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Abstract. We study energy localization in a quartic FPU model with
spatial inhomogeneity corresponding to a site-dependent number of
interacting neighbors. Such lattices can have linear normal modes that
are strongly localized in the regions of high connectivity and there is
evidence that some of these localized modes persist in the weakly non-
linear regime. The present study shows examples where oscillations can
remain localized for long times. Nonlinear normal modes are approx-
imated by periodic orbits that belong to an invariant subspace of a
Birkhoff normal form of the system that is spanned by spatially local-
ized modes [F. Mart́ınez-Faŕıas et al., Eur. Phys. J. Special Topics
223, 2943 (2014), F. Mart́ınez-Faŕıas et al., Physica D 335, 10 (2016)].
The invariant subspace is suggested by the dispersion relation and also
depends on the overlap between normal modes. Numerical integration
from the approximate normal modes suggests that spatial localization
persists over a long time in the weakly nonlinear regime and is espe-
cially robust in some disordered lattices, where it persists for large,
O(1), amplitude motions. Large amplitude localization in these exam-
ples is seen to be recurrent, i.e. energy flows back and forth between
the initial localization region and its vicinity.

1 Introduction

We present a numerical study of energy localization in a spatially inhomogeneous
Fermi–Pasta–Ulam (FPU) lattice with quartic inter-particle potential energy. Spatial
inhomogeneity is introduced by making the number of neighbors interacting with
each site depend on the site. The system was originally proposed [5,6] in [1,2] as
a simplification of elastic network models for protein vibrations [3,4]. Linear elastic
networks can reproduce some features of the protein vibrational spectrum [5,6]. FPU
lattices with similar inhomogeneity can also model small amplitude relative phase
oscillations in conservative electrical power networks [7].
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One of the questions in biomolecular applications is the existence of spatially
localized motions, and in [1,2] we proposed a general weakly nonlinear theory for such
motions, based on the idea of continuing spatially localized linear normal modes. Spa-
tial localization of normal modes is the result of inhomogeneity and can be verified
numerically. The nonlinear theory uses a normal form argument to eliminate a class of
nonresonant quartic mode interactions and then identify periodic orbits in invariant
subspaces spanned by spatially localized modes. Despite the evidence for such nonlin-
ear normal modes in 1-D and 3-D lattices [2] the mathematical theory is still incom-
plete and this motivates further analysis of simpler 1-D geometries, especially lattices
that have some connectivity features of the lattices modeling biomolecules. Another
open question is the stability of the approximate nonlinear modes, especially the ones
that are orbitaly stable in the invariant subspace [2]. We note that spectral localiza-
tion for the homogeneous 1-D FPU is widely studied [8] and better understood [9–15].

The present work addresses the stability question by integrating numerically from
approximate localized states found using the normal form. We will consider three
lattices exhibiting localized modes. The first is a lattice with one region of high inter-
connectivity considered in [1]. In that case the highest linear frequencies are separated
from the rest of the spectrum by a gap, moreover the highest frequency modes are spa-
tially localized in the high interconnectivity region [1]. This example is the simplest
one exhibiting localization due to regions of high connectivity. Similar localization
phenomena are seen in lattices with more high connectivity regions [2]. The normal
form argument uses the frequency gap to show the persistence of localized modes
in the weakly nonlinear regime. The approximate localized modes were computed
numerically in [2]. Numerical integration from the vicinity of this orbit suggests that
for sufficiently small amplitude the energy remains localized in the high connectivity
region, with significant energy interchange between several near-resonant spatially
localized normal modes. At higher amplitudes we see that the energy starts to spread
outside the high connectivity region.

The other two lattices we consider have a distribution of overlapping regions of
higher interconnectivity. Their masses are distributed in a “random” or “disordered”
way described in Section 2. The linear spectra of these lattices have no gaps and we
also see localized modes for a wider range of frequencies. Some of these features are
also seen in 3-D lattices for protein models [2]. In both examples we see numerically
that for small amplitudes the trajectories remain in the vicinity of the spatially local-
ized approximate periodic orbit for long times. For higher amplitude motions we see
that spatial localization persists but becomes recurrent in space, in particular, energy
flows to and from the vicinity of the localized initial condition, while the trajectory
continues to return to the vicinity of the localized orbit. Thus localization in the
disordered lattices seems to be a more robust phenomenon that in the first example.

The paper is organized as follows. In Section 2 we present the quartic FPU lattice
model and discuss linear normal modes. We present two examples of 1-D disordered
FPU lattices and their spectral properties. In Section 3 we discuss normal forms and
the construction of approximate nonlinear localized modes. In Section 4 we study
the evolution from initial conditions that approximate nonlinear localized modes. We
show examples of localization, delocalization, and recurrent localization.

2 Inhomogeneous FPU lattice model and localized linear modes

We consider the quartic Fermi–Pasta–Ulam Hamiltonian

H =
1

2m

N∑
i=1

|pi|2 +
N∑

i,j=1

cij

[k2
2
|qi − qj |2 +

k4
4
|qi − qj |4

]
, (1)
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with position, and momentum variables qi, pi ∈ RD, i = 1 . . . N . | · | is the Euclidean
distance in RD. The pairwise interaction among particles i, j is described by the sym-
metric coefficients cij , i, j = 1 . . . N , that are either 1 or 0. The interaction coefficients
cij also determine the adjacency matrix of a graph with nodes i = 1 . . . N .

In the case D = 1 the quadratic part U2 of the potential energy is

U2 =
k2
2

N∑
i,j=1

cij(qi − qj)
2 = k2〈q, Cq〉, (2)

where q = (q1, q2, . . . , qN ), 〈·, ·〉 denotes the Euclidean inner product in RN , and C is

C =


n1 −c21 · · · −c

N1

−c12 n2

. . .
...

...
. . . n

N−1
−c

NN−1

−c
1N

· · · −c
N−1N

n
N

 , (3)

where nj is the number of sites i 6= j that interact with the site j. Therefore C = −∆,
∆ the Laplacian of the graph defined by the c

ij
.

The quartic FPU model (1) with k2, k4 > 0 was derived from an elastic lattice
model for protein vibrations [2], and the qi represent the displacement from some
known equilibrium configuration obtained from crystallographic data. Elastic lattices
for protein vibrations are discussed in [3–5,16,17]. Sites with many interacting neigh-
bors correspond to denser regions of the protein. The physically interesting dimension
is D = 3, but D = 1 studies still capture some 3-D phenomena, for instance localized
linear modes [1,2] see Remark 1. The absence of cubic interactions is equivalent to
imposing even symmetry near equilibria. The presence of cubic corrections is currently
investigated.

The case k2 > 0, k4 < 0 (D = 1) occurs in a small amplitude, conservative version
of interacting rotors that model electrical generators and motors in an electric grid
[7]. In that work qi = θi represents the angle (phase) of the rotor at site i. The
proposed intersite interaction is sin(θi − θj) between rotors i, j. Taylor expanding up
to cubic terms around the fully synchronized state where all phases are equal leads
to the quartic FPU Hamiltonian (1).

In what follows we consider the D = 1 case, generalizations to higher dimen-
sion are discussed in [2]. Let p = (p1, p2, . . . , pN ), q = (q1, q2, . . . , qN ). Linear
normal modes are obtained by diagonalizing C. The eigenvalues of C are 0 = λ1 < λ2
≤ · · · ≤ λN . Λ = diag{λ1, . . . , λN} satisfies C = MΛMT , with M is the orthogo-
nal matrix of eigenvectors of C. Using the symplectic change variables P = Mp,
Q = Mq, and the conservation of P1, see [1,2], we can consider Hamilton’s equations
for Q2 . . . QN and P2 . . . PN , and the Hamiltonian

H =
1

2m

N∑
l=2

P 2
l + k2

N∑
l=2

λlQ
2
l +

k4
4

N∑
l1,l2,l3,l4=2

Γl1l2l3l4Ql1Ql2Ql3Ql4 , (4)

where

Γl1l2l3l4 =
N∑

i,j=1

cij
(
Mil1 −Mjl1

)(
Mil2 −Mjl2

)(
Mil3 −Mjl3

)(
Mil4 −Mjl4

)
. (5)
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We also introduce normal mode variables by letting Q′l =
√
mQl, P

′
l = 1√

m
Pl, and

al =

√
ωl
2
Q′l +

i√
2ωl

P ′l , a∗l =

√
ωl
2
Q′l −

i√
2ωl

P ′l , (6)

with

ωl =

√
2k2λl
m

, l = 2, . . . , N. (7)

Then the Hamiltonian becomes

H =

N∑
k=2

ωkaka
∗
k +

k4
4

N∑
k1,k2,k3,k4=2

Γ̃k1k2k3k4

[
ak1ak2ak3ak4 + 4ak1ak2ak3a

∗
k4

+ 6ak1ak2a
∗
k3a
∗
k4 + 4ak1a

∗
k2a
∗
k3a
∗
k4 + a∗k1a

∗
k2a
∗
k3a
∗
k4

]
, (8)

with

Γ̃k1k2k3k4 =
Γk1k2k3k4

4
√
ωk1ωk2ωk3ωk4

. (9)

The ωl are the frequencies of the linear normal modes, (7) shows their relation to the
eigenvalues of C = −∆.

We construct examples of 1-D chains by considering points Ri, i = 1, . . . , N ,
on the line, fixing some Rc > 0, and setting ci,j = cj,i = 1 if |Ri −Rj | ≤ Rc and
ci,j = cj,i = 0 otherwise. Rc is such that each i interacts with at least the first j
immediately to its right and left (i.e. its “nearest neighbors”).

The standard nearest-neighbor FPU can be constructed by considering equidis-
tant Ri and a suitable Rc. Adding more points Rj introduces connections with more
neighbors. In [1,2] we considered chains with one and up to three such “agglom-
eration” regions and saw that the highest frequency modes are strongly localized
precisely in these regions [1,2].

The simplest examples have one region of higher connectivity, e.g. Example 1 of
[1,2]. The highest frequencies are separated by the rest of the spectrum by a gap,
and the corresponding modes are localized in the higher connectivity region [1,2].
Recall that the spectrum of C for the fully connected graph of n sites consists of two
eigenvalues 0, and n+ 1, of multiplicities 1, and n− 1 respectively. Also, the highest
eigenvalue of C for the nearest-neighbor chain is 4. In the case of one agglomeration
region of size n, we observe that the frequency gap is approximately proportional to√
n+ 1 − 2, see (7). Adding smaller agglomeration regions fills the gap but we still

have modes localized in the new agglomeration regions.
In this work we consider new examples generated by randomizing the distributions

of the Ri. This results in more agglomeration regions, of different sizes, and with
possible overlaps. (Absence of overlaps means absence of tridiagonal segments in C.)
The spectrum of C is visualized by plotting the “dispersion relation” ωl vs. l, where
the generalized “wavenumber” l is an index enumerating the frequencies in increasing
order. The eigenfunctions of C for the 1-D models are shown in Figures 2a and 5a.
We plot the absolute value of the entries of the matrix of eigenvalues M vs. indices
l, i, where Mi,l is the value of the ith entry of the lth eigenvector of C. (This is also
the amplitude of q at site i for the lth eigenmode.) l enumerates the eigenvalues in
increasing order.
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Fig. 1. Example 1. (a) 1-D chain of N = 120 particles with agglomeration zones of different
sizes. (b) Visual representation of the connectivity matrix, the scale represents the number
of neighbors.

Example 1. D = 1, N = 120: the points Rj for this chain were obtained by letting
R1 = 0, and then adding points to the right of the origin. The distance Rj+1−Rj is a
pseudo-random number between 0.01 and 0.35, obtained using the Mersenne Twister
method (with period of 219937 − 1), [18], implemented in Octave [19]. This leads to
a point distribution with several agglomeration zones, see Figure 1a, and to blocks
of different sizes in the connectivity matrix, see Figure 1b. The dispersion relation
in Figure 2a indicates no frequency gaps. Figure 2b indicates the existence of several
localized modes. This is seen more clearly in Figure 3, where we see examples of two
high frequency modes. The largest agglomeration region in this example has 11 sites.

Example 2. D = 1, N = 120: the points Rj for this chain were produced by letting
R1 = 0, and then adding points to the right. The distance Rj+1 −Rj is a pseudo-
random number from a normal (Gaussian) distribution with mean 0.5 and standard
deviation 0.2, see [20] for algorithm, this is also implemented in Octave [19]. This
leads to a point distribution with several agglomeration zones, see Figure 4a, and to
blocks of different sizes in the connectivity matrix, where some particles interact with
up to six neighbors, see Figure 4b. Figures 5a and 5b show the dispersion relation
and eigenfunctions respectively. The existence of localized modes is seen more clearly
in Figure 6, where we plot two high frequency modes which correspond to the regions
of greater agglomeration of this example.

Remark 1. The main similarities of the above examples with the 3-D protein models
in [2,21] are the lack of frequency gaps and the existence of localized modes. Also, the
relative size of the agglomeration regions is comparable to what we see in the protein
examples, e.g. ∼40 sites (out of a total of ∼850 sites) for the protein (Ribozyme)
model of [2].

3 Approximate nonlinear normal modes

The persistence of the numerically observed spatially localized normal modes for the
nonlinear problem was investigated in [1,2] using Birkhoff normal forms. There are
two versions of the normal form argument, both leading to a quartic normal form with
an invariant subspace spanned by the high frequency, spatially localized motions. A
further global phase symmetry in the high frequency subspace of the normal form
allows us to show the existence of periodic orbits that are orbitally stable in the
invariant subspace. These orbits are our semi-analytic approximations of nonlinear
normal modes that are also spatially localized.
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Fig. 2. Example 1. (a) Frequency ωl vs. mode index l (dispersion relation). In this example
there are no gaps at high frequencies. (b) Eigenmode Mi,l at site i of lth eigenvalue vs. l.
Spatially localized solutions are observed for a wide frequency range.

Fig. 3. Example 1. Spatial localization of some high frequency modes, (a) eigenfunction
associated with the 116th mode, (b) eigenfunction associated with 120th mode, the highest
frequency mode.

The first version of this construction is motivated by examples where we have a
frequency gap between high and low frequencies and the high frequency modes are
spatially localized, e.g. Example 1 of [1,2]. We assume there exist disjoint sets of
indices I−, I+, I− ∪ I+ = {2, . . . , N}, so that letting

ωc = max
j∈I−

(ωj), Ωc = min
j∈I+

(ωj), (10)

we have ωc < Ωc. Also letting

G = Ωc − ωc, ∆ = max
i,j∈I+

|ωi − ωj |, i, j ∈ I+, (11)

we assume

Ωc −∆ ≥ O(1), G ≥ O(1), G−∆ ≥ O(1). (12)

The notation O(1) assumes that there is a small parameter in the problem, e.g. the
smallest nontrivial frequency ω2 of the chain, so that O(1) means independent of ω2.
This notion becomes well defined when the chains are extended to arbitrary size from
both sides, with nearest neighbor interactions in the extensions. O(1) quantities are
the ones that are expected to approach a nonzero constant in the limit.
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Fig. 4. Example 2. 1-D chain of N = 120 particles. (a) Visualization of the random chain.
(b) Visual representation of the connectivity matrix, the scale represents the number of
neighbors.

Fig. 5. Example 2. (a) Frequency ωl vs. mode index l (dispersion relation). (b) Eigenmode
Mi,l at site i of lth eigenvalue vs. l. Spatially localized solutions are observed for a wide
frequency range.

The existence of a quartic normal form with an invariant subspace is stated as
follows, see [1,2]. We start with the Hamiltonian H = H2 +H4 of (8), with H2, H4

the quadratic and quartic parts respectively.

Proposition 1. We can define a symplectic change of coordinates to new variables
a = f(ã), a = ã + cubic terms, a = (a2, . . . , aN ) (new variables), ã = (ã2, . . . , ãN )
(original variables), that is generated by a function

S =
∑
M∈J

SM, (13)

where the SM are quartic monomials of the form

SM =
iΓ̃k1k2k3k4∑4
i σ(ki)ωki

bk1bk2bk3bk4 , (14)
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Fig. 6. Example 2. Spatial localization for some high frequency modes, (a) eigenfunction
associated with the 116th mode, (b) eigenfunction associated with 120th mode, the highest
frequency mode.

bk = ak or a∗k, and σk = 1 if bk = ak, −1 if bk = a∗k, that satisfy∑4
i=1 σ(kj)ωki ≥ O(1). Moreover the Hamiltonian in the new coordinates has the

form H̄ = H2 + H̄4 + O(6), where

H̄4 = H4 + [H2,S], (15)

and O(6) represents terms of order six and higher, and satisfies that

(i) the subspace V+ defined by aj = 0, ∀j ∈ I−, is invariant under the Hamiltonian
flow of the quartic normal form H̄ = H2 + H̄4, and

(ii) the quartic Hamiltonian H̄, restricted to V+, is invariant under the action
aj 7→ aje

iφ, for all j ∈ I+, φ ∈ R.

In the examples where the gap separating low and high frequency modes becomes
smaller, see [2], or is absent, as in Examples 1, 2 of Section 2, the bounds in part (i)
of Proposition 1 can not hold because (12) fails.

On the other hand, the observation of normal modes localized in different regions
in the examples of [2] and in Examples 1, 2 suggests that the numerators Γ̃k1k2k3k4
in (14) can be small when we are close to some resonances, so that the coefficient of
the monomial SM remains small.

To examine this scenario we decompose the set of frequencies into three sets of
“low”, “medium”, and “high” frequency modes, with respective index sets I−, Im,
I+. The sets I−, Im, I+ are mutually disjoint, with I− ∪Im ∪I+ = {2, . . . , N}. Also
i ∈ I−, j ∈ Im implies i < j, and j ∈ Im, k ∈ I+ implies j < k.

Given such a decomposition we define Ek by

Ek = max
k2,k3,k4∈I+

{
max

σ(j)=±1

∣∣∣∣∣ Γ̃kk2k3k4∑4
j=1 σ(kj)ωkj

∣∣∣∣∣
}
, k ∈ I− ∪ Im. (16)

We also define Ẽ as

Ẽ = max
k∈I−∪Im

{Ek}. (17)
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Fig. 7. (a) Dispersion relation of Example 1 and decomposition into low, medium, and high
modes, I−, Im, I+ respectively. (b) Ek with k ∈ {2, . . . , 109} y k2, k3, k4 ∈ {110, . . . , 120}.
Ek is negligible for k ∈ I−, larger values are seen for k ∈ Im.

In (16) note that the coefficients Γ̃kk2k3k4 are invariant under permutations of the
subindices. Also, maxσ(j)=±1 denotes the maximum over all combinations of the signs
σ(kj) in the frequency sum appearing in the denominator.

The decomposition into low, medium, and high modes is arbitrary. We try different
choices of I−, Im, I+ and check that Ek, and Ẽ remain under some value. At the
same time we check that modes in I+ have spatial localization.

Example 1. It is not obvious how to divide the modes of the dispersion relation of
Figure 7a. One possible way is to look for k where Ek changes abruptly. For instance,
consider k in the interval {2, . . . , 109}, and k2, k3, k4 ∈ {110, . . . , 120}. Figure 7b indi-
cates that Ek remains less than 10−1 when k ≤ 101, and starts to grow just passing
this value. This indicates that we have left I− and are in the range of modes in Im.
The interaction continues to increase, reaching Ek = 100 when we consider k = 110.
We then choose I− = {2, . . . , 102}, Im = {102, . . . , 109}, and I+ = {110, . . . , 120},
and obtain Ẽ < 0.35.

Example 2. We follow the same procedure as in the example above and
choose the same decomposition I− = {2, . . . , 102}, Im = {102, . . . , 109}, and

I+ = {110, . . . , 120}, with Ẽ < 0.93.

The invariant subspace statement for the quartic normal form is as follows.

Proposition 2. There exists a symplectic change to new variables a = f(ã), where
a = ã + cubic terms (new variables), and a = (a2, . . . , aN ), ã = (ã2, . . . , ãN ) (old
variables), that is generated by a function S as in (13) that is the sum of monomials
SM of the form (14), and has coefficients satisfying either

Γ̃k1k2k3k4∑4
j=1 σ(kj)ωj

≤ Ẽ,

or
∑4
j=1 σ(kj)ωj ≥ 2Ωc −∆, Ωc, ∆ as in (10), (11), such that

(i) the subspace V+ defined by aj = 0, for all j ∈ I− ∪ Im, and d ∈ {1, . . . , D}, is
invariant under the Hamiltonian flow of the quartic normal form H̄ = H2 + H̄4,
H̄4 as in (15), and
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(ii) the quartic Hamiltonian H̄(a), restricted to V+, is invariant under the action
aj 7→ aje

iφ, for all j ∈ I+, and φ ∈ R.

The symmetry under global phase change in Propositions 1 (ii), 2 (ii) implies that
the Hamiltonian flow of H̄+, the restriction of H̄ to V+, has the additional constant
of motion

P+ =
∑
l∈I+

|al|2. (18)

The flow of H̄+ then has periodic orbits of the form a = e−iλtA, A ∈ V+ = C|I+|,
λ ∈ R. These orbits are often called (discrete) “breathers”, see [22]. Stable breathers
in V+ are expected to be spatially localized provided the corresponding modes are
spatially localized.

The amplitude A of a breather solution is also a critical point of H̄+ on hyperpsh-
eres Sc = {v ∈ V+ : P+(v) = c}. Local extrema of H̄+ on Sc therefore correspond to
orbitaly stable breathers in V+. However stability in the invariant subspace V+ does
not imply stability in the whole phase space. This question is addressed in the next
section.

Note that extrema of H̄+ on the Sc are computed numerically by a steepest
descent algorithm (with rescaling), i.e. following numerically the gradient of ±H+

and rescaling at every time-step to maintain P constant. The method is described in
[2], and we will not include details of how we compute breathers here.

4 Time evolution from breather solutions and evidence for stability

In this section we study the evolution from initial conditions that are breather
solutions in the invariant subspaces V+ for a chain with one agglomeration region,
Example 1 of [1,2], and for the disordered lattices of Examples 1 and 2 of Section 2.
The corresponding high frequency index sets I+ were specified in the previous section.
We omit details on the computation of the breathers, see [2].

To integrate the Hamiltonian flow of the original model (1) we use the symplectic
integration method PEFRL [23,24]. The integration time for all cases is 10τmax, where
τmax = 2π/ω2 is the period of the lowest frequency linear mode for each configuration.
In comparison, the breather frequencies are close to the highest linear frequency ωN .
Thus the integration time is 10ωN/ω2 τmin, where τmin = 2π/ωN is an approximation
of the period of the breather.

The spectra of the lattices considered, see e.g. Figures 2 and 5, yield ωN/ω2 ∼ 102,
so that the integration time used is about 103 times the period of the breather.
Numerical conservation of energy is indicated by the quantity (∆E(t))/E(0), where
∆E = E(t)− E(0). We integrate using the PEFRL scheme with stepsize h = 10−2,
10−3, 10−4 over t = 10τmax and obtain values (∆E)/E(0) ∼ 10−4, 10−6, 10−9 respec-
tively for all three examples considered. We also saw that the PEFRL method is
more accurate that the simpler (third order) Storm–Verlet and Runge–Kutta (RK4)
schemes [25,26].

We first consider the evolution of the breather obtained for a chain with one
agglomeration region, in particular Example 1 of [2]. The number of sites is N = 109
and the breather was computed in [2]. The high frequency subspace is spanned by
modes with index l ∈ I+ = {99, . . . , 109}.

The results are indicated in Figure 8 (mode space), and Figure 9 (space) for
k4 = 0.25, and 1.0. For k4 = 0.25, Figure 8a indicates significant energy exchange
between some of the modes in the high frequency set I+, especially the modes
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Fig. 8. Example 1 of [2]. Mode amplitude |al|2 vs. time t, l = 2 . . . 109, initial condition is
breather of normal form in V+, [2], (a) k4 = 0.25 and (b) k4 = 1.0.

Fig. 9. Example 1 of [2]. Amplitude |qi|2 vs. time t, l = 1 . . . 109, initial condition is breather
on V+: (a) k4 = 0.25. (b) k4 = 1.0.

with l = 99 and 100. There is little energy leaking to modes with index l < 99.
Figure 9b shows the corresponding spatially localized pattern. The highest amplitudes
are observed in the agglomeration region. As we increase k4, energy starts to delo-
calize, both in space and mode space. This is indicated in Figures 8b and 9b, where
k4 = 1.0. In Figure 9b high amplitude motion begins to spread from the agglomeration
region.
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Fig. 10. Example 1, Section 2. Mode amplitude |al|2 vs. time t, l = 2 . . . 120, initial condition
is breather on V+, (a) k4 = 0.25, (b) k4 = 1.0.

In this example the breather is the constrained minimum of H̄+. In the limit
k4 = 0 the breather is the mode with index l = 99, i.e. the smallest index in I+
[2]. Increasing k4 with fixed power changes little the shape of the breather. The
strong energy interchange among some high frequency modes seen for k4 = 0.25 may
be related to the near degeneracy of the frequencies of the first linear modes of
I+ (a related fact is that, as k4 vanishes, there is a multidimensional subset of the
constant energy supersurface where the energy variation is of O(k4)). These resonance
phenomena can be studied at more depth, using two or three mode truncations of
the high-frequency system.

Consider now the lattice of Example 1, Section 2. In Figures 10 and 11 we see
the evolution from breather initial conditions for k4 = 0.25, and 1.0. Localization is
considerably more robust, with most of the energy concentrated at a single mode, see
Figures 10a and 10b. In particular, localization in mode space is still pronounced for
k4 = 1. The spatial picture, Figure 11b, indicates that for larger k4 spatial localiza-
tion becomes recurrent. Energy moves back and forth between the region of initial
localization and its vicinity. The spatial pattern is due to the interchange of energy
between a dominant mode and modes with nearby indices. The amount of energy
interchanged is small, and not as appreciable in Figure 10, but is sufficient for the
recurrent transfer of energy in space.

Example 2 of section also exhibits robust localization. Most of the energy is con-
centrated in a dominant mode, see Figures 12a and 12b, where we consider k4 = 0.25,
1.0 respectively. Energy exchange with other modes increases with k4, but localization
in mode space remains pronounced for k4 = 1. The small amount of energy exchange
has the effect of making spatial localization recurrent as k4 increases. At k4 = 1 we
see that energy moves back and forth between two nearby regions, see Figure 13b.

In summary, Examples 1, 2, representing more disordered connectivities, exhibit
more robust localization that the chain one region with higher connectivity considered
[1,2]. In the new examples increasing k4 has a minor effect, with linear localization
being a good indicator of nonlinear behavior. As k4 increases further to unity, local-
ization in mode space persists. In space we see the more subtle behavior of recurrent
localization.
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Fig. 11. Example 1, Section 2. Amplitude |qi|2 vs. time t, i = 1 . . . 120, initial condition is
breather on V+, (a) k4 = 0.25, (b) k4 = 1.0.

Fig. 12. Example 2, Section 2. Mode amplitude |al|2 vs. time t, l = 2 . . . 120, initial condition
is breather on V+, (a) k4 = 0.25, (b) k4 = 1.0.

5 Discussion

The present study examined numerically spatially localized oscillations in quartic
FPU lattices with a site-dependent number of interacting neighbors. We considered
an example with a single region of higher interconnectivity studied in earlier works, as



588 The European Physical Journal Special Topics

Fig. 13. Example 2, Section 2. Amplitude |qi|2 vs. time t, i = 1 . . . 120, initial condition is
breather on V+, (a) k4 = 0.25, (b) k4 = 1.0.

well as two new examples obtained by a pseudo-random distribution of masses. In the
first example, the normal form theory of localization is capable of describing qualita-
tively the weakly nonlinear regime. The interaction between localized modes requires
further study, as there is considerable exchange of energy between several localized
modes that are near-resonant. As the nonlinear interaction strength k4 increases,
the breather solution of the normal form seems less relevant. We also see a slow
delocalization and the generation of waves radiating from the agglomeration region.

In the new examples, spectral and spatial localization seems to be significantly
more robust, and the trajectory keeps returning to the vicinity of the breather solu-
tion of the normal form system even for O(1) values of the nonlinearity parameter.
Thus the linear behavior gives a good qualitative guess of localization in the nonlinear
regime. This may be a consequence of randomness, which apparently causes small
overlap between the normal modes. We also see the subtler effect of recurrent local-
ization, with energy moving back and forth between the region of initial localization
and nearby regions.

A more refined analysis would require a numerical computation of the periodic
orbits suggested by the breather solution of the normal form. High amplitude periodic
orbits for 3-D nonlinear elastic lattices for proteins were considered in [17,27], using
a truncated harmonic balance, see e.g. [28] for current extensions of this method.
Alternative collocation methods are reported in [29]. Nonlinear normal modes are
expected to exist by the Weinstein–Moser theorem [30,31], but the main issue is their
continuation from normal modes in the case of near-resonance, and the connection
to spatial localization for larger amplitudes.
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