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Abstract. We compare quantum states obtained from the integration
of exact and approximate evolution equations for a quantized discrete
nonlinear Schrödinger system (DNLS) with three lattice sites (trimer).
The initial conditions are Glauber coherent states, and their projections
to subspaces with a definite number of particles, and we are especially
interested in coherent states that correspond to classical states that are
in the neighborhood of breather solutions of the classical system. The
breathers are well defined periodic orbits of the classical DNLS that
we heuristically view as examples of spatially localized solutions. The
two evolution equations give converging results in the subspaces with an
increasing number of particles. This is no longer the case for normalized
projections of Glauber states, where we see that the distance between
the quantum states obtained by the exact and approximate equations
shows recurrence phenomena that depend on the number of quanta and
on the dynamical properties of the classical trajectory.

1 Introduction

Spatial localization of energy in nonlinear lattices has been the subject of intense
research in recent decades, as the effects of discrete translation symmetry and non-
linearity become important in many systems that include photonic crystals, optical
waveguide arrays, and molecular chains [10,22]. In the case of systems that are mod-
eled by a discrete nonlinear Schrödinger (DNLS) equation, localization can be studied
by examining special solutions such as breathers, and traveling waves. The dynami-
cal properties of such solutions can give insight into many experimental observations,
and have been studied in great mathematical detail, see e.g. [25,32,39]. The quantized
system [10,36] has also been studied by many authors, and there are several ways to
define spatial localization at the quantum level, see e.g. [4,11,13,33].
The general goal of this work is to understand the consequences of some recent re-

sults on localization of the classical DNLS systems to the quantized systems. The use
of classical information to understand the quantum problem has been more effective
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in some special cases where classical integrability, present in the two-site problem,
or near-integrability, present in certain limits of the parameters, allow us to consider
semiclassical quantization of classical solutions, see [2,13]. Also some authors have
tried to define localization in purely quantum terms. For instance, in lattices with
translational symmetry, the lack of localized eigenstates has led to a definition of
localization in terms of level splitting of the lowest energies [4]. In the case of lat-
tices without translation symmetry one can also study localized quantum eigenstates
[11,33]. Another possible definition uses localized states in Hartree approxima-
tions [26].
Our approach in this paper is based on the use of the classical (Heisenberg group)

coherent states, referred to also as Glauber states, see [16,23]. These states are labeled
by points in the classical phase space, and it is natural to examine the quantum
evolution of coherent states corresponding to classical initial conditions with different
dynamical behaviors. In particular, we can examine the quantum evolution of coherent
states obtained from classical initial conditions that belong to the neighborhood of
invariant sets that we identify as spatially localized solutions. At the same time, we
can also view the classical evolution of the coherent state labels as an approximation
to the quantum evolution, see e.g. [12]. This classical description of the quantum
evolution has been used extensively in the literature, and is in some special cases
exact. In general, Hamilton’s equations for the coherent state labels can be derived
from the quantum system using a variational Ansatz. The coherent states constitute
a set of trial functions with free parameters, and Hamilton’s equations appear as
the necessary condition for the minimization of a suitable functional that vanishes
when the quantum evolution is exact, see [1,3,6]. This procedure does not imply that
the classically evolved coherent states are close to the exact states in general, and
the object of this paper to obtain some further quantitative information about this
question for some special classical solutions. The classically evolved coherent states
approximate the quantum evolution in the so-called classical limit for the problem,
see e.g. [34,37,38]. This limit will not be considered here; we discuss this briefly in
Sect. 4.
Also, as the DNLS system has a global phase symmetry, it is meaningful to ask

similar questions for states with a fixed number of quanta; these subspaces are invari-
ant under the quantum evolution. In this paper we work with normalized projections
of the Glauber coherent states to subspaces with a fixed number of quanta. An alter-
native set of coherent states that can be used in these subspaces are SU(f) coherent
states, where f is the number of sites of the lattice, [6,37]. The connection of the
present study to the SU(f) coherent states is seen in Sect. 4.
In this paper we compare the exact and classical evolutions (as above) for

some initial Glauber states corresponding to certain breather solutions of the the
DNLS equation with three sites (trimer). The trimer system is the smallest noninte-
grable DNLS lattice and its classical dynamics has been studied by several authors
[5,17,20,21,27,28]. We consider parameter signs that correspond to the focusing case,
with Dirichlet boundary conditions, as in [28]. We are especially interested in two
types of breathers with special properties, one-peak breathers that correspond to the
the maximum of the energy for fixed power and are stable, and certain two-peak
breathers that are linearly unstable and whose energy corresponds to the transition
from a disconnected to a connected energy hypersurface at fixed power, see [27]. These
solutions are discussed in more detail in Sect. 2.
The classically and exactly evolved unnormalized fixed-number projections of the

Glauber states become closer as the number of quanta is increased. This fact follows
easily from the normalization of the Glauber states. The two evolutions are not how-
ever observed to converge for the normalized fixed-number projections of Glauber
states as the number of particles is increased. In the case of the stable breathers and
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their vicinity the distance between the two evolutions shows some recurrence to rela-
tively small values. The minimum distance, as well as the approximate period of the
return to these minima depend on the number of quanta, and seem to be robust under
small changes in the initial condition. In the case of coherent states corresponding
to the unstable two-peak breather and its vicinity, the distance of the two evolutions
seems more irregular. Also the dependence of the distance on the initial condition is
more pronounced in the vicinity of the unstable breather. The preliminary results here
suggest that the classical coherent states can identify some localization features of the
quantum system, even if the the two evolutions are not close. Possible explanations
of some of the observed behaviors are briefly discussed in Sect. 4.
The paper is organized as follows. In Sect. 2 we describe the classical cubic DNLS

system, define breather solutions, and review some of their properties. In Sect. 3 we
introduce the quantum DNLS system. In Sect. 4 we define the coherent states and
the two evolution rules we compare, and present and discuss our numerical results.

2 Discrete NLS equation and breathers

Consider a one-dimensional lattice of f sites whose positions are described in terms
of the index j. Each site j is occupied by an anharmonic oscillator and its dynamics
is given by the cubic discrete nonlinear Schrödinger equation (DNLS)

duj

dt
= −iδ (Δu)j − 2i|uj |2uj , (1)

where t is the time variable, uj ∈ C is the complex amplitude of the oscillator in
the lattice site j, j ∈ {1, . . . , f}, and δ is a real number that represents the constant
coupling between neighboring sites. The discrete Laplacian Δ is defined by

(Δu)j = uj+1 + uj−1 − 2uj , j = 2, . . . , f − 1
(Δu)1 = u2 − 2u1, (Δu)f = uf−1 − 2uf . (2)

The particular choices of (Δu)1 and (Δu)f are analogous to imposing Dirichlet bound-
ary conditions.
System (1) is equivalent to Hamilton’s equations

duj

dt
= −i ∂H

∂u∗j
, (3)

where j ∈ {1, . . . , f}. The Hamiltonian H is given by

H = −δ
⎛
⎝
f−1∑
j=1

|uj+1 − uj |2 + |u1|2 + |uf |2
⎞
⎠+

f∑
j=1

|uj |4. (4)

The power P =
∑f
j=1 |uj |2 and energy of the system, represented by the Hamiltonian

H, are conserved quantities.
According to studies of classical dynamics, cases f = 1 (monomer) and f = 2

(dimer) are integrable, while the trimer f = 3 is nonintegrable [20].
Also, in this study we are interested in the case δ > 0 (the “focusing” case in

optics), where certain stable localized solutions are more robust, e.g. can be general-
ized to the infinite lattice for all δ > 0, see [39], and the continuous limit, where the
focusing cubic NLS has bright soliton solutions.
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A breather solution of (1) is a periodic solution of the form

uj = e
−iωtAj , (5)

with ω real, and A = [A1, . . . , Af ] ∈ Cf independent of time t. Substituting (5) in (1)
we obtain that the Aj and ω satisfy the system of nonlinear equations,

−ωAj = −δ (ΔA)j − 2|Aj |2Aj ,
f∑
j=1

|Aj |2 = C, j = 1, . . . , f (6)

for a fixed C. Alternatively we can also consider the f equations for the Aj , with ω
fixed. Note that if A is a solution of (6) so is eiφA, for any φ ∈ R independent of j.
In [28] it is shown that in the case of boundary conditions given by (2) all solutions
of (6) are real, modulo a global phase. Periodic boundary conditions lead to more
breather solutions, see [30,31], i.e. boundary conditions affect the dynamics, and we
can expect that they lead to nonequivalent quantum dynamics as well.
By their definition, breather solutions are relative equilibria of the global phase

rotation symmetry of (1). They are also fixed points of the dynamics on the reduced
phase space, obtained by considering the sphere of points with fixed power and iden-
tifying points that are on the same orbit of the action of global phase change. The
quotient space is the complex projective space CP f−1, see [17,27] for a recent studies
of the dynamics of the trimer in CP 2. Breathers can be therefore thought of as the
simplest nontrivial solutions of the DNLS system. Some general features of the con-
tinuation and bifurcation of breathers, e.g. as we vary δ, can be seen in the simplest
cases of two and three lattice sites, where we find fold and pitchfork bifurcations,
see [5,21,28].
A related characterization of breathers is that they are critical points of the

energy for fixed power. Breathers that are local extrema of the energy are expected
to be linearly and nonlinearly (orbitally) stable. The case of the one-peak breathers
considered for the quantized problem in Sect. 4. Analogous solutions exist for larger
lattices, see e.g. [28], the limit of an infinite lattice [39], and periodic boundaries [30].
The energies of breathers are the only energies where the energy hypersurface at fixed
power can change its topology, e.g. from a disconnected to a connected set. In [27]
it is argued that this can happen at the energy of the two-peak unstable breathers
that we consider in the quantum problem below. The change to a connected energy
hypersurface could favor the spread of energy to more sites, however a more detailed
study of the dynamics in the vicinity of that breather for the trimer suggested that
the spread of the energy to the whole lattice needs energies that are quite far from
the energy of the two-peak breather. The same study also showed recurrences to the
vicinity of the unstable two-peak configuration, see [27]. These ideas about the role
of the two-peak breathers require further study, and should be relevant to larger lat-
tices. In the present study the two-peak breather is interesting as an example of an
unstable solution whose local dynamics and recurrences are relatively well studied.
Breather solutions are also examples of solutions exhibiting spatial localization,

i.e. in the case where the amplitude |Aj | are much smaller away from some set of sites,
e.g. of O(δ) if |δ| is assumed small, see [25]. For larger coupling δ, spatial localization is
generally a heuristic notion in finite lattices, but becomes precise in the infinite lattice
case, where we can look for breathers with amplitude Aj that vanishes at infinity.
Also, the notion of k−peak solution, defined in the limit δ → 0 can be extended to
larger |δ| breathers, provided that the branches can be indexed in a well-defined way
by their δ=0 limits. This is apparently possible with Dirichlet boundary conditions,
see [27,28].
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3 Bosonic quantization of the DNLS Hamiltonian

We now define the quantum DNLS, following the standard (bosonic) quantization
rules, see e.g. [10]. Specifically, let V is the complex span of the “occupation number”
basis elements |n1, n2, . . . , nf 〉, where n1, . . . , nf ≥ 0. V is the complex Hilbert space
associated to a system of bosons (Fock space), and the |n1, . . . , nf 〉 are also assumed
to be orthonormal basis states of V satisfying

〈mf , . . . ,m1|n1, . . . , nf 〉 = δm1n1 . . . δmfnf , (7)

with δminj the Kronecker delta.
Under quantization, the amplitudes of the complex modes u∗j y uj of a model such

as (1) are identified with the bosonic creation and annihilation operators, B†j y Bj ,
j = 1, . . . , f respectively, defined by

B†j |n1, n2, . . . , nj , . . . , nf 〉 =
√
nj + 1|n1, n2, . . . , nj + 1, . . . , nf 〉,

Bj |n1, n2, . . . , nj , . . . , nf 〉 = √nj |n1, n2, . . . , nj − 1, . . . , nf 〉, if nj > 0, (8)

Bj |n1, n2, . . . , 0, . . . , nf 〉 = 0|n1, n2, . . . , 0, . . . , nf 〉.
The classical Hamiltonian H of (4) is quantized using

|uj |2 → 1
2

(
B†jBj +BjB

†
j

)
,

|uj |4 → 1
6

(
B†jB

†
jBjBj +B

†
jBjB

†
jBj +B

†
jBjBjB

†
j (9)

+BjB
†
jBjB

†
j +BjBjB

†
jB
†
j +BjB

†
jB
†
jBj
)
.

Substituting in classical Hamiltonian (4), and using (9), (10) we have the quantized
Hamiltonian operator

Ĥ = (1− 2δ)
f∑
j=1

B†jBj +
f∑
j=1

B†jBjB
†
jBj + δ

f∑
j=1

(
B†jBj+1 +BjB

†
j+1

)
. (10)

Similarly P is quantized to the operator N̂ given by

N̂ =

f∑
j=1

B†jBj . (11)

The dynamics of the quantum system is described by the Schrödinger equation

i
∂|Ψ(t)〉
∂t

= Ĥ|Ψ(t)〉, (12)

whose formal solution is
|Ψ(t)〉 = e−iHt|Ψ(0)〉, (13)

with |Ψ(0)〉 the initial state.
We define Vn as the complex subspace of V of states spanned by |n1, . . . , nf 〉 such

that n1 + . . . nf = n. We have that p = dimVn =
(n+f−1)!
(f−1)!n! , the number of ways that

n quanta can be placed in a lattice of f sites.
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We also have [N̂ , Ĥ] = 0. This implies that the Vn are invariant under the evolution

of the Schrödinger equation (12) and we can chose an eigenfunction |ψn〉 of N̂ such
that we also have

Ĥ|ψn〉 = E|ψn〉. (14)

The matrix representation of Ĥ in the basis of Vn has the block diagonal form

Ĥ =

⎛
⎜⎜⎜⎜⎜⎝

H0 0
0 H1 0

0 H2 0
. .

. .
. .

⎞
⎟⎟⎟⎟⎟⎠
, (15)

i.e. Hn has entries 〈Ψi|Ĥ|Ψj〉, with Ψi, Ψj elements of the occupation number basis
of Vn.

4 Coherent states and quantum evolution.

Let (α) = (α1, α2, . . . , αf ) ∈ Cf . We define the Glauber coherent state | (α)〉 associ-
ated to (α) ∈ Cf as the state satisfying

B̂j | (α)〉 = αj | (α)〉 (16)

for all j = 1, 2, . . . , f . The normalized Glauber coherent state | (α)〉 can be written
explicitly in terms of the number states |n〉 as

| (α)〉 = e−
1
2 (|α1|2+|α2|2+···+|αf |2)

×
∞∑
n1=0

∞∑
n2=0

· · ·
∞∑
nf=0

αn11 α
n2
2 . . . α

nf
f√

n1!n2! . . . nf !
|n1, n2, . . . , nf 〉, (17)

see e.g. [16,23].
Let α(0) = (α1(0), . . . , αf (0)) ∈ Cf and consider a coherent state given for

|(α(0))〉. Fix any n ≥ 0, and let
|Ψn(t)〉 = e−iHtPn|(a(0))〉 (18)

where Pn is the orthogonal projection to the subspace Vn. Therefore |Ψn(t)〉 describes
the exact quantum evolution of Pn|(α(0))〉 in the invariant subspace Vn.
Note that

Pn|(α1, α2, . . . , αf )〉 = e−
1
2 (|α1|2+|α2|2+···+|αf |2)

×
∑

n1+···+nf=n

αn11 α
n2
2 . . . α

nf
f√

n1!n2! . . . nf !
|n1n2 . . . nf 〉. (19)

Also, the projected Glauber states Pn|(α)〉 are, up to normalization, SU(f) coherent
states, see [6,37,38] and comments below.
Alternatively, let α(t) be solution of Hamilton’s equations (3) at time t, with

initial condition α(0), and let |(a(t))〉 be the corresponding coherent state. Then let
|Ψ̃(t)〉= |(α(t))〉, and

|Ψ̃n(t)〉 = Pn|(α(t))〉. (20)
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Thus (20) gives a “classical” approximation to the evolution of the projection of a
coherent state, assuming it remains a coherent state. Reference [12] also describes
“semiclassical” corrections to the Hamiltonian that are not considered here.
Hamilton’s equations for the parameters of the Glauber coherent states (and ana-

logues for more general sets of trial functions) can been derived from the Schrödinger
equation by minimizing suitable functionals of the evolving states that vanish when
the quantum evolution is exact, see [1,3,6] for precise definitions. Such derivations
of Hamilton’s equations for the parameters of the Glauber states do not imply auto-
matically that the two rules give nearby trajectories. This scenario is realized in some
special limits, such as the classical limit briefly discussed below. Also, in the original
applications of coherent states, e.g. in [16], the classical evolution of the parameters
gives the exact quantum evolution.
To compare the two rules of evolution above we measure the distance between the

two states |Ψn(t)〉 and |Ψ̃n(t)〉, that is

D(t) = infφ∈R‖eiφ|Ψn(t)〉 − |Ψ̃n(t)〉‖2. (21)

The orthogonality between the subspaces Vn implies that

infφ∈R‖eiφ|Ψ(t)〉 − |Ψ̃(t)〉‖2 ≥
∞∑
n=0

infφn∈R‖eiφn |Ψn(t)〉 − |Ψ̃n(t)〉‖2, (22)

therefore the D(t) of (21) for different n can be used to estimate from below the
difference between the two evolution rules for the initial condition |Ψ(0)〉= |(α(0))〉.
Note that since the Glauber states are normalized, given a classical initial condi-

tion α(0), and a time t, the norms of each of the corresponding |Ψn(t)〉, |Ψ̃n(t)〉 in the
subspaces Vn must eventually vanish as n→∞. This implies that D(t) must vanish
as n → ∞. This decay is observed to be rapid and monotonic in n in the examples
we have examined, and will be reported elsewhere.
Also, we can consider the two evolutions for the normalized projections of |Ψ(0)〉 to

each Vn. Such initial conditions correspond to quantum states with a definite number
n of quanta. The difference between the two evolutions of the normalized state in Vn
is then measured by

D(t)= ‖ |Ψn(0)〉 ‖−2 D(t). (23)

The relation between projected Glauber states Pn|(α)〉, α ∈ Cf , and SU(f) co-
herent states, see [6,37,38], is given by

Pn|(α)〉= e−P (α)/2 [P (α)]
n/2

√
n!

|n; ξ〉, with ξ= [P (α)]−1/2α, (24)

where |n; ξ〉 denotes an SU(f) coherent state in Vn, see [6], up to fixing a global phase
convention for ξ, e.g. ξ1= ξ

∗
1 , see [37]. The fact that P (ξ)= 1 implies that the state|n; ξ〉 is normalized, see [6]. The normalized projected Glauber states initial conditions

in (23) are therefore SU(f) coherent states.

In what follows we present preliminary numerical results for the evolution of D(t)
for a lattice with f =3 sites for different coherent state initial conditions.
Figure 1(a) corresponds to to the quantum state |(α(0))〉, where α(0) is the clas-

sical state A1=(0, 1, 0) that is completely localized at the site j = 2. The number
of bosons is n = 3 and δ=0.3. The vertical axis is the difference D(t) while the
horizontal axis is time t. Figure 1(b) is obtained from the same initial quantum state
projected to the subspace of n = 10 bosons.
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(a) (b)

Fig. 1. (a) D vs. t, initial condition is the normalized projected Glauber state corresponding
to the classical state A1 = (0, 1, 0), for n=3 bosons, f = 3 sites, δ = 0.3, P = 1. (b) D vs. t,
initial condition is the normalized projected Glauber state corresponding to A1 = (0, 1, 0),
for n=10 bosons, f = 3 sites, δ = 0.3.

(a) (b)

Fig. 2. (a) D vs. t, initial condition is the normalized projected Glauber state corresponding
to the classical initial condition A2 = (0.149791, 0.977305, 0.149791), for n=3 bosons, f = 3
sites, δ = 0.3, P =1. (b) D vs. t, initial condition is the normalized projected Glauber
state corresponding to the classical initial condition A2 = (0.149791, 0.977305, 0.149791), for
n=10 bosons, f = 3 sites, δ = 0.3.

We see that D(t) varies in the range [0.2, 0.7] for n=3, and in the range [0.03, 1.2]
for n=10. This indicates that the evolution rules for normalized projected coher-
ent states do not convergence for large n. As indicated in the the two figures, as
the number of bosons increases the minima of D(t) decrease, e.g. at n=10 we see
local minima of about 0.03, moreover the times between the minima decrease. These
properties we seen in runs with up to n=30 quanta.

Figures 2(a) and 2(b) correspond to the quantum state |(α(0))〉, where α(0) is
the breather A2 = (0.149791, 0.977305, 0.149791), for n = 3, and n = 10 bosons
respectively. We use δ = 0.3. The breather A2 is a numerically computed solution of
(6) with P =1, and has period T =4.480916. It corresponds to the point of maximum
energy at P =1, and is linearly and nonlinearly stable, see [27].

The behavior is qualitatively similar to the previous example, and the normalized
distance D(t) varies in the range [0.16, 0.46] for n=3, and in the range [0.1, 1.1] for
n=10. For n=10 we see a recurrence to the local minimum value of about 0.3 at
times separated by intervals that are comparable to the period of the breather. For
n=3 we see a less frequent recurrence.

Note that a classically evolved Glauber state |Ψ̃(t)〉, with initial condition
Ψ̃(0)= |(A)〉, A a breather, has period T , where T is the period of the breather.
The projections to each Vn, n ≥ 1, have period T/n.
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(a) (b)

Fig. 3. (a) D vs. t, initial condition is the normalized projected Glauber state corresponding
to the classical state A3(0) = (0.71607, 0.678973, 0.161982), for n = 3 bosons, f = 3 lattice
sites, δ = 0.3. (b) D vs. t, initial condition is the normalized projected Glauber state cor-
responding to the classical state A3(0) = (0.71607, 0.678973, 0.161982) for n = 10 bosons,
f = 3 sites, δ = 0.3.

(a) (b)

Fig. 4. (a) Comparison of D vs. t for initial conditions that are normalized projected
Glauber states corresponding to the classical state A2 (point on stable breather orbit), and
A2′ (nearby point), for n = 10 bosons, f = 3 sites, δ = 0.3. (b) Comparison of D vs. t for
initial conditions that are normalized projected Glauber states corresponding to the classical
state A3 (point on unstable breather orbit), and A3′ (nearby point), for n = 10 bosons, f = 3
sites, δ = 0.3.

Figures 3(a) and 3(b) correspond to the quantum state |(α(0))〉, where α(0) is
the breather A3 = (0.71607, 0.678973, 0.161982) with n = 3, and n=10 bosons
respectively. The period of the breather is T =8.849906, and δ = 0.3. A3 is a nu-
merically computed solution of (6) with P = 1. It is the two-peak solution expected
to correspond to the change from a connected to a disconnected energy hypersurface
at P = 1, and is linearly unstable [27]. The normalized distance D(t) is in the range
[0.3, 1.4] for n=3, and [0.6, 1.4] for n=10. In this case the local minima of D(t) do
not seem to decrease with n.

Figure 4(a) compares D(t) for normalized projected coherent states corresponding
to A2 and a nearby initial condition A2′, while Fig. 4 (b) compares D(t) for the
coherent states corresponding to A3 and a nearby initial condition A3′. In the case
of the stable breather, D(t) for the two trajectories is close and exhibits the same
recurrences. In the case of the unstable breather, D(t) appears to be more sensitive
to the initial condition.

The above gives us a quantitative sense of the difference of the quantum and
classical evolutions in a small lattice, and for the parameter regimes motivated by the
classical problem.



2726 The European Physical Journal Special Topics

The increase in the number particles n does not bring the two evolutions closer
for the normalized case, but we note some possibly interesting recurrence patterns
that depend on the underlying classical dynamics and on n.
Note that the classical limit for the problem is defined as the limit n → ∞,

with |γ|n fixed, where γ is a parameter multiplying the nonlinear part, see e.g.
[18,34,37,38]. The usual heuristic definition is in [18], while the more theoretical
approach in [37,38] is based on the comparison of classical and quantum distribution
functions. The convergence of the two evolution laws in that limit was also examined
analytically and numerically for the trimer in [7,9]. Another comparison between
classical and quantum dynamics for a related system is in [19].
Parameter γ was here set to unity, but can be introduced by suitable rescalings of

δ and the time. Clearly this limit requires vanishing nonlinearity. Note that the one-
peak breather can be continued for δ arbitrarily large, where it converges to the lowest
frequency normal mode of the linear problem, see [14,28,29]. In that case we have
localization in Fourier (normal mode) space, which is another interesting classical
problem, see e.g. references in [29].
A possible understanding of the behavior of D(t) would require a comparison be-

tween the behavior of the classical trajectory on the one hand, and the eigenvalues
and eigenfunctions of the quantum problem (which may be amenable to perturbation
arguments in some limits, e.g. small or large |δ|.) In the case of the stable one-peak
classical breathers and their vicinity we would be likely comparing oscillatory evo-
lutions with many frequencies, at both the classical and quantum level. The num-
ber of the most relevant quasi-frequencies of the quantum evolution depends on the
projection of the Glauber initial state to the eigenfunctions of H. In the two-peak
breather the classical trajectories have a more complicated structure, and classical
recurrence is due to homoclinic behavior. Understanding the Glauber states obtained
from such trajectories seems more difficult. It is possible that the differences observed
in Figs. 4 (a), (b) are due to the underlying classical dynamics, i.e. the quantum evo-
lution of the two nearby initial states is probably close in both cases, but in Fig. 4(b)
the classical trajectories may be far from each other due to the instability of the
breather. We hope to consider these questions in further work.
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