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Universidad Nacional Autónoma de México,
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We study shelf-like breathers and dispersive shock phenomena in a discrete nonlinear
Schrödinger (DNLS) equation with a nonlocal nonlinearity. The system models laser
light propagation in waveguide arrays made from a nematic liquid crystal substratum.
Shelf-like breathers are studied in the regime of small linear intersite coupling, and we
report some new theoretical existence and stability results. We also study numerically the
evolution from nearby dam-break and more general jump initial conditions for stronger
linear intersite coupling. In the defocusing case, we see rarefaction and shock wave
profiles, superposed with oscillations. Some of the hyperbolic features of the observed
profiles are described approximately by continuous NLS hydrodynamics. Nonlocality is
seen to lead to some smoothing of the rapid oscillations seen in the local DNLS.

Keywords: Discrete NLS; nonlinear lattices; nematic liquid crystals; breathers; dispersive
shocks.

1. Introduction

The discrete nonlinear Schrödinger (DNLS) equation is a well-studied model of light
propagation in structures with periodicity or more general spatial inhomogeneity in
the directions perpendicular to the optical axis.1,2 Such geometries have also been
explored in highly nonlinear and nonlocal media such as nematic liquid crystals,3–5

where the nonlocality leads to a DNLS equation with the Hartree-type cubic non-
linearity proposed by Fratalocchi and Assanto.6 Related experimental work is also
reported in Refs. 7–9. The present paper explores further some of the properties
of this nonlocal DNLS, and the sometimes surprising differences with the standard
cubic DNLS with power nonlinearity.

The special properties of the nonlocal model of Fratalocchi–Assanto6 can be
made more precise when we examine breather solutions, see Ref. 10 for some
other properties. Nonlocality leads to well-localized breathers, but the lineariza-
tion around these solutions has internal modes with appreciable amplitude in the
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region of small breather amplitude.11 The nonlocal system of Ref. 6 also has local-
ized solutions with maximum amplitude at the interface between bright and dark
regions.11 In Sec. 2, we report some recent results on related “shelf-type” breather
solutions for the nonlocal DNLS and its local limit, the standard cubic DNLS, see
Ref. 12 for more mathematical details. As in other contexts, shelves (or “kinks”)
are solutions that asymptote to a nonzero value at −∞, and decay at +∞. We see
that for small linear intersite coupling shelf-type breathers exist, and we also obtain
results on their linearly stability.

Part of the motivation for studying shelf-type breathers is that they are near
the dam-break initial conditions studied in continuous NLS equations13 and more
recently in nonlocal analogues.14 Here, we are also interested in discrete analogues
of more general jump initial conditions. In the continuous case, jump initial condi-
tions lead to the formation of dispersive shock structures. The literature on these
phenomena is extensive, see Ref. 14 for a list of references. In Sec. 3, we examine
discrete analogues for both the nonlocal DNLS and its local limit. Note that small
amplitude jumps for the power DNLS that have been studied in detail in Ref. 15.

In the defocusing case, a special feature of the DNLS equation is that, for
small linear intersite coupling, the amplitude in the darker region does not increase
significantly. For instance, the amplitude remains small in the dark region of the
dam-break initial condition, in both the local and nonlocal systems. As the lin-
ear intersite coupling is increased, we start to see some of the continuous NLS
hydrodynamic behavior for the amplitude and phase variables, such a rarefaction
wave trailing a shock wave that moves into the small amplitude region at constant
speed. We see that continuous NLS calculations, see e.g., Ref. 14, predict the rough
geometry of the discrete shock reasonably well. Features such as the slope of the
rarefaction wave, and the speed of the leading jump are not affected significantly
by nonlocality. The main nonlocal effect is a smoothing of some of the features of
the amplitude profile. For example, high frequency oscillations behind the leading
jump seen for small nonlocality start to resemble smooth soliton wavetrains as we
increase the nonlocality parameter.

Focusing DNLS equations with discrete jump initial conditions also exhibit inter-
esting dynamics. We see a combination of large amplitude oscillations in the bright
region with a slow transfer of energy to the darker region. This basic effect seems
to be present in both the local and nonlocal systems. The present study of disper-
sive wave phenomena in DNLS is preliminary, and the explanation of many of our
numerical results in Sec. 3 requires further work, see Sec. 4 for further comments.

2. Shelf Solutions in Discrete NLS Equations and Their Stability

The one-dimensional discrete NLS equation proposed in the study of nematic waveg-
uide arrays6 is

u̇n = δi(un+1 +un−1 − 2un)+ 2γ tanh
κ

2
i

(∑
m∈Z

e−κ|m−n||um|2
)

un, n∈Z (2.1)
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with δ, γ, κ real constants, κ > 0. κ is the “nonlocality” parameter. We can also
write (2.1) as a Hamiltonian system with Hamiltonian H given by

H = δ
∑
n∈Z

|un+1 − un|2 − γ tanh
κ

2

∑
n∈Z

∑
m∈Z

|um|2e−κ|m−n||un|2, (2.2)

see e.g., Ref. 11. An additional conserved quantity for suitably decaying solutions
is the power P =

∑
n∈Z

|un|2.
In the “local limit” κ → ∞, we recover the well-known cubic discrete NLS. In

the “nonlocal limit” κ → 0 with P finite, e.g., suitably decaying initial conditions,
(2.1) reduces to a linear system.

The effect of nonlocality in (2.1) can be seen quite precisely when we examine
“breather” solutions and their linear stability. Breathers are solutions of (2.1) of
the form un = e−iωtAn, with ω real, and A : Z → C. By (2.1), A, ω then satisfy

−ωAn = δ(An+1 + An−1 − 2An)+ 2γ tanh
κ

2

(∑
m∈ Z

e−κ|m−n||Am|2
)

An, ∀n∈Z.

(2.3)

Equation (2.3) can be solved for A that decays as n → ±∞, see Refs. 11,
16 and 17 for results of this type. We can also consider solutions that do not
decay at infinity. In particular, a shelf-type breather is a solution of (2.3) satisfying
An → A �= 0 as n → −∞, and An → 0 as n → +∞.

Shelf-type breathers are first sought for δ = 0, and then continued to |δ| small.
For κ > 0, ωγ < 0, these δ = 0 solutions have the profile An = Ãn with

Ãn =


α if n < n0,

α√
1−ρ

if n = n0,

0 if n > n0

(2.4)

with ρ = e−κ, α2 = ω(−2γ tanh(κ
2 ))−1 1−ρ

1+ρ , see Ref. 12. The interface is at an
arbitrary site n0, and we also have more general solutions of (2.3) satisfying |An| =
Ãn, for all integer n.

The main effect of the nonlocality is that the amplitude has its maximum at
the interface n0. In the local limit κ → ∞, the amplitude at n0 becomes α, and we
recover the shelf breather solution of the power cubic DNLS. In Ref. 12, we prove
that the solution (2.4) persists for |δ| sufficiently small, with a slightly perturbed
profile. In particular, the amplitude has its maximum at n0, and the same limiting
values at ±∞.

It appears that solutions of (2.3) with different limiting amplitudes at ±∞
can not be obtained using the breather Ansatz and are in general two-periodic
solutions, consider e.g., the case κ → ∞, δ = 0. The existence of such solutions for
more general parameter values seems to be open.

To analyze the linear stability of solutions of (2.1), we use the variable v defined
by u = e−iωtv. The amplitude A of a breather solution is then a fixed point of the
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evolution equation for v, and linear stability analysis is the study of the linearization
around solutions v = A. To see the general structure of these equations, let z =
[q, p]T , where q, p are real functions on Z with zn = [qn, pn]T , qn = Revn, pn = Imvn,
n ∈ Z. The linearization at a fixed point A is then

ż = JHz, (2.5)

with

J =

[
0 I

−I 0

]
, H =

[
L+ 0

0 L−

]
, (2.6)

where

L− = −ωI − δ∆ + 2A, L+ = −ωI − δ∆ + 2A + 4M, (2.7)

and A, M are linear operators on real functions on Z defined by

A(n, k) = tanh
κ

2

(∑
m∈Z

e−κ|m−n|A2
m

)
δn,k, n, κ ∈ Z, (2.8)

M(n, k) = tanh
κ

2
e−κ|n−k|AkAn, n, k ∈ Z (2.9)

with δn,k the Kronecker delta.
The linear stability equations above can be used for both decaying and nonde-

caying breather solutions.12

The study of the spectrum of the operator JH around the small |δ| shelf solutions
above is motivated by the question of the evolution from the vicinity of the shelf,
and of possible quantitative changes as |δ| is increased, see Sec. 3.

The spectrum of JH for shelf-type breathers of both the local and nonlocal
DNLS equations is studied in mathematical detail in Ref. 12, and we here outline
the main results of that work. We remark that the theoretical analysis of the non-
local case is not as complete, and only concerns the continuous spectrum of JH
(numerical studies suggest the existence of point spectrum as well). Specifically,
in Ref. 12, we fix γ = −1 (to simplify the notation) and show that for any given
κ > 0 and |δ| sufficiently small, the essential spectrum of JH for the nonlocal shelf
includes the set of λ ∈ C that satisfy λ2 ∈ B1 ∪ B2,κ, where B1, B2,κ are the sets

B1 =

{
−
(

ω − 4δsin2 k

2

)2

: k ∈ R)

}
, (2.10)

B2,κ =
{
−4δsin2 k

2

(
2ω

1 − ρ2

1 − 2ρ cosk + ρ2
+ 4δsin2 k

2

)
: k ∈ R)

}
, (2.11)

where ρ = e−κ. Clearly λ2 ∈ B1 implies λ imaginary. In the cases δ < 0 (focusing),
δ > 0 (defocusing) λ2 ∈ B2,κ implies λ real, imaginary, respectively.

In the defocusing case (2.10), (2.11) can be interpreted as describing two dis-
persion relations corresponding, respectively, to the linearization around the trivial
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solution An = 0, for n (case λ2 ∈ B1), and around the constant solution An = α, for
all n, (case λ2 ∈ B2,κ). The result for the local limit is obtained by taking κ → ∞
in (2.11). A technical detail is that in the local problem, the set of λ satisfying
λ2 ∈ B1 ∪ B2,∞ was shown to describe the essential spectrum completely. In the
nonlocal problem, we have not ruled out a bigger set.

Note that in Ref. 11, we showed the existence of breathers that are continuations
of δ = 0 solutions of (2.3) with compact support consisting of a finite set of m

consecutive sites. These solutions may be termed “finite shelf” breathers. For κ > 0,
δ = 0, and m ≥ 3, their amplitude has its maximum at the two interface sites, and
is constant at the m − 2 interior sites.11 As κ → ∞, we recover a solution of the
power DNLS, with constant amplitude at the m sites as δ → 0. As we increase m

by adding more sites to the left of the initial block, we have a breather that can be
used as a decaying approximation of the (infinite) shelf of (2.4). Moreover, the band
of the λ2 ∈ B2,κ frequencies of the shelf appears to be the limit of point eigenvalues
of the linearization around the finite shelf breathers. In the nonlocal DNLS, there
is also evidence of eigenvalues that are outside this band, which leads us to think
that the shelf spectrum may also contain point eigenvalues, see Fig. 3 of Ref. 11.

3. Discrete Riemann Problem for Local and Nonlocal DNLS

To study the evolution from a discrete analogue of the Riemann problem, we con-
sider initial conditions

un(0) =
{

u1 if n ≤ n0,

u2 if n > n0.
(3.1)

The case u2 = 0 is the “dam-break problem”, and we can consider u1 = α, i.e., an
initial conditions that is close to a shelf-type breather.

In the numerical simulations, we use N = 523 sites with n0 = 261. We also
consider Dirichlet boundary conditions. Boundary effects at N = 1,523 seem neg-
ligible for the local DNLS, but somewhat more difficult to control in the nonlocal
problem, unless the amplitude near the boundary is small. The results for the non-
local problem therefore are more credible away from the boundary. Nevertheless,
our observations on the nonlocal problem below seem to be independent of the
apparent boundary effects. We note that the evaluation of the convolution in the
nonlinearity is expensive and large domain integrations are significantly slower.

In what follows, we show results of the integration of the defocusing DNLS,
starting with the local (cubic power) DNLS. As in the previous section, we fix
γ = −1 so that defocusing corresponds to δ > 0.

For small linear coupling δ, the amplitude profile is essentially that of the initial
condition. This is indicated in Fig. 1, where δ = 0.05 and we show the evolution
from a dam-break initial condition. By (2.10), (2.11), with κ → ∞, the nearby
breather solution is linearly stable. A more general step initial condition, such as
u1 = 1.0, u2 = 0.5, leads to similar behavior.
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Fig. 1. Amplitude |un| versus n at time t = 60, integration of cubic power DNLS. Initial condition
un = 1 for n ≤ 261, un = 0 for n > 261. N = 523, δ = 0.05, γ = −1.0.

Increasing δ, we start to see a behavior that is closer to that of the continuous
NLS. In Fig. 2, we show the evolution from dam-break initial condition u1 = 1.0,
u2 = 0 with δ = −0.5. In Fig. 3, we show the evolution from the step initial
condition u1 = 1.0, u2 = 0.5, with δ = −0.5. Larger δ leads to similar profiles. The
figures suggest possible rarefaction waves and shock-like structures, superimposed
with oscillations. Figure 3 suggests a shock joining the |u2| = 0.5 amplitude value
to an amplitude between 0.5 and 1. Behind this jump, we see an oscillatory region
with an average level that is then joined to the |u1| = 1 amplitude on the left by
what looks like a rarefaction wave.

100 150 200 250 300 350 400 450
n

0

0.5

1

1.5

|u
n
|

Fig. 2. Amplitude |un| versus n at time t = 60, integration of cubic power DNLS. Initial condition
un = 1 for n ≤ 261, un = 0 for n > 261. N = 523, δ = 0.5, γ = −1.0.
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Fig. 3. Amplitude |un| versus n at time t = 60, integration of cubic power DNLS. Initial condition
un = 1 for n ≤ 261, un = 0.5 for n > 261. N = 523, δ = 0.5, γ = −1.0.

We have made a heuristic comparison of one of these profiles to solutions of the
well-known system of conservation laws obtained from the continuous cubic NLS
in hydrodynamic form. Specifically, we consider the cubic NLS

ut = δiuxx + 2iγ|u|2u (3.2)

with γ = −1, i.e., compare to (2.1), and use the variables r, v, where u =
√

reiθ,
and v = ∂xθ. We then examine the well-known hyperbolic system for r > 0, v

(obtained from the evolution equations for r, v, with terms proportional to rxx, r2
x

omitted).
The choice of parameters γ = −1, δ = 0.5 in (3.2) are those used recently in

Ref. 14, and we can readily compare Fig. 3 with the solution (5.1)–(5.5) of Ref. 14
(setting q = 1), describing precisely a shock leading a rarefaction wave connecting
an intermediate amplitude value to the leftmost amplitude u2.

We examine three features of the numerical profiles of Fig. 3:

(i) The hyperbolic system for r, v predicts a slope −(3
√

2t)−1 for the rarefaction
wave.14 Figure 3 for t = 60 suggests that the rarefaction fan has a width of
∼ 75 points, and connects the values |u| = 1 on the left to |u| = 0.75 at
n ∼ 245. The value |u| = 0.75 is an average of the oscillatory region behind
the leading jump. The numerical slope is then −0.0033, while the hyperbolic
theoretical slope at t = 60 is −0.0039.

(ii) The leftmost and rightmost points xL(t), xR(t) of the rarefaction fan of the
hyperbolic system are

xL(t) = −√
2rIt + x0, xR(t) = −(2

√
2rI − 3

√
2rD)t + x0, (3.3)

where rI , rD are the values of |u| at the left and right of the wave, and x0

is the initial position of the discontinuity.14 Here rI = 1, x0 = 261, and we
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use the numerical value rD = 0.75, which is the (average) value of |u| at
the apparent end of the fan: in Fig. 3 this is at n ∼ 245. At t = 60, (3.3)
yields xL(60) = 176, xR(60) = 209, while Fig. 3 suggest xL,num(60) = 175,
xR,num(60) = 245. The discrepancy at the leading amplitude may be due to
some finer structure between the apparent leftmost and rightmost points of
the fan, n = 175, 245, respectively, e.g., closer inspection of |u| in Fig. 3 shows
two possible subregions, before and after n ∼ 200.

(iii) The shock speed of the hyperbolic system is

s =
2r+√

r+ + r−
, (3.4)

where r+, r− are the values of |u| behind, and ahead of the jump, respectively.14

We here obtain these values numerically, e.g., in Fig. 3, we clearly have r− =
0.5, and we also use r+ = 0.75 (arguing as above). The resulting estimate for
the speed from (3.4) is s = 1.34. Using the numerical (approximate) positions
of the jump at different times, we calculate a constant speed of 1.2.

In the nonlocal problem, we see comparable effects. For δ > 0 sufficiently small,
and κ ≥ 0.5, dam-break initial conditions lead to profiles with negligible amplitude
in the dark region. For smaller κ, we see some oscillations in the amplitude of
the dark region sites. Jump initial conditions u1 = 1.0, u2 = 0.5 lead to some
oscillations in both regions, especially near the interface, but no evidence of traveling
wave structures transporting “density” |u| to the darker region. This is indicated
in Fig. 4, where the interface remains at its initial position n = 261.

For larger δ, we see dispersive shock phenomena, as in the local DNLS above.
One of the main features seen for κ sufficiently small is a smoothing of some features

100 150 200 250 300 350 400 450
n

0

0.5

1

1.5

|u
n
|

Fig. 4. Amplitude |un| versus n at time t = 60, integration of (2.1). Initial condition un = 1 for
n ≤ 261, un = 0.5 for n > 261. N = 523, δ = 0.5, γ = −1.0, κ = 0.5.
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Fig. 5. Amplitude |un| versus n at time t = 60, integration of (2.1). Initial condition un = 1 for
n ≤ 261, un = 0.5 for n > 261. N = 523, δ = 0.5, γ = −1.0, κ = 0.5.

of the profile, e.g., the leading jump, as well as the apparent slope discontinuity at
the leftmost point of the rarefaction wave. These features are indicated in Fig. 5,
where κ = 0.5, and the other parameters are as in Fig. 3. For instance, the rough,
i.e., 1–2 site period oscillatory region behind the jump seen in Fig. 3 now has the
appearance of a train of solitary waves. The leading wave has a width of about 12
sites. The speed of the leading jump is however almost identical to the one we see
in the local DNLS, see Fig. 3. In other experiments with the same parameters, e.g.,
the initial conditions of Fig. 2, the leading jump moves faster as we decrease κ, but
smoothing is only evident in structures that are further behind the leading jump.

In the focusing case, dam-break initial conditions lead to some interesting
dynamics, with large amplitude fluctuations in the bright region and a slow transfer
of energy to the dark region. In Fig. 6, we see the onset of the amplitude fluctu-
ations in the bright region, where we see amplitudes in the range of [0.1, 1.8]. We
also see fluctuations at the numerical boundary. As time progresses, the amplitude
fluctuations fill the entire left half of the domain, while the amplitude at the dark
region remains relatively small. For instance, integrating the initial condition of
Fig. 6 to a longer time t = 90, we have |un| ≤ 0.3 for n ∈ [262, 350], and |un| ≤ 0.05
for n > 350. The above observations concern the parameter range κ ≥ 2.5, where
nonlocality seems to have a minor effect, seen mostly in the dark region. The slow
increase of the amplitude in the dark region may be slightly enhanced by unstable
modes with some appreciable amplitude in the dark region, see Ref. 11 for some
indirect evidence of such modes in the finite shelf problem.

The results presented in this section are preliminary. A more detailed study for
the local DNLS in Ref. 15 considers small amplitude jumps in the long wave limit,
e.g., comparisons with numerics use a jump of size smaller that 10−1. The discrete
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Fig. 6. Amplitude |un| versus n at time t = 30, integration of (2.1). Initial condition un = 1 for
n ≤ 261, un = 0.5 for n > 261. N = 523, δ = −0.5, γ = −1.0, κ = 2.5.

system is then approximated by KdV-type equations and dispersive shocks are
analyzed in more detail. We have no analogous theory at present for the oscillations
trailing the jump. KdV solutions may be relevant to the smoothed oscillations in
Fig. 4.

4. Discussion

The present study was motivated in part by the idea that, in the defocusing discrete
NLS equations and nonlocal analogues such as the Fratalocchi–Assanto model,6 the
local dynamics around breathers may be related to the onset of dispersive shock
phenomena.

The present paper provides evidence that such an onset is indeed possible, and
that it would be controlled by the linear intersite coupling δ. On the other hand, the
validity and usefulness of the general idea requires more numerical work, and a more
precise theoretical concept. It would be desirable for instance to study numerically
the continuation of breather solutions from their δ = 0 limit, examine possible
changes in the local dynamics as δ is increased, and correlate such changes with
the appearance of dispersive shock behavior. The above idea applies to dam-break
initial conditions. Its extension to more general jump conditions would require a
study of solutions with different limiting values at ±∞. This problem seems to be
still open, but the presence of 2-torus generalizations of breathers may be possible
by the theory of Ref. 18.

Our study raises other interesting problems. One is to understand the approxi-
mation of discrete dispersive shock phenomena by solutions of continuous models.
Also of interest are the unstable shelf-solutions, and the related evolution of dam-
break initial conditions of the focusing DNLS.
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