to
stabilize is at (I1, θ1) = (K, 0) one could also add to the equation for İ1 the term −α(I1 − K).
The fixed point is again seen to be stable. The advantage of using the perturbation of (2.16) is
that we do not need to know the fixed point in advance. This is also the case with (2.10), but the
perturbation of (2.16) is also independent of the Hamiltonian. Similar considerations apply to the
the saturable NLS (see next section), where the 2-site reduced Hamiltonian hc is

hc = −δ
√

c2 − I2
1

cos θ1 + log[(1 + c)2 − I2
1 ] (2.19)

There is a range of δ > 0 where the phase space of (2.19) looks like Figure 1.

We now generalize to larger lattices by considering the perturbed system

İn =
∂hc

∂θn

, θ̇n = −∂hc

∂In

− αg(θn), n ∈ {1, . . . , N − 1}, İN = 0, θ̇N = −∂H

∂In

. (2.20)

with α > 0, and g an odd function with g′(0) > 0, e.g. g(θ) = θ or sin θ (which is also differentiable
at π). The assumption is that we have solutions with θ1 = . . . = θN−1 = 0 that are also local
extrema of hc, i.e., we have an extremum that is also positive (modulo global phase change) at
all sites. This is something that in many cases is known (e.g. in the cubic DNLS with Dirichlet
boundary conditions [16]), and is also reasonable to expect in many situations. For instance, recall
results on the positivity of the ground state for the Schrödinger equation. These fixed points are
interesting because they correspond to breathers that have maximum efficiency E = 1, where we
define

E =
|∑N

k=1
un|

∑N
k=1

|un|
. (2.21)

Note that E is constant (≤ 1) along any breather. The added terms in (2.10) and (2.20) are
independent of the location of the stable fixed point. The second choice makes an assumption
about the angles of the extremum, but does not depend on the model.

Writing the above added terms in the original variables uk is straightforward. To indicate their
form in the case of (2.20) write the definition of the variable θj in (2.2) in matrix form as θ = Mφ,
with θ = [θ1, . . . , θN ], etc. We have φ = M−1θ, where

(M−1)ij =











1

N
(−N + j), i ≤ j, i ∈ {1, . . . , N}, j ∈ {1, . . . , N − 1},

j
N

, i > j, i ∈ {1, . . . , N}, j ∈ {1, . . . , N − 1},
1

N
, j = N, i ∈ {1, . . . , N}.

(2.22)

By (2.20), (2.2), and (2.3), the perturbed equations in the coordinates Jn, and φn become

J̇n =
∂H

∂φn

, φ̇n = − ∂H

∂Jn

− α(M−1g̃)n, n ∈ {1, . . . , N}, (2.23)
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with

g̃ = [g(θ1), . . . , g(θN )]T = [g(φ2 − φ1), . . . , g(φN − φN−1), g(φ1 + . . . + φN )]T . (2.24)

Then from un =
√

Jneiφn we have

u̇n =
1

2
J
− 1

2

n J̇neiφn +
√

Jneiφn φ̇n, (2.25)

so that

u̇n = −i
∂H

∂u∗
n

− αun(M−1g̃)n, n ∈ {1, . . . , N}, (2.26)

i.e. compare to (2.1). For instance the choice g(θ) = sin θ, and (2.24) lead to

g̃j =

{

|uj+1|−1|uj |−1(uj+1u
∗
j − c.c.), j = 1, . . . , N − 1,

|u1|−1 . . . |uN |−1(u1 . . . uN − c.c.), j = N.
(2.27)

The added term is (2.26) is obtained readily from (2.27), and (2.22).

The evolution of (2.26) conserves the power P but will not in general conserve H.

Also notice that the added term of (2.27) has singularities when one of the uj vanishes. This is
also the case for the choice g(θ) = θ used in (2.16). In both cases the singularity is due to the fact
that φj is not defined when uj = 0, i.e. the change to planar polar coordinates is singular at the
origin for each uj . We can avoid the singularity by multiplying g by a smooth function of the Ij ,
j = 1, . . . , N − 1, that is constant in most of the region Jk > 0, k ∈ {1, , . . . , N}, where we expect
to find the breather, and vanishes at its boundaries. In practice it appears sufficient to set the
added term to zero when the trajectory is inside some small neighborhood U of the singular set.
The added term is then well defined everywhere but discontinuous. By choosing U appropriately
we see that the trajectories remain outside U for all times.

Remark 2.1 The explicit reduced phase space construction above has an abstract counterpart in
the theory of symplectic reduction. Following the general theory, see Ref. [10], ch. 4.3, the reduced
phase space for the systems we are considering is CPN−1, a compact manifold, where smooth
functions have at least a maximum and and a minimum. The θk, and Jk of (2.2), (2.3) define
a system of coordinates on CPN−1 for which Hamilton’s equations preserve their standard form.
Some breathers are near, or at the set where the coordinates we are using are not defined. A system
that seems to avoid these problems is the system of homogeneous coordinates, see e.g. Ref. [15], p.
26.

3 Examples from discrete NLS equations

The above ideas were applied to discrete nonlinear Schrödinger (DNLS) equations in a one-dimensional
N -site lattice. These systems are relevant to several applications such as laser beam combining,
and waveguide arrays. We considered equations (2.26) with Hamiltonians of the form

H = −δ

N
∑

n,m=1

u∗
nLnmum −

N
∑

n=1

Vn|un|2 +

N
∑

n=1

G(|un|), (3.1)
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where L is a symmetric real matrix, Vn is real for all n, and G is a real function.

The first term describes a linear coupling between the sites. Examples include the (nearest-
neighbor) Dirichlet Laplacian, defined by

(Lu)n =











un−1 − 2un + un+1, n = 2, . . . , N − 1,

−2u1 + u2, n = 1,

uN−1 − 2uN , n = N,

(3.2)

and the (nearest-neighbor) periodic Laplacian, defined by

(Lu)n =











un−1 − 2un + un+1, n = 2, . . . , N − 1,

uN − 2u1 + u2, n = 1,

uN−1 − 2uN + u1, n = N.

(3.3)

Examples that couple more neighbors, such as a five-point Laplacian, are described below.

The second term in (3.1) describes a “potential” for the DNLS (we prefer not to absorb this into
the first term).

The third term describes the nonlinearity, and we here restrict our attention to cubic, and
saturable nonlinearities, corresponding to

G(|un|) = |un|4, and G(|un|) = log(1 + |un|2) (3.4)

respectively. In the absence of the nonlinear term, breathers are eigenvectors of the matrix L+ V ,
i.e. the linear normal modes.

The perturbed Hamiltonian system (2.26) with g(θ) = sin θ was integrated numerically. Results
for g(θ) = θ are similar. Implementation of (2.26) for arbitrary N is immediate. We also choose a
threshold τ and set g = 0 if |uk| < τ for some k ∈ 1, . . . , N . We saw that τ can be chosen small
enough so that no trajectories pass through the region where g vanishes. Thus the discontinuity
of g is not seen by the numerical integration, and the singularity of the term g does not seem to
cause any difficulties. The choice of τ depends on the breather one wants to stabilize, e.g. if its
amplitude at some sites is expected to be small τ must be chosen accordingly small.

Generically, we observed that trajectories of (2.26) with H and g as above indeed converge to
breather solutions with E = 1 in a variety of models with cubic and saturable nonlinearities, and
with different linear couplings (e.g. Dirichlet and periodic nearest-neighbor Laplacians, higher
order Laplacians, etc.) and potentials. For initial conditions near the breather, the results are to
be expected by the heuristic analysis of the previous section. In what follows we mainly document
parameter ranges and models where convergence is achieved from initial conditions that are far from
the breathers. These cases are also simpler to study since we do not need to know the breather in
advance. Also, there is no apparent limitation on N although at present we have only considered
up to N = 17 sites. What follows is an outline of some of the most relevant numerical results.

We first test the ideas above for lattices with N = 2, 3. We integrate both the reduced phase
space equations (2.20) and (2.26) and see that the results are the same. For instance, we set N = 3
and consider (2.20) for the cubic DNLS with Dirichlet Laplacian, with δ = −1.2 and α = 0.1.
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We integrate from the initial condition (I1, θ1, I2, θ2) = (−0.78,−0.2, 0.8, 0.15), we find that the
trajectory converges to (−0.881129778, 0, 0.881129778, 0), a breather computed independently. In
further experiments with the same equation with α = 0.1, we start further away from the breather,
but keep θj about the same. For instance, we set δ = −2.4 and integrate from (I1, θ1, I2, θ2) =
(−0.78,−0.2, 0.8, 0.15). The trajectory converges to (−0.602559046, 0, 0.602559046, 0), also a known
breather. The fact that θ1 = θ2 = 0 implies E = 1. We remark that the attracting breather is
known to be a global maximum of the energy, thus its local attractivity is expected.

For larger lattices we integrate (2.26). We first consider Dirichlet boundary conditions and
vanishing potential, starting from initial conditions that are near an expected breather satisfying
E = 1. For instance, as |δ| is increased both the cubic and the saturable DNLS become closer to
being linear and the extremum breather is expected to approach the ground state of the Dirichlet
Laplacian. For the nearest-neighbor Dirichlet Laplacian the ground state is known explicitly and
is positive at all sites. The initial efficiency can be near unity regardless of the distance from the
expected breather, e.g. using initial conditions that have small imaginary parts, and real parts
of the same sign. In Figures 2a-b we integrate the saturable DNLS with N = 17, δ = −5.1 and
α = 0.1. In Figures 2a we show |un(0)|, and |un(100)|. The trajectory evolves quickly towards
a breather with the amplitude profile of |un(100)|, i.e. we observe that the |uj |, and the phase
differences between neighboring sites converge. In Figure 2b (upper curve) we show the evolution
of E in the time interval [0, 100]. We see that the attracting breather has E = 1. Note that the initial
efficiency is 0.985306583, i.e. high, but the initial condition is relatively far from the breather, i.e.
see Figure 2a. The profile of |un(100)| in Figure 2a is close to the profile of the ground state of
the Dirichlet Laplacian. Convergence to the above breather is also seen from initial conditions that
are not in its vicinity and have low initial efficiencies. An example is indicated in Figure 2b (lower
curve) where we show the evolution of E for an initial condition with initial efficiency 0.528646241.
The efficiency evolves towards unity, and the trajectory evolves towards a profile similar to that of
Figure 2a (the power of the second trajectory is slightly different).

We obtain similar results using an L that involves coupling with more neighbors and analogous
Dirichlet-like boundary conditions. For instance, to couple two nearest neighbors, let

(Lu)n = bun−2 + aun−1 + cun + aun+1 + bun+2, n = 3, . . . , N − 2, (3.5)

and define Lu at the remaining sites by setting the coefficients of the un with n /∈ {1, . . . , N} to
zero in the above formula. The particular recipe for the endpoints is analogous to that of (3.2).
Examples we considered include a higher order finite-difference five-point Dirichlet Laplacian, with
b = −1/12, a = 4/3, c = −10/3, and its perturbation with b = −4/12, a = 4/3, c = −10/3.
Integrating the saturable NLS with N = 17, δ = −5.1, α = 0.1 we see convergence to an E = 1
breather that is similar to the one shown in Figure 2a. Convergence is seen for initial conditions
that are far from the breather and have low efficiency. It appears that the convergence is faster for
the first of these five-point L.

In the above examples we are in the “weakly nonlinear” regime where the linear coupling pa-
rameter is relatively large and the energy is maximized by a breather that is near the ground state
of the linear problem. Thus the local attractivity of the breather we see is expected by the theory.
The apparent global attractivity is not as well understood, although we expect that in the linear
limit the number of possible extrema of the energy is reduced and we see convergence to one of the
two global extrema.
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A natural question is whether we can have attracting E = 1 breathers that are also localized
in space. In principle local attractivity of spatially localized breathers should be possible. One
option is to look for localized extremal breathers in weakly nonlinear lattices with a well localized
potential. The existence of such breathers is suggested by considering a quadratic Hamiltonian H
of (3.1) with δ < 0 and a potential V that has a large negative value at a single site. We expect
that to maximize such an H keeping the power fixed we must use a configuration that is localized
near the minimum of the potential. In numerical experiments we observe that such localized weakly
nonlinear breathers can also attract trajectories that start far from the breather and have small
efficiency. For instance Figure 3a shows |un(0)|, and |un(200)| for the saturable DNLS with the
five-point Dirichlet Laplacian above, using N = 17, δ = −4.0, α = 0.1, and a potential V satisfying
V9 = −10.0 and Vn = 0 for n 6= 9. The trajectory converges to a breather with the amplitude
profile of |un(200)|. Evidently we have spatial localization in the vicinity of the potential well. The
evolution of E in the time interval [0, 200], in Figure 3b, also shows that the attracting breather has
E = 1. Initially E = 0.164688997, and it is clear that the initial condition is far from the breather.

Another scenario of localization involves small coupling |δ|. We can approximate heuristically
this regime by considering the Hamiltonian H of (3.1) with δ = 0 and V = 0. We see that the
global maximum of the cubic DNLS Hamiltonian and the global minimum of the saturable DNLS
Hamiltonian is, in each case, attained by a breather whose amplitude is nonvanishing in only one
site (in both cases we extremize keeping the power fixed). For |δ| sufficiently small we expect
nearby localized extremal breathers. Numerical experiments in the regime of small |δ| show that
convergence to the breather requires initial conditions that are relatively near the breather. To
see some examples of small |δ| behavior we considered the cubic NLS with the nearest-neighbor
Dirichlet Laplacian, V = 0, and N = 9, δ = −0.2 and α = 0.1. In Figure 4a we show |un(0)|, and
|un(1200)|. The evolution of E in the time interval [0, 1200] in Figure 4b indicates that the trajectory
converges to the breather slowly in comparison to what is seen above. Initially E = 0.784890617,
and we see that the initial condition is relatively localized near the breather. Considering instead
the same system with the initial condition u(0) as in Figure 5a, the trajectory does not seem to
approach any breather. After a transient of about 1000 the trajectory exhibits an amplitude profile
seen in |u(2000)| of Figure 5a (also seen to persist for a longer time). The evolution of E in [0, 2000]
is shown in Figure 5b. The variation of E and the persistence of the two unequal peaks at the sites
n = 5, 8 suggests the possibility of an attracting torus or periodic orbit that is not a breather.

In the case of saturable nonlinearity, periodic boundary conditions and vanishing potential the
“plane wave” breather solution un = e−iωtA, n = 1, . . . , N , A independent of n, is a global maximum
of H over configurations with constant power. We see numerically that this breather also attracts
orbits that start far from it. The relation between ω and A depends on the nonlinearity G, and the
efficiency of this breather is unity. Note that such solutions are not present for Dirichlet boundary
conditions. The attractivity of the plane wave breather is a robust phenomenon, and is observed for
many different couplings. In the example of Figures 6a-b we considered a saturable DNLS with the
periodic five-point Laplacian, and N = 17, δ = −0.1 and α = 0.1. In Figure 6a we show |un(0)|,
and |un(100)|. The trajectory converges to a plane wave breather with the amplitude profile of
|un(100)|. In Figure 6b we show the evolution E in the time interval [0, 100], i.e. the attracting
breather has E = 1. The attracting breather is clearly independent of δ. Larger δ is seen to lead to
faster convergence to the breather.

The general idea of adding a power conserving non-Hamiltonian perturbation is independent of
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the model and is also applicable to higher dimensional Hamiltonian lattice models with global phase
symmetry. The perturbation of (2.26) can be also used for higher dimensional lattices with positive
stable breathers. A preliminary step is the enumeration of the sites of the higher dimensional lattice,
and it is clear that the property of global phase invariance is independent of this enumeration. On
the other hand, sites that are adjacent in the higher dimensional lattice can be far from each other
in the equivalent one-dimensional lattice. This fact does not seem to cause any problems. One
difficulty with higher dimensional models is that we have less information about the set of breather
solutions. Still there are many known real breathers, using e.g. the theory of [14], and we may
expect that some of the positive, stable breathers seen in the one dimension may have analogues in
higher dimensions. In numerical experiments with a 2-dimensional discrete cubic NLS with nearest
neighbor interactions in a 7 × 7 grid we readily found trajectories converging to positive (hence
E = 1) breathers that are analogous to the breathers of Figures 2, 3, and 5. For instance, we
used Dirichlet boundary conditions and δ = −4.0 to see convergence to a two dimensional positive
breather that is approximately the product of two copies of the shape of Figure 2a. Choosing
δ = −2.0, Dirichlet boundary conditions, and a potential V satisfying V (4, 4) = −10, V (i, j) = 0
everywhere else, we see convergence to a positive breather that has its maximum at the site (4, 4).
In the case of periodic boundary conditions we see trajectories that convergence to a plane wave
positive breather with equal amplitudes, i.e. the 2-dimensional analogue of the breather of Figure
5. Such a breather is easily seen to be a a global extremum of the constrained Hamiltonian. The
argument holds in any dimension.

The examples of Figures 2a, 3a, 6a suggest that the basin of attraction of the corresponding
breathers is extended. There is also some evidence that the basin of attraction of these breathers
may be the whole sphere of constant power, at least for the range of powers we considered. Specifi-
caly, we integrated the equations of Figures 2a, 3a, 6a using 100 “pseudo-random” initial conditions
with the same respective power and saw that in all cases the trajectories congerged to the respective
breathers of Figures 2a, 3a, 6a.

Pseudo-random initial conditions are points in equidistributed sequences. A sequence {zn}∞n=1

on a set Z with measure σ is equidistributed if for any σ−measurable A ⊂ Z the fraction of
points z1, . . . , zm of the sequence that belong to A converges to σ(A)/σ(Z) as m → ∞, see e.g.
[19], ch. 4, and [20], ch. 5.9. Such a sequence can be generated by iterating an ergodic map
on (Z, σ), see [19], p.87. In the present case we let X be the power hypersurface P = Nc, and
σ the microcanonical invariant measure associated to the constant P on the power hypersurface
P = Nc, see [11], Ch. II, 7. The fact that the changes of coordinates leading to the variables I, θ
are symplectic (up to a scaling factor) implies that σ is, up to a constant, the Lebesgue measure
µ2N−1 on S

N−1
c ×TN ⊂ R2N−1, where SN−1

c is the set of [I1, . . . , IN−1] ∈ RN−1 that satisfy Jk > 0,
k = 1, . . . , N , with Jk as in (2.3). (The scaling factor can be avoided by defining the variable J in
Section 2 by un =

√
2Jneiφn , n = 1, . . . , N .) Furthermore, the change to the variables rk = Ik + kc,

k = 1, . . . , N − 1 maps SN−1
c to S̃

N−1
c , where

S̃
N−1
c = {[r1, . . . , rN−1] ∈ [0, Nc]N−1 : r1 ≤ r2 ≤ . . . ≤ rN−1}. (3.6)

The map from the Ik to the rk is a translation in RN−1, and preserves the Lebesgue measure µN−1,
therefore it is enough to produce equidistributed sequences [0, 2π]N × S̃

N−1
c , which is a subset of

a rectangle in R2N−1. Note that µ2N−1([0, 2π]N × [0, Nc]N−1) = (N − 1)!µ2N−1([0, 2π]N × S̃
N−1
c ),

which also means that producing and equidistributed sequence in [0, 2π]N ×[0, Nc]N−1, and deleting
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the ones outside [0, 2π]N × S̃
N−1
c is inefficient for large N . Instead, consider an equidistributed

sequence (αn, βn), n = 1, 2, . . . in [0, 2π]N × [0, Nc]N−1, and let G(αn, βn) = (αn, s(βn)), where
the map s sorts the components of βn from smallest to largest. Thus G(αn, βn), n = 1, 2, . . ., is
a sequence in [0, 2π]N × S̃

N−1
c . Assume that (αn, βn), n = 1, 2, . . . is equidistributed. Let F̃m be

the fraction of G(αn, βn), 1, . . . ,m, in Ũ , and let Fm be the fraction of the (αn, βn), 1, . . . ,m, in
G−1(Ũ). Then

F̃m = Fm → µ2N−1(G
−1(Ũ ))

µ2N−1([0, 2π]N × [0, Nc]N−1)
=

(N − 1)!µ2N−1(Ũ)

(N − 1)!µ2N−1([0, 2π]N × S̃
N−1
c )

, (3.7)

as m → ∞, and therefore G(αn, βn), 1, 2, . . . is an equidistributed sequence in [0, 2π]N × S̃
N−1
c .

The problem is then reduced (up to rescaling) to that of producing an equidistributed sequence
in [0, 1]2N−1. To do that we can iterate irrational rotations on the (2N − 1)−torus, i.e. maps
xj 7→ (xj + ωj)mod1, j = 1, . . . , 2N − 1, where the ωj, j = 1, . . . , 2N − 1, are linearly independent
over the integers. In the simulations we chose as ωj (double precision approximations of) square
roots of different prime numbers (see e.g. [20], ch. 5.9.3, and references for this choice), and
checked for equidistribution by counting the number of iterates in simple shapes of known volume,
e.g. subsets where one of the components is within a subinterval of [0, 1], using up to 104 iterations.

4 Conclusions

We report results on perturbed Hamiltonian systems for which the addition of a small non-
Hamiltonian perturbation provides an attracting region towards a state of high coherence, where
coherence is characterized by number E of (2.21). We also found regimes where the attractor is
a spatially localized state. This particular case is reminiscent of the solitary wave one arrives at
in continuum complex Landau-Ginzburg systems. Both of these features (high coherence, spatial
localization) are currently sought in realistic optical systems. A particularly relevant example that
motivated this work is that of fiber laser arrays, where the goal is to obtain highly coherent intense
and ideally highly localized field intensity outputs.
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Figure Captions.

Fig. 1: Contour plot for the reduced Hamiltonian hc of the 2−site cubic DNLS, δ = −1.2.

Fig. 2a: |un| vs. site number n at times t = 0 (boxes), and t = 100 (connected discs), saturable
DNLS, Dirichlet B.C., N = 17, δ = −5.1.

Fig. 2b: E vs. time t for a trajectory with the initial condition of Fig. 2 (upper curve, initial
E = 0.985306583), and for a trajectory with initial E = 0.528646241 (lower curve).

Fig. 3a: |un| vs. site number n at times t = 0 (boxes), and t = 200 (connected discs), saturable
DNLS with potential V (9) = −10, zero elsewhere, Dirichlet B.C., N = 17, δ = −5.1.

Fig. 3b: E vs. time t for trajectory with the initial condition of Fig. 3a.

Fig. 4a: |un| vs. site number n at timse t = 0 (boxes), and t = 1200 (connected discs), saturable
DNLS, Dirichlet B.C., N = 9, δ = −0.2.

Fig. 4b: E vs. time t for trajectory with the initial condition of Fig. 4a.

Fig. 5a: |un| vs. site number n at times t = 0 (boxes), and t = 2000 (connected discs), saturable
DNLS, Dirichlet B.C., N = 9, δ = −0.2

Fig. 5b: E vs. time t for trajectory with the initial condition of Fig. 5a.

Fig. 6a: |un| vs. site number n at times t = 0 (boxes), and t = 100 (connected discs), saturable
DNLS, periodic B.C., N = 17, δ = −0.1.

Fig. 6b: E vs. time t for a trajectory with the initial condition of Fig. 6a.
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