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Abstract: We derive nonlocal discrete nonlinear Schrödinger (DNLS) equations for laser beam
propagation in optical waveguide arrays that use a nematic liquid crystal substrate. We start with
an NLS-elliptic model for the problem and propose a simplified version that incorporates periodicity
in one of the directions transverse to the propagation of the beam. We use Wannier basis functions
for an associated Schrödinger operator with periodic potential to derive discrete equations for Wannier
modes and propose some possible simplified systems for interactions of modes within the first energy
band of the periodic Schrödinger operator. In particular, we present the simplest generalization of a
model proposed by Fratalocchi and Assanto by including a linear nonlocal term, and see evidence for
parameter regimes where nonlinearity is more pronounced.
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media

1. Introduction

We study the derivation of nonlocal discrete nonlinear Schrödinger (DNLS) models for a system
describing the propagation of a laser light in a nematic liquid crystal substrate with a periodic structure
in the direction normal to the optical axis. This is the setup of laser light propagation in an effectively
planar waveguide array in a nonlocal medium. Our work is motivated by the experimental work of
[1–3] and some of the discrete NLS systems proposed to model the experiments. We are particularly
interested in a DNLS model proposed by Fratalocchi and Assanto [4] that has a Hartree-type cubic
nonlinearity. Recent theoretical and numerical studies have shown interesting departures from the
dynamics of the cubic DNLS, specifically new non-monotonic amplitude profiles of breather solutions,
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additional internal modes in the linearization around breathers [5, 6], and possibly enhanced mobility
of traveling localized solutions [7]. The goal of our study is to derive and generalize the Fratalocchi-
Assanto model.

The derivation of DNLS equations can be made systematic by the use of Wannier functions [8],
and this formalism has been also used to show some rigorous justifications of the DNLS equations in
a special limit referred to as the tight binding approximation [9, 10].

The present work adapts this formalism to a nonlocal problem. A first step is to simplify the
original equations describing the interaction of the laser field with the liquid crystal orientation field,
deriving an NLS equation coupled to a linear elliptic equation with periodic coefficients, see Section
2. Wannier functions are constructed and computed using a periodic Schrödinger operator that
appears naturally in the elliptic equation. We see that we can solve the elliptic equation using the
Wannier basis and formally reduce the system to an evolution equation for the Wannier coefficients.
The coefficients describing linear and nonlinear interactions between the Wannier modes involve
integrals of Wannier functions and related functions and must be evaluated numerically. We examine
a subset of these interactions with a first goal of obtaining the simplest extension of the
Fratalocchi-Assanto model. We arrive at a system combining a nonlinear nonlocality of Hartree type
similar to the one in the Fratalocchi-Assanto model with a linear nonlocality that is studied
mathematically by several authors in systems with power law nonlinearity [11–13]. Some related
nonlocal equations with periodic coefficients were studied in [14, 15].

The computed coefficients suggest that nonlocal effects are more pronounced when the periodicity
in the transverse direction has a smaller amplitude, and we also see parameter regimes where the
nonlinear part dominates. For larger amplitude periodicity the standard cubic NLS seems to be an
adequate model. The model we examine in more detail here is restricted to interactions among Wannier
modes of the first energy band of the associated Schrödinger operator. Preliminary calculations suggest
that other interactions within the first band and with other bands may also be important, see also [1]
for experimental evidence. Extensions will be pursued in further work.

The paper is organized as follows. In Section 2 we derive a simplification of the physical model,
and identify a periodic Schrödinger operator used to define the Wannier basis. In Section 3 we use
the Wannier basis to arrive at a general evolution equation for the Wannier coefficients of the laser
field amplitudes. In Section 4 we present numerical results on the coefficients for a small subset of
the possible indices, considering only the lowest energy band. In Appendix A we present additional
material on the numerical computation of the Wannier functions.

2. Coupled NLS-elliptic system for optical solitons in liquid crystals

Optical beams in a nematic liquid crystal are described by the system

∂zu =
1
2

i∆u +
1
2

iγ(sin2 θ − sin2 θ0)u, (2.1)

ν∆θ = −
1
2
γ(E2

0 + |u|2) sin 2θ, (2.2)

with γ, ν positive constants, see [16, 17], and ∆ = ∂2
x + ∂2

y . The variable z is analogous to time and we
are interested in solutions to (2.1), (2.2) with u, θ given at z = 0. Physically u represents the amplitude
of the electric field of a laser beam that propagates along the z−direction. The field u is assumed to
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have only one component, along the (vertical) x−axis. θ is the macroscopic field of angles describing
the liquid crystal molecular orientation at each point, i.e., a macroscopic local average orientation of
the liquid crystal molecules, assumed to be parallel to the x, z−plane. θ0 and E0 are assumed to be
known functions. θ0 represents an orientation field produced by an additional electric field E0 applied
to the sample. The field E0 is assumed to have only an x−component.

Equations (2.1), (2.2) follow from a Maxwell-Oseen-Frank system that couples the electric fields
E0 and u and the director angle θ, see [18], Appendix. Intuitively, (2.2) describes the tendency of
the molecular and electric field orientations to align, as well as an elastic resistance of the material
to localized changes in orientation, while (2.1) describes the focusing effect of aligned molecular and
electric field orientations.

To enhance this basic effect, it has been understood that the system must be “prepared” by first
producing a nontrivial “pretilt” angle field θ0 in the sample. We are here considering an experimental
setup where θ0 is produced by a known external field E0, e.g., placing the sample between two capacitor
plates. Other experimental ways to produce θ0 are described in [19, 20]. θ0 and E0 are thus related,
see below. The main point, however, is that these two functions can be used to introduce variable
coefficients in the system, and we will consider the case where θ0, E0 are b−periodic in the horizontal
direction y, and independent of the z coordinate.

To describe the relation between θ0 and E0 in the absence of the laser beam, we use (2.2) with
θ = θ0, u = 0,

ν∆θ0 = −
1
2
γE2

0 sin 2θ0, (2.3)

see [18] for the boundary conditions. In the presence of a laser beam, the laser field interaction changes
the angle field to θ = θ0 + ψ, i.e., ψ is the change from the pretilt angle θ0 observed in the absence of
the beam. Letting θ = θ0 + ψ and substituting (2.3) into (2.2) we obtain the system

∂tu =
1
2

i∆u +
1
2

iγ(sin2(ψ + θ0) − sin2 θ0)u, (2.4)

ν∆ψ −
1
2
γE2

0 sin 2θ0 = −
1
2
γ(E2

0 + |u|2) sin 2(θ0 + ψ), (2.5)

see [16]. The second equation has been examined in more detail in [18] for the case of E0, θ0 constants,
with θ0 ∈ (π4 ,

π
2 ). This assumption is important for solving (2.5) uniquely, see [18]. Here we are looking

for an explicit expression of ψ in terms of u and we simplify the system first assuming ψ small. Then
system (2.4), (2.5) is, up to terms of O(ψ2),

∂tu =
1
2

i∂2
yu +

1
2

iγ(sin 2θ0)ψu, (2.6)

ν∆ψ + γE2
0(cos 2θ0)ψ = −

1
2
γ(sin 2θ0)|u|2, (2.7)

see also [18].
Further analysis of the equations assumes that E0, θ0 are known. To simplify the problem we will

choose E0, θ0 that are reasonably consistent with (2.3), i.e., avoiding solving (2.3) exactly. One way to
do this is to assume E0, θ0 of the form

E0 =
√
εE0,V(

√
εx) + δE0,H(

√
εx, y), (2.8)
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θ0 = θ0,V(
√
εx) +

√
εδθ0,H(

√
εx, y), (2.9)

with 0 < ε ≤ δ small parameters. The applied electric field E0 is thus assumed to consist of two parts, a
contribution

√
εE0,V that depends only on the vertical direction x, and a smaller contribution δE0,H that

will be assumed b−periodic in the horizontal direction y. E0 models the electric field of a set of parallel
metallic stripes that run along the z−axis and are placed at the two planes bounding the experimental
domain from above and below, at x = ±L respectively, see [1]. The lower and upper stripes have
opposite charges, producing an electric field that is b−periodic in the y (transverse) direction.

Matching orders in (2.3) up to O(ε3/2δ) leads to

νθ′′0,V(
√
εx) = −

1
2
γE2

0,V(
√
εx) sin 2θ0,V(

√
εx), (2.10)

ν∂2
yθ0,H(

√
εx, y) = −

1
2
γE0,V(

√
εx)E0,H(

√
εx, y) sin 2θ0,V(

√
εx). (2.11)

The first equation is similar to the one arising in the case of constant applied field, i.e., compare to (2.3)
with E0 constant, and is solved using boundary conditions for θ0 at the vertical boundaries x = ±L, see
e.g., [17]. In the second equation E0,H(

√
εx, y) is assumed b−periodic in y, and the solution θ0,H(

√
εx, y)

can also be chosen b−periodic in y.
To use (2.8)–(2.11) in (2.6), (2.7), we note that since E0, θ0 vary slowly in the vertical direction

x, their value in the center of the sample can be approximated by constants. We therefore substitute
(2.8)–(2.11) into (2.7), approximating first E0,V(

√
εx) by E0, E0,H(

√
εx, y) by Ẽ0(y), and θ0,V(

√
εx) by

θ0 ∈ (π/4, π/2), θ0,H(
√
εx, y) by θ̃0(y), to obtain

ν∆ψ + γεE
2
0|cos 2θ0|ψ + γδε1/2E0

(
| cos 2θ0|Ẽ0(y) + εE0| sin 2θ0 |̃θ0(y)

)
ψ

= −
1
2
γ
(
|sin 2θ0| + δε1/2 cos 2θ0θ̃0(y)

)
|u|2, (2.12)

up to terms of O(δ2) on the left hand side, and terms of O(δ2ε) on the right hand side. Thus the terms
omitted on each side can be considered of O(δ2).

Note that Ẽ0(y), θ̃0(y) are b−periodic, and are related by

ν̃θ′′0 (y) = −
1
2
γE0Ẽ0(y) sin 2θ0, (2.13)

the simplification of (2.11). Thus θ̃0 can be determined from Ẽ0, moreover if Ẽ0 is b−periodic, then θ̃0

can be also chosen b−periodic.
We further simplify the analysis by considering u, ψ independent of the vertical variable x. Letting

δ = ε, and considering terms of up to O(ε3/2) in (2.12), system (2.6), (2.7) then becomes

∂tu =
1
2

i∂2
yu +

1
2
β̃(y)iψu, (2.14)

−∂2
yψ + V(y)ψ + g2ψ = α̃(y)|u|2. (2.15)

The first equation follows from (2.6) using the expansion (2.9) for θ0 and the simplifications above,
in particular β̃ = | sin 2θ0| + O(ε3/2), where the omitted O(ε3/2) terms are b−periodic in y. The second
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equation is (2.12) up to terms of O(ε2), so that g2 is a positive constant, and α, V b−periodic functions,
defined implicitly by comparing the second equation to (2.12).

Since we are primarily interested in the inhomogeneity of the second equation and the inversion
of the operator −∂2

y + V(y) + g2, we will only consider the lowest order, constant parts of α, β of the
respective α̃, β̃ above, and consider the simplified system

∂tu =
1
2

i∂2
yu +

1
2
βiψu, (2.16)

−∂2
yψ + V(y)ψ + g2ψ = α|u|2, (2.17)

where assuming θ0 ∈ (π4 ,
π
2 ),

g2 =
γε

ν
E

2
0|cos 2θ0|, α =

γ

2ν
|sin 2θ0|, β = | sin 2θ0| (2.18)

are positive constants, and
V(y) =

γ

ν
ε3/2E0| cos 2θ0|Ẽ0(y). (2.19)

We can assume that V has a negative minimum −Vm that satisfies Vm < g2, with g2 as in (2.18). We can
then suitably redefine g2, and V of (2.19) so that both are positive. These sign assumptions are valid
also for the variable coefficients α̃(y), β̃(y) of the intermediate system above.

The goal of the paper is to write further explicit simplifications of system (2.16), (2.17) using the
Wannier basis defined by the Schrödinger operator −∂2

y + V(y), with V as in (2.19).
An alternative approach to simplifying the system is to write the inverse of the operator −∂2

y +g2 +V
in (2.17) as

(−∂2
y + g2 + V)−1 =

(
A(I + A−1V)

)−1
, A = −∂2

y + g2, (2.20)

and keep the lowest order terms in the expansion

(A + V)−1 = A−1 − A−1VA−1 + . . . . (2.21)

Assuming |V | bounded, both A−1, and V are bounded operators in L2(R,C), with norms g−2 (by
Plancherel’s theorem), and VM = maxy∈R |V(y)| respectively. The g−2VM < 1 implies that A + V has a
bounded inverse given by the convergent series expansion (2.21). We can also use the explicit
expression

(A−1 f )(y) = (K ∗ f )(y), with K(·) =
1

2g
e−g|·|, (2.22)

where f is a function and K ∗ f denotes the convolution

(K ∗ f )(y) =

∫
R

K(x) f (y − x) dx. (2.23)

Then (2.16) becomes

∂tu =
1
2

i∂2
yu +

1
2

iαβ[(A + V)−1|u|2]u. (2.24)

The lowest order approximation that includes the effect of the periodic potential V is

∂tu =
1
2

i∂2
yu +

1
2

iαβ(A−1 − A−1VA−1)|u|2)u. (2.25)

The fact that the variable coefficient equation has additional terms seems inconvenient for
computations, and in the next section we describe a different approach to solving (2.17).
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3. Discrete nonlinear equations for laser-nematic liquid crystal system

3.1. The discrete nonlinear equation for nematicons

We consider the system of periodic nematicon equations derived in the previous section

∂tu =
1
2

i∂2
yu +

1
2
βiψu (3.1a)

− ∂2
yψ + V(y)ψ + g2ψ = α|u(y)|2, (3.1b)

with α, β, g2 positive constants, and V b−periodic and positive.
We recall the definition of the Wannier functions associated to the operator −∂2

y +V(y), V b-periodic,
see [10, 21] for the theory. Bounded solutions φn,k (Bloch functions) and eigenvalues En,k ∈ R of the
periodic Schrödinger equation satisfy

− ∂2
yφn,k + V(y)φn,k = En,kφn,k, n ∈ N, k ∈ R, (3.2)

where
φn,k(y) = un,k(y)eiky, with un,k(y + b) = un,k(y), (3.3)

for all y ∈ R, n ∈ N, k ∈ R. Furthermore,

En,k+ 2π
b

= En,k, φn,k+ 2π
b

(y) = φn,k(y), (3.4)

for all n ∈ N, k, y ∈ R. By the above we can consider k in any interval of length 2π/b. The index n is
referred to as band index (or number). For any fixed k in an interval of length 2π/b, En,k is the n − th
largest eigenvalue of (3.2) with boundary conditions φn,k(y + b) = eikbφn,k(y), implied by (3.3).

For n ∈ N, y ∈ R, we consider the Fourier coefficients

wm
n (y) =

√
b

2π

∫ π
b

− πb

φn,k(y)e−imbkdk, m ∈ Z, (3.5)

of φn,·(y), and we also have the inversion formula

φn,k(y) =

√
b

2π

∑
m∈Z

wm
n (y)eimbk, n ∈ N, k, x ∈ R. (3.6)

The set of functions wm
n : R → C, n ∈ N, m ∈ Z defined by (3.5) are referred to as Wannier

functions [21, 22], They form an orthonormal set of L2(R;C), also by (3.5), (3.3),

wm+p
n (y) = wm

n (y − pb),∀n ∈ N, m, p ∈ Z, y ∈ R. (3.7)

Thus, fixing n, the function wm
n is a translation of the function w0

n by mb. The definition of w0
n and the

regularity of the φn,k in k also leads to strong localization of the w0
n in y, see [10, 23].

We use expansions ψ and u in Wannier functions wm
n as

ψ(y, z) =
∑
n∈N

∑
m∈Z

cn,m(z)wm
n (y) (3.8)
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u(y, z) =
∑
n∈N

∑
m∈Z

un,m(z)wm
n (y). (3.9)

We first consider the second nematicon equation (3.1b). We multiply (3.1b) by φ∗n′,k′(y), integrate
over y ∈ R, and use the Schrödinger equation (3.2) to obtain∫

R

ψ(y)(E∗n′,k′ + g2)φ∗n′,k′(y) dy = α

∫
R

|u(y)|2φ∗n′,k′(y) dy, (3.10)

hence ∫
R

ψ(y)φ∗n′,k′(y) dy = α(En′,k′ + g2)−1
∫
R

|u(y)|2φ∗n′,k′(y) dy. (3.11)

We then multiply (3.11) by eimk′b and integrate both sides over k ∈ [−π/b, π/b]. Interchanging the order
of integration in k, y, and using the definition of Wannier functions we obtain that ψ is given by (3.8)
with

cn,m = α

√
b

2π

∑
n1,n2∈N

∑
m1,m2∈Z

Km1,m2,m
n1,n2,n un1,m1u

∗
n2,m2

, (3.12)

where

Km1,m2,m
n1,n2,n =

∫
R

wm1
n1

(y)wm2∗
n2

(y)


∫ π/b

−π/b

φ∗n,k(y)eimbk

En,k + g2 dk

 dy. (3.13)

To expand the first nematicon equation (3.1a) in coefficients of Wannier functions, we substitute
the series expansions (3.8), (3.9) into (3.1a), multiply (3.1a) by wm′∗

n′ (y), and integrate over y ∈ R. We
obtain

dun′,m′

dz
=

1
2

i
∑
n∈N

∑
m∈Z

Dm,m′
n,n′ un,m +

1
2

iβ
∑

n,n3∈N

∑
m,m3∈Z

Im,m3,m′

n,n3,n′
cn,mun3,m3 . (3.14)

where
Dm,m′

n,n′ =

∫
R

(wm
n )′′(y)wm′∗

n′ (y) dy, Im,m3,m′

n,n3,n′
=

∫
R

wm
n (y)wm3

n3
(y)wm′∗

n′ (y) dy (3.15)

Substitution of (3.12) into (3.14) leads to the system

dun′,m′

dz
=

1
2

i
∑
n∈N

∑
m∈Z

Dm,m′
n,n′ un,m

+
1
2

iαβ
∑

n1,n2,n3∈N

∑
m1,m2,m3∈Z

Vm1,m2,m3,m′

n1,n2,n3,n′
un1,m1u

∗
n2,m2

un3,m3 , (3.16)

where by (3.13), (3.15)

Vm1,m2,m3,m′

n1,n2,n3,n′
=

√
b

2π

∑
n∈N

∑
m∈Z

Km1,m2,m
n1,n2,n Im,m3,m′

n,n3,n′
. (3.17)

The above infinite system of ordinary differential equations for the Wannier coefficients is a spatial
discretization of the original system of partial differential equations, and a first step to simplifying
truncations leading to discrete NLS equations and systems [8]. In the present work, the main goal
is a systematic derivation of nonlocal versions of DNLS equations and systems, motivated by the
Fratalocchi-Assanto equation [4]. Important features of the Wannier functions wm

n include their spatial
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localization ( [10], see also Appendix), and the translation property (3.7). Truncations involving m ∈ Z,
n ∈ {1, . . . nmax}, are expected to preserve the translation symmetry of periodic systems, and we increase
the spatial resolution by considering larger nmax.

3.2. Comparison with the discrete model of Fratalocchi and Assanto

We now consider simplifications of (3.16), (3.17) leading to a DNLS model that is comparable to
the equation

i
dQm′

dz
+ C1(Qm′+1 + Qm′−1) + C2

∑
m∈Z

Γ(m − m′)|Qm|
2

 Qm′ = 0, (3.18)

with Γ(m − m′) = e−κ|m−m′ |, κ > 0, C1, C2 > 0, proposed by Fratalocchi and Assanto [4].
The first simplification of (3.16), (3.17) will be to consider only the first band, and interactions

among of Wannier coefficients wm
1 , m ∈ Z (setting un,m = 0, ∀n > 1). Thus we only consider coefficients

Dm,m′

1,1 and Vm1,m2,m3,m′

1,1,1,1 .
The second simplification comes by approximating the Wannier coefficients c1,m of ψ in (3.12) by

c1,m = α

√
b

2π

∑
m1∈Z

Km1,m1,m
1,1,1 |u1,m1 |

2, (3.19)

assuming that the coefficient Km1,m2,m
1,1,1 of (3.13) vanishes if m1 , m2. Equation (3.16) is therefore

replaced by

du1,m′

dz
=

1
2

i
∑
m∈Z

Dm,m′

1,1 u1,m +
1
2

iαβ

√
b

2π

∑
m,m3∈Z

Im,m3,m′

1,1,1

∑
m1∈Z

Km1,m1,m
1,1,1 |u1,m1 |

2

 u1,m3 . (3.20)

The last step is to assume that Im,m3,m′

1,1,1 vanishes unless m3 = m′. Then we obtain the model equation

du1,m′

dz
=

1
2

i
∑
m∈Z

Dm,m′

1,1 u1,m +
1
2

iαβ
∑
m1∈Z

V1(m1,m′)|u1,m1 |
2u1,m′ . (3.21)

where

V1(m1,m′) = Vm1,m1,m′,m′

1,1,1,1 =

√
b

2π

∑
m∈Z

Km1,m1,m
1,1,1 Im,m′,m′

1,1,1 . (3.22)

We now examine the symmetries of the linear and nonlinear coefficients of (3.21).
Considering the linear coefficients, by (3.15) we have

Dm,m′
n,n′ = −

∫
R

(wm
n )′(y)(wm′∗

n′ )′(y) dy = −

∫
R

(w0
n)′(ξ)(w0∗

n′ )
′(ξ + (m − m′)b) dξ, (3.23)

therefore Dm,m′
n,n′ = (Dm′,m

n′,n )∗. Using the reality of the Wannier functions (see Appendix) we see that Dm,m′
n,n

depends on |m − m′|. Also Dm,m
n,n < 0. The above holds for all n ∈ N, m ∈ Z.

We also show that V1(m1,m′) = Vm1,m1,m′,m′

1,1,1,1 of (3.22) is real and depends on |m1 − m′|. Combining
(3.13), (3.15) with the inversion formula (3.6) for φ∗1,k we have

V1(m1,m′) =
b

2π

∑
m,m0∈Z

∫
R

|wm1
1 (x)|2wm0∗

1 (x) dx
∫
R

|wm′
1 (y)|2wm

1 (y) dy
∫ π/b

−π/b

ei(m−m0)bk

E1,k + g2 dk. (3.24)
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By (3.7) and the variable changes v = y − m1b and u = y − m′b we then have

V1(m1,m′) =
b

2π

∑
m,m0∈Z

∫
R

|w0
1(v)|2w0∗

1 (v−(m0−m1)b) dv
∫
R

|w0
1(u)|2w0

1(u−(m−m′)b) du
∫ π/b

−π/b

ei(m−m0)bk

E1,k + g2 dk.

(3.25)
Letting m2 = m0 − m1 and m3 = m − m′ we then have

V1(m1,m′) =
b

2π

∑
m2,m3∈Z

∫
R

|w0
1(v)|2w0∗

1 (v − m2b) dv
∫
R

|w0
1(u)|2w0

1(u − m3b) du
∫ π/b

−π/b

ei(m3−m2−(m1−m′))bk

E1,k + g2 dk

=
b

2π

∑
m2,m3∈Z

(
Im3,0,0
1,1,1

)∗
Im2,0,0
1,1,1

∫ π/b

−π/b

ei(m3−m2−(m1−m′))bk

E1,k + g2 dk,

(3.26)
showing that V1(m1,m′) depends on m1 − m′. We use the reality of the Wannier functions to see that

Λ(k) =
∑

m2,m3∈Z

(
Im3,0,0
1,1,1

)
Im2,0,0
1,1,1 (3.27)

is even in k. By (A.16), E1,k is also even in k. Then (3.26) implies that V1(m1,m′) is real and depends
on |m1 − m′|, as claimed.

The above properties of Dm,m′

1,1 and Vm1,m1,m′,m′

1,1,1,1 also imply that (3.21) can be written as a Hamilton’s
equations

du1,m

dz
= −i

∂H
∂u∗1,m

, m ∈ Z, (3.28)

with Hamiltonian
H = −

1
2

∑
n,k∈Z

Dn,k
1,1u1,nu∗1,k − αβ

∑
n,k∈Z

Vm1,m1,m′,m′

1,1,1,1 |u1,n|
2|u1,k|

2. (3.29)

The Hamiltonian structure of (3.21) is not surprising given that the continuous system (2.16), (2.17)
we expanded in Wannier functions is also Hamiltonian. This follows from the fact that the operator
(A + V)−1 in (2.24) is symmetric, see e.g., [24]. A more systematic derivation of the Hamiltonian
structure of the discrete system, considering first the Hamiltonian structure of (3.16), will be presented
elsewhere. Note that system (2.4), (2.5) is also Hamiltonian in the sense described in [25], see also [18]
for a similar system.

4. Numerical evaluation of linear and nonlinear coefficients

To evaluate the linear and nonlinear coefficients of (3.21) we have used the Wannier functions of the
periodic square-well potential of (A.2). Appendix A contains further details. We are interested in the
dependence of the coefficients on the amplitude V0 of the potential and consider values V0 ∈ [0.1, 10].
In all cases, the potential has period b = 2π.

The linear coefficients Dm,m′

1,1 = D1,1(m−m′) are plotted in Figure 1 for different potential amplitudes
V0. Their values for nearest neighbors are shown in Table 1. The nonlinear coefficients V1(m1,m′) of
(3.26) are shown in Figure 2. They depend on the potential amplitude V0 and g2. Their values for
nearest neighbors are shown in Table 2.
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Figures 1 and 2 show clearly that both linear and nonlinear coefficients, Dm,m′

1,1 and V1(m1,m′)
respectively, decay more slowly as the amplitude V0 is decreased. The nonlinear coefficients also
decrease with g2, Figure 2, as expected from their definition, e.g., (3.26).

We also fitted the linear and nonlinear coefficients |D1,1| and |V1| to exponentials of the form
Ce−γ|m−m′ | and Ce−γ|m−m′ |ξ . These are typically good for some ranges of |m − m|. Considering the linear
coefficient |D1,1| we see that for V0 = 0.1, |D1,1| ∼ 5.352e−4.875|m−m′ |0.3 in the range |m − m′| ≥ 2; for
V0 = 1, |D1,1| ∼ 2.423e−9.288|m−m′ | in the range 0 ≤ |m − m′| ≤ 10; and for V0 = 10,
|D1,1| ∼ 0.574e−8.700|m−m′ | in the range |m − m′| ≤ 3. For V0 = 10, |D1,1| vanishes up to double-precision
error at larger distances. In the case of V0 = 0.1, we have a sub-exponential decay, with ξ < 1.

Fits to nonlinear coefficient |V1| are according to V0 and g. For V0 = 0.1 with g = 0, and 0.1 fits
yield |V1| ∼ 1.316e−0.73|m−m′ |1.17

, and 1.145e−0.78|m−m′ |1.17
respectively, assuming |m−m′| ≤ 5 in both cases,

such decays are slightly super-exponential, and faster than the decay of the linear coefficient; for g = 1
and 10 respective fits yield |V1| ∼ 0.096e−1.49|m−m′ | and 0.001e−1.64|m−m′ | assuming |m − m′| ≤ 3 in both
cases. For V0 = 1, and |m − m′| ≥ 3 we have |V1| ∼ Ceγ|m−m′ |, with γ ∈ [1.93, 1.96] depending on g,
such exponential decays can be appreciated in the log-plots in Figure 2. For V0 = 10, and |m − m′| ≤ 3
we see |V1| ∼ Ce−γ|m−m′ |ξ , with γ ∈ [11, 14] and ξ ∈ [0.72, 0.90] depending on g. For V0 = 10, nonlinear
coefficients show a sub-exponential decay. These results show that as we vary V0 and g we see a variety
of long-range interactions. For moderate potentials V0 ∼ 1 we recover the nonlinear decay of model
Eq. (3.18).
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Figure 1. (Top) Discrete linear coefficients D1,1(∆m′) as a function of lattice-site difference
∆m′ for potentials V0 = 0.1, 1, and 10. Neighbor interactions are modulated according to V0.
Localized interactions decrease with V0, meanwhile nearest neighbor interactions increase by
lowering V0. (Bottom) Log-scale plots of |D1,1(∆m′)| show regions of sub-exponential decay
|D1,1(∆m′)| ∼ Ce−γ|∆m′ |ξ with γ = 4.875 and ξ = 0.3 for V0 = 0.1, and exponential decay
|D1,1(∆m′)| ∼ Ce−γ|∆m′ | with γ ∼ 9 for V0 = 1 and 10, see main text for details.

Figure 2 and Table 2, with V0 = 0.1, show evidence for a rapidly decaying nonlocal interaction that
is similar to the one described by the model of (3.18).
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Table 1. Nearest neighbor linear coefficients D1,1(∆m′) for potentials V0 = 0.1, 1, and 10.

∆m′ V0 = 0.1 V0 = 1 V0 = 10
0 −0.0870 −0.2013 −0.5690
±1 0.0519 0.0372 0.9583×10−4

±2 −0.0133 −0.0032 −0.4242×10−8

Also, by Figures 1 and 2 case V0 = 0.1, the signs of the linear and nonlinear terms are compatible to
the ones assumed in (3.18), and correspond to the focusing sign combination. The off-diagonal linear
coefficients are also rather small (∼ 0.05) compared to the nonlinear coefficients (∼ 1), we are thus
near the “anti-continuous” limit considered for the nonlocal problem in [5, 6]. A similar observation
applies to the larger potential amplitudes shown, V0 = 1, 10. (The diagonal linear coefficient Dm,m

1,1 is
independent of m and can be eliminated by a phase change.) In those two cases the cubic power DNLS
seems to be an adequate model. Figure 2 shows the decay of the nonlinear interaction is faster for
larger V0.
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Figure 2. (Top) Discrete nonlinear coefficients V1(∆m′) for g = 0, 0.1, 1 and 10 for potentials
V0 = 0.1, 1 and 10. Neighbor interactions are modulated by V0 and g. Combination of
small V0 and g increases nearest neighbor interactions. Large potentials V0 favors localized
interactions. In all cases, g decreases the amplitude of neighbor interactions as expected from
(3.26). (Bottom) Log-scale plots of |V1(m1 − m′)| show regions of super-exponential decay
|V1| ∼ Ce−γ|∆m′ |ξ with γ ∼ 0.8 and ξ = 1.17, for V0 = 1 and small g ∼ 0.1; exponential
decay |V1| ∼ Ce−γ|∆m′ | with γ ∈ [1.93, 1.96] according to g, for moderate V0 = 1; and sub-
exponential decay |V1| ∼ Ce−γ|∆m′ |ξ with γ ∈ [11, 14] and ξ ∈ [0.7, 0.9] according to g, for
V0 = 10, see main text for details.
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Table 2. Nearest neighbor nonlinear coefficients V1(∆m′) for g = 0.1, 1 and 10 for potentials
V0 = 0.1, 1, and 10.

g = 0.1 g = 1 g = 10
∆m′ V0 = 0.1 V0 = 1 V0 = 10 V0 = 0.1 V0 = 1 V0 = 10 V0 = 0.1 V0 = 1 V0 = 10

0 1.1361 0.6553 0.5526 0.0965 0.1808 0.2390 0.0010 0.0026 0.0055
±1 0.5592 0.0297 0.0031 0.0224 0.0041 0.0028 0.0002 0.0001 0.0003
±2 0.1651 0.0037 0.0011 0.0036 0.0020 0.0010 0.0000 0.0000 0.0001

5. Discussion

We derived a model NLS-elliptic system for an optical waveguide array in a nonlocal medium,
and used Wannier functions defined by an associated Schrödinger operator with periodic potential to
write an infinite system for the interaction of the Wannier modes of the laser beam amplitude. We also
discuss a simplified system that considers a subset of the interactions of Wannier modes whithin the
first energy band of the periodic Schrödinger operator. We obtain a generalization of a nonlocal DNLS
model derived by Fratalocchi-Assanto [4]. We see that nonlocal effects are more pronounced for small
amplitude oscillations of the system coefficients across the waveguide array.

The NLS-elliptic model we use is a variant to the one considered by [4], where the authors use
alternative perturbative arguments to solve approximately the equations for the pretilt angle θ0 and
for an additional angle ψ produced by the laser beam. In the present work we focus on the equation
for the additional angle ψ, and solve it by introducing expansions in Wannier functions. Another
difference is in the treatment of the equation for the electric field, where [4] uses a coupled mode
Ansatz, with mode couplings of a predetermined. The present paper considers a related but more
general idea, expansion in a Wannier basis [8]. The computation of the Wannier functions is involved,
but advantages include the fact that the Wannier mode interactions are determined by the continuous
equation. Also the general discrete system that describes the interactions among all modes can be
simplified by considering a finite (and small) number of Wannier modes per site, and a subset of the
mode interactions. Calculations that will be reported elsewhere suggest that these simplifications can
be also made at the level of the Hamiltonian, preserving the Hamiltonian structure of the continuous
model.

The simplification leading to discrete equations with the structure of the Fratalocchi-Assanto
model suggests nonlinear interactions that decay roughly in an exponential way, as in [4]. The
construction of [4] considers only nearest-neighbor linear interactions. In cases of slower decay for
the nonlinear coupling, i.e., more pronounced nonlocality, our results suggest that we could also
consider nonlocal linear coupling terms. Even in these cases however, linear couplings decay faster
that nonlinear couplings, justifying the simplification in [4], and also suggesting the relevance of the
anti-continuous limit considered in [5, 6].

In future work we plan to examine models describing a larger class of interactions within the first
band, as well as interactions with the second band. Higher local modes may be especially relevant
for higher nonlocality, and are also relevant to experimental observations [1–3]. It would be also
of interest to construct discrete models with saturation effects [18], starting from (2.4), (2.5). The
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formalism described so far does not apply directly.

A. Appendix. Computation of Wannier functions and energies

A.1. Two linearly independent solutions ψ1(y) and ψ2(y) of the Schrödinger equation

We solve the Schrödinger equation (3.2)

−
d2

dy2 Ψ(y) + V(y)Ψ(y) = EΨ(y), Ψ : R→ C (A.1)

for the b-periodic square-well potential

V(y) =

 V0 if 0 ≤ y < ϑ,

0 if ϑ < y ≤ b
, (A.2)

where V0 > 0 is the potential amplitude and ϑ its width. Results for some spacial cases are in [10, 26].
Solutions of (A.1) have eigenenergies that belong to intervals called energy bands. Ψ’s solutions

may be expressed in terms of the so-called Bloch wave functions un,k(y), that have the same period as
V , as

Ψn,k(y) = eikyun,k(y). (A.3)

k is the parameter that allows to explore values within the energy bands

E = En,k, n = 1, 2, 3, . . . . (A.4)

For the general solution of (A.1), we first find two linearly independent solutions ψ1(y) and ψ2(y)
assuming the initial conditions

ψ1(0+)= 1, ψ′1(0+)= 0, (A.5)

ψ2(0+)= 0, ψ′2(0+)= 1. (A.6)

For En,k > V0, solutions are

ψ1(y) =

cos ηy, if 0 ≤ y ≤ ϑ

cos ηϑ cos Γ(y − ϑ) − η

Γ
sin ηϑ sin Γ(y − ϑ), if ϑ < y ≤ b,

(A.7)

ψ2(y) =

 1
η

sin ηy, if 0 ≤ y ≤ ϑ
1
η

sin ηϑ cos Γ(y − ϑ) + 1
Γ

cos ηϑ sin Γ(y − ϑ), if ϑ < y ≤ b,
(A.8)

and for En,k < V0

ψ1(y) =

cosh ζy, if 0 ≤ y ≤ ϑ

cosh ζϑ cos Γ(y − ϑ) +
ζ

Γ
sinh ζϑ sin Γ(y − ϑ), if ϑ < y ≤ b

(A.9)

ψ2(y) =

 1
ζ

sinh ζy, if 0 ≤ y ≤ ϑ
1
ζ

sinh ζϑ cos Γ(y − ϑ) + 1
Γ

cosh ζϑ sin Γ(y − ϑ), if ϑ < y ≤ b,
(A.10)

with η =
√

E − V0, Γ =
√

E, and ζ =
√

V0 − E.
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A.2. Bloch functions

The Schrödinger equation (A.1) is a second-order linear differential equation. The general solution
Ψ(y) = Ψn,k(y) may be computed as a linear combination of the independent solutions ψ1(y) and ψ2(y).
Such linearity also applies to the derivatives, leading to the system

Ψ(y) = Aψ1(y) + Bψ2(y), (A.11)

Ψ′(y) = Aψ′1(y) + Bψ′2(y). (A.12)

By assuming the initial conditions Ψ(y+
0 ) and Ψ′(y+

0 ), using y+
0 = 0+, we eliminate the constants A and

B. The resulting system of equations is written in matrix form following the procedure of Bruno and
Nacbar [23] (

Ψ(y)
Ψ′(y)

)
=

(
ψ1(y) ψ2(y)
ψ′1(y) ψ′2(y)

) (
Ψ(y+

0 )
Ψ′(y+

0 )

)
, (A.13)

where the 2 × 2 matrix in the right-hand side is known as the transfer matrix T from y+
0 to y.

Eigenfunctions Ψ(y) and Ψ′(y) satisfy the Bloch theorem, i.e., Ψn,k(y + b) = eikbΨn,k(y). Evaluation
of (A.13) at y = y+

0 + b, and use of the Bloch theorem leads to

eikb

(
Ψ(y+

0 )
Ψ′(y+

0 )

)
=

(
M11 M12

M21 M22

) (
Ψ(y+

0 )
Ψ′(y+

0 )

)
, (A.14)

where (Mi j) (i, j = 1, 2) are elements of the primitive matrix M defined by(
M11 M12

M21 M22

)
=

(
ψ1(y+

0 + b) ψ2(y+
0 + b)

ψ′1(y+
0 + b) ψ′2(y+

0 + b)

)
. (A.15)

Initial conditions with non trivial Ψ(y+
0 ) and Ψ′(y+

0 ) to solve (A.14) lead to the secular equation

2µ(E) = cos kb, (A.16)

with
µ(E) =

M11 + M22

2
. (A.17)

Substitution of M11 and M22 in the last expression yields the well-known transcendental equation
for the eigenenergies En,k as a function of k, or equivalently η and Γ. For the square-well potential, for
En,k > V0 it is

cos(kb) = cos(ηϑ) cos(Γ(b − ϑ)) −
Γ2 + η2

2Γη
sin(ηϑ) sin(Γ(b − ϑ)), (A.18)

and for En,k < V0

cos(kb) = cosh(ζϑ) cos(Γ(b − ϑ)) −
Γ2 − ζ2

2Γζ
sinh(ζϑ) sin(Γ(b − ϑ)). (A.19)

Now, computation of Ψ(y) in terms of the initial conditions is obtained from the first equation in
(A.13), which is

Ψ(y) = Ψ(y+
0 )ψ1(y) + Ψ′(y+

0 )ψ2(y). (A.20)
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Ψ(y+
0 ) and Ψ′(y+

0 ) may be related from (A.14) and (A.15) as

Ψ(y+
0 ) =

eikb − M22

M21
Ψ′(y+

0 ) (A.21)

Ψ′(y+
0 ) =

eikb − M11

M12
Ψ(y+

0 ), (A.22)

therefore substitution of one of them into (A.20) leads to Ψ(y) known up to one constant. Substitution
of (A.22) into (A.20), for M12 , 0, leads to

Ψn,k(y) =
Ψ(y+

0 )
M12

{{
M12ψ1(y) − M11ψ2(y) + cos (kb)

}
+ i sin (kb)ψ2(y)

}
. (A.23)

The initial condition Ψ(y+
0 ) is chosen to normalize the Ψ(y) function. Bruno and Nacbar started with

the Schrödinger equation and used the derivative of the secular equation to find an analytical expression
for the normalization constant |Ψ(y+

0 )|, see Appendix B of [23]. The corresponding normalization
constant for the Schrödinger equation in (3.2), is

|Ψ(y+
0 )| =

√
−

M12

2µ′(E)
(A.24)

assuming that µ′(E) , 0. Bruno and Nacbar define positive-Ψ Wannier functions if the initial condition
Ψ(y+

0 ) is positive and such that
Ψ(y+

0 ) = |Ψ(y+
0 )| (A.25)

with |Ψ(y+
0 )| given by (A.24). In what follows, we used a positive initial condition Ψ(y+

0 ), as defined
through (A.25) and (A.24) for Bloch functions given by (A.23).

Ψn,k of (A.23) depends explicitly on k through cos kb in the real part and sin kb in the imaginary
part. Ψn,k also depends implicitly on k though En,k = En(k) by Ψ(y+

0 ), M12, M11, ψ1(y) and ψ2(y). If
En(k) has even parity on k then all terms implicitly depending on k are also even by their definition. In
such a case, Ψn,k(y) obeys the inversion symmetry Ψn,−k(y) = Ψ∗n,k(y) and Wannier functions are real,
according to (3.5)

wm
n (y) =

√
b

2π

∫ π
b

0
2Re

{
Ψn,k(y)e−imbk

}
dk, m ∈ Z. (A.26)

A.3. Eigenenergy spectrum and Wannier functions
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Figure 3. Eigenenergies for the square well-potential with amplitudes V0 = 0.1, 1 and 10.
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We numerically solve (A.18) and (A.19) to find En,k as a function of k, for the square-well potential
of period b = 2π and amplitude width ϑ = π. Solutions were computed using Newton’s method. As
potential amplitudes we chose V0 = 0.1, 1, and 10. Figure 3 shows results of the lowest energy bands
En(k) in the range k ∈ [−1/2, 1/2]. Results show even parity on k.
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Figure 4. Wannier functions w0
n(y) of the first five energy bands (for n = 1, . . . , 5) for

square-well potentials V0 = 0.1, 1, and 10. Dashed lines are a schematic representation of
the potential of width ϑ = π. The Y-axis is in lattice units with b = 2π.

Mathematics in Engineering Volume 1, Issue 2, 309–326.



325

We used the eigenenergies to evaluate the real and imaginary parts of the Wannier functions from
(3.5) using the Bloch functions (A.23). Wannier functions are real, in agreement with the inversion
symmetry of Bloch functions [23]. The integral in (3.5) is computed by Simpson’s rule using a grid
with 103 points. Figure 4 shows Wannier functions w0

n(y) of the first five energy bands (for n = 1, . . . , 5)
for potentials V0 = 0.1, 1, and 10. Plots range from y ∈ [−15b, 15b] in lattice units. Wannier functions
show oscillations that decay along the y-coordinate. The number of oscillations increases with the band
number n, and decreases with the amplitude of the potential V0. Oscillations still persist after several
periods from the origin, primarily for large energy bands.
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