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a b s t r a c t

We study numerically the propagation of solitary waves in a Hamiltonian nonlocal
shallow water model for bidirectional wave propagation in channels of variable depth.
The derivation uses small wave amplitude and small depth variation expansions for
the Dirichlet–Neumann operator in the fluid domain, and in the long wave regime we
simplify the nonlinear and bottom topography terms, while keeping the exact linear
dispersion. Solitons are seen to propagate robustly in channelswith rapidly varying bottom
topography, and their speed is predicted accurately by an effective equation obtainedby the
homogenization theory of Craig et al. (2005) [7]. We also study the evolution from peaked
initial conditions and give evidence for solitary waves with limiting peakon profiles at an
apparent threshold before blow-up.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

The evolution of gravity water waves has been studied for many years and one common strategy is to use approximate
simplified equations. One standard approximation is the Boussinesq system for small amplitude long waves, which can
be further used to derive unidirectional models such as the KdV equation. The KdV equation and related models describe
successfully many salient features of long wave propagation such as solitary waves and their interactions. Unidirectional
models with nonlocal terms, such as the one due to Whitham [1], can also describe breaking waves, and cusped solutions
of largest height (reminiscent of the cusped Stokes waves). Several authors, Johnson [2], Miles [3], Iguchi [4], Chazel [5],
among others, have included the effect of smooth, slowly varying, and step bottom topographies in shallow water theory,
while Rosales and Papanicolaou [6], have also studied the effect of a rough bottom on the propagation of solitons using an
homogenization approach.

Recently, Craig et al. [7], have reconsidered the problem of long waves using expansions in nonlocal operators valid for
arbitrary bottom topography. The end result is a Hamiltonian formulation in terms of pseudodifferential operators that can
be calculated recursively in terms of the shape of the wave and the depth variation. In the present work we use a simplified
version of this formulation, deriving shallow water equations for bottom topographies with small depth variation. The
resulting Boussinesq-type equation is expected to be ill-posed, as in the constant depth case, and we instead work with
a system containing the exact (constant depth) linear dispersive term and simplified nonlinear and variable depth terms.
The model can be thought of as a bidirectional analogue of the Whitham equation. The use of such simplified systems for
shallow water waves was also suggested by Zakharov [8].

We present the results of numerical simulations of the nonlocal Boussinesq–Whitham system we derive in several
situations involving constant and variable depth. Smooth initial wave amplitude profiles with suitable unidirectional
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Fig. 1.

velocity potentials lead to KdV-like behavior, with soliton elastic collisions. Smooth step-like depth variations lead to
reflected waves of negligible amplitude. Rapidly varying bottom topography produces reflected waves of higher amplitude,
however solitons still propagate robustly through the variable depth region without significant change. The main effect
is a change of the linear propagation speed, and we see that this change can be predicted accurately by the simple
homogenization proposed by Craig et al. [7]. The idea is to use multiscale expansions of integrals to approximate the
Hamiltonian, and we see that this works well for depth variation with one and two fast spatial scales.

We also examine peakons and singularity formation in the bidirectional nonlocal system. Peakon initial conditions are
generally smoothed and evolve to smooth solitarywaves that leave behind radiating tails. However, there is also evidence of
cases where the solitarywave is well approximated by a peakon away from itsmaximum, andmay be approaching a peakon
as we vary the initial amplitude towards an apparent threshold. Beyond such a threshold we see evidence of blow-up. In the
case of profiles with approximate spatial reflection symmetry, the blow-up is preceded by the evolution to a less symmetric
profile. The results on peakons are also compared to the ones obtained for unidirectional propagation equations ofWhitham
type with kernels describing exact and approximate dispersion relations.

2. Mathematical formulation

We consider an ideal fluid, i.e. incompressible, irrotational and inviscid, that occupies a time dependent domainDt , given
by

Dt(β, η) := {(x, y) : x ∈ R, −h + β(x) < y < η(x, t)},

andwe assume that β(x) < h for all x inR, where h represents the constant reference depth. Themeanwater level is located
at y = 0. The lower boundary −h + β(x) represents the bottom of the fluid, while η(x, t) defines the free surface assumed
to be a graph; see Fig. 1.

The equations of motion for the potential flow take the form

∂tη = ∂yϕ − (∂xη)(∂xϕ), on y = η(x, t), (1)

∂tϕ = −
1
2
|∇ϕ|

2
− gη, on y = η(x, t), (2)

1ϕ(x, y) = 0, on Dt(β, η), (3)

∇ϕ · N(β) = 0, on y = −h + β(x), (4)

where N(β) = (1 + (∂xβ)2)−1/2(∂xβ, −1) is the exterior unit normal vector. We are interested in the initial value problem
with initial conditions η0(x) and ϕ0(x) that tend to zerowhen x → ±∞. Defining the function ξ(x, t) := ϕ(x, η(x, t), t), the
evaluation of the potential at the free surface at time t , we note that we should be able to determine the evolution of ϕ by
the evolution of η and ξ . To formulate (1)–(4) as an evolution equation for η, and ξ , define the Dirichlet–Neumann operator
G by

(G(β, η)ξ)(x) = (1 + (∂xη(x))2)1/2∇ϕ(x, η(x)) · N(η(x)),
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where N(η(x)) = (1 + (∂xη(x))2)−1/2(−∂xη(x), 1), x ∈ R, and ϕ is the solution of

1ϕ(x, y) = 0 for (x, y) in D,
ϕ(x, η(x)) = ξ(x) for x in R,
∂ϕ

∂ n̂
(x, −h + β(x)) = 0 for x inR,

 (5)

where n̂ denotes the exterior normal derivative on ∂D.
It is shown in [9], that the water wave problem (1)–(4) is formulated as the evolution equation for ξ and η in the form

ηt = G(β, η)ξ, (6)

ξt = −
1

2(1 + η2
x )


ξ 2
x − (G(β, η)ξ)2 + 2ηxξxG(β, η)ξ


− gη. (7)

The total energy of the system of the equations for fluid motion is denoted by H , which is the sum of the kinetic energy K ,
and potential energy U:

H = K + U

=


R

 η(x)

−h+β(x)

1
2
|u|2dydx +


R

 η(x)

−h+β(x)
gy dy dx

=


R

 η(x)

−h+β(x)

1
2
|∇ϕ|

2 dy dx +


R

1
2
gη2 dx − Cβ , (8)

where the constant Cβ is irrelevant to the dynamics and can be omitted. It is shown in [10], that the water wave equations
are Hamiltonian in the form

∂t


η
ξ


=


0 I
−I 0

 
δH
δη

δH
δξ

 , (9)

where H is given by (8) with Cβ = 0.
The Hamiltonian (8) can be expressed through the Dirichlet–Neumann operator, and takes the form

H =
1
2


R


ξG(β, η)ξ + gη2dx. (10)

We now use the expansion of G in powers of η developed by Craig et al. [7] to obtain shallowwater equations for variable
depth. Following Craig and Groves [11], we use the approximate expressions for G in the Hamiltonian (10) to derive shallow
water models that are also Hamiltonian. In particular, the Dirichlet–Neumann operator is expanded in the amplitude of the
free surface in the form

G(β, η) = G0(β, η) + G1(β, η) + G2(β, η) + · · · , (11)

where Gk is homogeneous of degree k in η.
The main result is that the nonlocal operators Gk(β, η) can be explicitly given for small perturbations of the undisturbed

depth h in a recursive form. The first three terms are

G0 = D tanh(hD) + DL(β), (12)
G1 = DηD − G0ηG0,

G2 =
1
2


G0Dη2D − D2η2G0 − 2G0ηG1


,

where D = −i∂x. The operator L(β) in (12) can be written in powers of the depth variation β as L(β) =


∞

j=1 Lj(β), with
the Lj homogeneous of degree j in β . The first two terms in the expansion of L(β) are

L1(β) = −sech(hD)βD sech(hD),

L2(β) = sech(hD)βD sinh(hD)L1(β). (13)

The zeroth order term G0 in (12) is the Dirichlet–Neumann operator for a domain with a flat surface η ≡ 0, and splits
into a constant depth part D tanh(hD) and the part DL(β) that contains the bottom topography information.

We thus see that for small amplitude of the waves, and small perturbations of the bottom profile, a truncation of
the expansion for the Dirichlet–Neumann operator, gives a nonlocal evolution equation with pseudodifferential operators
defined explicitly only on the surface variables. It must be noted that the simplification for β small makes the Hamiltonian
explicit.
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To introduce the shallow water theory, define the three nondimensional parameters, α = a/h, δ = (h/l)2, and γ = b/h,
where a is the typical amplitude, l is the typical wave-length, h is the average depth, and b is the typical bottom amplitude;
see Fig. 1. The dimensionless variables are given by

x∗
=

x
l
, t∗ =

t
l/c0

, η∗
=

η

a
, ξ ∗

=
ξ

gla/c0
, and β∗

=
β

b
. (14)

In what follows we drop the ∗ from the dimensionless variables.
From Eq. (10), the approximate Hamiltonian takes the form of a polynomial in η of pseudodifferential operators acting on

the variable ξ . To obtain the Boussinesq–Whitham approximationwe Taylor expand all Fouriermultipliers such as tanh(hD)
inG in powers of the derivative hD. However, to keep the full linear dispersion relationwe followWhitham and use the exact
expression for the constant depth quadratic part 1

2


ξD tanh(hD)ξ of H , and apply the expansion to powers of derivatives

in all the remaining terms of H . Finally, we use the usual Boussinesq scaling to approximate the remaining terms. To this
end we scale the wave length in the shallow water form l = h/

√
δ, and take ε := α = δ = γ ≪ 1. We then have H = H0 +

O(ϵ2), with H0 the ‘‘Boussinesq–Whitham’’ Hamiltonian given by

H0 =
1
2


∞

−∞


ξ

D
√

ε
tanh(

√
εD)ξ − εβ(∂xξ)2 + εη(∂xξ)2 + η2


dx. (15)

Thus in approximatingH byH0 all deleted terms are ofO(ϵ2). Hamilton’s equation (9) for (15) gives the following system

ηt = −∂x
tanh(

√
εD)

√
εD

u + ε∂x(βu) − ε∂x(ηu), (16)

ut = −∂xη −
ε

2
∂x


u2, (17)

where we have also introduced the variable u := ∂xξ . Note that the symbol of the pseudodifferential operator tanh(
√

εD)/
√

εD is a smooth function, and therefore is well defined; see [12]. The system (16)–(17) can be rewritten as

∂t


η
u


=


0 −∂x

−∂x 0

 
δH1

δη

δH1

δu

 , (18)

where

H1 =
1
2


∞

−∞


u
tanh(

√
εD)

√
εD

u − εβu2
+ εηu2

+ η2

dx. (19)

The cosymplectic operator

J =


0 −∂x

−∂x 0


, (20)

is seen to be skew-symmetric upon integration by parts, and fulfills the Jacobi identity since it is independent of the
dynamical variables.

Finally, note that besides H1, the mass functional

M(η) :=


∞

−∞

η dx, (21)

and the linear momentum functional

I(u) :=


∞

−∞

u dx (22)

are conserved quantities of system (16)–(17). The conservation of H1,M , and I will be used to assess the accuracy of the
numerical solutions.

3. Effective equation

To study homogenized equations for rough bottomswe assume that the bottomdepends on two scales.Making reference
to Fig. 1, we denote by d the typical wavelength of the bottom, and suppose that β := β(x, x/d) and that it is P-periodic
with respect to the second entry. Therefore, the dimensionless bottom β∗ is expressed as

β∗
=

β(x, x/d)
b

.
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We are going to suppose that d/l =
√

ε. Hence, dropping off the ∗, the dimensionless bottom is β = β(x, x/
√

ε). Then
the homogenized equations of motion are obtained averaging the Hamiltonian (19), with respect to the fast variable x/

√
ε,

H1 =
1
2


∞

−∞


u
tanh(

√
εD)

√
εD

u − εβ u2
+ εηu2

+ η2

dx + O(ε2), (23)

where

β(x) =
1
P

 P

0
β(x, y)dy. (24)

Neglecting the terms O(ε2) in (23), we get the effective Hamiltonian, from which we finally obtain the averaged system

ηt = −∂x
tanh(

√
εD)

√
εD

u + ε∂x(βu) − ε∂x(ηu), (25)

ut = −∂xη −
1
2
ε∂x


u2. (26)

where β depends only on one scale. It is to be noted that the assumption β small avoids solving the cell problem which is a
major numerical step.

The idea of homogenizing by using two-scale expansions of integrals in the Hamiltonian appears in [7], where we also
find a justification for these expansions.

4. Numerical solution

To solve the system (16)–(17) we use the Fourier collocation method; see [13]. We consider L-periodic boundary
conditions in the domain [−L/2, L/2) and choose the N collocation points as xj = Lj/N − L/2, for j = 0, . . . ,N − 1.
Also, let SN denote the span of trigonometric polynomials {exp(i(2πk/L)x)}, with k ∈ Z,N/2 ≤ k ≤ N/2− 1. The functions
of interest (η(x), u(x))⊤ are approximated as

η
u


=

N/2−1
k=−N/2


η̃k
ũk


exp(i(2πk/L)x), (27)

where η̃k, ũk are Fourier interpolation coefficients; see [13] for details. We thus solve the system

d
dt


η
u


=


f1


η,u


f2


η,u

 (28)

where

f1

η,u


= −F −1

{i tanh(k) � F (u)} + F −1
{ik � sech(k) � F {β � F −1(sech(k) � F (u))}}

− F −1
{ik � F {u � η}}, (29)

f2

η,u


= −F −1(ik � F (η)) −

1
2

F −1
{ik � F (u � u)}, (30)

where F , F −1 denote the discrete Fourier and inverse Fourier transforms respectively, a � b denotes component-wise
multiplication of vectors a, b in CN , and

k = (−N/2, −N/2 + 1, . . . ,N/2 − 1)⊤,

u = (u0, u1, . . . , uN−1)
⊤,

η = (η0, η1, . . . , ηN−1)
⊤,

β = (β(x0), β(x1), . . . , β(xN−1))
⊤,

for −N/2 ≤ k ≤ N/2 − 1. The initial conditions are

η(0) = (η(x0), η(x1), . . . , η(xN−1))
⊤,

u(0) = (u(x0), u(x1), . . . , u(xN−1))
⊤.

The number of collocation points that we use is a power of 2. Therefore, while the initial conditions are real functions, their
trigonometric interpolates can be complex. To avoid this we set η̃−N/2 and ũ−N/2 in (27) equal to zero; see [13, p. 123].

To integrate numerically system (28), we use a fourth-order Adams–Bashford/Moulton (ABM) predictor–corrector
scheme (see [14,15, Section III.1]). The ABM predictor/corrector scheme requires two functional evaluations per step. It
is therefore faster than the fourth order Runge–Kutta and has less error accumulation per step. The method was initiated
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Fig. 2. (a) The initial wave profile. (b) A soliton moving to the right at time t = 160.103.

with a fourth-order Runge–Kutta scheme. We may also expect that any possible high frequencies that could arise while
solving our equation can be resolved by the ABM predictor/corrector. Accordingly, the predictor is defined as

yn+1 = yn +
1t
24

(55ẏn − 59ẏn−1 + 37ẏn−2 − 9ẏn−3),

and the corrector as

yn+1 = yn +
1t
720

(251ẏn+1 + 646ẏn − 264ẏn−1 + 106ẏn−2 − 19ẏn−3).

For all the numerical experiments that we show we considered smooth initial conditions η and u with rapid decay as
x → ±∞, so that we can consider u(−L/2) = u(L/2) and η(−L/2) = η(L/2) up to a small error. We choose the time step
1t and the spatial step 1x, in such a way that the relative error of the conserved quantities (19), (21) and (22) is typically
around 10−14. This ascertains the accuracy of our numerical solution. The numerical scheme was implemented in MATLAB.

In addition, givenηwe tooku in such away that it satisfies the first order terms of the linear part of (16)–(17), i.e.ηt = −ux
and ut = −ηx. This approximation is appropriate since it gives a good description of the motion of surface water waves on
a short time and it is used to put as initial conditions exact solutions of unidirectional equations that involve only η.

5. Solitary wave solutions for constant depth

It is well known that unidirectional shallow water wave equations such as the KdV, the Camassa–Holm, and the BBM
(see [16]) have localized traveling wave solutions. In the case of the KdV and Camassa–Holm equations these traveling
waves, known as solitons (and peakons in some cases of the Camassa–Holm equation), have elastic collisions with phase-
shift. We want to determine whether system (16)–(17) with a flat bottom also has solitons. To the best of our knowledge
there has not been previous research on such a bidirectional equation with the full dispersion relation of linear waves.
Ehrnström et al. [17] have recently proved the existence of solitons for a Whitham equation with the full linear dispersion,
see also chapter 8, and Eq. (42) with kernel (43).

To study the evolution of KdV-type (i.e. unidirectional) initial conditions in the system (16)–(17), we use L = 200, ε =

0.1, and N = 1024, and the initial condition

η0 = u0 = 0.1sech2(0.27(x + 80)). (31)

The initial value satisfies the amplitude/width ratio of the KdV soliton traveling to the right, as shown in Fig. 2(b). The
equations were integrated up to a time t = 165. In Fig. 2(b), we show the evolution of this initial condition into a more
permanent form with no radiation shed (to graphical accuracy).

We now consider the evolution of the following initial condition

η1(x) = u1(x) = 0.3 sech2(0.7 (x + 780)). (32)

The amplitude has the functional form of a KdV soliton but the amplitude/width ratio is different from that of the KdV
soliton. The length of the channel is L = 1600, the number of nodes N = 8192, and ε = 0.3. As in the KdV approximation
the initial condition sheds radiation, see Fig. 3(a), and a peak detaches and travels, as shown in Fig. 3(b), as a solitary wave.
Zooming into Fig. 3(a) and (b), we see that the traveling waves shown there are smooth.

The KdV soliton solutions have the characteristic property that their collision is elastic, with a small phase-shift. We see
numerical evidence that similar phenomena occur in system (16)–(17) as well. To study the interaction we consider the
overtaking of a small KdV soliton by a larger one. We take ε = 0.3, β ≡ 0, L = 1800, and N = 4096. The initial condition

η2(x) = u2(x) = 0.3 sech2(0.55 (x + 880)) + 0.1 sech2(0.32 (x + 850)), (33)

is shown in Fig. 4(a)
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Fig. 3. (a) The evolution of the initial condition (32), at time t = 500.103. (b) The evolution at time t = 1450.106.

Fig. 4. (a) Initial condition. (b) Solitonsmoving to the right at time t = 650.103, before the overtaking. (c) Solitonsmoving to the right at time t = 1450.103,
after the overtaking. (d) A comparison of the solitons that evolved without any interaction (dashed lines) and the ones that interacted (solid line) at time
t = 1450.103.

In Fig. 4(b)–(c), we show two stages of the evolution and observe that the solitons shed little radiation in the process. In
Fig. 4(d), dashed lines represent the evolution from each of the two terms in (33). This demonstrates a clean interactionwith
a phase-shift that is qualitatively similar to the one seen in the KdV, i.e. in the exact soliton solution. It must be remarked
that the chosen two soliton initial condition is not an exact solution for the KdV. However, this experiment helps us to give
a qualitative description of the interaction of two soliton-type waves with different amplitudes.

Note that despite the qualitative agreement with KdV behavior, we also observe some differences. For example the KdV
soliton initial condition (31) we used disperses to zero when its amplitude is sufficiently small. This is unlike the KdV were
a similar initial condition of arbitrarily small amplitude still propagates as a soliton.

Finally, we consider the head-on collision of two KdV-type solitarywaves. For this, we take the following initial condition
η3(x) = 0.3 sech2(0.27 (x + 85)) + 0.3 sech2(0.27 (x − 85)),
u3(x) = 0.3 sech2(0.27 (x + 85)) − 0.3 sech2(0.27 (x − 85)).

(34)
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Fig. 5. (a) Two solitons at time t = 50.103, moving with the same speed in opposite directions, towards each other. (b) Solitons at time t = 84.103
during the collision. (c) The solitons have emerged, and move in opposite direction away from each other. Snapshot at time t = 105.103. (d) Comparison
of solitons that collided (solid line) and the single soliton (dashed line) corresponding to the left peak of Fig. 5(a). Snapshot at time t = 105.103. If we zoom
we see a very small phase-shift.

The solitons start moving towards each other shedding negligible radiation; see Fig. 5(a). In Fig. 5(b) we show a moment of
the collision, and in Fig. 5(c) they have emerged unchanged. In Fig. 5(d) we show in dashed lines the shapes of the single
solitons.

6. Solitary wave evolution over smooth depth topography

Wehave provided numerical evidence that system (16)–(17) has solitarywave solutions.Wenowexaminewhat happens
to solitary waves as they go through a slope. We generally see the reflection of a small amplitude wave.

To see a typical situation we use ε = 0.35, L = 200, and N = 1024. The bottom shape is given by the single space scale
function

β(x) =



0, if − 100 ≤ x ≤ −49,
0.3
2


1 − cos(0.2(x − 49))


, if − 49 < x ≤ −33.5,

0.3, if − 33.5 ≤ x ≤ 33.5,
0.3
2


1 − cos(0.2(x − 18.5))


, if 33.5 ≤ x ≤ 49,

0, if 49 ≤ x ≤ 100,

(35)

and the initial condition is

η(x) = u(x) = 0.1 sech2(0.27(x + 80)). (36)

In Fig. 6(b) we can appreciate a small wave that is propagating to the left with a negligible change in its shape. This wave
was created as the result of the interaction between the wave that goes to the right and the bottom, albeit, it cannot be seen
in Fig. 6(a) due to the scales of the plot. This result is consistent with the asymptotic results of Smyth [18].

7. Evolution of solitary waves above a rough bottom topography

It is well established that linear waves are more affected by a rapid depth variations than slowly varying, smooth bottom
topographies. We now examine the effect of rapid depth variations on solitons of (weakly nonlinear) shallow water wave
theories, in particular we want to examine the validity of the homogenization approximations proposed by Craig et al. [7].
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Fig. 6. (a) Soliton-type wave at time t = 75.103, moving to the right. (b) A zoom of Fig. 6(a) is shown.

Fig. 7. (a) The numerical solution of (16)–(17) with initial conditions (37) at time t = 125.103. (b) A zoom near the wave of highest amplitude of Fig. 7(a).

In all the numerical results of this section we use ε = 0.1,N = 1024, 1t = 0.001, and the length of the channel is
L = 200. The initial condition is a KdV-type soliton

η0(x) = 0.1 sech2(0.27(x + 80)),
u0(x) = 0.1 sech2(0.27(x + 80)).

(37)

For the first experiment we take the bottom in the form

β(x) =


0, if − 100 ≤ x ≤ 0,
0.5
2

(1 − cos(x)), if 0 < x ≤ 100.
(38)

The evolution is shown in Fig. 7(a), and a zoom is shown in Fig. 7(b).
These figures show how the soliton evolves shedding backwards a reflected wave. The theory of Section 3, gives an

effective equation with a constant effective depth variation of

β =
1
2π

 2π

0

0.5
2

(1 − cos(x))dx = 0.25, (39)

i.e. comparing to (24), here cos(x) represents a fast scale (β does not have a slow scale and is constant). (39) gives an effective
velocity c =

√
1 − 0.25ε for the long waves of the linear part of (25)–(26). This speed is smaller than the constant depth

speed for long waves. In fact, this correction to the linear speed predicts accurately the phase-shift seen in Fig. 8(a) and (b).
Finally, in Fig. 9(a) and (b), we present the comparison between the numerical solution with the rough bottom (38), and

the numerical solution with the homogenized bottom (39). The comparison shows a remarkable correction of the phase-
shift.

Now we will consider the case in which the bottom depends on two scales. Let us consider the following bottom profile

β(x, 5x) =


0, if − 100 ≤ x ≤ 0,
0.5
2


1 − cos(x) cos2(5x)


, if 0 < x ≤ 100.

(40)
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Fig. 8. (a) Comparison between the numerical solution of (16)–(17) with initial conditions (37) at time t = 125.103. The solid line corresponds to the
bottom (38) and the dashed line to a flat bottom. (b) A zoom near the wave of highest amplitude of Fig. 8(a) shows a phase-shift of the solutions.

Fig. 9. (a) Comparison between the numerical solution of (16)–(17) with initial conditions (37) at time t = 125.103. The solid line corresponds to the
bottom (38) and the dashed line to (39). (b) A zoom near the wave of highest amplitude of Fig. 9(a) shows a negligible phase-shift.

Fig. 10. (a) Numerical solution of the system (16)–(17) with initial condition (37), and bottom (40) at time t = 125.103. (b) A zoom near the wave of
highest amplitude of Fig. 10(a).

In Fig. 10(a) we display the evolution of the soliton and in Fig. 10(b) a zoom. As before, there are reflected waves traveling
to the left caused by the rough bottom. Again, the homogenization results provide the effective equation upon averaging on
the fast spatial scale. The homogenized bottom profile takes the form

β(x) =
0.5
2


1 −

1
2
cos(x)


. (41)

Finally, in Fig. 11(a) we display a comparison between the numerical solution with the rough bottom (40) and the one
with a flat bottom. On the other hand, in Fig. 12(a) and Fig. 12(b), we present the comparison between the numerical
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a b

Fig. 11. (a) Comparison between the numerical solution of (16)–(17) with initial conditions (37) at time t = 125.103. The solid line corresponds to the
bottom (40) and the dashed line to a flat bottom. (b) A zoom near the wave of highest amplitude of Fig. 11(b) shows a phase-shift.

a b

Fig. 12. (a) Comparison between the numerical solution of (16)–(17) with initial conditions (37) at time t = 155.103. The solid line corresponds to the
bottom (40), and the dashed line the homogenized bottom (41). (b) A zoom near the waves of highest amplitude at time t = 155.103, shows a good fitting
of the two curves.

solution with the rough bottom (40), and the numerical solution with the homogenized bottom (41). In Fig. 12(a), we show
a comparison of the tails and in Fig. 12(b) we display a comparison of the waves of highest amplitude. The comparison is
remarkable.

8. Singularity formation and smoothing

The KdV equation does not feature wave breaking, nor peaking, since the initial value problem is globally well-posed in
H2(R) [19]. To capture such phenomena in shallow water wave theory, Whitham [1] suggested equations of the formηt +

3
2
ηηx +


∞

−∞

K(x − ξ)ηξ (t, ξ) dξ = 0,

η(0, x) = η0(x),
(42)

with kernels that provide better approximations to the exact linear dispersion relation. An example is the singular kernel

KSW (x) =
1
2π


∞

−∞


tanh(ξ)

ξ

1/2

eiξxdξ, (43)

which leads to an exact dispersion relation for the linearized water wave equation with constant depth.
Since the kernel (43) is singular, Whitham [1] proposed to study Eq. (42) with the kernel

KP(x) =
π

4
exp


−

π

2
|x|


, (44)

and found the peakon-type traveling wave solution

η(x, t) =
8
9
exp


−

π

4

x −
4
3
t
 . (45)
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Fig. 13. (a) We display snapshots of the evolution of the initial condition (47) under the Whitham equation (42) with kernel (44), at times (from left to
right) 0, 100.003, 200.003, 300.003, 400.003, and 500.003. (b) Comparison between the numerical solution (stars), and the exact solution (45), (solid line).

Fig. 14. (a) The evolution of the peakon at time t = 5.0515. (b) The evolution at time t = 37.5515.

Another equation that exhibits peaked solutions is the Camassa–Holm equation,

ηt + 2κηx − ηxxt + 3ηηx = 2ηxηxx + ηηxxx, (46)

which is completely integrable, and has peaked solutions that interact cleanlywhen κ = 0, [20]. Moreover, initial conditions
close to a peakon evolve into a leading peakon followed by a tail of radiation formed by peakons of smaller amplitude;
see [21]. Constantin and Strauss [25] proved that peakon solutions of the Camassa–Holm equation are stable. However,
the stability of such solutions of the Whitham equation with kernel (44) is not known. Also it is not known whether the
unidirectional equation (42) with the full dispersion relation (43) has peakon solutions. In this sectionwe study numerically
these questions using unidirectional and bidirectional models.

First we give numerical evidence for the stability of peaked solutions of theWhitham equation (42) with the kernel (44).
We use N = 8192, L = 800, and the exact peakon initial condition

η0(x) =
8
9
exp


−

π

4
|x|


. (47)

In Fig. 13(a) we see several snapshots of the evolution of the peakon, and in Fig. 13(b) we show the last frame with the
exact solution (45) superimposed. We see that the shape of the peakon does not change as it travels and consider this to be
evidence of its stability.

To examine the effect of backward propagating waves we also consider bidirectional model (16)–(17) with peaked initial
conditions. We use ε = 0.1,N = 8192, 1t = 0.0005, L = 100, and we take β ≡ 0. The initial condition is

η0(x) = u0(x) = 0.1 exp(−|x|). (48)

The evolution of the relative error of the conserved quantities (19), (21) and (22) is around 10−15. The peaked initial
condition is smoothed and moves to the right, leaving behind it a small wave-train, as can be seen in Fig. 14(a) and (b). We
observed similar behavior for other peaked initial conditions of small amplitude.

We also examine the behavior of larger amplitude initial conditions for the model (16)–(17) using N = 9000, L = 800,
ε = 0.4, 1t = 0.001, and β ≡ 0. The initial condition is

η0(x) = u0(x) = A sech2(0.5x). (49)
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Fig. 15. (a) A zoom near the wave of maximum amplitude at time t = 50.103. (b) A zoom of the traveling wave that has emerged is shown at time
t = 300.103.

Fig. 16. Wedisplay the comparison between the travelingwave shown in Fig. 15(b) (solid line), the fitted peakon curve (crosses) and the fitted KdV soliton
curve (stars).

Choosing A = 0.01 we see that the profile decays dispersively, without forming a traveling wave. For larger A we see the
formation of a traveling wave, that is, a wave form that propagates without changing its shape, leaving behind it a decaying
dispersive tail. At A = 0.58 it appears that the traveling wave develops a cusp, and at A = 0.59 we see evidence of blow up.
This behavior is consistent with the results of McLean et al. [22], where traveling waves also appear to have a nonsmooth
limiting profile.

In Fig. 15(a) we show the wave of maximum amplitude for A = 0.58. We can see how a traveling wave starts to emerge,
and in Fig. 15(b) thewave hasmoved away from thewave-train completely, and travels for a long distancewithout changing
its shape. Since we are interested in the shape of the traveling wave of system (16)–(17) with the initial condition (49), we
try to fit the profile with KdV-soliton and peakon shapes, of the form Asech2(Bx), and A exp(−λ|x|) respectively.

As indicated in Fig. 16, obtained using standard curve fitting tools fromMATLAB, the peakon gives a better fit, especially
away from the maximum, e.g. the sup norm distance for the best fit is 0.0369 for the peakon, and 0.0845 for the KdV soliton.
This suggests the possibility of a limiting peaked traveling wave for system (16)–(17). The nature of the cusp however is not
resolved in the present study.

Finally, longer amplitude initial conditions lead to breaking. In fact, in the unidirectional model, Seliger [23] showed
formally that a sufficiently asymmetric initial profile would break in the typical hyperbolicmanner. Recently Constantin and
Escher [24] have given a rigorous proof of this result. We now show how the system (16)–(17), exhibits the same behavior
even for symmetric initial conditions. To this end, we use ε = 0.5, L = 100,N = 1024, a flat bottom, 1t = 0.001, and the
initial condition

η0(x) = u0(x) = 0.7 sech2(0.5 x). (50)

In Fig. 17, we display the evolution which shows the asymmetry in the early stages followed by the infinite slope of the
solution indicating breaking.

9. Conclusions

Wehave studied numerically a nonlocal Boussinesq–Whithammodel for water wave propagation in channels of variable
depth. The function describing the variation of the depth is assumed to have small amplitude, but is not necessarily slowly
varying.
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Fig. 17. The evolution of an initial profile until its breaking.

The derivation uses the Hamiltonian formulation of the water wave problem and the expansions of the variable depth
Dirichlet–Neumann operator in pseudodifferential operators developed in [7]. To avoid ill-posedness while also keeping
some of the simplicity of the shallow water theory we use a model with a nonlocal, exact constant depth dispersion, and
local nonlinear and variable depth terms. The resulting system with constant depth captures many known soliton effects
and exhibits smoothing and singularity formation.

For variable depth we focus on propagation in oscillatory periodic and two-periodic depth profiles. We see that solitons
propagate without any significant deformations, despite the fact that they leave behind an oscillatory tail. Moreover, the
propagation of the soliton in the variable depth region can be predicted accurately by an effective constant coefficient
Boussinesq–Whitham equation.

Our study has generally considered phenomena where solitons propagate through variable depth regions without
significant changes. This seems consistent with the assumption of small amplitude depth variations in the derivation of
our model. It would be of interest to understand the phenomena described in this paper theoretically, and examine models
where the variation of depth can have more drastic effects.
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