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We present a comparison of quantum and “semiclassical” trajectories of coherent states that correspond 
to classical breather solutions of finite discrete nonlinear Schrödinger (DNLS) lattices. The main goal is 
to explain earlier numerical observations of recurrent return to the vicinity of initial coherent states 
corresponding to stable breathers that are also spatially localized. This effect can be considered as a 
quantum manifestation of classical spatial localization. We show that these phenomena are encoded 
in a simple expression for the distance between the quantum and semiclassical states that involves 
the basic frequencies of the classical and quantum systems, as well as the breather amplitude and 
quantum spectral decomposition of the system. A corollary is that recurrence phenomena are robust 
under perturbation of the initial conditions for stable breathers.

© 2018 Elsevier B.V. All rights reserved.
1. Introduction

The concept of energy localization in lattices has been the sub-
ject of intense research during the last decades and is relevant to 
many physical systems, such as photonic systems, Bose–Einstein 
condensates in lattices, electrons in molecules, etc. [1–3]. It has 
been shown that nonlinearity enhances spatial localization and 
that spatially localized solutions can be stable and robust. One of 
the main models to study these phenomena is the discrete nonlin-
ear Schrödinger equation (DNLS) where we can also have spatially 
localized solutions of breather type, i.e. relative equilibria of the 
global phase symmetry of DNLS systems [4–6]. The nonlinear dy-
namics of these solutions has been studied extensively, see e.g. 
[7–11] for works on small chains.

A natural question on these DNLS lattices is how the existence 
and properties of classical breathers are reflected in the corre-
sponding quantized system. There is not a unique answer to this 
question since the quantum and classical descriptions deal with 
different objects, and the literature has considered various prop-
erties of quantized DNLS systems with localized breathers, see 
[12–21], and [22] for a brief discussion. The general approach in 
this paper is to consider the quantum dynamics of Glauber and 
SU ( f ) coherent states [23,24], a subset of the states of the sys-
tem that can be identified with points in the phase space of the 
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classical system. We also want to compare the (exact) quantum 
evolution of coherent states to states obtained by evolving the 
coherent state parameters by the classical equations of motion. 
Such trajectories will be referred to as “classical” or “semiclassical” 
trajectories of coherent states. The semiclassical trajectories arise 
from a variational principle as conditions for minimizing the dis-
tance between the set of coherent states and the exact quantum 
state at each instant, see [25–27] for precise definitions. In general 
however the semiclassical evolution of coherent states is only ex-
pected to give a good approximation of the quantum states in the 
linear limit of the DNLS (and for a large number of quanta), see 
[28,29], where spatial localization is not pronounced.

In previous works [22,30] we compared the quantum and semi-
classical trajectories for coherent states corresponding to breathers 
and points in their vicinity away from the linear limit, and saw nu-
merically that their distance can exhibit recurrences to relatively 
small values, suggesting the return to the vicinity of quantum co-
herent states corresponding to spatially localized breathers. The 
present work is a first step towards a quantification of these re-
currences. In particular, we consider the evolution from SU ( f )
coherent states in invariant subspaces of a fixed number of quanta 
(i.e. normalized projected Glauber states) [31,27,28], and give an 
expression for the distance between the quantum and semiclassi-
cal trajectories that involves the amplitude and frequency of the 
classical breather and the spectral data of the quantum problem, 
see Proposition 3.1. This expression also implies that the recur-
rence phenomena persist under perturbation of the classical initial 
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conditions in the vicinity of orbitally stable classical breathers. This 
observation is stated as Proposition 3.2, where we use a more re-
laxed (finite time) notion of orbital stability that seems applicable 
to more breather solutions. In [22,30] and more recent numerical 
computations we see that the recurrences are more pronounced in 
subspaces of a small number of quanta where the breather coher-
ent states are also close to superpositions of only a few eigenfunc-
tions of the Hamiltonian operator. In such cases the exact expres-
sions for the distance can be approximated by simpler expressions 
that lead to predictions for the minimum distance and the time of 
recurrence to the minimum distance. The accuracy and limitations 
of these approximations have been studied numerically for 3- and 
5-site lattices, and we summarize some observations at the end of 
section 3. Details will be presented elsewhere.

The proposed comparison between the quantum and semiclas-
sical evolution from coherent states requires classical and quantum 
quantities that are computed numerically. We believe that these 
quantities can be approximated analytically in special perturbative 
regimes, e.g. the small intersite coupling limit, but this is not at-
tempted here. Possible generalizations and further questions are 
discussed in section 4.

The paper is organized as follows. In section 2 we review the 
basic definitions and facts about breather solutions of the DNLS 
and define the quantized problem using bosonic quantization. In 
section 3 we define the SU ( f ) coherent states and describe the 
expressions used to compare their quantum and semiclassical evo-
lutions. In section 4 we discuss our results.

2. Classical DNLS system and its bosonic quantization

We consider a finite set of f anharmonic oscillators evolving 
under the cubic discrete nonlinear Schrödinger equation (DNLS)

du j

dt
= −iδ (�u) j − 2i|u j|2u j, (2.1)

where u j ∈ C is the complex amplitude of the oscillator at the 
lattice site j, j ∈ {1, . . . , f }, and δ is a real number. The discrete 
Laplacian � is defined by

(�u) j = u j+1 + u j−1 − 2u j, j = 2, . . . , f − 1,

(�u)1 = u2 − 2u1, (�u) f = u f −1 − 2u f . (2.2)

The definitions at j = 1, f amount to a discrete analogue of Dirich-
let boundary conditions. System (2.1) can be written as a Hamilto-
nian system

du j

dt
= −i

∂ H

∂u∗
j

, j = 1, . . . , f , (2.3)

where the Hamiltonian H is given by

H = −δ

⎛
⎝ f −1∑

j=1

|u j+1 − u j|2 + |u1|2 + |u f |2
⎞
⎠ +

f∑
j=1

|u j|4. (2.4)

Another conserved quantity is the power P = ∑ f
j=1 |u j |2; its con-

servation follows from the invariance of H under global phase 
change u j �→ eiθ u j , j = 1, . . . f .

A breather solution of (2.1) is a time-periodic solution of the 
form

u j = e−iωt A j, j = 1, . . . , f , (2.5)

with ω real, and A j ∈ C, j = 1, . . . , f , independent of time t . 
Breather solutions are relative equilibria with respect to the 
S1-action of global phase change, and equilibria of the correspond-
ing S1-reduced phase space at each value of P [11]. Breathers are 
in that sense the simplest nontrivial solutions of Hamiltonian DNLS 
systems. Equivalently, breather orbits consist of critical points of 
the Hamiltonian H for fixed power P [5]. This implies the exis-
tence of at least some breather solutions for any power, moreover 
breathers that correspond to isolated local extrema of the energy 
are linearly and nonlinearly (orbitally) stable [11]. Note that in 
the linear case breathers are the normal modes of the system. 
Breathers and their relation to the nontrivial global dynamics of 
the DNLS have been studied extensively for the f = 3 (“trimer”) 
system [7–11]. The case f = 2 is integrable.

Also, breathers are examples of solutions that can exhibit spa-
tial localization, e.g. for |δ| → 0 we can have breathers with |A j |
of O (1), and O (δ) respectively in complementary sets of sites, see 
[4,6,32]. Solutions can be continued to the large coupling region 
(i.e. |δ| → ∞ is the linear limit, after suitable rescaling), see e.g. 
[9,33]. Normal modes of the linear DNLS are also breathers.

To compute breathers we use (2.5), (2.1) and solve numerically 
the system

−ωA j = −δ (�A) j − 2|A j|2 A j,

f∑
j=1

|A j|2 = C, j = 1, . . . , f

(2.6)

with C (or ω) fixed. The linearization around breathers in the 
frame moving with the breather is an autonomous linear system 
and the linear stability of breathers can be determined numeri-
cally in a straightforward way, see e.g. [33,11].

We define a quantum version of the DNLS equations using 
the bosonic quantization rules, see e.g. [12,34] for the Dirac no-
tation. Specifically, let V be the complex span of the occupation 
number basis elements |n1, n2, . . . , n f 〉, where n1, . . . , n f ≥ 0. The 
|n1, . . . , n f 〉 are also assumed to form an orthonormal basis, satis-
fying

〈m f , . . . ,m1|n1, . . . ,n f 〉 = δm1n1 . . . δm f n f , (2.7)

with δmin j the Kronecker delta. We also let Vn be the complex sub-
space of states spanned by all |n1, . . . , n f 〉 satisfying n1 + . . .n f = n. 
Vn is referred to as the subspace with n quanta. The complex di-
mension pn of Vn is given by pn = (n+ f −1)!

( f −1)!n! .
Under quantization, the amplitudes of the complex modes u∗

j
and u j of a model such as (2.1) are mapped to the bosonic cre-

ation and annihilation operators, B†
j and B j , j = 1, . . . , f , defined 

by their action on the basis vectors as

B†
j|n1,n2, . . . ,n j, . . . ,n f 〉 = √

n j + 1|n1,n2, . . . ,n j + 1, . . . ,n f 〉,
B j|n1,n2, . . . ,n j, . . . ,n f 〉 = √

n j|n1,n2, . . . ,n j − 1, . . . ,n f 〉,
if n j > 0,

B j|n1,n2, . . . ,0, . . . ,n f 〉 = 0|n1,n2, . . . ,0, . . . ,n f 〉 = 0. (2.8)

We also define the quantized Hamiltonian operator Ĥ by

Ĥ = (1 − 2δ)

f∑
j=1

B†
j B j +

f∑
j=1

B†
j B j B†

j B j

+ δ

f∑
j=1

(
B†

j B j+1 + B j B†
j+1

)
, (2.9)

i.e. compare to the classical Hamiltonian of (2.4), see also [34] for 
different quantizations. Similarly the power P is “quantized” to the 
“number” operator N̂ , defined by N̂ = ∑ f

j=1 B†
j B j .

The dynamics of the quantum system is described by the 
Schrödinger equation
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i
∂|�(t)〉

∂t
= Ĥ|�(t)〉, (2.10)

whose formal solution is

|�(t)〉 = e−i Ĥt |�(0)〉, (2.11)

with |�(0)〉 the initial state.
Operators N̂ and Ĥ commute and this implies that for any 

n ≥ 0 the subspaces Vn are invariant under the evolution of 
Schrödinger’s equation. Also, the matrix representation of Ĥ in the 
occupation number basis has a block diagonal form where each 
block, denoted by Ĥn , has entries 〈vi |Ĥ|v j〉, with vi , v j elements 
of the occupation number basis of Vn . We will denote the eigen-
values and eigenvectors of Ĥn by El,n , |�(l, n)〉 respectively, i.e.

Ĥn|�(l,n)〉 = El,n|�(l,n)〉, (2.12)

where l ∈ {1, . . . , pn} is some enumerating index, e.g. Eq,n ≤ Es,n if 
q < s. (Multiple eigenvalues are repeated.) Denoting the occupation 
number basis vectors in Vn by |v( j, n)〉, j ∈ {1, . . . , pn} an enumer-
ating index, e.g. lexicographic order, we also use the notation

|�(l,n)〉 =
pn∑

j=1

alj|v( j,n)〉, |v( j,n)〉 =
pn∑

l=1

b jl|�(l,n)〉 (2.13)

for the coefficients relating the two bases in each Vn .
Calculations of the spectral properties of the quantized DNLS 

have been reported by many authors, and there are several possi-
ble definitions of spatial localization at the quantum level [12–21], 
see [22] for a brief discussion. It also appears that an intrinsically 
quantum notion of localization is not as natural for systems with 
translation symmetry [18], e.g. the DNLS with periodic boundary 
conditions. In the next section we turn instead to coherent states, 
quantum states that correspond in a natural way to points of the 
classical phase space.

3. Quantum and classical evolution of breather coherent states

In this section we will consider the quantum evolution of co-
herent states that correspond to classical breathers and their vicin-
ity.

Let α = (
α1,α2, . . . ,α f

) ∈ C
f . We define a Glauber coherent 

state |(α)〉, (α) ∈C
f , to be a normalized state in V that satisfies

B̂ j|(α)〉 = α j|(α)〉, (3.1)

for all j = 1, 2, . . . , f .
A normalized Glauber coherent state |(α)〉 can be expressed as 

a linear combination of occupation number basis states, namely

|(α)〉 = e− 1
2

(|α1|2+|α2|2+···+|α f |2
)

×
∞∑

n1=0

∞∑
n2=0

· · ·
∞∑

n f =0

αn1
1 α

n2
2 . . . α

n f

f√
n1!n2! . . .n f !

|n1,n2, . . . ,n f 〉, (3.2)

see e.g. [23,24]. Let Pn denote the orthogonal projection to the 
subspace Vn . Then

Pn|(α)〉 = e− 1
2

∑ f
k=1 |αk|2

pn∑
j=1

α
n1 j
1 α

n2 j

2 . . . α
n f j

f√
n1 j!n2 j ! . . .n f j !

|v( j,n)〉, (3.3)

where n1 j + n2 j + . . .n f j = n.
Let α(0) = (

α1(0), . . . ,α f (0)
) ∈ C

f and consider the coherent 
state |(α(0))〉. The quantum evolution of the initial state Pn|(α(0))〉
is then given by
|�n(t)〉 = e−i Ĥnt Pn|(α(0))〉. (3.4)

Using (2.13) in (3.3) we have

Pn|(α)〉 =
pn∑

j=1

d j,n|�( j,n)〉,

with d j,n = e− 1
2

∑ f
k=1 |αk|2

pn∑
l=1

α
n1l
1 α

n2l
2 . . . α

n f l

f√
n1l!n2l! . . .n f l!

blj. (3.5)

Then (3.4) can be also written as

|�n(t)〉 =
pn∑

j=1

d j,ne−iE j,nt |�( j,n)〉. (3.6)

The above also apply to initial conditions c−1/2 Pn|(α(0))〉, with 
c1/2 a normalizing factor. Normalized projected Glauber states are 
known as SU ( f ) coherent states [24,31,27,28]. By (3.6) the quan-
tum evolution of SU ( f ) coherent states is given by

|�n(t)〉 = 1√
c

pn∑
j=1

d j,ne−iE j,nt |� j〉, (3.7)

with c = |d1,n|2 + · · · + |d f ,n|2, and d j,n as in (3.5). As a particular 
case we use an initial condition |(α(0))〉 with α(0) = A, a breather 
amplitude satisfying (2.6), then

d j,n = e− 1
2

∑ f
r=1 |Ar |2

pn∑
l=1

An1l
1 An2l

2 . . . A
n f l

f√
n1l!n2l! . . .n f l!

blj. (3.8)

We also consider an alternative non-exact, and possibly approx-
imate, evolution rule for quantum states defined in the following 
way. Let α(t) be solution of Hamilton’s equations (2.3) with initial 
condition α(0) (as above). Also let |(α(t))〉 be the corresponding 
coherent state at any time t . Then define |�C (t)〉, and |�C

n (t)〉 by 
|�C (t)〉 = |(α(t))〉, and

|�C
n (t)〉 = Pn|(α(t))〉, (3.9)

respectively. State (3.9) gives a “semi-classical” approximation to 
the evolution of the projection of a coherent state.

Letting α j = α j(t), α j(t), j = 1, . . . , f , a solution of the classical 
DNLS (2.3), and substituting into (3.3) we have

|�C
n (t)〉 =

pn∑
j=1

dC
j,n(t)|�( j,n)〉, (3.10)

with

dC
j,n(t) = e− 1

2

∑ f
k=1 |αk(t)|2

pn∑
l=1

[α1(t)]n1l [α2(t)]n2l . . . [α f (t)]n f l√
n1l!n2l! . . .n f l!

blj,

(3.11)

using also (2.13).
For α(t) a breather solution Ae−iωt of the classical DNLS (2.3), 

we then have

dC
j,n(t) = e− 1

2

∑ f
r=1 |Ar |2

×
pn∑

l=1

[A1e−iωt]n1l [A2e−iωt]n2l . . . [A f e−iωt]n f l√
n1l!n2l! . . .n f l!

blj, (3.12)

therefore
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dC
j,n(t) = e− 1

2

∑ f
r=1 |Ar |2

p∑
l=1

An1l
1 An2l

2 . . . A
n f l

f√
n1l!n2l! . . .n f l!

e−iωNtblj

= d j,ne−iωnt, (3.13)

using n1 j + n2 j + . . .n f j = n. Clearly dC
j,n(0) = d j,n , with d j,n as 

in (3.8), the coefficient appearing in the initial breather coherent 
state.

The quantum and “semi-classical” states from normalized 
breather coherent states in are therefore given respectively by

|�n(t)〉 = 1√
c

pn∑
j=1

d j,ne−iE j,nt |� j,n〉, (3.14)

and

|�C
n (t)〉 = 1√

c

pn∑
j=1

d j,ne−iωNt |� j,n〉, (3.15)

with d j,n as in (3.8), and c = |d1,n|2 +· · ·+|d f ,n|2 the normalization 
constant. The squared modulus of each coefficient d j,n/

√
c can be 

interpreted as the probability that the system is in the state |� j,n〉
j = 1, 2, . . . , pn .

By (3.15) state |�C
n (t)〉 has the time-dependence of an eigen-

state. Thus breather coherent states mimic stationary states. For 
|δ| small the number of breathers is larger that f [32]. For |δ| suf-
ficiently large, the breathers approach the normal modes of the 
linear system, and we have f breathers, see [33].

The difference between the quantum and classical evolutions in 
Vn can be measured by

Dn(t) = inf
φ∈S1

‖eiφ |�n(t)〉 − |�C
n (t)〉‖. (3.16)

In the case of breather coherent state initial conditions we use 
(3.14), (3.15) to obtain

D2
n(t) = inf

φ∈S1

⎛
⎝2 − 2

pn∑
j=1

|d j,n|2
c

cos
((

E j − ωn
)

t + φ
)⎞⎠ , (3.17)

where the d j,n are given by (3.8). The value of φ that attains the 
infimum depends on t .

Proposition 3.1. The functions Dn, n ≥ 1, of (3.17) are given by

D2
n(t) = 2 − 2

c

√√√√ pn∑
j=1

|d j,n|4 + 2
pn∑

i< j

|di,n|2|d j,n|2 cos(E j,n − Ei,n)t.

(3.18)

Proof. Fix n, t and write D2
n as the function

G(φ) = 2 − 2
pn∑

j=1

|d j,n|2
c

cos(λ jt + φ), λ j = E j,n − ωn. (3.19)

G is a smooth 2π -periodic real function and has at least two crit-
ical points in [−π, π), corresponding to its maximum and the 
minimum. By

G(φ) = 2 − 2A cosφ + 2B sinφ, (3.20)

with

A =
pn∑ |d j,n|2

c
cosλ jt, B =

pn∑ |d j,n|2
c

sin λ jt, (3.21)

j=1 j=1
and

G ′(φ) = 2A sinφ + 2B cosφ, (3.22)

the critical points satisfy

tanφ = − B

A
. (3.23)

There are then exactly two critical points in [−π, π), the min-
imum and the maximum. Moreover the two φ satisfying (3.23)
are in the intervals (−π/2, π/2), and (−π, −π/2) ∪ (π/2, π). We 
claim that for A > 0 the minimum is in (−π/2, π/2), and that for 
A < 0 the minimum is in (−π, −π/2) ∪ (π/2, π). We evaluate

G ′′(φ) = 2A cosφ − 2B sinφ = 2 cosφ(A − B tanφ) (3.24)

at the critical points. φ a solution of (3.23) and cosφ = ±(1 +
B2/A2)−1/2 imply

G ′′(φ) = ±2A(1 + tan2 φ)−1/2. (3.25)

Therefore G ′′(φ) > 0 requires that A and cosφ have the same sign, 
implying the claim. Using this fact we then check that at the min-
imum, cosφ = ±(1 + B2/A2)−1/2 implies

G(φ) = 2 ∓ 2
A

|A|
√

A2 + B2 = 2 − 2
√

A2 + B2 (3.26)

by A = ±|A|. Therefore

D2
n(t) = 2 −

2

√√√√√
⎛
⎝ pn∑

j=1

|d j,n|2
c

cos
(

E j,n − ωN
)

t

⎞
⎠

2

+
⎛
⎝ p∑

j=1

|d j,n|2
c

sin
(

E j,n − ωn
)

t

⎞
⎠

2

,

(3.27)

and we immediately obtain (3.18). �
We can use expression (3.18) to approximate Dn(t). For exam-

ple if we only consider the two coefficients |d1,n|, |d2,n| in the sum 
(3.18), assumed to be the largest ones, we have the simplified ex-
pression

D2
n(t) ≈ 2

− 2

c

√
|d1,n|4 + |d2,n|4 + 2|d1,n|2|d2,n|2 cos(E2,n − E1,n)t.

(3.28)

We can then estimate the frequency of recurrence to the minima 
of D2

n as (E2,n − E1,n)/2π .
Expression (3.17) also implies that the distance Dn(t) depends 

only on the breather orbit: by (3.8), changing the breather ini-
tial condition from A to eiθ A multiplies all the d j,n by a common 
phase einθ leaving Dn(t) invariant.

We can also see that the values of Dn(t) for classical initial con-
ditions in the neighborhood of a stable breather are those obtained 
for the breather plus a small error. To make this more precise we 
consider a breather solution Ae−iωt , and a solution ũ that satisfies

ũ(t) = Ae−i(ωt+θ(t)) + δ(t),

with φ(0) = 0, ||δ(t)|| < ε, ∀t ∈ [0, T ], (3.29)

for some functions θ : [0, T ] → R, δ : [0, T ] → C
f . (|| · || is the Eu-

clidean norm in C f ≈ R
2 f .) (3.29) states that the orbit ũ remains 

ε-close to the breather orbit in [0, T ]. (θ(t) can grow so that ũ(t)
is not necessarily close to Ae−iωt .) We can define finite time or-
bital stability for the breather Ae−iωt as the property that given 
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any 0 < ε < εm we can choose δ0 such that ||ũ(0) − A|| < δ0 im-
plies (3.29) for suitable functions θ , δ. For T = ∞ we have the 
usual definition of orbital stability.

Orbital stability is known only for breather orbits correspond-
ing to local extrema of the energy at fixed power, and there are 
many linearly stable breathers that are not local extrema. We are 
not aware of theoretical results of nonlinear stability analysis for 
such breathers, but numerically we see trajectories that remain in-
definitely in the neighborhood of the breather, as well as cases of 
eventual escape from the neighborhood of linearly stable breather 
[33,11,35]. These considerations should make finite time stability a 
reasonable assumption. From a more practical point of view we are 
interested in trajectories ũ observed to satisfy (3.29) for ε “small”.

Proposition 3.2. Consider a breather solution Ae−iωt and trajectory 
ũ satisfying (3.29) for some T > 0 and suitable functions θ , δ. Let 
Ã = ũ(0) = A + δ(0), |δ(0)| < ε , and consider quantum and semiclassi-
cal states |�̃n(t)〉, |�̃C

n (t)〉 as above that evolve from the initial condition 
|( Ã)〉. Then, for any t ∈ [0, T ], the difference D̃n(t) between |�̃n(t)〉, 
|�̃C

n (t)〉, defined as in (3.16), satisfies

D̃2
n(t) = 2 − 2

c

√√√√ pn∑
j=1

|d j,n|4 + 2
pn∑

i< j

|di,n|2|d j,n|2 cos(E j,n − Ei,n)t

+ O (ε) (3.30)

as ε → 0, with d j,n as in (3.8).

Proof. By the assumption, α j(t) = A je−i(ωt+φ(t)) + δ j(t), with 
|δ j(t)| < ε for all j = 1, . . . , f , t ∈ [0, T ]. Then the semiclassical 
coefficients dC

j,n(t) of (3.11) with α(t) the trajectory ũ are

dC
j,n(t) = e− 1

2

∑ f
r=1 |Ar |2

p∑
l=1

An1l
1 An2l

2 . . . A
n f l

f√
n1l!n2l! . . .n f l!

e−iN(ωt+θ(t))blj

+ O (ε), (3.31)

and we have that the semiclassical state corresponding to ũ satis-
fies

|�̃C
n (t)〉 = 1√

c

pn∑
j=1

d j,ne−iN(ωt+θ(t))|� j,n〉 + O (ε) (3.32)

for all t ∈ [0, T ], with d j,n obtained from the unperturbed breather 
by (3.8). The assumption also implies that the exact quantum state 
obtained from the initial condition |(ũ)〉 satisfies

|�n(t)〉 = 1√
c

pn∑
j=1

d j,ne−iE j,nt |� j,n〉 + O (ε) (3.33)

for all real t , with d j,n as in (3.32). Defining the difference D̃n(t)
between |�̃n(t)〉 and |�̃C

n (t)〉, as in (3.16) we have

D̃2
n(t) = inf

φ∈S1

⎛
⎝2 − 2

pn∑
j=1

|d j,n|2
c

cos
((

E j − ωn
)

t + θ(t) + φ
)⎞⎠

+ O (ε), (3.34)

for all t ∈ [0, T ]. The infimum over φ ∈ S1 for any given t is not 
affected by the addition of an angle θ(t), and we again obtain the 
expression of Proposition 3.1, up to an error O (ε). �

The lack of significant change in Dn(t) for initial conditions in 
the vicinity of stable breathers was also observed in [22,30], where 
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e also saw significant change in Dn(t) as we perturb from initial 
nditions on unstable breather orbits.
Numerical calculations of Dn(t) with f = 3, 5 sites, using as 

itial conditions coherent states that correspond to linearly sta-
e breathers, suggest that recurrences to the vicinity of the initial 
herent state, i.e. to relatively small local minima of Dn(t), are 
served mainly for small numbers of quanta (up to about 10

r δ ∼ 0.3). This behavior was already seen in [22,30] and we 
ve now checked that in these cases (3.28) gives a good ap-
oximation of Dn(t), and allows us to give accurate quantitative 
timates of the recurrence times and minima of Dn(t) using only 
o eigenvalues and eigenvectors computed numerically. We have 

so seen that the effectiveness of this approximation is corre-
ted to a smaller number of eigenfunctions needed to capture the 
itial coherent state. Details on these numerical results will be 
esented elsewhere. Another observation is that the minimum of 
n(t) is significantly smaller for the “one-peak” breathers, see [32], 
pected to be local minima of the energy H at fixed power P and 
erefore orbitally stable for δ ≥ 0 sufficiently small, see [11].

 Discussion

We have compared quantum and semiclassical trajectories for 
( f ) coherent states corresponding to classical breathers. Our 

ain motive has been to give a possible quantum analogue of 
assical localization by considering spatially localized classical 
eathers and associated quantum states. We saw that the distance 
n between the quantum and semiclassical trajectories is reduced 
 a relatively simple expression that can be evaluated numerically 
d can explain some features of recurrence to the vicinity of the 
itial state seen in earlier studies [22,30]. We were particularly in-
rested in the regime of weak coupling between the lattice sites, 
here we expect to be able to use perturbation arguments to ap-
oximate analytically several of the quantities in the expression 
r the Dn in Proposition 3.2. In [22,30] we had seen that the phe-
menon of recurrence to the vicinity of the initial quantum state 

 more pronounced for small numbers of quanta. In more recent 
merical studies, to be reported elsewhere, we see that in such 
ses the initial states considered are a superposition of a small 
mber of eigenstates, and Dn can be effectively approximated by 
e simplified expression (3.28). The behavior of Dn as we increase 
e number of quanta n, and the related observation of increased 
generacy of the eigenstates, should be analyzed in more detail.
The ideas of the paper can be applied to other systems with 

obal phase symmetry, e.g. we may also consider the same DNLS 
stem in linear normal mode variables, i.e. use the framework of 
ctions 2, 3 with u j the normal mode coordinates and the cor-
sponding Hamiltonian. We also believe that analogous but more 
mbersome expressions for the distance between quantum and 
auber semiclassical trajectories can be obtained for general pe-
dic orbits and Hamiltonian systems. Such expressions require 

ore involved computations, but may give a precise way to mea-
re the accuracy of coherent state semiclassical approximations 
r a large class of orbits.
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