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Abstract

We study small amplitude solutions of a parametrically forced nonlinear Schrédinger equation, and give exact expressions
for the quartic resonant mode interactions by analyzing the corresponding Diophantine equations. We use this information to
find some classes of periodic orbits of the averaged equation and characterize the linearly unstable directions of Stokes wave
solutions.
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1. Introduction 8 and periodrl’ of the functiond(z), and the parame-
ter y are all comparable and small in absolute value
In this Letter we study small amplitude solutions of (see, e.g., [1,4—7,9,12] for further references). Here we
the parametrically forced cubic nonlinear Schrodinger consider the equation in a periodic domain, and study
equationu; = id(t)uxx — 2iy|u|?u, with d(r) a peri- small amplitude solutions, or equivalently solutions of
odic real valued function ang a real constant. The  O(1) amplitude with|y| < |§].
equation has been used to model the propagation of Inthe parameter range of interest we have a weakly
signals in optical fibers with dispersion management, nonlinear system that is expected to exhibit nontriv-
and there is extensive literature on solutions of ampli- ial dynamics over a long time. An unusual feature
tude O (1) in the parameter range where the average of the system is that the resonance conditions deter-
mining the lowest order normal form (averaged) equa-
; tion can be analyzed completely. In particular, we see
E-mail addressespanos@colorado.edu, that the sets of solutions of the Diophantine equations
panos@mym.iimas.unam.mx (P. Panayotaros). . . o .
1 Current address: Departamento de Matematicas y Mecanica, fO the quartic resonances admit explicit parameteri-
IIMAS-UNAM, Apdo. Postal 20-726, 01000 México D.F., Mexico. ~ zations. More generally, we can here parameterize the
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level sets of the functions appearing in the resonance assume thad () is T-periodic, we decompose it as
conditions. We remark that determining resonant in-

teractions and small divisors is one of the main obsta- . 1 ;

cles in normal form calculations for nonlinear disper- d(1) =8 +d(1), with §= T /d(S)dS- (2.2)
sive systems. An understanding of the resonances can 0

have many applications, for instance in finding adia- . o ) . .
batic constants of motion (see, e.g., [2,10]). Letting 2 = =, we will be interested in the parameter

The averaged equation is seen to have severalf@ngewhere|> O(1) (and possibly> 1), |5] is of
classes of periodic orbits and we use the parameteriza-o(l) ] and|y| < 1.
tion of the resonances to obtain linear stability infor- It IS €asy to see that (2.1) has the structure of
mation on periodic orbits that describe traveling near- & nonautonomous Hamiltonian system. To perform
monochromatic waves (“Stokes waves”). Owing to the normal form calculations it W|_II be con_venlentto r_ngke
special structure of the cubic NLS nonlinearity the lin- (1€ System autonomous by introducing an additional
ear stability analysis of these orbits is exact and we 2"9l€ variable. In particular, lei(r) be the Fourier
can determine all linearly unstable directions of their ransform ofu(x,7) and define the variables (1),
Floquet maps. A similar analysis applies to other dis- keZby
persive systems of interest, and we also briefly discuss

an alternative approach to the linear stability analysis %) = ug(De! 40, with

of Stokes waves in forced NLS equations (see [3]). B ’ _

We also present numerical simulations showing the @k = k2, A(1) =fd(S)dS- (2.3)
growth of the unstable modes indicated by the lin- 0

ear stability analysis. The simulations suggest that the
growth of the unstable modes eventually saturates at
small amplitudes, and it is likely that the Stokes waves
may be nonlinearly stable over long intervals. These
phenomena will be examined elsewhere. —2iy Y a6tk
The Letter is organized as follows. In Section 2 ky.ka,k3eZ
we discuss the Hamiltonian structure of the system,
and formally compute a normal form by analyzing the
relevant resonance conditions. The main applicationis k € Z, wheres, =1 if r = 0, 0 otherwise. The initial
in Section 3 where we describe periodic orbits and the condition isa,(0) = ux(0), k € Z. The right-hand side
linear stability analysis of Stokes waves. In Section 4 of (2.4) is T-periodic. Also, we consider an angle
we state an averaging theorem on the distance betweerp € [0, 27), and add to (2.4) the equatiah= £2,
solutions of the averaged and full systems, discuss its with ¢(0) = 0. The functionA defined by A(¢) =
application to the results of Section 3, and compare the A(t(¢)) = A(%) is 2r-periodic with zero average.
linear stability analysis of the Stokes waves to some Adding an “action” variable/ € R, we further define
numerical simulations of the full system. the Poisson brackét | on pairs of functiong’, G of
the variablesy, a;, k € Z, and¢, J by

Eq. (2.1) is then

ar = —idwrag

x e—i(wkl+wk2—wk3—wk)/i(f)’ (2.4)

2. Hamiltonian structure and normal forms [F,G]=—i (ﬁﬁ — EE)
= dax da;  daj dax
We consider the initial value problem for the non- 9F 9G  9F 3G
autonomous equation + W@ - @W (2.5)
up = id Oy = 2iylulu, (2.1) We then have the following:
with u(x,t) a complex valued function satisfying
periodic boundary conditions(x, t) = u(x + 2, t). Proposition 2.1. The evolution equation for the vari-

The functiond(t) and the parameter are real. We ablesay, k € Z, and ¢, J above is the Hamiltonian
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system

ar=lax, H]l, keZ,

¢=1I¢,H], J=1[J, Hl, (2.6)

where the Hamiltoniari given by

H=8) wilax|*— 27
keZ
+y Z ei”‘i’aklakza,fsal’f4
k1,k2,k3,ka,neZ

and the coefficients(k1, k2, k3, k4, n) are given by
1(k1, ko, k3, ka, 1) = fon (0)8ky-+ky—ka—ks» (2.8)

m = Wi, + Wk, — Wiy — Wiy,
2

fn() = 2r)71 / e~ MA@ g=ind g, (2.9)
0

This setup is quite general, and we can also con-
sider other dispersion relationstime dependent, and
quasi-periodic dispersion management functions. The
structure of the coefficientﬁ,,, (n) is discussed below.

The HamiltonianH of (2.7) has the formH =

H> + Hy, where
Hy =8 anlar|® — 2. (2.10)
keZ

and H, contains the quartic terms and we see that
the parameter regime of interest describes a “weakly”
nonlinear system withi/, describing the “fast” mo-
tions.

To eliminate the lowest order resonant termgfaf
consider a function1(a, a*, ¢, J) and the canonical
transformation generated by the time-1 m@jh ofthe
Hamiltonian flow ofx1. Formally, we have

1
Ho®, =expAd, H
= Hy+ Ha+ [x1, H2] + 11, (2.11)

with Y71 the remainder (containing terms of order 6
and higher inaz, a*). By the definition of the Poisson
bracket, the resonance condition is

n§2 —ém =0, k1+ko—k3—ka=0,

fn() #£0, ki,....kaneZ (2.12)

with m = wi;, + wr, — Wk, — wi,. The sum of all
monomials with indices satisfying (2.12) ifi4 (i.e.,
the resonant part ofds) will be denoted by Ha.
For x1 satisfying[x1, Ho] + Hs = Hs we write the
transformed Hamiltonian as

Ho®y (a,a* ¢,J)=Hy+ Hy+ Ye. (2.13)

The remaindet’s will be of O(y?). To determine the
guartic resonant terms we use the following:

Proposition 2.2. Letm € Z, wy = k2, and letA,, the
set of integer&1, k2, k3, kq satisfying

Wiy + Wy — Wiy — Wy =M,

ki+ky —kz—ks=0. (2.14)

Then,(i) if m € 2Z + 1 then A, is empty and (ii) if
m € 2Z thenA,, is

- 1( 2m>_
0+ s+ —
. 2 s -

k1=

NI NI NP NP

: (2.15)

1
—(s-l— %> €2z, (2.16)
S

0e2Z+1, se€2Z* st slm and
1

E(s+ %) €2Z +1. (2.17)
A

(Notation x|y meansx dividesy, andZ* = Z \
{0})

Proof of Proposition 2.2. Let k = [k1, k2, k3, k4] €
Z4, and define new variables= [a1, az, a3, as] by

a1=ki+ ko, az =ki — kz,
a3z =k3+ ka, a4 = k3 — ka. (2.18)
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Let P(n) = +1, —1 for n even, odd, respectively.
The change of variables (2.18), written @as= f (k)
defines a functiory : 24 — Z%, = {a € Z* P(a1) =
P(a2), P(az) = P(as)}. We check thay is a bijection
ontoZ%. Thus, by (2.14) and (2.18), it is sufficient to
solve

a%—ai:Zm, aiy=as,

meZ, aeZp. (2.19)

Let ¥, Z¥ denote the subsets @" with even and
odd coordinates, respectively. Eq. (2.19) reduces to

ai=az=0¢€27Z, a%—aﬁ:Zm,

meZ, aeZ%, (2.20)
and

ar=a3=0¢e€2Z+1, a%—ai:Zm,

meZ,  aeZf. (2.21)

In both cases we havg — a3 = (a2 + as)(az — as) €
47, and thus we can only have solutions ferc 2Z.
To parameterize the solutions of (2.20), (2.21) we let

r=ay — aa, s =az -+ ag. (2.22)

We check that the new transformation defines func-
tions gg:Z2%2 — Z2 = {[r,s] € Z% r —s € 4Z} and
80:2% > 75, ., =1{lr.s1€Z% r—s e4Z + 2.
Both gz andgo are bijections ont@3, andZ3 _,,
respectively. Note thaZ2 = Z3 U Z3 ., and that
z%.NZ5 _,="1.Then (2.20)is equivalent to

r,s €2Z,

r—sedZ, me2l.

(2.23)

The solutions of (2.23) can be parameterized gnd
are given by

rs =2m,

2 2
V=—m, s€2Z*, s|m, s+—me4Z. (2.24)
s s

Returning to the variablek via ¢zt and £ 1, (2.24)
yields (2.15), (2.16). A similar parameterization for
the solutions of (2.21) in the, s variables yields
(2.15), (2.17) viagy', f~. Note that in (2.16),
(2.17) the numbeg (s) = 3(s = Z%) € Z, and we can
parameterizen,, by s € 2Z*, s|m with 6 even or odd
depending on the parity @f(s). O
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Remark 2.3. In the special case oin = 0 (i.e.,
slm,Vs € 2Z in (2.16), (2.17)), the solutions of (2.14)
reduce tok1 = k3, kp = k4 Or k1 = k4, ko = k3 with k3,
kae”Z.

To use the above proposition in the resonance
equation (2.12) we consider two cas%: rational
and irrational, respectively. In the rational case we let
g _ 2 in prime terms, withp, ¢ € Z* (with |p| > g
if |%| is large). Comparing with (2.12), the resonant
terms have indices = kq, and[kq, k2, k3, k4] € Ayp,
wherek € Z for p even, and € 2Z for p odd. Then,

Hy=y ) fip(kq)e™®?
keZ

x

[k1,k2,k3,kale Akp

(2.25)

*k k
Aky Ak akg ak4 ’

with Ay, as in Proposition 2.2, and can immediately
write an analogous expression fgr;. Note that
there are no small divisors. By Remark 2.3, the
resonant quartic Hamiltonian in (2.25) can be further
decomposed aly = Hy ; + Ha 1, With

Har=yfo0 Y lakPla,l, (2.26)
k1,kpeZ
Hani=y Y fiplkq)e™e?
kezZ*
X Z Aky Aky iy, (2.27)

[k1,k2,k3,ka]l€ Akp

The partH, ; is integrable in the sense that it depends
only on the “actions’|q;|2,i € Z. The partHy, y; con-
tains the remaining terms df4, and from Proposi-
tion 2.2 we see thaIEI4,N1 cannot include any mono-
mial |a;|?|a;|?, i.e., Ha y; is the “nonintegrable” part
of [:[4.

In the case where;z is irrational, the resonance
condition (2.12) is satisfied only fon = m = 0.
Then Hy = Hy ;. However, Proposition 2.2 and the
coefficients f,, (n) computed in two examples below
show that there can be an infinite humber of quintets
n, k1, ..., kg coming arbitrarily close to satisfying the
resonance condition. We thus have a small divisor
problem and we would need additional assumptions
on % to carry out the transformation. We will here

concentrate on the case Whé}eis rational.
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We now examine the coefficiengén(n) in Ha.
First, we note that the integrable paﬁ4,1 never
vanishes sincefo(O) = 1, regardless of the choice
of d(r). To indicate the structure of the coefficients
fk,,(kq) for k # 0 we consider some examples. The
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The orbits we find will belong to finite-dimensional
subspaces/ that are invariant under the flow éf, +
Hj. The underlying idea is the following: giveM,
we identify all termSei”‘i’aklakZa,’c“gaZA whose absence

from H, would imply the invariance oM under the

first is the piecewise constant dispersion managementflow of H, + Hy. If the offending quartic terms are

function
S+ A,
s+ B,

if 1 €[0, 1),

2.28
iftelr,T), ( )

d@) = {
with At + B(T — 7) = 0. To simplify the result we
look at the special case where= % A =h and
B = —h, where we have

A . |
fkp(kl])=—;[€ l(hls +1)kq7‘r _1]

hs—1
X 9
kq(1— h28—2)

(The expression fohs~1 = 41 are omitted.) We see
that if 5~% is an odd integer therf, (kq) = 0, for
all k € z*. Similarly, the coefficients vanish ip is
odd andrs~! is an even integer (sinca,, is empty
for m odd by Proposition 2.2). Also, ds— +o0, the
fk,, (kq) decay as|kh|~L. Another example is the real
analytic dispersion management function

keZ*. (2.29)

d(t) =6+ hsing2t, (2.30)
where we have
| fip k)| = 2| g (|5 lkql)], kez*, (2.31)

with Jy the I§essel function of ordeN € Z. As
|h| — oo, the| fi, (kq)| therefore decay agkq| /2.
By (2.9), the decay of thg, (kq) in the amplitudeh|

nonresonant we then have th#t is invariant under
the flow of H, + Hs. Note that the argument involves
checking a small number of resonance conditions
since the invariance df follows from the elimination
of only a subset of the nonresonant quartic terms. We
will therefore need only a small part of the information
contained in Proposition 2.2 (and we can also use
“partial” normal forms to extend the existence of
invariant subspaces for higher orders). On the other
hand, the quartic normal forris of (2.25) contains
additional stability information on the orbits contained
in the invariant subspaces.

To give an example, fixN integers 0< A1 <

- < An, let T = {£Aq,...,£Ay}, and denote the
(complex) span of the modes, i € Z by M7. Also
assume thafl = LeqQ.

Proposition 3.1. Consider a subspac&/7 as above
and suppose tha@(iy)2 < |p|. ThenM7 is invariant
under the Hamiltonian flow o, + H4. Moreovey the
Hamiltonian flow ofH, + H4 on M7 is integrable.

Proof. To show thatM7 is invariant it is enough to
show that all terms;i"¢aklak2aZSaZ with n € Z, ky,

k2, k3 € Z, andk € Z \ {Z} of H4 are nonresonant.
Suppose that some term of this type is resonant. Then
we have some triple = [k1, k2, k3] € Z3, n € Z and

k € Z \ {Z} satisfying the resonance condition (2.12).

of d(r) can be seen by a stationary phase argument, Hence we must have

and we observe that the decay is faster for the
more singular (integrable) dispersion management X = k(%) = k1 + k2 — ks,

functions.

3. Invariant subspaces and some instabilities

We will now consider the quartic normal form
Hamiltonian H, + Hs and find classes of periodic

orbits of the corresponding system. In some cases we

3.2)
which implies

Im()| = |oi, + ok, — kg — okl < 8GN)Z. (3.2)
According to the resonance condition (2.12))) and

n must also satisfy

8
n=—m(\).

= (3.3)

also obtain stability information. Our constructions The solutionn = m(A) = 0 is not acceptable, for
concern the general case where the nonintegrable pariapplying Proposition 2.2 to the case= 0 we see
Ha, y; may not vanish. thatm (i) = 0 can be satisfied only with € Z. Thus
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we must seek solutions of (3.3) with € Z*. By
Proposition 2.2 we also need= rq, with r € Z*. On
the other hand, (3.2), (3.3) and the hypothesis%)n
imply that

8(An)?

||

Hence (3.3) cannot be satisfied, and the term in
guestion cannot be resonant, a contradiction. To see
the integrability of the Hamiltonian flow off» + Hy

on M7 we note that ifk1, k2, k3, ka] € 7% then

Ir] < <1 (3.4)

Im| = ok, + o, — oy — 0k, < A0 (3.5)
By the hypothesis 0|§ we then have that
Im| < 4(w)? < = IPI, (3.6)

hencem = kp, k € Z is only satisfied fokk =m = 0.
Using Proposition 2.2 form = 0 we see thatH,
restricted toM7 can only consist of terms frorﬁ4, I.
Clearly, Hy ; does not vanish oMz. O

We can thus fi)% = g and find invariant subspaces

of complex dimension up t¢2./[p]/8 + 1] that are
foliated by invariant tori (note that by (2.26) the tori
are foliated by periodic orbits). Alternatively, we can
seek invariant subspaces and tori of arbitrary (finite)
dimension by increasing . Since£ is assumed large

we also have an immediate application to numerical 3

studies using spectral methods:

Coroallary 3.2. The trajectories of any Galerkin pro-
jection of the Hamiltonian system Bb + H, to modes
ax, k € Z with 8k2 < |p| are exact solutions of the
full (i.e., infinite-dimensionglHamiltonian system of
H> + Hj. Moreover all such Galerkin systems are in-
tegrable.

Expression (2.25) for the quartic normal form
Hamiltonian also gives us information on the stability
of some of the orbits described in Proposition 3.1.
Consider invariant subspacég; with Z = {+£ko},
and kg # 0, 8ko|? < |p| (what follows also applies
with minor modifications to the casky = 0). By
Proposition 3.1 theM7 are foliated by invariant
2-tori. Also, M7 has an invariant plane foliated by
periodic solutions for whicla () = 0, if k # ko, and
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ary (1) = age ™%, with 24, = Swi, + 2y fo(0)]aol?.

We refer to these orbits as Stokes waves, and denote
the corresponding invariant circles jny,. Note that a
variation on the arguments of Proposition 3.1 shows
that these waves exist for atlh € Z, without any
restrictions onp, ¢g. The Floquet maps for these
periodic orbits can have unstable directions. We can
see this by the following argument.

Consider all quartic monomials off4 y; of the
form aklakzakoqko anFiakoakoaklakz with k1, k2 #* .ko .
These monomials will be referred to as Benjamin—Feir
terms (forkg), and we denote the sum of all Benjamin—
Feir terms in Hy by H4 BF(ik,). Each Benjamin-
Feir term corresponds to pair of indicgs, k2} C Z,
and index pairs corresponding to different Benjamin—
Feir terms are disjoint. The set of all Benjamin—Feir
pairs is listed in Proposition 3.3, and we see that the
union of all indices belonging to Benjamin—Feir pairs
is a proper subset &. Now consider the variational
equation along the orbji,,. The Fourier coefficients
of the perturbation will be denoted y. Introducing
the amplitude variables

Bi(t) = ¢ br(r), with

Q=

(3.7)

we see that the variational equation becomes au-
tonomous and block-diagonal. In particular{f,, k2}
is a Benjamin—Feir index pair we have

=p(k1,k2)B,,  Bi,=p(k1,k2)Bf, (3.8)

where p(k1, k2) is proportional to the coefficient of
the corresponding Benjamin—Feir term £y, (and to
lag|?, see Remark 3.4). From (3.8) we immediately
see that each Benjamin—Feir block yields two stable
and two unstable directions, corresponding to double
eigenvaluest|p(k1, k2)|. If k £ kg does not belong to
any Benjamin—Feir index pair, the®, = 0, moreover
B, = —2iy fo(0)(laol® By, + agB ), i.e., we have a
double zero eigenvalue aml, is affine in time.

To seeI-_I4,B,:(;LkO) let p be a positive integer, and
p1,-.-, pn the prime factors ofp that are different
from 2 (i.e., whenp is even). Also, define the non-

negative integersx(2), a(pi),...,a(py) by p =
2“(2>p‘i‘(p1) .. p2P) \We then have:

Proposition 3.3. Let £ = 2, with p > 0. Then the
sum of Benjamin— Fe|r quartlc terms for the invariant
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circle i, above is

Ha r(1tkg)
=21 ) fuwy ()" ™?
veZ*

(3.9)

X ako—&-vkpr,,ako—v)u,,rpa;oa;o +C.C,
with

Bv ) (3.10)

24
Pp

(3.11)
The B(p;) in (3.10)are: (i) B(p:) =0, if a(pi) < 2;
(i) B(p;) is the smallest positive integer satisfying
B(pi) = 3a(p)) — 1, if a(pi) > 2. Thec,, M, in
Bi1)are (i) ¢, =1, M, =2 if 2(2) <1, and
(i) cp = 2/5(2>+f, with B(2) the smallest positive
integer satisfying8(2) > 1«(2) — 3, and M, = 8, if
a(2) > 1.

Ap=Cpp

n(v) = Mpvzkir

rpzpl"‘Pn’

m(v) = Mpvzkiri,

Proof. Givenkg € Z* we want a list of all resonant
quartic monomials of the formsklakza,jaa,j4 with

k3 = kg = kg, and aklakzaz< a;:4 with k1 = ko = ko.

It will be sufficient to list tI§1e monomials of the first
type only since the ones of the second type are their
complex conjugates. Using (2.25), we fix= kp and
look for the Benjamin—Feir terms (of the first type) in
each level sefly,, k € Z*. By (2.15), the requirement
k3 = k4 = ko with m = kp leads to the equation

2kp = s2,

k,seZ, (3.12)

(and to @ = ko, i.e., consistently with (2.16)). I,
s satisfy (3.12), then by (2.15) we have a resonant
monomialaklakza,j‘salj‘4 with

slkp,

kp

k
ki=ko+ 2,  ka=ko— -2,
S S

k3 = ko, kg = ko. (3.13)

It thus remains to solve (3.12). Noting thak2=

s2 implies s|kp, the first equation in (3.12) can be
solved by equating the prime exponents of the two
sides, obtaining linear relations between the unknown
prime exponents dof, s and the prime exponents pf
(we omit the details). The solutions of (3.12) can be
parameterized by € Z*: k(v)p = m(v) is shown in
(3.11), whiles(v) = m(v)(vi,r,) L. The statement
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follows by combining the solution of (3.12) with
(2.25) and (3.13), and adding complex conjugates.

Remark 3.4. From Proposition 3.3 and the proceeding
discussion we have that, givésg, its Benjamin—Feir
pairs argky, kz} = {k1(v), ka(v)} = {ko+VvA,rp, ko—
viprp} with v e Z and A, r, as in (3.11). The
corresponding coefficiens(k1, k2) in (3.8) are given
by p(k1.k2) = p(ki(v), ka(v)) = 2 fmw)(n(v))]aol?,
with m(v), n(v) asin (3.11).

Remark 3.5. The passage from the variational equa-
tion to an autonomous system through (3.7) is ex-
act due to the special structure the nonlinearity of
the NLS. A similar simplification in the linear stabil-

ity analysis of Stokes waves also occurs in some au-
tonomous dispersive systems. For instance, consider a
systemy, = —i gTHk k € Z\ {0}, with the quadratic part

of the HamiltonianH given by ", .7\ o @ (k)lax|*.
Also assume that the dispersiarik), k € R is even,
satisfiesw(0) = 0, and is increasing and concave for
k > 0. Then we can see that cubic resonances and
quartic resonant monomials of the formsa,ax,ay,
anda,’c"la,’c"za,’c"sak4 are absent, Stokes waves exist, and
the variational equation around them has the block di-
agonal structure above. An example is the system de-
scribing 2D gravity water waves of finite depth (see

[11]).

Also note that (2.1) admits exact Stokes wave so-
lutions (see [3]). Using the variableg, of (2.4),
these are given by () = 0 if k # ko, anda,(t) =
age 52" with 20 = Swy, + 2y|aol? (for arbitrary
ko € Z). The solutions of the normal form equation
have therefore the same form as the exact Stokes
waves solutions of the full system. Also, the varia-
tional equation around the exact orbits is block diago-
nal in the Fourier basis (with real:2 2 time-periodic
blocks), and unstable directions can only come in pairs
of wavenumbergo + k. The two approaches there-
fore describe the same qualitative picture of Stokes
waves and the Benjamin—Feir instability, and will be
compared in future work. Clearly, the approach start-
ing from the exact solutions has several advantages
(e.g., itis valid for arbitrary amplitude, artir) quasi-
periodic) and leads to several interesting problems on
the modulational instability of Stokes waves. On the
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other hand, the normal form approach here is closer to
the original argument for the Benjamin—Feir instabil-
ity and, when valid, poses the problem of modulational
instabilities in a more general setting.

4. Discussion of the asymptotics

The above results are formal and their validity must
be supported by theoretical considerations or numeri-
cal simulations. A first step is Theorem 4.2 where we
estimate the distance between solutions of the aver-

aged and full systems. The estimate gives a satisfac-

tory explanation of the meaning of Proposition 3.1 and
its corollaries for the original equation. Note that the
proof follows the arguments of the periodic averag-
ing theorem of [8, Chapter 3], extended to the infinite-
dimensional setting, and we here only state the result
(we consider the case whe% is rational only). The
theory connecting the Benjamin—Feir instability calcu-
lations to the solutions of (2.1) is not complete, never-
theless we see that the heuristic predictions of Proposi-
tion 3.3 are consistent with the preliminary numerical
results we present below.

Recall that in Section 2, Eq. (2.1) for(r) was
transformed to (2.4) fou () = V;u(), i.e.,a(t) is the
Fourier series of the, (¢), andV; is defined by2.4).
Consider the (amplitude) variables(r) = U_;a(t),
whereU; is the evolution operator solving=iSu,..
ThenA(r) satisfies

with
(4.1)

(We have used the fact thg, V; commute with their
generators. Also note thaty = ug.) We rewrite (4.1)
as

A=yU_V_,G(UV;A),
G(u) =ilul’u.

A(0) = Ao,

x(0) = xo.

X=yfx,t), (4.2)
P

In the case where? = I € Q, the solutions of

(2.1) withy = 0 areT-periodic, withT = 27482,
and we see thaf (x, r) is also T-periodic. We then
consider the averaged equation

with

y=vrg(), ¥(0) = yo = xo,

7
1
g(y) = ?ff(y,t)dt (4.3)
0
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Eq. (4.3) is precisely Hamilton’s equation for the quar-
tic normal form Hamiltonian in amplitude variables:
the evolution equation fay_, y (r) is Hamilton’s equa-
tion for Ho+ Ha(r), whereHy(t) is the quartic normal
form in (2.25), with¢ = 21 (i.e., with the time de-
pendence made explicit). To formulate the statement
describing the relation between solutions of (4.2) and
(4.3) we briefly mention the relevant facts from the lo-
cal existence theory for the two equations. Considered
in the Sobolev spaced?*, s € R, of complex valued
2m-periodic functions with the normis||; given by

lulZ =) (14 IkI%)" g 2 (4.4)
keZ

(with u; the Fourier coefficients ofi). Note that

G (1) = i |u|?u satisfies the Lipschitz condition

|Gw) — G|, < La(lulls. [vlls)llu—vls.

(4.5)

s> =,

2

with L (llulls, [lvlls) = C2(lullZ + llulls [vlls + v 112),
andCy a constant satisfyinguv||s < Cs|lulls|lv||s for
s > 3. A standard fixed point argument then implies

2
the following:

1

Proposition 4.1. Lets > 5, @ > 0. Then there exists
a time 11 > C(a, ||lxolls)|y|~t for which the initial
value problem#4.2), (4.3)have unique solutions(z),
y(t) € Rs(t1, x0, ), Where Rs(t1, x0, ) = {u(t) €
€010, 1al, H'): [lu(r) = xolly < ).

We note that for||xo|ls, « ~ O(1) we haveC/(«,
lxolls) ~ O (1), i.e., the local existence timegis large
for |y| small. Proposition 4.1 implies thatx(r) —
YOlls < 0@) ~ 0 for 0<t <~y The
averaging theorem below leads to a significant im-
provement.

1

Theorem 4.2. Let s > 5, and assume thatyo|s <

Co~ O(1) and thatT|y| is sufficiently small. Then
there exist constants; < 0(1), C2 > O (1) for which

|x) =y, < C1Tlyl, Vre[0,Calyl™].
(4.6)

The constant€’1, C> depend om, T, and Co.

The periodic averaging theorem captures the main
idea behind the formal calculation in that the error
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of the averaged equation is proportional |§o| for system (2.1) with initial conditions,(0) = O (1) for
ly| sufficiently small. Clearlyl and hence the error  somek = kg, andax (0), k # ko, of smaller amplitude,
also involves the size of, i.e., the “complexity”  e.g., 101-10"4. We also letd(r) = 1 + sin2z (i.e.,

of the rational% As an example, consider (2.1) & =h =1 in (2.30)), and considey between 102
with § =y = 271 = ¢ > 0 and replace: in (2.1) and 10“%. We discretize in space using 64 Fourier

by eu. Also, assume; < €71, i.e., T ~ 0(1), and modes and integrate using a 4th order Runge—Kutta
integrate (2.4) and the corresponding averaged systemscheme. Varyingo and$2 = £ we look for instabili-

with an initial conditiona(0) = >, _, ag(0)etkx ties along the different directions suggested by Propo-
satisfying [|la(0)|; ~ O(1) for somes > % Then, sition 3.3. We monitor|ak(t)| and the *“variation”
for € sufficiently small theH* distance between the ~ A1(k) = MaXe; lax(1)| — minses lax ()| of the mod-
averaged and full systems will be at most@®@fe) up uli over sufficiently large (see below) time intervals
to a time of0 (e 73). I. The simplest formulas occur whenis prime; by

The averaging theorem also relates the special (3.9)—(3.11)we should then have growth of the Fourier
orbits of Proposition 3.1 to solutions of the original modes with indicego + vp, with v € Z.
system. Specifica”y, by the averaging theorem, any The first observation is the moduli of the eXpected
initial condition on any se§ that is invariant under ~ uUnstable Fourier modes indeed vary significantly more
the flow of the averaged equation, and whose points that the moduli of the other modes. We also observe

have H* norm bounded by ar0(1) constant, will however that variation of the modulus of all modes
stay O(|y|) close toS in H* under the evolution IS small compared tda,(0)|. In fact, choosing the
of the full system over a time oD (|y|™Y) (s > integration intervall sufficiently large, e.g., a few

1). By Proposition 3.1 these sets can be circles, Multiples of y~*, we see that any increase of the
tori, subspaces, etc. Note that this is not a stability moduli of the unstable modes saturates, and the
statement since it does not guarantee that an initial Unstable modes are eventually seen to perform small
condition nearS will stay nearS. On the other ~ amplitude, slow oscillations with period comparable
hand if we consider a Galerkin projection of the 10y ~*. For instance, in Figgs. 1, %We chookg= 0,
averaged equation and tafe= 2 with p sufficiently @ =1 and consides2 = 3, and 3, respectively. In
large, S can have small or zero codimension (see both cases we have = 0.001 anday(0) = 0.0025,
Corollary 3.2). for |k| < 16 (k # 0), andax(0) = O otherwise, and
The linear stability analysis of the Stokes waves We showA; (k) with / = [0,1300. In both cases we
solutions of the averaged equation is not theoretically see thaii; (k) is largest for the Benjamin—Feir modes
expected give a picture of the dynamics near these ko + 3v and ko + 7v, respectively. In Figs. 3, 4 we
solutions, since in addition to stable and unstable see examples witto = 2, a,(0) = 1, and£2 = £,
directions we generally have an infinite humber of and%, respectively. In Fig. 3 we havg (0) = 0.0025,
center directions corresponding to the modes that for —11< k < 16 (k # 0), anda, (0) = 0 otherwise,
are not in Benjamin—Feir pairs. The Poincare map while in Fig. 4 we havey; (0) = 0.0025, for —9 <
along the Stokes orbits is then not guaranteed to bek < 3, a;(0) = —0.0025, 3 <k <9, anda;, =0
locally conjugate (i.e., equivalent up to continuous or otherwise. The integration intervals are ®0] and
smoother changes of coordinates) to its linearization [0, 3800], respectively. In both case (k) is largest
and the dynamics is very sensitive to the nonlinear for Benjamin—Feir modeky + 7v andkg + 5v, v € Z,
terms (and possibly even numerical effects). respectively, although the picture is more complicated,
Heuristically, we may also expect that the exis- e.g., in Fig. 3 the modé = 16 exhibits very small
tence of unstable directions in the Floguet map im- variation.
plies the growth of the corresponding Fourier modes  The results above are typical for the perturbations
since the unstable manifold is tangent to the unsta- we considered, and we can say that although the linear
ble subspace of the Poincare map (i.e., assuming thatstability analysis allows us to make predictions, what
the unstable manifold remains near the unstable sub-we see numerically must be explained by nonlinear
spaces for some distance away from the origin). To see considerations. Perhaps the most important feature
what happens we have integrated numerically the full emerging from the simulations is that any significant



412 P. Panayotaros / Physics Letters A 323 (2004) 403—-414

IS
T
I

Modulus Variation
w
T
1

1 1 1 1 1 1 1 1 1 1
-21 -18 -15 -12 -9 -6 -3 0 3 6 9 12 15 18 21
Fourier index k

Fig. 1. Ay (k) for initial condition ay, = 1 plus small perturbation (see texty; =0, % = % (points in graph are connected).

_4

x 10

Modulus Variation
n
T
1

0 1 1 | I
-21 -14 -7 0 7 14 21

Fourier index k

Fig. 2. Ay (k) for initial condition ay, = 1 plus small perturbation (see text}; =0, % = % (points in graph are connected).



Modulus Variation

Fig. 3. Ay (k) for initial condition ay, = 1 plus small perturbation (see texty; = 2, % = % (points in graph are connected).

x107
25T

P. Panayotaros / Physics Letters A 323 (2004) 403-414

-
o\
T

-
T

051

-19

-12 -5 2 9 16
Fourier index k

x 10
4 T
3,
c
o
kS
s
w2
=
p=}
el
<]
=
1_
0 1
-18

Fig. 4. Ay (k) for initial condition ay, = 1 plus small perturbation (see texty; = 2, % = % (points in graph are connected).

-13

-8

-3

2
Fourier index k

7

12

27

413



414 P. Panayotaros / Physics Letters A 323 (2004) 403—-414

excursion away form the Stokes solutions must be the full system, at least for a time @ (|y|~1), and
slow. Note that a small bound of#, ()| together this allows us to connect the existence of special so-
the conservation of thd., norm would imply that lutions of the averaged system to the dynamics of the
perturbations of the Stokes waves must remain small, full system. Numerical simulations with Stokes wave
i.e., nonlinear stability is governed by the dynamics of initial conditions show that the linear stability analy-
the mode with indexo. The dynamics oby, is not sis predicts correctly the side-band modes that grow
however readily seen from the equations. the most. However it also appears that the growth of
Further comparisons between theory and numerical the side-band modes saturates at small amplitudes, i.e.,
experiments will be reported elsewhere. It could be the plane wave structure is deformed only slightly,
useful to study numerically the averaged equation, and any significant deformation (if any) should be a
and to make a closer comparison between the theorylong term phenomenon. The present theory does not
and the numerics. By changing the forcing frequency explain these nonlinear processes around the Stokes
we also obtain systems that are interesting but more waves but points to some possible ways of analyzing
tractable. For instance, given a Galerkin projection them.We hope that some of these ideas will be fruitful
of the averaged system we can choéjse‘or which in further work.
the Poincare map around the Stokes waves have two-
dimensional stable and unstable manifolds. Another
possibility would be to examine cases where we have a Acknowledgement
local center manifold of low dimension, e.g., f%r:
g with p = 1 the Poincare map around the Stokes  The author is supported by NSF grant DMS-
waves has two center directions. 9810751.
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