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Abstract. We study weakly nonlinear spatially localized solutions of a
Fermi-Pasta-Ulam model describing a unidimensional chain of particles
interacting with a number of neighbors that can vary from site to site.
The interaction potential contains quadratic and quartic terms, and is
derived from a nonlinear elastic network model proposed by Juanico
et al. [1]. The FPU model can be also derived for arbitrary dimensions,
under a small angular displacement assumption. The variable interac-
tion range is a consequence of the spatial inhomogeneity in the equilib-
rium particle distribution. We here study some simple one-dimensional
examples with only a few, well defined agglomeration regions. These
agglomerations are seen to lead to spatially localized linear modes and
gaps in the linear spectrum, which in turn imply a normal form that
has spatially localized periodic orbits.

1 Introduction

We study weakly nonlinear oscillations of a quartic FPU-type lattice system where
the number of interacting neighbors depends on the site. This “inhomogeneous FPU”
system is derived from the nonlinear elastic network model proposed by Juanico et al.
[1]. Elastic networks are systems of particles interacting through binary elastic forces,
and the model of [1] was proposed to study some qualitative features of protein
vibrations, especially the possibility of spatially localized nonlinear oscillations. Some
related works on network models and protein vibrations are [8,9,12–14].
In this article we derive the multidimensional inhomogeneous FPU model from

the nonlinear elastic network model of [1] under a small angular displacement as-
sumption, and present some preliminary semi-analytical results on one-dimensional
inhomogeneous FPU models. We restrict our attention to approximate spatially local-
ized solutions of some simple one-dimensional models. The general idea is to first look
for spatially localized linear modes, and then look for approximate expressions for the
continuation of these solutions in the weakly nonlinear regime using a combination
of tools from normal form theory, and the study of relative equilibrium solutions of
systems with S1 symmetry.

a e-mail: sairaff@ciencias.unam.mx>

http://www.epj.org/
http://dx.doi.org/10.1140/epjst/e2014-02307-7


2944 The European Physical Journal Special Topics

The existence of localized linear modes comes from the inhomogeneity of the parti-
cle interactions, and we see modes localized in the regions where particles agglomerate
and interact with more neighbors. The continuation argument uses resonance argu-
ments that rely on a frequency gap between separating the higher frequency localized
modes from the rest of the spectrum. The result is the existence of spatially localized
periodic orbits in a normal form (i.e. approximate) system. Further information on
these orbits is left for future work.
The frequency gap is special to the configurations we study here, and is absent

from more general 1-D configurations, and in 3-D protein models, where we have
agglomeration regions of different sizes. The idea of the present paper may be extended
to these more interesting cases, but this will require a more detailed study of the
overlap between certain modes. This work is still in progress.
Normal form and periodic orbits of FPU lattices have been studied extensively,

especially low frequency modes, and the transfer of energy to higher modes, see e.g.
[2–4,6,10] and references. In the present work we follow the ideas of [1,12] and look
at higher frequency modes. Note however that the localization scenario of [1] is more
general, since it involves more localization regions and more pronounced nonlinear
effects, for instance localization does not always coincide with regions of linear local-
ization. Some further remarks can be found in the discussion section.
The paper is organized as follows. In Sect. 2 we outline the derivation of the

inhomogeneous FPU model, and write the equations in normal mode coordinates. In
Sect. 3 we discuss the linear normal modes for some one-dimensional models with
agglomeration regions. In Sect. 4 we outline the normal form argument.

2 Elastic network model and inhomogeneous FPU lattice

Consider N particles, with positions ri ∈ RD, i = 1, . . . , N (we are interested in
D = 1, 2, 3). To describe the oscillation of each particle around its equilibrium position
Ri, we consider the potential energy U proposed by [1]

U =

N∑

i,j=1

cij

[k2
2
(|qi − qj +Rij | − |Rij |)2 + k4

4
(|qi − qj +Rij | − |Rij |)4

]
, (1)

where qi = ri −Ri is the displacement of particle i, Rij = Ri −Rj , and | · | is the
Euclidean distance in RD.
The cij are defined as follows: cij = 1, if |Ri−Rj | < Rc, and cij = 0 otherwise, so

that Rc represents a pairwise interaction range. k2 and k4 are positive constants. The
equilibrium of this potential is qi = 0 (equivalently ri = Ri), for all i = 1, . . . , N .
The pairwise potentials here describe “hyper-elastic” interactions (as in classical

elasticity), since by |qi − qj +Rij | − |Rij | = |ri − rj | − |Ri −Rj |.
Let θij be the angle between Rij and rij = ri − rj , and

h = max{θij |∀ i, j = 1, . . . , N}. (2)

We then find that

(|qi − qj +Rij | − |Rij |)2 = |qi − qj |2 +O(h2),
(3)

(|qi − qj +Rij | − |Rij |)4 = |qi − qj |4 +O(h2),
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so that

U =

N∑

i,j=1

cij

[k2
2
|qi − qj |2 + k4

4
|qi − qj |4

]
+O(h2). (4)

The above approximation of small angular displacements of the particles is relevant
for D > 1. For D = 1, we have h = 0, provided that Ri < Rj implies ri < rj for all
i, j.
We can then consider the Hamiltonian

H = 1

2m

N∑

i=1

|pi|2 +
N∑

i,j=1

cij

[k2
2
|qi − qj |2 + k4

4
|qi − qj |4

]
, (5)

where pi is the momentum of particle i.
This is a multidimensional FPU-type model where the number of interacting

neighbors is variable. The model is valid for small displacements of the particles
around of equilibrium position.
In what follows we consider the D = 1 case, motivated by the examples in the

next section. The formalism applies to higher dimensions with small changes.
The potential energy has two components, the quadratic and quartic parts, U2

and U4, respectively.
Let p = (p1, p2, . . . , pN ), q = (q1, q2, . . . , qN ).
Consider the interaction matrix C, defined as

C =

⎛

⎜⎜⎜⎜⎜⎜⎝

n1 −c21 · · · −c
N1

−c
12
n
2

. . .
...

...
. . . n

N−1 −cNN−1
−c

1N
· · · −c

N−1N n
N

⎞

⎟⎟⎟⎟⎟⎟⎠
, (6)

where the cij are as in (1), and ni =
∑N
j cij , is the number particles interacting with

particle i, then

U2 =
k2

2

N∑

i,j=1

cij |qi − qj |2 = k2〈q,Cq〉, (7)

where 〈·, ·〉 denotes the Euclidean inner product in RN , so that the quadratic part
H0 of the Hamiltonian H is

H0 = 1

2m
〈p,p〉+ k2〈q,Cq〉. (8)

The interaction matrix C is symmetric because the interaction between particles is
symmetric. Therefore it is possible to find a diagonal matrix Λ such that C =MΛMT ,
where M is an orthogonal matrix, i.e. M = MT . We can then define a symplectic
transformation from the variables (q,p) to the variables (Q,P) by

P =Mp, Q =Mq, (9)

where P = (P1, P2, . . . , PN ) and Q = (Q1, Q2, . . . , QN ). The quadratic part H0 of
the Hamiltonian in the (Q,P) variables is then

H0 = 1

2m
〈P,P〉+ k2〈Q,ΛQ〉. (10)
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The quartic part U4 of the Hamiltonian H is

U4 =
k4

4

N∑

l1,l2,l3,l4=1

Γl1l2l3l4Ql1Ql2Ql3Ql4 , (11)

where

Γl1l2l3l4 =

N∑

i,j=1

cij
(
Mil1 −Mjl1

)(
Mil2 −Mjl2

)(
Mil3 −Mjl3

)(
Mil4 −Mjl4

)
. (12)

Let λi be the eigenvalues of the matrix C, λ1 �, . . . ,� λN .
Note that λ1 = 0, with corresponding eigenvector 1/

√
N [1, . . . , 1]T .

Then, by Hamilton’s equations it follows that

Q̇1 =
∂H
∂P1

=
1

m
P1, (13)

Ṗ1 = − ∂H
∂Q1

= −2k2λ1Q1 − k4
4

∂

∂Q1

N∑

l1,l2,l3,l4=1

Γl1l2l3l4Ql1Ql2Ql3Ql4 = 0,

since Γl1l2l3l4 = 0 when at least one of the li = 1, i = 1, 2, 3, 4, is unity. We have that
P1 is a constant. This is the conservation of the total lineal momentum.
Setting P1 = 0 in H, we may consider Hamilton’s equations for Q2, . . . , QN and

P2, . . . , PN , and the Hamiltonian

H = 1

2m

N∑

l=2

P 2l + k2

N∑

l=2

λlQ
2 +
k4

4

N∑

l1,l2,l3,l4=2

Γl1l2l3l4Ql1Ql2Ql3Ql4 . (14)

Using the symplectic change of variables
(
Q′l
P ′l

)
=

(√
m 0

0 1√
m

)(
Ql

Pl

)
, (15)

l = 2, . . . , N , we have

H0 =
N∑

l=2

1

2
P ′2l +

N∑

l=2

1

2
ω2lQ

′2
i , with ω2l = 2

k2λl

m
· (16)

The ωl are the frequencies of the linear normal modes. Introducing the spectral vari-
ables

⎛

⎝
ak

a∗k

⎞

⎠ =

⎛

⎜⎜⎜⎜⎝

√
ωk

2

i√
2ωk

√
ωk

2
− i√
2ωk

⎞

⎟⎟⎟⎟⎠

⎛

⎝
Q′k

P ′k

⎞

⎠ , (17)

k = 2, . . . , N , The Hamiltonian then becomes

H =
N∑

k=2

ωkaka
∗
k +
k4

4

N∑

k1,k2,k3,k4=2

Γ̃k1k2k3k4

[
ak1ak2ak3ak4

+4ak1ak2ak3a
∗
k4
+ 6ak1ak2a

∗
k3
a∗k4 + 4ak1a

∗
k2
a∗k3a

∗
k4
+ a∗k1a

∗
k2
a∗k3a

∗
k4

]
, (18)
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Fig. 1. a) Detail of the block in the interaction matrix C. b) Mode k vs λk (dispersion
relation) for the interaction matrix C. These graphs are for example A.

where

Γ̃k1k2k3k4 =
Γk1k2k3k4

4
√
ωk1ωk2ωk3ωk4

· (19)

The coefficient Γ̃k1k2k3k4 is a product of factors Fi,j;l = (Mil−Mjl)/
√
ωl.
√
ωl vanishes

for small l, and large N , but we expect that theMil−Mjl vanish faster. For instance,
in the case of the chain with nearest-neighbor interactions we have |Fj+1,j;1| ≤ C/

√
N

for large N .

3 Numerical study of normal modes

We examine some 1-D examples of inhomogeneous FPU lattices. We choose Ri with
i = 1, . . . , N , along a line, and Rc so that particles i = 2, . . . , N − 1 interact with
at least two neighbors, and particles i = 1, N interact with at least one neighbor.
By varying the density of the particles we can have regions of agglomeration, where
particles interact with more neighbors.

3.1 Example A: Chain with one region of agglomeration

This example corresponds to N = 112 particles, with one agglomeration region.
The position of this region is slightly off the center of the chain. Away from the
agglomeration region, which consists of approximately ten particles, those particles
interact with their nearest neighbors. The interaction matrix C is indicated in Fig. 1a,
where we see a tridiagonal matrix and one larger block, representing the agglomeration
zone. In Fig. 1a we can see a detail of the block of the C matrix and its interaction
with the tridiagonal part. This shows clearly the coupling between the large block
and the tridiagonal region.
The spectrum of the interaction matrix C in Fig. 1b shows a gap separating

the higher frequencies. In Fig. 3a we see the eigenfunctions Mln ordered from high to
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Fig. 2. a) Representation of interaction matrix C for a chain with two agglomeration regions.
b) Mode k vs. λk for the chain with two agglomeration regions.

Fig. 3. a)Mln is the amplitude of normal mode with index l ordered of high to lower modes
(normalized eigenvector of C corresponding to eigenvalue λl) at site n, example A. b) Same
for example B.

lower frequencies. The graph shows spatial localization of the vibrational modes of the
higher frequencies, moreover the high frequency modes are localized at the region of
agglomeration. The vibrational modes belonging to the lowest frequencies are not
localized, for them the agglomeration zone is almost “transparent”. In Fig. 3a we can
also see that the medium frequency vibrational modes cannot pass the agglomeration
zone.

3.2 Example B: Chain with two regions of agglomeration

This example corresponds to N = 120 particles in a chain with two agglomeration
regions. These regions are at asymmetrically opposite off-center positions. The rest of
the chain is homogeneous, and the particles only have interaction with their nearest
neighbors. The interaction matrix for this example is indicated in Fig. 2a. In this ma-
trix we see two blocks over the diagonal. Each agglomeration contains approximately
12 particles.
Figure 2b shows the dispersion relation for the matrix of interaction. This relation

has essentially the same shape as the dispersion relation of the previous example, i.e.
there exists a gap in the dispersion relation but with the difference that we have more
higher frequencies. Figure 3b shows the eigenfunctions Mln ordered from highest
vibrational modes to lowest modes. We can observe again the spatial localization of
the high vibrational modes in the regions of agglomeration.
The factor Γ̃k1k2k3k4 for these two examples was calculated numerically and

satisfies Γ̃k1k2k3k4 < 1, for all indices.
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4 Birkhoff normal forms and invariant subspaces

In this section we discuss some properties of Birkhoff normal forms for 1-D systems.
The general idea of Birkhoff normal forms, applied to the present problem, is that
some quartic terms in the Hamiltonian can be removed by near-identity canonical
transformations that are defined near the origin, e.g. in a ball of radius ρ near the
origin. The change of coordinates should make some aspects of the dynamics more
transparent.
Following the general theory, see e.g. [16], we may produce a canonical transfor-

mations as the time-1 of the Hamiltonian flow of a function χ, where to eliminate a
monomial Γ̃k1k2k3k4bk1bk2bk3bk4 in H, with bkj = akj , or a∗kj , χ must contain a corre-
sponding monomial

Γ̃k1k2k3k4∑4
j=1 σ(kj)ωkj

bk1bk2bk3bk4 , (20)

(up to a constant). The quartic monomials that can not be eliminated, i.e. the resonant

monomials, are the ones for which
∑4
j=1 σ(kj)ωkj =0, where σkj =1 if bkj = akj , and

σkj = − 1 if bkj = a∗kj .
In this finite problem all non-resonant monomials can be eliminated, provided

ρ is sufficiently small. The size of ρ is however controlled by the coefficient of the
monomials in (20), and we only seek to eliminate certain non-resonant quartic mono-
mials whose coefficients are in some sense “not too large”. We will in fact only try
to eliminate monomials bk1bk2bk3bk4 for which the frequency sum denominator satis-
fies

∑g
i=1 σ(kj)ωki ≥ O(1), i.e. “not too small”, for some reasonable notion of O(1)

discussed below. In this we will assume that Γ̃k1k2k3k4 ≤ O(1) (this is verified in the
examples of the previous section).
We will not consider here the question of eliminating monomials with both

Γ̃k1k2k3k4 and
∑g
i=1 σ(kj)ωki small. This analysis requires information on the overlap

of the different modes and seems important for more general examples.
Motivated by the experiments A, B and the observation of the gap separating low

and high frequencies we define two sets of indices I− and I+ representing modes of
frequencies that are below and above the gap, respectively. Let

ωc = max
j∈I−
(ωj), Ωc = min

j∈I+
(Ωj), (21)

with ωc < Ωc, and I+ ∪ I− = {2, . . . , N}. Also let
G = Ωc − ωc, Δ = max

i,j∈I+
|Ωi − Ωj |. (22)

The discussion of the Γ̃k1k2k3k4 in Sect. 2 suggests that a reasonable small parameter
for the problem is the smallest frequency ω2 (i.e. the inverse of the size of the chain),
and that O(1) means independent of ω2 (i.e. the size of the chain).
Following the above considerations we assume that

Ωc −Δ ≥ O(1), G ≥ O(1), G−Δ ≥ O(1). (23)

Proposition 1. We can define a symplectic change of coordinates a = f(ã),
a = ã + cubic terms, a = (a2, . . . , aN ), ã = (ã2, . . . , ãN ), that is generated by a
function χ that is the sum of monomials of the form (20) with

∑g
i=1 σ(kj)ωki ≥ O(1)

so that (i) the subspace V+ defined by ãj = 0, ∀j ∈ I−, is invariant under the Hamil-
tonian flow of H̃(ã) = H(f(ã)), and (ii) the quartic part of H̃(ã), restricted to V+, is
invariant under the action ãj 
→ ãjeiφ, for all j ∈ I+, φ ∈ R.
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Table 1. Monomials in the equations of motion and their origin in the Hamiltonian.

Case Monomial in ȧk, k ∈ I− Monomial in
k1, k2, k3 ∈ I+ quartic Hamiltonian

(1) ak1ak2ak3 ak1ak2ak3a
∗
k4

(2) ak1ak2a
∗
k3

ak1ak2a
∗
k3
a∗k

(3) ak1a
∗
k2
a∗k3 ak1a

∗
k2
a∗k3a

∗
k

(4) ak1ak2a
∗
k3

ak1ak2a
∗
ka
∗
k3

(5) ak1a
∗
k2
a∗k3 ak1a

∗
k2
a∗ka

∗
k3

(6) ak1a
∗
k3
a∗k2 ak1a

∗
ka
∗
k3
a∗k2

Table 2. Frequency sums for quartic monomials of degree 3 in the variables ak, a
∗
k, k ∈ I−,

and degree 1 in the variables ak, a
∗
k, k ∈ I+.

Case frequency sum denominator
(1) Ωl1 +Ωl2 +Ωl3 − ω̃l4 ≥ Ωc +G > O(1)
(2) Ωl1 +Ωl2 − Ωl3 − ω̃l4 = 0 ≥ G+Δ > O(1)
(3) Ωl1 − Ωl2 − Ωl3 − ω̃l4 ≥ G−Δ > O(1)
(4) Ωl1 +Ωl2 − ω̃l3 − Ωl4 ≥ G−Δ > O(1)
(5) |Ωl1 − Ωl2 − ω̃l3 − Ωl4 | ≥ G−Δ ≥ O(1)
(6) |Ωl1 − ω̃l2 − Ωl3 − Ωl4 | ≥ G−Δ ≥ O(1)

The idea for (i) is that from

ȧk = −iωkak − ik4
4

{ N∑

k1,k2,k3=2

Γ̃k1k2k3k

(
4ak1ak2ak3 + 6ak1ak2a

∗
k3
+ 4ak1a

∗
k2
a∗k3
)

+

N∑

k1,k2,k4=2

Γ̃k1k2kk4

(
6ak1ak2a

∗
k4
+ 4ak1a

∗
k2
a∗k4
)
+

N∑

k1,k3,k4=2

Γ̃k1kk3k44ak1a
∗
k3
a∗k4

+4

N∑

k2,k3,k4=2

Γ̃kk2k3k4a
∗
k2
a∗k3a

∗
k4

}
(24)

with k ∈ I−, it is sufficient to eliminate monomials bk1bk2bk3 with bkj = akj or
bkj = a

∗
kj
and k1, k2, k3 ∈ I+. These monomials come from the monomials of H indi-

cated in Table 1. By (21), (22), these monomials have frequency sum denominators
that are of O(1), as indicated in Table 2, where we use the notation Ωl = ωl, if l ∈ I+,
and ω̃l = ωl, if l ∈ I−.
Part (ii) follows from the fact that we can eliminate all monomials al1al2al3a

∗
l4
,

al1al2al3al4 (and their complex conjugates), with l1, l2, l3, l4 ∈ I+, from H. The fre-
quency denominator for the monomial al1al2al3a

∗
l4
, l1, l2, l3, l4 ∈ I+ (and its complex

conjugate) is

Ωl1 +Ωl2 +Ωl3 − Ωl4 ≥ 2Ωc −Δ > O(1).
Similarly the denominator for al1al2al3al4 , l1, l2, l3, l4 ∈ I+ (and its complex
conjugate) is

Ωl1 +Ωl2 +Ωl3 +Ωl4 ≥ 4Ωc > O(1).
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Therefore the quadratic and quartic part of H̃(a), restricted to V+, and denoted
by H(a), is

H =
∑

l∈I+
ωlala

∗
l +
3k4
2

∑

l1,l2,l3,l4∈I+
Γ̃l1l2l3l4al1al2a

∗
l3
a∗l4 . (25)

This concludes the argument. A more precise statement, e.g. an estimate of ρ, is left
for future work.
It is clear that (25) implies H(aeiφ) = H(a), for all a ∈ V+, φ ∈ R, so that the

Hamiltonian flow of H has the additional constant of motion
P+ =

∑

l∈I+
|al|2. (26)

Then to look for periodic orbits of the Hamiltonian flow of H in V+, we seek solutions
of the form al = e

iλtAl, l ∈ I+. Such A ∈ C|I+| are critical points of H on the spheres
P+(A) = c, c > 0. It is a topological fact [15] that we have at least |I+| families
of such critical points A at each sphere P+(A) = c, c > 0. These families of critical
points are circles, since if A is critical point then so is eiθA. Relative equilibria for S1

Hamiltonian systems have been studied extensively, in discrete NLS equations, and
other contexts, see e.g. [11].
Note also that we have at least two such periodic orbits at each P+(A) = c, c > 0,

that are stable in the subspace V+, they correspond to the maxima and minima of H
in P+(A) = c. These solutions may have however unstable directions in the remaining
directions. Their numerical computation and stability analysis is left for future work.
This analysis should also be useful in determining whether these solutions persist
under inclusion of the higher order terms of H̃.

5 Discussion

We have studied weakly nonlinear spatially localized modes in some inhomogeneous
FPU lattices. The localization is related to the presence of well defined regions of
particle agglomerations, that is rather special to the configurations we consider, but
may point to a mechanism that is applicable to more general inhomogeneities, where
the absence of spectral gaps is compensated by small overlap of the eigenmodes. This
scenario will be examined in future work.
The existence of nonlinear normal modes (periodic orbits) near the origin of a

Hamiltonian system with definite quadratic Hamiltonian is a robust phenomenon,
predicted by the Weinstein-Moser theorem, and other well-known generalizations, see
e.g. [5]. The computation and continuation of these orbits generally requires numeri-
cal computations as in [12], and the existence of spatially localized periodic orbits is
a concept that should make use of some extra structure in the system. In the partic-
ular problem this structure is provided by the interaction matrix characterizing the
system, and a first idea is to combine the spectral data of this matrix with normal
form ideas.
These and related matrices have been studied quite extensively in spectral graph

theory, and we hope that certain features of the numerical dispersion and mode over-
lap factors can be explained by theoretical arguments. Also of interest is the use of
this linear information in normal forms involving more general non-linear interac-
tions. In particular, the absence of cubic interactions seems crucial for our argument
on high-low frequency interactions, and a natural question is whether cubic interac-
tions among certain ranges of modes can be non-resonant. The studies of [8,9,14],
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also suggest a convex dispersion profile for the low modes of protein models that is
different from the one arising in 1-D. Thus it seems that there are several related
questions for different ranges of frequencies.

We wish to thank M. Tejada-Wriedt and D. Sanders for helpful discussions. We also
acknowledge partial support from grants SEP-CONACyT 177246, PAPIIT IN104514, and
FENOMEC.
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