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We study the evolution of a quantum discrete nonlinear Schrödinger (DNLS) system

using as initial conditions coherent states corresponding to points in the vicinity of
breather solutions of the classical system. We consider various examples of stable and
unstable breathers and examine the distance between exactly evolved states and coher-
ent states with parameters that evolve according to classical dynamics. Initial conditions
near stable breathers and their vicinity are seen to lead to recurrences to small distances
between the two evolving states. Similar recurrences are not observed for initial condi-
tions near unstable breathers.
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1. Introduction

The cubic discrete nonlinear Schrödinger (DNLS) equation in a one-dimensional
lattice appears in many problems of physics where we have a combination of
nonlinearity, discrete and spatial inhomogeneity effects. Moreover, as problems
on nonlinear lattices often involve microscopic systems, quantum effects can be
important. For example, in the study of small molecules, the DNLS equation
has proven to be a simple and useful model for the calculation of molecular
anharmonic vibrational spectra where quantum effects play an important role.1–3

Also, the study of various low-dimensional materials with applications in the
fields of, for example, energy and catalysis, are important for the understanding
of the thermodynamic and transport properties of various materials. This study
requires an understanding of the dynamics of nonlinear excitations, such as soli-
tons and breathers, in both classical and quantum context.4,5 On the other hand,
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theoretical studies of the dynamics of a Bose–Einstein condensate trapped in opti-
cal lattice also use the DNLS equation as a model. The control achieved in the
Bose–Einstein condensate opens the possibility of a new generation of devices
at the nanoscale level.6 Another field of applications is that of superconducting
circuits used in quantum computing, modeled by coupled nonlinear oscillators
that exhibit localized nonlinear vibration modes. As superconducting circuits are
increasingly made smaller, the behavior of these nonlinear circuits starts to include
quantum effects and the comparison of classical and quantum dynamics becomes
interesting.7

These applications motivate the study of finite nonlinear lattices in the quan-
tum regime. A basic question is also the dependence of the classical and quantum
dynamics on the geometry of the lattice, e.g., the number of sites. In quantum sys-
tems, the DNLS appears as a mean field approximation and a general question is
the quantum evolution from states that can be somehow related to classical initial
conditions with interesting dynamical properties.

In the present work, we are specifically interested in the classical dynamics near
spatially localized solutions of the DNLS and map points in the classical phase–
space to quantum states using coherent states. In particular, we study the quantum
evolution from Glauber and SU(f) coherent states,11–15 see Sec. 3, that correspond
to points near breather orbits of the DNLS.8 The quantum evolution is generated
by a Hamiltonian operator obtained from the DNLS via bosonic quantization,16–18

see Sec. 2. Breather solutions, see Sec. 2, are here interesting mainly as exam-
ples of solutions with well-defined spatial localization.19–21 To quantify the relation
between classical and quantum dynamics, we examine the difference between the
exactly evolved quantum state and a coherent state with parameters that evolve by
classical dynamics.22 Such “classically evolving coherent states define an alterna-
tive, a priori non-exact, but possibly approximate, evolution rule, see Refs. 14, 23
and 24.

Our main result is the observation of cases of recurrence of relatively small
values of the distance between the two evolution rules. This recurrence is seen for
classical initial conditions that are in the vicinity of stable breathers and suggest
that the notion of localization of coherent states corresponding to such breathers
is recurrent under the quantum evolution. For initial conditions in the vicinity of
unstable breathers, we do not see similar recurrences. Rather, the distance between
the exact and the classically evolved coherent states increases rapidly and fluctuates
slightly around a large average, without any recurrence to significantly smaller
values.

Note that the classically evolved coherent states are known to approximate
well the exact quantum evolution for large number of quanta and small nonlinear-
ity.15,25–27 They are also exact solutions of linear systems.11,12 Our study concerns
parameter regimes far from these limits, and is especially relevant to the nonlin-
ear localization regime where the intersite coupling is small (“the anticontinuous
limit”19).
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The phenomena presented here concern a lattice with five sites and corroborate
similar observations made on the three site DNLS.22 Using more sites is useful but
also more computationally expensive, but a small increase in the lattice sites may
bring us closer to some effects seen in lattices of hundreds of sites that may be
relevant for some applications. In the present study, our goal is also to examine
unstable breathers localized at two consecutive sites, argued to have some possible
importance for the global dynamics of finite DNLS latices in Ref. 33, see also Ref. 22.
In the trimer, these solutions are affected by the fact that one of the peaks is
at the edge of the lattice. The five-site problem avoids that problem, is seen to
have somewhat different dynamics, see Sec. 3, and may be more representative of
what we should see in larger lattices. We are currently working towards a possible
explanation of the recurrences and the differences between trajectories starting near
stable and unstable breathers, see Secs. 3 and 4 for some remarks.

2. Discrete NLS Equation and Its Quantization

We consider a finite set of anharmonic oscillators evolving under the cubic DNLS
equation

duj

dt
= −iδ(∆u)j − 2i|uj|2uj , (2.1)

where uj ∈ C is the complex amplitude of the oscillator at the lattice site j, j ∈
{1, . . . , f}, and δ is a real number. The discrete Laplacian ∆ is defined by

(∆u)j = uj+1 + uj−1 − 2uj, j = 2, . . . , f − 1,

(∆u)1 = u2 − 2u1, (∆u)f = uf−1 − 2uf , (2.2)

a discrete analogue of Dirichlet boundary conditions. System (2.1) can be written
as a Hamiltonian system

duj

dt
= −i

∂H

∂u∗
j

, j = 1, . . . , f, (2.3)

where the Hamiltonian H is given by

H = −δ




f−1∑
j=1

|uj+1 − uj |2 + |u1|2 + |uf |2

 +

f∑
j=1

|uj|4. (2.4)

Another conserved quantity is the power P =
∑f

j=1 |uj |2. Its conservation corre-
sponds to the invariance of H under global phase change.

A breather solution of (2.1) is a periodic solution of the form

uj = e−iωtAj (2.5)

with ω real, and A = [A1, . . . , Af ] ∈ Cf independent of time t.
Breather solutions are interesting for many reasons, they are for instance relative

equilibria, and critical points of the energy for fixed power,20 e.g., breathers that
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are isolated from local extrema of the energy are linearly and nonlinearly (orbitaly)
stable.33 Their global properties and dynamics have been especially studied for the
f = 3 (“trimer”) system.28–33 Breathers are also examples of solutions exhibiting
spatial localization, e.g., for |δ| → 0 we can have breathers with |Aj | of O(δ), and
O(1), respectively, in complementary sets of sites, see Refs. 19, 21 and 32.

To compute and analyze breathers, we substitute (2.5) in (2.1) to obtain that
the Aj and ω satisfy the system of nonlinear equations,

− ωAj = −δ(∆A)j − 2|Aj |2Aj ,

f∑
j=1

|Aj |2 = C, j = 1, . . . , f (2.6)

for a fixed C. Breather solutions are computed by solving (2.6) numerically. The
linear stability analysis of breather solutions is performed by introducing a distur-
bance Rj(t) to the solution of (2.6). Considering (2.1) with uj = e−iωt(Aj +Rj(t)),
using the fact that Aj , ω satisfy (2.6), and neglecting quadratic and higher order
terms in Rj(t), we obtain an autonomous system of linear differential equations
for the Rj(t). The eigenvalues of the matrix determine the linear stability of the
breather solutions. The literature on the stability of breathers is extensive, see e.g.,
Refs. 10 and 21.

To define a quantum version of the above equations, we follow the standard
(bosonic) quantization rules, see e.g., Refs. 16–18. Specifically, let V be the complex
span of the occupation number basis elements |n1, n2, . . . , nf 〉, where n1, . . . , nf ≥ 0.
The |n1, . . . , nf 〉 are also assumed to form an orthonormal basis, satisfying

〈mf , . . . , m1|n1, . . . , nf〉 = δm1n1 , . . . , δmf nf
(2.7)

with δminj , the Kronecker delta.
Under quantization, the amplitudes of the complex modes u∗

j y uj of a model
such as (2.1) are mapped to the bosonic creation and annihilation operators, B†

j

and Bj , j = 1, . . . , f , defined by their action on the basis vectors as

B†
j |n1, n2, . . . , nj , . . . , nf 〉 =

√
nj + 1|n1, n2, . . . , nj + 1, . . . , nf〉,

Bj |n1, n2, . . . , nj , . . . , nf 〉 =
√

nj |n1, n2, . . . , nj − 1, . . . , nf 〉 if nj > 0,

Bj |n1, n2, . . . , 0, . . . , nf 〉 = 0|n1, n2, . . . , 0, . . . , nf 〉. (2.8)

Using these definitions, we also define the quantized Hamiltonian operator Ĥ by

Ĥ = (1 − 2δ)
f∑

j=1

B†
jBj +

f∑
j=1

B†
jBjB

†
jBj + δ

f∑
j=1

(B†
jBj+1 + BjB

†
j+1), (2.9)

i.e., compare to the classical Hamiltonian of (2.4). Similarly P is “quantized” to
the “number” operator N̂ , defined by N̂ =

∑f
j=1 B†

jBj .
The dynamics of the quantum system is described by the Schrödinger equation

i
∂|Ψ(t)〉

∂t
= Ĥ |Ψ(t)〉, (2.10)

whose formal solution is |Ψ(t)〉 = e−iHt|Ψ(0)〉 with |Ψ(0)〉 the initial state.
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Operators N̂ and Ĥ commute and this implies that for any n > 0, the com-
plex subspace Vn of states spanned by all |n1, . . . , nf 〉 satisfying n1 + . . . nf = n is
invariant under the evolution of Schrödinger’s equation. Equivalently, the matrix
representation of Ĥ in the occupation number basis has a block diagonal form
where each block, denoted by Hn, has entries 〈Ψi|Ĥ |Ψj〉, with Ψi, Ψj elements
of the occupation number basis of Vn. Numerical integration of (2.10), e.g., via
numerical computation of the spectra and eigenvalues of Ĥ consider up to a finite
number of these blocks. We can also consider the dynamics in any given Vn, cor-
responding to initial conditions of n quanta. Note that dimVn = (n+f−1)!

(f−1)!n! , i.e., we
have factorial growth rates for the size of the blocks as we increase n and the lattice
size f .

Calculations of the spectral properties of the quantized DNLS have been
reported by many authors, and there are several possible definitions of spatial local-
ization at the quantum level, Refs. 17, 25, 34–41 see Ref. 22 for a brief discussion.
It appears that an intrinsically quantum notion of localization is not as natural
for systems with translation symmetry.38 In the next section, we turn instead to
coherent states, quantum states that correspond in a natural way to points in the
classical phase–space.

3. Coherent States and Quantum Evolution

Let (α) = (α1, α2, . . . , αf ) ∈ Cf . We define a Glauber coherent state |(α)〉, (α) ∈
Cf , to be a normalized state in V that satisfies

B̂j |(α)〉 = αj |(α)〉 (3.1)

for all j = 1, 2, . . . , f . A normalized Glauber coherent state |(α)〉 can be written
explicitly as a linear combination of occupation number basis states, namely

|(α)〉 = e−
1
2 (|α1|2+|α2|2+···+|αf |2)

×
∞∑

n1=0

∞∑
n2=0

· · ·
∞∑

nf =0

αn1
1 αn2

2 · · ·αnf

f√
n1!n2! · · ·nf !

|n1, n2, . . . , nf 〉, (3.2)

see e.g., Refs. 11 and 12. This expression leads to explicit formulas for projections
to the subspaces Vn.

Let α(0) = (α1(0), . . . , αf (0)) ∈ Cf and consider a coherent state |(α(0))〉. Fix
any n ≥ 0, and let

|Ψn(t)〉 = e−iHtPn|(a(0))〉, (3.3)

where Pn is the orthogonal projection to the subspace Vn. Then |Ψn(t)〉 describes
the exact quantum evolution of Pn|(α(0))〉 in the invariant subspace Vn.

We can also consider an alternative (non-exact, and possibly approximate) evo-
lution rule for quantum states in the following way. Let α(t) be solution of Hamil-
ton’s equations (2.3) at time t with initial condition α(0) (as above). Also, let
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|(a(t))〉 be the corresponding coherent state at any time t. Then define |Ψ̃(t)〉, and
|Ψ̃n(t) by |Ψ̃(t)〉 = |(α(t))〉, and

|Ψ̃n(t)〉 = Pn|(α(t))〉, (3.4)

respectively. State (3.4) gives a “classical” approximation to the evolution of the
projection of a coherent state.

The evolution rule of (3.4) can be derived using a variational Ansatz: coherent
states form a set of trial functions parametrized by the variables of the classical
phase–space, and Hamilton’s equations are the necessary condition for the min-
imization of suitable functionals that vanish at the exact quantum evolution, see
Refs. 14, 23 and 24. However, the assumption that a state that is initially a coherent
state remains a coherent state at all times is not in general true. Furthermore, the
variational derivation does not imply that the classically evolved coherent states
are close to the exact states. The object of this paper to obtain further quantitative
information on this alternative rule for breather solutions and for nearby initial
conditions. Note that the classically evolved coherent states |Ψ̃(t)〉 approximate the
quantum evolution in the so-called classical limit for the problem, see Refs. 15, 25
and 26, and are exact solutions of the linear problem.11,12

To compare the two rules of evolution above, we can measure the distance
between the states |Ψn(t)〉 and |Ψ̃n(t)〉, that is

Dn(t) = infφ∈R‖eiφ|Ψn(t)〉 − |Ψ̃n(t)〉‖2. (3.5)

The orthogonality between the subspaces Vn implies that

infφ∈R‖eiφ|Ψ(t)〉 − |Ψ̃(t)〉‖2 ≥
∞∑

n=0

infφn∈R‖eiφn |Ψn(t)〉 − |Ψ̃n(t)〉‖2, (3.6)

therefore the Dn(t) of (3.5) for different n can be used to estimate from below the
difference between the two evolution rules for the initial condition |Ψ(0)〉 = |(α(0))〉.
Since the Glauber states are normalized, the Dn(t) must vanish as n → ∞.

Alternatively, we here consider the two evolutions for the normalized projections
of |Ψ(0)〉 = |(α(0))〉 to each Vn. Such initial conditions correspond to quantum
states with a definite number n of quanta. The difference between the two evolutions
of the normalized state in Vn is then measured by

Dn(t) = |||Ψn(0)〉||−2Dn(t). (3.7)

Normalized projected Glauber states are also known as SU(f) coherent states, see
Refs. 14, 15 and 26.

We indicate our main observations on the evolution of Dn using three classical
initial conditions in a lattice with f = 5 sites. We consider the case δ > 0 in (2.1),
i.e., the focusing (or attractive) case. We first consider a classical initial state

A1 = (0, 0, 1, 0, 0) (3.8)

with energy completely localized at site j = 3 of the lattice. For δ = 0, A1 is a
stable breather. For δ 	= 0, A1 is not a breather solution, but is still close to one if
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|δ| is sufficiently small. We also consider one stable breather solution, one unstable
breather, and an unstable breather solution of two-peaks in sites 2 and 3 of the
lattice, A2, A3 and A4 below. Both satisfy (2.1) with δ = 0.3, C = 1. The first
solution has amplitude

A2 = (0.0230719, 0.153576, 0.975584, 0.153576, 0.0230719) (3.9)

with frequency ω = 1.39798. The breather A2 is linearly stable. The second solution
is

A3 = (−0.663413,−0.0271497, 0.582775, 0.441421, 0.157056) (3.10)

with ω = 0.292511. The breather A3 is linearly unstable. The third solution, we
consider

A4 = (0.16342, 0.687407, 0.684993, 0.173157, 0.0395882) (3.11)

with ω = 0.715323, has two peaks and is also unstable. In Ref. 33, it was argued
that a breather solution with two consecutive peaks may be important for the global
dynamics of the system, as it is likely to be the critical energy for the transition
between a connected and non-connected energy surface at constant power, see also
Ref. 22. The arguments of Ref. 33 were made for the f = 3 lattice and could apply
to larger lattices. However, the dynamics of such a two-peak solution in the trimer
may be affected by the fact that one of the peaks is at the edge of the lattice.
Properties of two consecutive peak solutions for an f = 5 lattice with peaks at
internal sites may be relevant to larger lattices.

We indicate some of the classical dynamics of the above breathers. Figure 1 uses
A1 as initial condition, for δ = 0.3. There is still localization of the energy at the
site j = 3. Other sites have significantly smaller energy. However, this localization
is lost once the value of the coupling constant δ increases, as seen in the case of
δ = 0.5. In Fig. 2, we show the evolution of the unstable breather A3. Note that
after some time, t ≈ 30, the breather is delocalized and energy is distributed in the
rest of the sites.

We now consider the corresponding quantum evolution. According to Fig. 3,
in the case of the classical initial condition α(0) = A1 = (0, 0, 1, 0, 0), and the

Fig. 1. Evolution of classical DNLS from initial state A1 = (0, 0, 1, 0, 0) for δ = 0.3 and δ = 0.5.
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Fig. 2. Evolution of classical DNLS from initial condition A3, see (3.10), using δ = 0.3. We show
the amplitude of the first three sites.

Fig. 3. Dn versus t, initial condition is the normalized projected Glauber state corresponding to
classical state A1, see (3.8), for n = 4, 6 and 9 bosons, f = 5 sites, δ = 0.3.

corresponding initial state |(α(0))〉 you can see that the difference between states
|Ψn(t)〉 and |Ψ̃n(t)〉 go through minima at certain periods of time. Even though
these minima are not zero, the figure suggests that states |Ψn(t)〉 y |Ψ̃n(t)〉 are
close at certain times. The time intervals between these recurring minima, and also
their value also depend on the number of quanta n.

Figure 4 uses as classical initial condition α(0) the stable breather A2, and shows
recurrences to comparable minima of Dn. The time dependence of the distance is
different from that of Fig. 3, and again depends on n.

Figure 5 is obtained using the coherent state corresponding to the classical initial
condition α(0) = A3, for n = 4, 6, and n = 9 bosons, respectively. The graph of Dn

is unlike what we saw in the two previous examples. The distance increases rapidly
to a value above 1.2 and remains in that range at all times. It therefore appears
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Fig. 4. Dn versus t, initial condition is the normalized projected Glauber state corresponding to
the stable classical state A2, see (3.9), for n = 4, 6 and 9 bosons, f = 5 sites, δ = 0.3.

Fig. 5. Dn versus t, initial condition is the normalized projected Glauber state corresponding to
unstable classical state A3, see (3.10), for n = 4, 6 and 9 bosons, f = 5 sites, δ = 0.3.
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Fig. 6. Dn versus t, initial condition is the normalized projected Glauber state corresponding to
unstable classical state A4, see (3.11), for n = 4, 6 and 9 bosons, f = 5 sites, δ = 0.3.

that the classically evolved coherent state is far from the exact quantum state at
all times.

Figure 6 is obtained using the coherent state corresponding to the classical
initial condition α(0) = A4, for n = 4, 6, and n = 9 bosons, respectively. The case
corresponding to two consecutive peaks shows a smaller difference than the Dn

above, despite being unstable. The classical solution is unstable, and the energy
tends to concentrate on site 3, with a smaller amplitude at site 2 (other sites have
even smaller amplitudes). This behavior is different from what was seen in the
classical f = 3 lattice,33 where there were recurrences to the configuration with
peaks at the two consecutive sites.

Figure 7 compares Dn(t) for coherent states corresponding the classical states
A2, and a nearby initial condition A2

′, while Fig. 8 compares Dn(t) for the coherent
states A3 and a nearby initial condition A3

′. These graphs indicate the relative
robustness of the above phenomena for points in the neighborhood of stable and
unstable breathers, respectively.

Similar observations on the evolution of Dn were recently reported for the f = 3
DNLS lattice in Ref. 22. In this work, we also proposed a possible explanation of
the recurrence seen for stable breathers, based on the fact that breather orbits
correspond to periodic coherent states (under the alternative evolution rule). The
period of this state can be compared to the quasiperiods of the exact quantum

1650047-10



2nd Reading

January 9, 2017 13:15 WSPC/S0218-8635 145-JNOPM 1650047

Coherent states and localization in a quantized DNLS lattice

Fig. 7. Comparison of Dn versus t for initial conditions that are normalized projected Glauber
states corresponding to the stable classical state A2, see (3.9), and A′

2 (nearby point, ||A2−A′
2|| ∼

0.14), for f = 5, δ = 0.3 and n = 4, 6 and 9 bosons.

Fig. 8. Comparison of Dn versus t for initial conditions that are normalized projected Glauber
states corresponding to the unstable classical state A3, see (3.10), and A′

3 (nearby point with
||A3 −A′

3|| ∼ 0.14) for δ = 0.3 and n = 4, 6 and 9 bosons.

evolution in each Vn, considering also the projection of the initial coherent state to
the eigenvectors of the corresponding Hamiltonian Hn. It is possible for instance
that we have a reduced number of quasiperiods, up to a small error. Calculations
to check this hypothesis are currently in progress.
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As in Ref. 22, the stable breathers considered here are also nonlinearly (orbitaly)
stable. Further work must also address the evolution from coherent states corre-
sponding to linearly stable breathers that are not relative extrema of the energy,
e.g., linearly stable multi-peak breathers.21

4. Discussion

We have studied numerically the distance between exact quantum states and classi-
cally evolved coherent states, using as initial conditions SU(f) coherent states cor-
responding to classical DNLS breather orbits and their vicinity. We used a system
of five sites and presented evidence that the evolution of this distance depends on
the stability of the breather solutions used. For stable breathers and their vicinity,
we see that the distance shows recurrence to relatively small values of this distance.
The recurrence times depend on the number of quanta. Such recurrences are not
observed when we consider unstable initial conditions. Instead unstable orbits seem
to correspond to large distance between the two evolutions at all times. Similar
results were also seen in the f = 3 lattice, see Ref. 22, where we also outlined a
possible explanation of the recurrences that we are investigating at present. This
work in progress also aims to give an estimate of the approximate recurrence times.
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