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Summary. We propose a Hamiltonian model for gravity waves on the surface of a fluid
layer surrounding a gravitating sphere. The general equations of motion are nonlocal and
can be used as a starting point for simpler models, which can be derived systematically
by expanding the Hamiltonian in dimensionless parameters. In this paper, we focus on
the small wave amplitude regime. The first-order nonlinear terms can be eliminated by
a formal canonical transformation. Similarly, many of the second order terms can be
eliminated. The resulting model has the feature that it leaves invariant several finite-
dimensional subspaces on which the motion is integrable.

1. .Introduction

The goal of this paper is to describe a Hamiltonian formulation for waves on the surface
of a fluid layer surrounding a gravitating spherical body. The fluid satisfies hydrodynamic
equations inside the layer, and the surface of the layer is moving consistently with the
motions of the fluid. The resulting system is a free boundary problem in which the region
where the hydrodynamic equations of motion hold is also part of the unknowns.

We will assume that the fluid in the layer is inviscid, incompressible and moving
irrotationally. The assumption that the flow is irrotational (potential flow) is very restric-
tive and in many cases inappropriate. Our model is, however, useful for isolating and
studying hydrodynamic wave phenomena where the restoring force is gravitational, such
as, for instance, sea waves and atmospheric tides.

In the case where the potential gravity waves take place over a plane, a very elegant
Hamiltonian formulation was first introduced by Zakharov [Z] (see also [M]). More
recently it has been shown that the formulation leads to a very systematic discussion of
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approximate gravity wave equations (sce [CG)) and to efficient numerical methods [CS].
Using the formalism presented here, similar algorithms could be derived for the sphere.
The theory of Zakharov has also been extended to general inviscid, incompressible free
boundary flows in [LMMR]. In that work the Hamiltonian formulation of the potential
flow case is derived from the canonical theory of the Euler equations (see [MG], [MW]).

In Sections 2, 3, and 4 we show how to use the potential flow formalism on the sphere
and discuss some physical applications and limitations of our model. The main result of
these sections is that, indeed, the free boundary problem can be written in a Hamiltonian
form. The Poisson bracket does not have the standard form (such brackets are often
referred to as noncanonical), but we also find a change of variables that reduces it to
standard form. Note that there are already several well-known examples of noncanonical
Poisson brackets in hydrodynamics, plasma, magnetism and other areas. The canonical
variables in the Hamiltonian formulation of free surface potential flow are the wave
amplitude (a function giving the shape of the surface) and the hydrodynamic potential
at the surface. These two functions, defined on the sphere, completely determine the
velocity inside the layer. This reduction in the dimension of the problem is one of the
benefits of the potential flow assumption. On the other hand, the equations of motion for
wave amplitude and surface potential are nonlocal. We describe a method that allows
us to write the Hamiltonian and the equations of motion in terms of Fourier multiplier
operators in Section 5.

The Hamiltonian formalism is particularly convenient for deriving approximate grav-
ity wave equations, for it suffices to consider approximations of the Hamiltonian. These
approximations are based on dimensional analysis and are discussed in Section 6, where
we identify the dimensionless parameters of the problem and indicate interesting asymp-
totic regimes. In the present work we will be concerned with a small amplitude regime
and we focus on “intermediate depth™ waves.

The theory of small amplitude water waves is analogous to the theory of motions of
a Hamiltonian system near an elliptic fixed point. The completely quiescent state is the
fixed point, and the linear plane waves correspond to the normal modes of the linearised
system. The motion of the waves in the linear approximation is governed by the quadratic
terms in the Hamiltonian, while the nonlinear evolution arises from cubic and higher
order terms of the Hamiltonian. The cubic and higher order terms of the Hamiltonian
can be also interpreted as describing the interaction between three waves (cubic terms),
four waves (quartic terms) and so on. One of the tools used in the study of motion around
an elliptic fixed point is the Poincaré-Birkhoff method of successive canonical changes
of coordinates. In each canonical transformation of the method one tries to eliminate the
lowest order nonlinear terms of the Hamiltonian. After a number of such transformations
the Hamiltonian is reduced to the so-called Birkhoff normal form containing only the
resonant nonlinear terms. Analysis of normal form systems can yield extra information
on the behavior of the system. In Section 7 we show that for water waves on the surface of
the sphere: (a) the cubic (first-order in the nonlinearity) terms of the Hamiltonian can be
eliminated, and (b) the only quartic (second-order in the nonlinearity) terms that cannot
be eliminated are those of a very reduced class. The canonical transformations are given
explicitly as formal time- | maps of suitable Hamiltonian flows. We will remark, however,
that these normal form calculations are more useful for intermediate and large depth
water waves. As an application of these calculations we find some finite dimensional
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manifolds that are invariant under the evolution determined by the quartic normal form
Hamiltonian. On these finite dimensional manifolds we can use the standard methods of
dynamical systems (o, in particular, identify periodic orbits of the second-order normal
form system. These approximate solutions of the full water wave system are traveling
and standing waves with amplitude dependent frequency.

Even if at this point these transformations are purely formal, we hope that they can be
made rigorous and at least be used to prove good lower bounds for the time of existence
of solutions with small initial data. It also seems possible that some of the periodic
orbits and quasi-periodic orbits of the linear problem persist in the full nonlinear system.
For finite dimensional systems, the persistence of families of periodic orbits in the full
nonlinear system was proved first by Lyapunov. More general results of this type are
in [Mo], [We]. The persistence of some of the quasi-periodic orbits is also proved in
finite dimensions using KAM theory. Since this paper is concerned with developing the
formalism, we will postpone these questions to future work.

We also point out that our formalism is well adapted to the development of numerical
methods for the problem. For example, to develop finite-dimensional approximations we
truncate the Hamiltonian. The truncated system will automatically be Hamiltonian. We
plan to discuss the numerical implementations of that scheme in a forthcoming paper.

2. Equations of Motion

We consider a sphere of radius b and, on top of the sphere, a layer of fluid (“sea” or
“atmosphere”) of thickness (“‘depth”) h. Using the standard spherical coordinates r =
radius, ¢ = polar, ¢ = azimuth, the surface of the sea will be at r (3, ¢) = p + n(¥. )
with p = b + h. The amplitude of the water waves is described by the single valued
function n(3, ¢). The dynamical problem we want to consider is that of free surface
potential flow of the layer of water under the influence of gravity. For such a flow, since
the spherical shell is simply connected, there exists a velocity potential ¢ and the velocity
is given by u = V¢. The conservation of mass for an incompressible fluid is V - it = 0.
Hence, we should have

Ap =0 (2.1)
in the region occupied by the fluid. On the surface we have

¢ 1 3¢ an I 3¢ an

= —— e —— ——_— 2:2
e ar r299 a9  r2sin?9 d¢ Ay =
and
| K
= ——|V¢|* + —— — p. 2.3
b, 2| o] o+n P ( )
and at the bottom r = b we have
a¢
— =0. 2.4
ar (2:2)

The equations of motion (2.1)—(2.4) are obtained from the Euclidean Euler equations
(see [L]) by a change of variables: (2.1) is the conservation of mass for an incompressible
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fluid, (2.4) is the rigid wall boundary condition at the bottom of the sea and (2.2) is the
condition, in polar coordinates, that the surface is transported by the flow, or

d . .

|:—+u-V]F=0, (2.5)
at

where F(r.1) = r — p — n(, ¢) = 0 is the implicit representation of the surface and
u is the velocity at the surface. The dynamical boundary condition (2.3) follows from

Euler’s equation at the surface

g 1 _,
Vil 2o = v = 0. .
(ar+2]"| + (n)-i-P) 0 (2.6)

Theterm V (n) = £ = X gy .- is the gravitational potential due to the solid sphere
of radius b. Physically, K = GM with M the mass of the planet, G the gravitational
constant and g the acceleration of gravity at r = b. Also we require that the pressure
p be constant in space. (Vp # 0 would correspond to the presence of an additional
external force.) Note that in (2.3) quantities with no spatial dependence (e.g. p, %) do
not play any role and can be set to zero.

The equations of motion suggest that if at any instant 7o we know the function n (3, ¢)
and the potential ¢ on the surface, i.e., the function ® (¢, ) = ¢ (¢, 7, p +n(?d, ¢)), we
can determine ¢ at # in the whole region occupied by the fluid by solving the boundary
value problem: A¢ = 0 inside the fluid with ¢ = ® at the surface r = p + (¥, ¢) and

3 _ 0 atr = b. Thus we are essentially interested in the evolution of n and ® which

ar
is given by (2.2) and (2.3). Note that % = % + %f%%lmpﬂw_@,. Both equations are

nonlocal since they contain the term % To evaluate ?,—f we need information about the
solution of the boundary value problem. A method for writing the equations of motion

in terms of n and ® alone is given in Section 3.

3. Hamiltonian Formulation

We will show that the equations of motion (2.2), (2.3) for n and ® form a Hamiltonian
system. More precisely they can be written as

Th=[f?|H]- ¢I=[¢$H] (3|)

where [, ] is an appropriate Poisson bracket and H is the Hamiltonian of the system.

To express the equations of motion in Hamiltonian form, it is natural to guess that the
Hamiltonian should be the physical energy and then try to find the Poisson bracket. In
particular, here the Hamiltonian A will be the total energy K + U (kinetic + potential)
of the water mass

l r=p+n(.¢) . r=p+n(d.9) K
H = —/ . |Vol|°dV +[ (——) dv. (3.2)
2 Jsr)r—p stJr=b F

Integrating by parts the first term,

1 3¢ I
He=—§ dR== dA, + = | (=K)dA,, :
2 /g an +3 ), 7KMA 3-3)

r=p+n(d.p) s
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‘ i I H - . -
where R = (I + (};_:%)2 4 (”i'l1 - H—:)zlz and ?;%h:ﬁ,ﬂ,gw is the normal derivative at
the surface. We also use the notation dA, = r?sin0d@de with r = p + n(9, ¢). The
quantity Rd A, is the area element of the water surface.

We introduce the Dirichlet-Neumann (“flux”) operator G(n) by

9¢

G(n)® =R — (3.4)
a"l r=p+n(it.@)
and we can write the Hamiltonian as
| |
H = —f PG (n)PdA, + */ (—K)dA,. (3.5).
2 S? 2 s?
The Poisson bracket [, ] of (3.1) is defined by
)
p+n SF 8G 5GSF) 5
F, = —_— _—— - — dA,. 3.6
. /s:(.o ) (8n5¢ TR A S

The variational derivative % is defined by (%. dx) = F’', where F' is the Frechet

derivative of F with respect to x, and (, ) is the L? inner product on $? (with radius D).
From (3.6) the equations of motion (3.1) become

-3 -2
p+n SH p+n §H
=| — B ¢ =—(—- —_— Vi
"’(p)w ‘ (p)5n o

It is easy to see that the above bracket indeed satisfies the axioms of Poisson brackets
(for the formalism of Poisson brackets for fields see [D], ch. 1). The only axiom that is
not immediate is the Jacobi identity, which can be verified by a direct computation.

Proposition 3.1. Hamilton's equations (3.1) and the original equations of motion (2.2),
(2.3) are equivalent.

Proof. We note that -g% = 0 and
| I
K(®+6P) = 5[ PG(n)sddA, + 5[ SPG(N)PdA, + K(P) + 0(8P)
52 52

so that % = (1 + %)2G(r})¢, and, therefore, Hamilton’s equation for 7, is

a | dn 1 o
m=GmMd = R'ﬁlr:p-}-q(:._\') =V¢- [1, S e M s q] ' (3.8)

sU 2 K
n p) pP+n

r=p+n(d.¢)

| 1
K(n+dn) = 5 |V¢|28qu+5ff IV (n+8n)>dV +0(8n). (3.9)
5?2 s*dr

=h

which is (2.2). For (2.3),

and



152 R. de la Llave and P. Panayotaros

Integrating by parts, the second integral is

=p+n(i.g) 3¢
/ / VoV (_ar 3:;) dV + K(n) +0(8%n)
52 =}

_ /w—éq—RdA + K(n) + 0(62n)

= —[ —?n,ar}dﬂt, + K(n) 4+ 0(8n) (3.10)
5?2 ar

using Green's identity and the equation for n,. From (3.6), (3.7), (3.10) we obtain

i
p+n §H 1 5 a¢
R e ) [k T 10 77 o _
( 5 ) o 2| o] gn+”’ar 3.11)
-2
But we also have 2% = 2—? + gf 82 | _p+nid.ers SO that by (3.9), & — _ ('—”—:—) %:—’ is
equivalent to (2.3). O

Remark 3.1. A comparison of the above derivation of the Hamiltonian structure of water
wave equations on the sphere with the derivations of the analogous result in Euclidean
space ([Z], also [BO]) will reveal that the adoption of the nonstandard bracket was needed
because of the form of the surface element in polar coordinates. The departure of our
bracket from the standard one is small—in a sense that will be made precise later—but
not small enough to be discarded.

[tis possible to make a change of variables in such a way that the bracket becomes the
standard one. (We will refer to this process as “diagonalising™ the bracket.) In particular,
choosing a transformation f(n, ®) = (7, ¢) defined by

7= (|+i) <i>:¢(1+£), 3.12)
2p p
the bracket is diagonalised: Df-A-Df7 = J,where A, J are the respective cosymplectic

forms of our bracket and the standard bracket. The transformation of (3.12) is invertible
in the range of interest sup|n| < A.

4. Applicability of the Model to Physical Problems

The main physical limitation of our model is the potential flow assumption. The absence
of vorticity and angular momentum in the rest frame has the consequence that the model
can not describe phenomena such as Rossby waves or the bulging of the equator observed
in rotating liquids. Thus our model isolates the effects of gravitation. We can also add
to our formalism the apparent motions due to the rotation of the observer’s reference
frame, as well as another gravitational effect, namely the tides. Also, the model can be
useful for studying phenomena involving short waves, in particular energy transport by
wind-generated ocean waves.



Gravity Waves on the Surface of the Sphere 153

First we consider the water wave equations in a frame rotating with angular velocity
Q around the z-axis (3 = 0). We introduce the rotating frame canonical variables
uq = (ng, ®q) related to the rest frame variables u = (n, ®) by ug = Ag'(r)u. where
Aq(t) acts on functions defined on the sphere by

Ag(t) f(W, @) = f(D, @ + ).
The flow Aq(r) is generated by
fi = £, L],

where [, ] is the Poisson bracket introduced previously and L, the angular momentum,
is

r=p+n(d.¢) B 3’]
L, =[ (F x V) - 2dV =f O—dA,. .1
s2Jr=b s dg

Note that [H, L,] = 0 so that if the rest frame variables evolve under u, = [u, H] the
rotating frame observables evolve under

Ing ddg

at = [f?m H QL:]- at

Also note that the rotating frame velocity uq is given by ug = Vg + Uq where ¢q is
the solution of the Neumann problem (i.e., (2.1), (2.4) for ¢q) with ®g as the boundary
value at the surface, and Uq is the velocity of rigid rotation with angular velocity 2. A
Hamiltonian formalism for general Euler free boundary flows is given in [LMMR]. There
the authors use the unique decomposition of divergenceless velocity field u to w + V¢,
with w divergenceless and tangent to the boundary, to write the canonical theory for w,
the'surface potential and the shape of the boundary. However, the description of the fluid
motion by functions of two variables is now lost.

Tides result from the gravitational attraction of another body, in particular, the accel-
eration of points on the surface of the sphere relative to the acceleration of the center of
the sphere. The effect of tides is described by a tidal potential, which can be added to
the equation for the evolution of the surface hydrodynamic potential. The tidal potential
W at the surface of the fluid layer has, in lowest order in the distance to the attracting
body, the form (see [P])

= [Pq, H — QL,]. (4.2)

W = AP(Z), (4.3)

where P,(¢) is the second Legendre function and A is a physical constant. If we consider
a point x on the surface of the layer, the point O at the center of the sphere and the point
S at the center of the distant star, { is the angle between the lines Ox and OS. The tidal
potential can be expressed as a function of the polar and azimuth angles ¢ and ¢ of the
point x and of the polar and azimuth angles 8" and 7" of the external body

3 ' f 3 ' !
W = A[P,(¥)Py(8) + 7 sin 2¢ sin 28" cos(T' + ¢) + 4—coszrpcosza cos 2(T" + ¢)].
(4.4)

If the sphere rotates with angular velocity 2, then 7' = Q, and, similarly, we can
consider variations in time of 8’. We can then use the rotating frame formalism of
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equations (4.2) and the tidal potential to model the effects of the periodic variation of the
tidal forces. Notice that in (4.3) we can write P2(¢) = Yf({. @) where @ is the angle
around the axis OS. In the second form, (4.4), we are using the terrestrial system of axes
and angles. Since the two systems are related by a time-dependent rotation, the tidal
potential in the terrestrial system can be written as a time-dependent linear combination
of the spherical harmonics ¥;" with [ = 2.m = —2, —1, ..., 2. Thus the potential tide
can be added to the spectral form of the equations of motion in a straightforward way
provided that we have the time dependence of the coefficient of each spherical harmonic.
Since the harmonics are eigenfunctions of the linearised problem, a simple way to mimic
the varying tidal forces is parametric excitation (variation of one of the parameters of
the problem) at frequencies that are at resonance with the [ = 2 harmonics. In-fact,
the phenomenon of parametric excitation of nonlinear waves (see, for instance, [FS] for
water waves) is of independent interest.

One other area of possible application of our model is in the transport of energy by
wind-driven sea waves in the ocean. The typical wavelength of these waves is very small
compared to the global scales, and the effect of the Coriolis force is minimal. We can
include the effect of wind by adding to the equations of motion a pressure (gradient)
term computed from given velocity profiles for the motion of the air masses above the
sea. Since the approximations used in the following chapters are uniform in spatial wave
number of the quantities involved, we expect that the response of short waves will yield
rather reliable information on the long-range transport of wind energy by the sea waves.

5. The Flux Operator

We now describe the Dirichlet-Neumann operator G(n) as a function of n. It will be
assumed that G(n) can be expanded around n = 0 so that we can write G(n) =
> 20 Gi(n), the Gi(n) being homogeneous of order i in 7. Our task will be to cal-
culate the G;(n). Clearly, from (3.5), the expansion of G(n) will give us an expan-
sion of the Hamiltonian H = Ho + H, + --- with Hy = 1 [®Go(m® + -é-fng.
Hi = % [ ®G,(n)® and so forth. As we will show, it is possible to compute recursively
the G;(n) in a way very similar to that in [CG], [CS] and [GAS]. Once the G;(n) are
computed explicitly, the Hamiltonian of (3.5) can be systematically expanded in powers
of n. If we use as the Hamiltonian some truncation of this expansion, the resulting model
can be considered as a small-amplitude approximation of the water waves problem. This
formalism, therefore, provides us with a systematic way to produce increasingly more
refined small-amplitude expansions that can be computed rather effectively. We remark,
however, that the expansion here is formal. We leave the problem of convergence and
the choice of appropriate spaces for n and & open. For waves on the line the question
has been addressed (in a more general context) in [CM].
To calculate the G, (n) we first look for harmonic functions ¢, of the form

¢Y(r‘ v, 99) = HY(F)YY(I_?‘ (P)

The functions Y, (&, ¢) are the spherical harmonics, indexed by y = [/, m] with [ a
positive integer being the total angular momentum number, and m = —I, =+ 1,... A
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the azimuthal angular momentum number. The condition A¢, = 0 implies that
rru,” +2ru,’ — 1+ Duy, =0. (5.

The only solution of (5.1) (up to a multiplicative constant) that also satisfies u,,"(b) = 01is

ot b 141
u},(r)=(!+l)(g) +f(;) 3 (5.2)

Since the ¢, = u, Y, as above, are harmonic and satisfy % = 0 at r = b, from the
definition of G(n), (3.4), we have that for every index y

1 dn 1 an
G, (0, @, p+n) =V, 0,0+ [L gy —.——] (5.3)

or

00
Y Gitmuy(p + )Y, = uy'(p+mYy
i=0
nuy(p+n)dY, dn uylp+n) Iy

el . 5.4
30 (p+mn)? 30 3¢ (p+n)sin®y ¢ et

Expanding u, (r) and ;'s around n = 0(i.e.,r = p) and matching powers in n, we obtain,
at order O,

Hy’(P)Yy = GO(W)“y(p)Yy

and hence

Go(n)Y, = ty () Yy (3:3)

Y = ) T
At order 1 we have
,, I ayY, 1~ aY, ,
nu, (,O)YY ,0 y(p) ny 30 = - sinzﬁmﬂ 309 — G{}('])n“y (p)yy"l“Gl(q)uy(p)Yr
and hence
] 1
G(nY, = [ u," ()Y, — —uy(p)
ke = L LY A

e fro ot g b I | oty G.8)
M5 T sinto ¥ dg el

In general, at order k we have

Lk k) L (4" oYy : e
k!n uy (p)Y}' (k — ])|n ( rz) () | mo av i sin’ 0’7@! dy

qk_luy{k_“(ﬁ') Faev g Gk(n)uy(p)] Y
(5.7)

1
[Go(n)—n u, ' (p) + G Gy,

(u,® = k-th derivative), and we can obtain G, (n) recursively in terms of the G;(n)
withi < k. The above formulas determine the G;(n) as an operator in a, for the moment,
unspecified space of functions in the sphere. Note that the G;(n) are given as Fourier
multipliers, and it is clear that they are not local operators.
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6. Scales and Dimensionless Variables

It will be advantageous to introduce several dimensionless quantities that take into ac-
count the scales of the problem. The relevant dimensionless quantities are (1) the ratio
€= f— of the typical amplitude A of the waves to the depth /1 of the fluid layer, (ii) the ratio

B =1%of lhe depth over the radius b of the planet, and in the rotating frame we also have

(iii) R = £ where Q is the angular velocity of the frame and wy is a typical frequency
of linearised gravity waves in the rest frame. Here we take the reference frequency to be

wp = _va‘ which turns out to be the phase velocity of linearised shallow water waves.

The dimensionless variables n*, ®* and ¢* are introduced by
¢ = —, Y = wot. (6.1)

For the Dirichlet-Neumann operator, we observe from the formulas in the previous sec-
tion that in each Gy (1) we can factor out a term & arising from the u, ' so that

l I 3 * *
Gu(mYy = 5 Gilehn" )Yy = 2 (@B)' Gi(n")Yy. (6.2)

The G;(n*) defined by the first equality in (6.2) are dimensionless: they depend only on
n* and B. The Hamiltonian can be written as

1 l _
= (ﬂs)lbzE f [gqu Y (€ Grin"H®* + g(q*)l] dA,. (6.3)
s k
Note that g is the acceleration of gravity at r = p. Defining H by

x | 1 :
H = —f *— Y (B Gi ()P + (") | pPd AL
2. Js p &

Hamilton’s equations (3.7) become

-~

. w2 OH
M= (1 +efn") 7" (6.4)
* * —28A
¢ =—(1 +efn”) "—- (6.5)
on*

In the rotating frame we can use the time-scale t" = Rt* and Hamilton’s equations
become

SL | §H
L } (565

*=(l+e€ =] — —
n: = ( Bn*) [3¢*+R3¢*
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and

sL 18H
(6.7)

& = —(1 +€fn*)? [—&7* + T
with L, = [, ®*3LdA,.

Note that the factor (1 + €8n*)~% which appears in the nonstandard bracket differs
from unity in terms which are first order in the dimensionless variables € and . Hence,
the difference between the standard bracket and the nonstandard one has to be considered
in expansions in the dimensionless quantities of this order.

The parameter S is the analog of the depth to wavelength ratio in Euclidean space. The
small B regime gives us an analog of the “shallow water” regime (e.g., see [Wi]), in which
the G;(n*) can be expanded in 8. Note that the G;(n*) are already multiplied by B* in
the Hamiltonian so that, for instance, in the § — 0 limit (with € nonzero) the evolution
becomes linear. It is also possible to prescribe a relation between the parameters € and S.
For example, setting ¢ = 82 = u would lead to an analog of the Boussinesq regime in R%.

In what follows we will be concerned with the small € regime with g arbitrary; in
particular, we will use the G;(n) calculated previously to write the equations of motion
to second order in €. From the dimensional analysis we have to take into account terms
arising from the nonstandard bracket. It is advantageous to present the Hamiltonian in
the variables 7, & in which the bracket is diagonal. Note that since € is small the normal-
izations of the new variables can be taken to be the same as that of the original variables.
The O(e2) Hamiltonian H = Hy + H, + H, in 7, ® (unnormalized) is

I S s 1 -
Hy = "f DGo()Pp’ dA, +—f (M*p*dA,, (6.8)
2 Js 2 /s

' Lo Lo Lo
H, =—§f ¢Go(’?)(¢f?)ﬁdA|+§/ ¢’[Go(ﬂ)¢]ﬂpd1"tl+§f OG () PpdA,
52 £ 52
(6.9)
and

3 f 5 L [ = S
H, = Z_[ DGo(7) (P dA, — 5[ S[Go(n)(Pn)]ndA,
s? s?

1 L T Y .
——f S[Go(N) P dA; — —f G (M(P)pdA, — —f G (7)PpdA,
4 st 2 s 4 s

| [ - ) | [ - .
+5f (G, (H)PipdA, +§f PGy (7)Pp2dA,. (6.10)
5 s

If we use the spectral variables n,, ®, (we drop the tilde from the notation) defined
by T = Z}-’ ny Y}" P = Zy d)}’ Y}'wl[h n[..".m] = n”.—mh ¢E.'_m| = (b[,'__-ml, the POiSSOﬂ
bracket (which is now diagonalised) becomes

af adg af adg
=y _ g1
[f. ] (a;;,, ady 3D, any ()

Y
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and Hamilton’s equations are

o _aH o 0H .
q}’_-a(b;‘ S 8”;- (")

Using the G; () from Section 5, the 4-wave Hamiltonian H = Hy + H, + H, is

Uy (0) o or 4 ) .
= ZZ L, @)+ 20" ) gnynys (6.13)
Y

uy(p)

2 4y, (P “;u(p)“}:(p))cb ® f}'
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Yi.ya.m

+ Z d>,,l¢,,,n},‘/}’},,V}’},)-V}’},j. (6.14)
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In the rotating frame the quadratic Hamiltonian Hp is modified to

u (p)
ZZ ::(p) % +2R 223”?'??—‘9 Z”‘ ®yny,  (6.16)

while the cubic and quartic Hamiltonians are the same as above.
The dispersion relations implied by Hy and Ho are

Ry P 6.17)
uy(p)
and
| (1, (p)\?
(y) = +—(” ) (6.18
waly m, R Hy(P) )

respectively.
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From (5.17) we canestablish thatw(y) = w(/) viewed as a function of the positive real
variable [ is smooth, monotonically increasing with w(0) = 0. In addition, @"({) < 0.
The function w(/) also depends on B, and note that in the limit g — 0, " (1) = 0 (but
not uniformly in [). For fixed B it is easy to see that for [ large w(/) — /I, which is the

deep water dispersion relation.
We now introduce some extra notation that will be useful in the next section. We

define the variables a,, a;, by

7 [ W
=" E:g_y(ar +ag-), Dy = =i— _g_(ay —ay-), (6.19)

2 Vo,
where if y = [[, m] then y~ = [[, —m]. Hamilton’s equations become
L
&= Ic’;’la; '

The Hamiltonian in these variables can be readily evaluated using the formulas above:
the quadratic Hamiltonian is Ho = ), w,a,a; withwy given by the dispersion relation.
If we write

H, = z Dy, Py Lyyayas H; = Z Dy, Py iy Ny Iy
V1.2 73 Vi-y.yvvs

with the 7y, sy, » Iyy.yayays the coefficients appearing in (6.14) and (6.15), we also write

*
H, = E  (Ayyan@n@pay, + Ay @n@nay,) + 6
Yi-y2. 13

*
H, = § : (Brun}',‘ma}nayzanayq + Bmygy‘y;a}ﬁaha}’.\ay;
Yi-¥2.¥3- 11

* *
F Brmr,'r[ahaygahﬂn) FCie:
with the coefficients given by

Appn = Nrm.v.l !r:r:r.n

Aym){( = NYmY.‘(_Ir_(hn - IYIY;YJ * !rmr_()'

Brmr.\ra £ Nyu Yavavs "y:ymn ’

Brmnrf = ernrm(_!r.'nrm - Imy,'nr,\ i "rmr{h ¥ !yurm}';)'

B

Vinavs e N)’l}‘mw(""x{rmr{ = I}'i}’_‘_l’!}'f + [rmr;r;)'

No o = V2 [on N __1 [onon
v — ’ nnnys = .
2 Y wy,wy, 4\ wy,wy,
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Alternatively, define ¥ = a""a; e T = (a*)x‘(az‘}z‘ .. where the k. k, are
nonnegative 1ntegcr~. and the ';uchnpls i label (enumerate) the modes y;. Also let
k| = k) + ka + -- -, [k| = k| + ko + - - -. We can write

Y AT, Hi= ) BT (6.20)
Ik (=3 K]+ k=4

The coefficients A 1 are

’w,’n-,*n: Z Ayiyvins Ak,,'x ky Z Ar..v,v," (6.21)

perm.i.j./ perm.i. j.{

Similar formulas define the B, 1.

7. Normal Forms

We will now see that the cubic (3-wave) terms in the Hamiltonian can be eliminated
by a formal canonical transformation. We will also try to eliminate the quartic (4-wave)
terms, but it will turn out that some of them are resonant and can not be eliminated.

To construct canonical transformations, we will use the “Lie-series™ method, which
we now briefly review (see, for example [DF], [C]).

Consider a manifold M with a Poisson bracket J defined on C>*(M) (we write
J(f.g) = [f.g])- Toevery function g € C>°(M) we associate a map Ad,: C*(M) —
C>(M) defined by Ad, f = [g. f]. We also formally define exp Ad, by

(expAd,) f = f+z—(Adq) = f+lg f]+—[g (8. f1l+- (7.1)

We can check that for every function g for which the series makes sense, the map
exp Ad, preserves the Poisson bracket structure on C*(M), i.e., (expAd,)[f, h] =
[(exp Ad,) f. (exp Ad,)h] and, therefore, defines a (local) canonical transformation by
acting on the components of the coordinate charts of M.

The above computations can be given some meaning beyond formal manipulation,
depending on the interpretation of the series of (7.1). For example, the series converges
for analytic functions, and then sometimes it may be extended to the whole space of
smooth functions. Note also that when this can be done, exp(Ad,) f is the time-1 map of
the Hamiltonian vector field of g acting on the function f. Alternatively, if g contains a
smail parameter, we may consider the series (7.1) as an asymptotic expansion in the small
parameter. These considerations pertain to the finite-dimensional case. Additional prob-
lems arise in infinite-dimensional systems. As we mentioned before, in this paper we will
present only the formal calculations and postpone the analytic discussion to future work.

In the present application, M is the span of the n,, ®,, and J is the Poisson bracket
given in (6.11). We want a function g such that exp Ad, eliminates the cubic terms from
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the Hamiltonian. In particular, let g = €Sy, H = Ho + €H + €2 H,, then

(expe Ads,)H = Ho+e(H + Sy, Hol) +€*(Ha +[So, Hil1+ 3[So. [So. Hol]) +0(€?).

(7.2)
i.e., we want Sy such that
H, + [So. Hy] = 0. (7.3)
If we can solve (7.3) the new Hamiltonian becomes
I
Hpew = Ho + € (Hz + 51501 Hl]) + o(e?). (7.4)

To solve (7.3) and calculate [Sy, H,], we will use the spectral variables a,, a, and
the notation developed at the end of the previous section.

Proposition 7.1. Egquation (7.3) can be formally solved or, equivalently, the cubic terms
of the Hamiltonian can be eliminated by a formal canonical transformation.

Proof. The cubic Hamiltonian € A is a sum of terms €A ;zk'"? with |k| + k| = 3. Let

50 = 0 13 7*, |k| + k| = 3. Using the derivation property of the bracket and induction,
we have the formula

l =1
[Z.N'—',u 1—\&] = ] Z(“J j'u'j)z = Z.t-t+kz,‘ +’\ (?'5)
1<)

for arbitrary u, 1, k, k. In particular, [so, Hol = —io, 7(3_; wi(ki — E,-))z*fr.-['f we set

| AT -
g, 7= — — 3
W iy wilki —k;)

the term €A, ,\z ‘Z* is eliminated, provided that the “3-wave resonance” condition
A #0. Y witki—k) =0, (1.7)
i
is not satisfied.
Letting So = —i ), 1 —‘{i—;z 7%, all the nonresonant terms are thus eliminated.
=

Therefore, it is enough to show that (7.7) is never satisfied.
From (6.20) and (6.21) the resonances (7.7) occur if and only if

Lyysye # 0, wy, + wy, +wy,, =0, (7.8)

]}"I}’_‘}’{ r"(: 0, Wy, + Wy, — Wy, = 0. (?9)
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To show that none of the above equations are satisfied, we examine the dispersion w,

and the terms [y, ,,,. First, since w, > 0. (7.8) cannot be satisfied. Also, d;,—‘;i > 0 and
“'?’:,‘_%’ < 0, so that

w(h):w(f|)+w(fz):>h > [ + . (7.10)

On the other hand, from (6.14)
Ly yays = byivans / Yy Y0, Yyi + Criyan / Yy, VY, - VY, (7.11)

with the by, s Cyiyay determined by (6.14). Now, ¥, = Y["(8,¢) = ™ P\ ()
with . = cos® and P/"(p) the associated Legendre functions (for material related to
spherical harmonics, we refer to [BL], [McR]). We have

2 A |
‘/‘Yle},:Y},_‘=[0 e'(z'“'m')wd‘pf Py, Py, Py dp

and

I
f P, Py, Pndu #0 onlyif |l —bL|<li<li+[ and [y + 13 + [ = even.
i

Hence, when the frequency addition rule holds, [ Y,,Y,,Y,, vanishes. For the second
integral of (7.11), we have

: dP,, dP, nmym
[YV:VYH'VYY3=6l23fI[(i —ﬂz)Pru d: d;‘ - Ii;szlPran]d“

with 8123 = j}lzn ei(z;-""')wdgo. Using

dP!.lml

_ 24172 plml+1 24172 plm|
i = (1= u)"2P"* —imu(l — 1®)'"* P,

|m|

(note that ;""" = 0 for |m| > [), we have

f YnVYy, - VY,
! H e | +1 1
= _5|23[ (1 Mz)ln(lmllpglml P;I;Hll P;II:""I _ Im2|Pgllmll‘r‘gl,mzlpgl:"“l-i_ )dﬂ.
—1 o= & !

|
+ 3|23 [ (P;!nnIPIl;u:HI P;:""Hl _ mzm).P,I:"'IP’[;":l P{l‘:""l)a’#
=1

|
# Al L]
. 5|23 [ x ‘uz)”z (mzmlPfi:ul{P’|‘m_|P!|:m| - lmzmllP;EmllP;[‘m-lpfl:mi)d“‘
1 == < :
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i, |41
The terms TEW P,

(1—pn
LI ‘+2 B '

P, and P,E Tl (see [McR, p. 115]). This is also the case for the terms of the last

integral, unless one of the m,, mj; is zero, in which case the integral is zero. Therefore,

the triple integral f Y, VY,, - VY,, can be expressed as a sum of

in the integral can be written as a linear combination of

I’J’ (LY I

|
[ P, b Pr':lﬂz P, du
-
and vanishes when the frequency addition rule holds. O

Note that the size of the denominators of Sy depends on 8. In the § — 0 limit the
linearised system is dispersionless and the denominators of Sy will vanish. Thus, the
proposition concerns more the intermediate (8 of order I) and deep water regimes. We
remark that, using the fact that ' > 0 and w” < 0, it is easy to show that all terms
lw;, — wy, — w;,|™" appearing in Sy can be bounded by |w| — 2w,|~', which can be
computed easily for given B.

In the rotating frame we can obtain a similar result for the Hamiltonian H? =
H§¥+ % (€ H, +€? Hy + - - -). Here the quadratic Hamiltonian H§! involves the dispersion
wq of (6.18).

Corollary 7.2. In the rotating frame, the cubic terms in the Hamiltonian can be elim-
inated by a canonical transformation.

Proof. The normal form calculation is as above, and we have to check that there are no
resonances. From (6.18), the resonance condition is now

Ly yys # 0, Rmy, + w,, + Rmy, + wy, + Rmy, + w,, =0, (7.12)

IYle)’_f # 0, Rmy, + wy, + Rmy, + @y, — Rmy, — @), = 0. (7.13)

The coefficients are as in (7.11). From the above discussion of the triple integrals of
harmonics, Iy,y,y, # 0= m,, +m, +m, =0and [, - # 0= my,+my, —m, =0,
and, therefore, the resonance conditions (7.12), (7.13) are equivalent to the rest frame
resonance conditions. O

We now consider the problem of eliminating the quartic terms. However, this time

there are resonances.
As previously, we try to find a function S, such that (exp €* Ads,)(exp € Adg,) H has
no €2 terms, and we are led to the equation

|
(H2+ 5[50. H]]) + [S1, Hol = 0. (7.14)

The contribution from [So, H;] can be computed with the aid of the formula (7.5).
The calculation is long but straightforward and can be simplified with the use of a
diagrammatic method that will appear elsewhere. We write the result as

[So. il =K + L
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with
. ' ’
K = —i Z {aylaﬂ‘ai"aﬂ[’a‘m,rmAY*VJK, +AV;K,V:AYWJ}:,
Vi-Yr.pvVa ¥y
I r ' '
Ay Ay, A“FV'VEA}«?:V' g A?l}’m‘a‘ram{ + AY:V:V.;AymV.[]
* i
+a,,,::1},_,(.1,,,‘4::’},4[A},‘},4 Ve (A}, T Am, - Ay.y:y,,)
+AY|}fq ¥y (A}’qu}" + AY!V« o * A}’u’n’q)
r ' [ '
+AY-‘VIK¢ Ay + Ayt Ayiren) + AV‘Vu Yy (A)’-‘r}'n’1 + Arm,v: + Arurm)
I
+AY.‘V;_}’Q_(AY¢YI V{ - A}"I }’qy;) + Aylh}ﬂ"'(A}’,‘y,\Y; = A}’?Vq}’; )]lq
T -1 ’ -1
where A}’I}'ay:. =X A}’ln}’s(wlfl +wh +w}’5) ’ A}’:?’:}’q Ay,y,y (O‘qu +myw fﬂyﬁ) and

so forth, and
s £ _x
L=i Z Ay, @y,ay,a5 Cy iy,

Yi-Yi.Pupa ¥y

with

1 |
C W +
Yiy2pry. (w}’l +wy_1 _1_(1):%‘I w}’b -|'(Uy-3 +w)’s)
X(quym + Am Yu¥2 ok Aymw)(Ay;y;r; +* Ar.‘r{r{ e Ar( Yy r,,’)

1 |
+( — A o UV
Wy, + Wy, — Wy, Wy, — Wy, — Wy, WA

o 4

| |
B (“’h + wy, — Wy, - Wy, — Wy, _“’n)
X(Ayyps T Ayyir Y Ayayeys t Ayyys )

Writing Hy + 3[So, Hilas ), ft’k_',;z"'fr with |k| + |k| = 4, the resonance condition
is now

B}'urmn # 0, Wy, + Wy, + Wy +wy, =0, (7.15)
BYIV!V.‘V; # 0, Wy, + Wy, + Wy — Wy, = 0, (7.16)
Ennr{r{ #0, Wy, + Wy, — Wy, — Wy, = 0. (7.17)

Proposition 7.3. The resonance conditions (7.15) and (7.16) are never satisfied while
condition (7.17) is satisfied for svitable yy, y2, v3, Va.

Proof. Since w, > 0, (7.15) is never satisfied. For (7.16), we have that B, ., is of
the form

= B Q R
Brnrzr\m - y,ymy E:Qm&r VaYur ¥
Q.R
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where Q,,,,y and Ry,,,, are [ Y, Y, Y, or [(VY, -V Y,,)Y, . From our previous discus-

sion of the triple integrals of spherical harmonics, a necessary condition for Enyzm
. - . . . e
not to vanish is that there exist indices y = [[, m] such that

“i - fjl <l =< “.' +{;| and \ln — Il < [ = ”n + {ml (7.18)

(and permutations on the i, j, n, m). However, since v > 0and £ < 0, we have that

Wy, = Wy, + y, + 0y, = li >l +1, +1yor i = 1| > |l + Ll (and permutations) so
that (7.18) is not satisfied, and (7.16) cannot be satisfied either. For (7. 17), pick y1 = y3
and y» = v, then the frequency sum rule is satisfied; moreover By, uyy i (generically)
nonzero (a few of them have been computed). O

Therefore the resonant part of the Hamiltonian is of the form

* %
Hz.re.c = E R}’IYEY‘Yda)’ia}'}a}’,\aﬂ
Yi.y2. ¥ 1

with

Ryiyayive = Brmr{n‘ + icmnrm- (7.19)

We note that Hs ,.; should include all the “generic” resonances corresponding to
Iy =1,ls =lLorly =1h,lg=1.In addition the resonance condition (7.17) may be
satisfied for other integers. A preliminary numerical search has not found any so far, but
note that for large [ we have w(l) — V1, and since /a + Vb = Jc+ Jd has other
types of integer solutions, we expect that there are quartets of integers that are arbitrarily
close to resonance. A more detailed study of this issue and its dynamical implications
will be considered in the future.

The equations arising from the above second-order normal form Hamiltonian H =
Ho + Ha.,.; are easily seen to have families of periodic orbits. To simplify the argument
we will assume that H, . contains only the “generic” 4-wave resonances, in which
case the subspaces M, = a(l,m) = 0 for [ # L are invariant under the flow. On these
subspaces we can find families of periodic orbits.

Proposition 7.4. Let ¢y be the flow generated by the Hamiltonian vector field of
H = Hy + Hj res. Then, (a) the subspaces Tie.my = {am = O0forl # L, m # M}
with L = 1,2,3,.... M = —L,—L+1,...,L are invariant under ¢y. More-
over, the restriction of the flow ¢n to TiL.m) foliates T m) by periodic orbits. (b)
The subspaces S, 5, = {ajm =0 for | # L,m# +M}ywith L = 1,2,3,...,
M=—L,—L+1,...,Land3|M| > L are invariant under ¢y and the restriction of
@u to S, sy foliates Sanby periodic orbits.

Proof. (a) From the form of Hy ;s in (7.19) observe that in order for the coefficients of
the terms @, .m,)a(s.n) A, .y 3lla.my L0 DE NONZETO, the m; must satisfy the relation

my +my —m3 — My =0. (7.20)

To show that the T, ar) are invariant, first note that ag,., = 0if [ # L. Also, for
m # M we have ai.m) = iC(M, M, m, M)aq.maw.mai, y, With the coefficient
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C(M,M,m, M) given by (7.19). But the condition C(M, M,m, M) # 0 and (7.20)
require that m = M. Thus the T, ) are invariant and

ac.my = iwragpy +iC(M, M, M, M)aw. .maw.mag m-
This equation is a Hamiltonian system generated by
* * *
Hy pm = oraw.maiy py + Cmaw.maw.mag . m

with Cy = C(M, M, M, M). The Hamiltonian H; p depends only on the “action”
Jim = au.ma&, M- By a canonical transformation to the variables J; a and 6, up
(“action-angle™ variables), the equation becomes

Jum =0, O.m =wL+CuJLu.

The solutions of this equation are all periodic and correspond to traveling waves with
amplitude dependent phase velocity.
(b) Similarly, for ag.my € Sz sy a..+m) has terms of the form

C(M, M,m, M)aq.maw.mai, u

with M either +M or —M. From (7.20) the coefficients C(M, M, m, M) vanish unless
m = =M orm = £3M. Thus for 3|M| > L the subspaces S, s, are invariant. On

S(L.#1) the equation of motion for the restricted flow is generated by the Hamiltonian

. * * *
H, 7 =iocal yaim +aL.-maL.-m) + Cumlimiim

+2Cy.-mImIL.-m+Copm—mIr —mJIL.—M

with J +m = a.+m)afy 1pry Ca.8 = C(A, B, A, B). Using “action-angle” variables
we again have

Jo+m =0, O am =wr +2CemamIim +2Cu.—mIL.u-

These periodic orbits are superpositions of the previous traveling waves, and, if the
amplitudes J; 4 are equal, the result is standing waves. O
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