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• Derive inhomogeneous FPU model from elastic networks in multidimensions.
• Show examples of spatially localized normal modes in linearized FPU with spatial inhomogeneities.
• Show possibility of continuation of localized linear modes using Birkhoff normal forms.
• Compute numerically periodic orbits in quartic Birkhoff normal form, relate to spatial localization.
• Examples include localized oscillations in 3-D model with protein geometry.
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a b s t r a c t

We present results on spatially localized oscillations in some inhomogeneous nonlinear lattices
of Fermi–Pasta–Ulam (FPU) type derived from phenomenological nonlinear elastic network models
proposed to study localized protein vibrations. The main feature of the FPU lattices we consider is that
the number of interacting neighbors varies from site to site, and we see numerically that this spatial
inhomogeneity leads to spatially localized normal modes in the linearized problem. This property is seen
in 1-D models, and in a 3-D model with a geometry obtained from protein data. The spectral analysis
of these examples suggests some non-resonance assumptions that we use to show the existence of
invariant subspaces of spatially localized solutions in quartic Birkhoff normal forms of the FPU systems.
The invariant subspaces have an additional symmetry and this fact allows us to compute periodic orbits
of the quartic normal form in a relatively simple way.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Wederive and study a class of nonlinear lattices of Fermi–Pasta–
Ulam (FPU) type with a site dependent number of interacting
neighbors. Our results indicate the possibility of spatially localized
weakly nonlinear modes, in particular the persistence of localized
linear modes that result from spatial inhomogeneities of the lat-
tice.

The motivation comes from the question of energy localization
in protein vibrations. The starting point of our analysis is the
quartic nonlinear ‘‘elastic network’’ model of protein vibrations
proposed by Juanico, Sanejouand, Piazza, and De Los Rios [1].
Elastic networks are systems of point particles interacting via
spring-like forces and have been used to study vibrations of

∗ Corresponding author. Fax: +55 5622 3564.
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proteins around equilibrium configurations that are considered
known. The idea is to replace the complicated inter-particle
potentials used in molecular dynamics by simpler, pairwise
potentials that are discrete analogues of the potential energies
of classical elasticity. The reference equilibrium configuration is
obtained either as an equilibrium of a molecular dynamics model,
or from crystallographic data for the positions of the atoms. Also,
the pairwise elastic interaction only occurs betweenmasseswithin
a finite phenomenological interaction radius. Tirion [2] showed
earlier that linear elastic networks can capture some features of
low frequency protein vibrationmodes, while Juanico et al. [1], and
Piazza and Sanejouand [3,4] added a quartic nonlinearity to the
pairwise interactions and observed evidence for periodic solutions
of high amplitude that are localized in regions with more pairwise
interactions. The nonlinear model was justified by comparisons
to molecular dynamics simulations [1]. Details of periodic orbit
computations are in [3,4].

In the present paper we look for small amplitude periodic
oscillations that could be continued fromspatially localized normal
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modes of the linearized problem. We start from two hypotheses,
first that the inhomogeneous geometry of the model leads to
the existence localized linear normal modes, and second that
resonance arguments involving the linear frequencies and the
localization properties of some normal modes can be used to
construct periodic orbits in a suitable Birkhoff normal form of
the system. To examine this scenario we derive an additional
simplification of elastic network models by generalized quartic
FPU-like systems in which every site interacts with a different
number of other sites. The interactions between sites are
described by a connectivity matrix that is determined by the
geometry of the network, i.e. the positions of the masses in
the equilibrium configuration, and the interaction radius of the
elastic network. Our strategy is furthermore to first consider the
question of localization in 1-D lattices, and then examine possible
generalizations of some results obtained in these toy models
to higher dimensions, especially lattices obtained from protein
crystallographic data.

Starting with 1-D models, we examine oscillations around
equilibrium configurations with variable density. Particles in
higher density (or ‘‘agglomeration’’) regions interact with more
neighbors. In the simplest case where we have one such higher
density region we see that the highest frequency linear normal
modes are localized precisely in that region. Moreover the highest
frequencies are separated from the other frequencies by a ‘‘gap’’,
see [5]. In the presence of more agglomeration regions we see
that the gap is generally filled, while the localization of linear
normal modes in the agglomeration regions persists. 3-D lattices
modeling protein geometries contain several regions of higher
density and can exhibit similar linear localization phenomena,
without frequency gaps. In this work we study a 3-D lattice
representing the protein Ribozyme.

The results on the linearized FPU lattice are in Section 2.
The frequency gaps observed in 1-Dmodels can be used to show

the existence of periodic orbits in a partial quartic Birkhoff normal
form of the nonlinear system, see [5]. The periodic orbits belong to
an invariant subspace of the quartic normal form that is spanned
by high frequencymodes that can be also spatially localized by the
results of Section 2.

In the present work we generalize this argument to models
without a frequency gap. To do this we examine the coefficients of
quartic terms that describe the interaction betweenhigh frequency
modes, and modes in a suitably defined medium frequency range.
We show that the small size of these coefficients can cancel the
effect of possible near-resonances and use this analysis to state a
result on the existence of an invariant subspace of high frequency
modes, Proposition 3, Section 3.

The calculation of periodic orbits in the invariant subspace is
simplified by the fact that the restriction of the normal form to
the invariant subspace has a global phase symmetry. This extra
symmetry is a consequence of the small frequency width of the
corresponding modes, and allows us to prove the existence of
certain types of periodic orbits of ‘‘breather’’ type, see e.g. [6,7],
using an elementary variational argument that also leads to a
simplemethod to compute the periodic orbits numerically. Results
for 1-D models and the Ribozyme are in Section 4.

In summary, the above theory is a step towards explaining
spatial localization in the regions suggested by [1,3,4], but for small
amplitudes. Possible extensions to high amplitudes are discussed
in Section 5. Also, the paper combines theoretical statements with
assumptions supported by numerics, and leaves several questions
we hope to address in further work. A fully theoretical study may
be possible for some 1-D models.

We note that there is an extensive literature on spectral
localization at low frequencies for the homogeneous FPU lattice,
see [8,9] for periodic orbits (also known as q-breathers), [10,11]

for tori. 2- and 3-D extension have been examined in [12], also
for a homogeneous lattice. Results on the integrability of Birkhoff
normal forms for the homogeneous 1-D FPU system in [13–15] give
further information on the stability of small amplitude spectrally
localized solutions. The flow of energy to higher modes can be
also effectively controlled by only a few adiabatic invariants found
by normal forms, see [16,13] for a related idea. Here we are
concerned with the continuation of high frequency normal modes
with spatial localization. In this case themode coupling coefficients
can have properties not seen in homogeneous problems (see [12]
for high frequency modes of the homogeneous FPU). Numerical
simulations supporting the scenario of energy localization at high
frequencies will be presented elsewhere and are not directly
explained by the present study. The FPU approximation and elastic
network models are briefly discussed in Sections 2, and 5. We
believe that the question of more general interactions should
be studied further. Also, there are classical existence results on
periodic orbits near elliptic equilibria, e.g. the Weinstein–Moser
theorem [17,18], see also [19], the Lyapunov center theorem, see
e.g. [20], and an extensive literature on periodic orbit calculations.
Some relevant points are discussed in Section 5.

The paper is organized as follows. In Section 2 we present
the quartic elastic model and describe the steps leading to the
FPU-type model (Section 2.1). In Section 2.2 we decompose
the linearized FPU system into noninteracting normal modes.
Numerical examples of normal modes are shown in Section 2.3.

Section 3.1 reviews Birkhoff normal forms, explaining our
notation. In Section 3.2 we discuss normal forms and invariant
subspaces for lattices with frequency gaps, and in Section 3.3 we
extend these arguments to caseswithout gap.We apply these ideas
to 1-D lattices and to the Ribozyme 3-D lattice. In Section 4 we
calculate some periodic orbits of breather type in the invariant
subspace and check their linear stability. Examples include the
Ribozyme. In Section 5 we discuss our results.

2. Localization in linearized inhomogeneous FPU lattices

In this section we seek to check our first hypothesis, namely
that the spatial inhomogeneity of elastic networks used to model
proteins can lead to spatially localized linear modes. A first step
is to work with a somewhat simpler system, an FPU model, see
Section 2.1.

In Section 2.2wewrite the FPUmodel in normalmode variables.
The frequencies and spatial shapes of the normal modes are

determined by the eigenvalues and eigenvectors of the connectivity
matrix C, defined in Section 2.2. The localization hypothesis for the
linearized FPU models is checked in Section 3.3 for four examples
by computing numerically and interpreting the eigenvectors of C.

2.1. Derivation of FPU models from elastic networks

To define an ‘‘elastic network’’, see e.g. [21,2,1], we consider
a system of N point particles of mass m in RD,D = 1, 2, 3. The
(time-dependent) position of the ith particle is denoted by ri, and
we want to study motions around an equilibrium where the ith
particle is atRi.We also define the relative positionqi byqi = ri−Ri
(see Fig. 1).

The potential energy we consider, see [1,4], is

U =

N
i≠j

cij
k2
2

(|ri − rj| − |Rij|)
2
+

k4
4

(|ri − rj| − |Rij|)
4

, (2.1)

where Rij = Ri − Rj, k2 and k4 are positive constants, and

cij =


1 if Rij ≤ Rc,
0 if Rij > Rc,

(2.2)
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Fig. 1. Vectors Ri and Rj are the equilibrium positions of particles i and j
respectively, while the variables ri and rj describe the positions. We also show
Rij = Ri − Rj , rij = ri − rj and θij = ̸ (Rij, rij).

for some positive Rc . Also | · | in (2.1) denotes the Euclidean norm
in RD.

The Lagrangian K − U of the above system, K the kinetic
energy,U as above, can bewritten in terms of the relative positions
qi, and velocities q̇i, and we can check that qi = 0, q̇i = 0, i =

1, . . . ,N , is a fixed point of the corresponding Euler–Lagrange
equations. Thus ri = Ri are indeed equilibrium positions of the
masses.

Taylor expansions of potentials used by molecular dynamics
around a stable equilibrium will include comparable quadratic
and higher order terms, however a justification of the elastic
network model along these lines would require a more detailed
analysis. Support for elastic network models comes from the work
of Tirion [2], who adjusts k2, and Rc in quadratic elastic networks
(i.e. U as above with k4 = 0) to the recover the experimental
density of states of some protein vibration spectra for the lower
frequency modes, see also [22,23]. The elastic network model also
avoids some instabilities of molecular dynamics equilibria that are
considered unphysical, see [2].

The absence of cubic terms in U of (2.1) may require some
further study. Piazza and Sanejouand [4] note that the exclusion of
cubic terms avoids kink-like equilibria. Such solutions are indeed
possible in cubic FPU models, but may be far from the origin and
not as relevant to ourweakly nonlinear study. It is also possible that
cubic terms are nonresonant and can be eliminated. This is seen in
cubic FPU lattices [13–15] and can be examined here as well.

Also, assuming that k2, and Rc can be estimated from experi-
mental data, the parameter k4 inU of (2.1) characterizes the ampli-
tude of the oscillations. For instance, it would appear in nonlinear,
amplitude dependent corrections to the normal mode frequencies,
but we have not seen any related experimental data.

We nowmake some additional assumptions to derive FPU-type
models. We use the following elementary observations.

Proposition 1. Let D = 1 and suppose Ri > Rj implies ri > rj, for
all times t. Then

(|qi − qj + Rij| − |Rij|)
2

= |qi − qj|
2. (2.3)

Also, let D ≥ 2 and define

θij = ̸

Rij, rij


, h = max

i,j=1,...,N
{θij}. (2.4)

Then

(|qi − qj + Rij| − |Rij|)
2

= |qi − qj|
2
+ O(h2), (2.5)

(|qi − qj + Rij| − |Rij|)
4

= |qi − qj|
4
+ O(h2) (2.6)

as h → 0.

Proof. The case D = 1 is straightforward. For D ≥ 2, letting ri −

rj = qi − qj + Rij we have

(|qi − qj + Rij| − |Rij|)
2

= |qi|
2
+ |qj|

2
− 2qi · qj + 2qi · Rij

− 2qj · Rij + |Rij|
2

− 2(qi − qj + Rij) · Rij sec θij + |Rij|
2.

Expanding the sec θij around θij = 0, and using (2.4) we have

(|qi − qj + Rij| − |Rij|)
2

= |qi − qj|
2
+ 2qi · Rij − 2qj · Rij

+ |Rij|
2
− 2qi · Rij + 2qj · Rij

− 2|Rij|
2
+ |Rij|

2
+ O(h2)

= |qi − qj|
2
+ O(h2)

as h → 0. (2.6) follows similarly. �

Considering the Hamiltonian description with pi = mq̇i, the
Hamiltonian obtained from model (2.1) in D ≥ 2 is H + O(h2),
with

H =
1
2m

N
i=1

|pi|
2
+

N
i≠j

cij


k2
2

|qi − qj|
2
+

k4
4

|qi − qj|
4


. (2.7)

The second summation denotes summation over all pairs of i, j,
with i ≠ j. Model (2.7) is a generalization of the quartic FPU system,
where the number of interacting neighbors is site-dependent.

2.2. Inhomogeneous FPU models in normal mode variables

The Hamiltonian H of (2.7) can be written as H = H2 + H4,
with H2, H4 the quadratic and quartic parts of H respectively. In
what follows we use suitable canonical transformations to write
H2 as the Hamiltonian of a system of decoupled oscillators.

We define the connectivity matrix C, and the block-diagonal
matrix CD, by

C =


n1 −c12 · · · −c1N

−c21 n2

. . .
...

...
. . . −cN−1N−1 −cN−1N

−cN1 · · · −cNN−1 nN

 ,

CD =


C 0 · · · 0

0 C
. . .

...
...

. . . C 0
0 · · · 0 C


  

D

(2.8)

respectively, where cij are as in (2.2), and ni is the total number
of particles interacting with the ith particle, ni =

N
j=1 cij, i =

1 . . .N . By (2.2) we have cij = cji, thus C, and CD are symmetric. We
assume that all particles interact with at least one other particle.

Define the variables p, q ∈ RND as

p = [p1,1 , p2,1 , . . . , pN,D ]
T , q = [q1,1 , q2,1 , . . . , qN,D ]

T , (2.9)

where the first subscript indicates the particle index, the second
the component. We can check that H2 can be written as

H2 =
1
2m

⟨p, p⟩ + k2⟨q, CDq⟩, (2.10)

where ⟨·, ·⟩ denotes the Euclidean inner product in RND. Since C is
symmetric we can write

C = MΛMT , (2.11)
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with Λ the diagonal matrix containing the real eigenvalues λ1 ≤

λ2 ≤ · · · ≤ λN of C, and M the orthogonal matrix of the
eigenvectors of C. Similarly,

CD = MDΛDM
T
D
,

whereΛD,MD are block-diagonal,withD blocksΛ,M respectively.
by the nonlinear term below.

Making the symplectic change of variables

P = MT
D
p, Q = MT

D
q, (2.12)

we compute

H =
1
2m

D
d=1

N
l=1

P2
l,d + k2

D
d=1

N
l=1

λlQ 2
l,d

+
k4
4

D
d1,d2=1

N
l1,l2,l3,l4=1

Γl1 l2 l3 l4Ql1,d1Ql2,d1Ql3,d2Ql4,d2 , (2.13)

with

Γl1 l2 l3 l4 =

N
i≠j

cij

Mi,l1 − Mj,l1


Mi,l2 − Mj,l2


×


Mi,l3 − Mj,l3


Mi,l4 − Mj,l4


, (2.14)

whereMi,l is the ith entry of lth column ofM. Note that the Γl1 l2 l3 l4
are symmetric under all permutations of the subindices.

We point out that C has no negative eigenvalues, and that λ1 =

0, in particular Cv1 = λ1v1 with v1 =
1
N [1, . . . , 1]T ∈ RN . We

also have that λ2 > 0, see e.g. [24] for some general facts on
matrices with the structure of C. The eigenvector v1 corresponds
to translations of the whole system.

Then (2.14), (2.13), and λ1 = 0 imply

Ṗ1,d = −
∂H

∂Q1,d
= −

k4
4

∂

∂Q1,d

×

 D
d1,d2=1

N
l1,l2,l3,l4=2

Γl1 l2 l3 l4Ql1,d1Ql2,d1Ql3,d2Ql4,d2


≡ 0,

using also that by (2.14), and Cv1 = 0, we have Γ1l2 l3 l4 = · · · =

Γl1 l2 l31 = 0.
Translational modes are eliminated by setting P1,d = 0, d =

1, . . . ,D; the Hamiltonian H of (2.13) is then reduced to

H =
1
2m

D
d=1

N
l=2

P2
l,d + k2

D
d=1

N
l=2

λlQ 2
l,d

+
k4
4

D
d1,d2=1

N
l1,l2,l3,l4=2

Γl1 l2 l3 l4Ql1,d1Ql2,d1Ql3,d2Ql4,d2 . (2.15)

The quadratic part of H describes a set of D(N − 1) decoupled
harmonic oscillators, with the N − 1 frequencies

ω2
l = 2

k2λl

m
> 0, ∀l = 2 . . .N. (2.16)

For each l ∈ {2, . . . ,N} we have D components with the same
frequency ωl. By (2.13) these components are decoupled in the
linear problem and are coupled by the quartic part of H .

Remark 1. By q = MDQ in (2.12), the amplitude at each site
i of each of the D components of the oscillator (or mode) with
frequency ωl, l ∈ {2, . . . ,N}, is proportional to the ith entry of
lth column Mi,l of the matrix M. ‘‘Spatial localization’’ of a mode
l means that the amplitudes |Mi,l| are concentrated in some small
set of sites i (see the examples below).

Remark 2. The small angle assumption in Proposition 1 for D ≥ 2
has apparently eliminated the rotational degrees of freedom.

A general formalism for small oscillationswith rotational effects
is discussed in [25] and references.

In Section 3 we will use the complex normal mode variables
al, a∗

l defined by
Q ′

l,d

P ′

l,d


=

√
m 0

0
1

√
m

 
Ql,d
Pl,d


, and

al,d =


ωl

2
Q ′

l,d +
l

√
2ωl

P ′

l,d

a∗

l,d =


ωl,d

2
Q ′

l,d −
l

√
2ωl

P ′

l,d

,

(2.17)

where the ωl are as in (2.16).
Then (2.15) becomes

H =

D
d=1

N
l=2

ωlal,da∗

l,d

+
k4
4

D
d1,d2=1

N
l1,l2,l3,l4=2

Γ̃l1 l2 l3 l4


al1,d1al2,d1al3,d2al4,d2

+ 4al1,d1al2,d1al3,d2a
∗

l4,d2 + 6al1,d1al2,d1a
∗

l3,d2a
∗

l4,d2

+ 4al1,d1a
∗

l2,d1a
∗

l3,d2a
∗

l4,d2 + a∗

l1,d1a
∗

l2,d1a
∗

l3,d2a
∗

l4,d2


, (2.18)

with

Γ̃l1 l2 l3 l4 =
Γl1 l2 l3 l4

4m2√ωl1ωl2ωl3ωl4
. (2.19)

Hamilton’s equations become

ȧl,d = −i
∂H

∂a∗

l,d
, l ∈ {2, . . . ,N}, d ∈ {1, . . . ,D}. (2.20)

Remark 3. The numerical studies below suggest that the frequen-
cies ωl for the smallest indices l in (2.19) can reach small values
and vanish in the limit of infinite particles. The coefficients Γl1 l2 l3 l4
however decrease at a comparable rate and the coefficients Γ̃l1 l2 l3 l4
do not grow. This fact is seen explicitly in the lattice with nearest
neighbor interactions, see e.g. [5,13,12].

2.3. Spectral analysis of the connectivity matrix

In what follows we present some numerical results on the
spectra and eigenvalues of the connectivity matrix C of some 1-
D and 3-D configurations. The 3-D example is constructed using
crystallographic data for the protein Ribozyme. Our plan is to
first examine some 1-D examples and identify features that can
be partially generalized to 3-D protein examples. The numerical
linear algebra computations below were performed using the GSL
libraries [26].

In 1-D we consider configurations where the equilibrium
positions Ri of most particles are equidistant, and examine the
effect of introducing one or more ‘‘agglomeration’’ regions where
the Ri are more dense. These regions correspond to sites that
interact with more neighbors. We see that agglomeration regions
can introduce gaps in the spectrum, and also lead to spatially
localized normal modes. Examples 1–3 indicate variants of this
scenario, while Example 4 shows results for the 3-D protein
example, see also Table 1.

The linear spectrum of the different configurations is visualized
in Figs. 3(a), 5(a), 7(a), and 8(b) by plotting the ‘‘dispersion
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Table 1
Examples of lattices.

Example Number of particles N Dimension Number of agglomeration regions

(1) 113 1 1
(2) 113 1 2
(3) 113 1 3
(4) 879 3 NA

Fig. 2. Example 1: (a) 1-D chainwith one agglomeration zone (circled). (b) Graphic representation of the connectivitymatrixC, i, j ∈ {1, . . . ,N},N = 113. The agglomeration
region corresponds to the block with larger values in the diagonal.

Fig. 3. Example 1: (a) Frequency ωl vs. wavenumber l, (b) Plot of eigenmodes: absolute value |Mi,l| ofMi,l = ith entry of lth eigenvector, i ∈ {1, . . . ,N}, l ∈ {2, . . . ,N},N =

113. Localization of the high frequency modes is indicated by the spikes in the region of high l, and of i in the agglomeration region.

relation’’ωl vs. l, where the generalized ‘‘wavenumber’’ l is an index
enumerating the frequencies in increasing order. In D ≥ 2 models
with symmetries, e.g. a two dimensional hexagonal lattice, it may
be possible to use vectors of indices instead, but this does not seem
applicable in the 3-D example considered here.

Eigenfunctions of 1-D models are visualized in Figs. 3(b), 5(b),
7(b) by plotting the absolute value of the entries of the matrix of
eigenvalues M vs. indices l, i: the entry Mi,l is the value of the lth
eigenvector of C at site i, where l enumerates the eigenvalues in
increasing order.

Example 1. D = 1,N = 113: This chain has one agglomeration
region of about 10 particles, indicated in Fig. 2(a). Rc is chosen
so that most particles interact with two neighbors. This leads
to a connectivity matrix that is mostly tridiagonal, with a larger
block corresponding to the agglomeration region, see Fig. 2(b).
The larger diagonal elements in that block indicate the larger
number of interactions among the sites in the agglomeration
region. Fig. 3(a) indicates a gap between a set of ‘‘low’’ and ‘‘high’’
frequencies, moreover Fig. 3(b) indicates that the normal modes

corresponding to the high frequencies are localized in the sites of
the agglomeration region. Specifically, we see that if l ≥ 99 we
have |Mi,l| < 10−5 for all i ∉ {40, . . . , 50}.

The following two examples show that the presence of more
agglomeration regions can introduce frequencies that start to fill
the frequency gap seen in the first example. Nevertheless the
localization of the normal modes in the agglomeration regions
persists.

Example 2. D = 1,N = 113: This chain has two agglomeration
regions, see Fig. 4(a), and two larger blocks in its connectivity
matrix, see Fig. 4(b). The dispersion relation in Fig. 5(a) indicates
smaller gaps between more regions of frequencies, i.e. ‘‘low’’,
‘‘middle’’, and ‘‘high’’ frequencies. Alternatively we may say that
the large gap seen in Example 1 is ‘‘filled’’ by intermediate
frequencies. Fig. 5(b) shows that the highest frequency normal
modes are strongly localized in the sites of the two agglomeration
regions. Moreover the overlap of the modes localized in each
agglomeration region is negligible. In particular, we see that if
l ≥ 104 then |Mi,l| < 10−5 for all i ∉ {40, . . . , 45} ∪ {83, . . . , 94}.
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Fig. 4. Example 2: (a) 1-D chain with two agglomeration zones (circled), (b) Graphic representation of connectivity matrix C, i, j ∈ {1, . . . ,N},N = 113. The two
agglomeration regions correspond to two blocks with larger values in the diagonal.

Fig. 5. Example 2: (a) Frequency ωl vs. wavenumber l. (b) Plot of eigenmodes: Mi,l = ith entry of lth eigenvector, i ∈ {1, . . . ,N}, l ∈ {2, . . . ,N},N = 113. Localization of
the high frequency modes is indicated by the spikes in the region of high l, and of i in the two agglomeration regions.

Fig. 6. Example 3: (a) 1-D chain with three agglomeration zones (circled). (b) Graphic representation of connectivity matrix C, i, j ∈ {1, . . . ,N},N = 113. The three
agglomeration regions correspond to three blocks with larger values in the diagonal.

Example 3. D = 1,N = 113: This chain has three agglomeration
regions, see Fig. 6(a), and three larger blocks in its connectivity
matrix, see Fig. 6(b). The dispersion relation in Fig. 7(a) indicates
more frequencies filling the gapof Example 1. Fig. 7(b) indicates the
existence of several strongly localized high frequency modes. The
modes are localized in the agglomeration regions, i.e. we see that if

l ≥ 102 then |Mi,l| < 10−5 for all i ∉ {40, . . . , 44}∪{62, . . . , 68}∪
{89, . . . , 95}.

Example 4. D = 3,N = 879: The equilibriumpositionsRi are now
vectors in R3 and correspond to the positions of the atoms of the
protein Ribozyme, as obtained by Scott and James, see [27], using
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Fig. 7. Example 3: (a) Frequency ωl vs. wavenumber l, (b) Plot of eigenmodes: Mi,l = ith entry of lth eigenvector, i ∈ {1, . . . ,N}, l ∈ {2, . . . ,N}, N = 113. Localization of
the high frequency modes is indicated by the spikes in the region of high l, and of i in the two agglomeration regions.

Fig. 8. Example 4: (a) Projection of 3-D plot of atom locations Ri for Ribozyme (PDB300), Ri obtained from crystallographic measurements, (b) Frequency ωl vs.
‘‘wavenumber’’ index l, l ∈ {2, . . . ,N}, N = 879.

crystallography techniques. These data are publicly available and
were downloaded from the database [28]. The positions Ri of the
atoms are indicated in Fig. 8(a). The Ribozyme is sometimes called
‘‘Hammerhead’’ due to its shape.

The connectivity matrix C depends on the choice of Rc , and we
have chosen here Rc = 4.5 Å (1 Å = 10−10 m). Also, following [22],
we consider only the carbon atoms in the protein. The choice of
Rc is discussed by many authors. It must be large enough so that
all particles have at least one neighbor, but it is argued that if Rc
is too large then relevant smaller scale features are not captured
correctly. In particular, [23] argues that we should use Rc ≤ 7 Å for
the Ribozyme, while [22] uses Rc = 5 Å.

Fig. 8(b) shows that there are no gaps in the spectrum. In Fig. 9
we visualize two normal modes for different frequency ranges.
Fig. 9(b) shows an example of strong spatial localization in the
highest frequency range. An indication of spatial localization is the
fact that for l ≥ 850 we have |Mi,l| < 10−3 for all i outside a set of
22 sites.

In the next section we examine the question of whether the
localized modes seen above can be continued to the weakly
nonlinear regime.

3. Birkhoff normal form and approximate invariant subspaces

In this section we use Birkhoff normal forms, see e.g. [20], to
remove some nonresonant quartic terms in the Hamiltonian so

that the remaining quartic normal form systems have invariant
subspaces of high frequency modes. These modes are spatially
localized in the sense of the previous section. In Section 3.1
we recall some basic facts about Birkhoff normal forms and
resonances in the context of our problem. In Section 3.2 we
describe the invariant subspace argument for lattices with a gap
in the spectrum, see Proposition 2.

In Section 3.2 we generalize to cases without frequency
gap, examining the coefficients of certain interactions between
modes in suitably defined high and medium frequency ranges
for Examples 2–4 of the previous section. The existence of the
invariant subspace is stated as Proposition 3.

3.1. Birkhoff normal forms and resonances

The Birkhoff normal form method aims to simplify a Hamilto-
nian H(z) around the origin by a symplectic change of variables.
To outline the main step, let z, w ∈ R2n, where w represents the
new variables. Consider a symplectic change of variable z = f1(w),
where fs is the time-smap of the system

d
ds

w(s) = J∇S(w(s)), (3.1)

with w(0) = w and z = w(1) = f1(w). J is the symplectic matrix
in R2n. The Hamiltonian in the variables z, w satisfies H(z) =
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Fig. 9. Example 4: Amplitude localization of some eigenfunctions of Ribozyme for (a) l = 800, (b) l = 879 (highest frequency mode). In all cases the radius of the ball
centered at Ri represents the absolute value of the eigenfunction at the site i.

H(f1(w)) = (H ◦ f1)(w), and we also have

d
ds

(H ◦ fs)(w) = [∇H(w(s))]T
dw(s)
ds

= [∇H(w(s))]T J∇S(w(s)) = [H, S] (w(s)),(3.2)

using the definition of the Poisson bracket. Similarly, the higher
derivatives are

dn

dsn
H(w(s)) = [. . . [H, S], S . . . S]  

n times

w(s), n = 1, 2 . . . . (3.3)

Combining (3.3) and the Taylor expansion of the Hamiltonian
H(w(s)) around s = 0 we have

H(w(s)) = H(w(0)) + s[H, S](w(0))

+
1
2
s2[[H, S], S]w(0) + · · · , ∀s ∈ [0, 1], (3.4)

assuming convergence of the series (3.4), ∀s ∈ [0, 1]. In particular,
for s = 1, (3.4) becomes

H(z) = H(w) + [H, S](w) +
1
2
[[H, S], S](w) + · · · . (3.5)

The left hand side then gives us an explicit expression of the
Hamiltonian in the new variables w, and the general idea is to
choose S so as to simplify the right hand side, in a sense that
depends on the problem, see below for the present case. The
procedure can be also iterated.

For the casewhereH , S are real analytic, the infinite series (3.4)
converges sufficiently near the origin, see e.g. [29,30], i.e. within a
ball of radius ρ in the variablew. Moreover, the change of variables
z = f1(w) is given explicitly (as a power series) and has the form
z = w + gS(w), where gS vanishes as w → 0, i.e. the change of
coordinates is a small perturbation of the identity near the origin.

In the present case we write the Hamiltonian H of (2.18) in the
original variables z = (ã, ã∗), ã = (ã1,1, . . . , ãN,D), i.e. we use ãl,d
instead of al,d, as

H(z) = H2(z) + H4(z), (3.6)

where H2 and H4 are the quadratic and quartic terms respectively
of (2.18). We will use a symplectic change of coordinates as
described above to eliminate some of the (quartic) monomials H4,
up to higher order terms.

Let S to be the sum of the quartic monomials SM

S =


M∈J

SM, (3.7)

where J is the set of quartic monomials of H4 we want to
eliminate.

Then, (3.5) and the properties of the Poisson bracket imply

H(z) = H(w) + [H, S](w) + O(6),
= H2(w) + [H2, S](w) + H4(w) + O(6), (3.8)

= H2(w) + H̄4(w) + O(6), (3.9)

where O(6) means terms of degree six or higher in the (new)
variables w = (a, a∗), a = (a1,1, . . . , aN,D), and H̄4 = [H2, S]

(w) + H4(w).
We also define the quartic normal form Hamiltonian H̄ as

H̄ = H2 + H̄4. (3.10)

The system described by the Hamiltonian H̄ is considered an
approximation of the full system on the right hand side of (3.9),
see comments at the end of the subsection, and is a simplification
of the original system of H in the sense that H̄4 has fewer quartic
monomials thanH4. Some consequences of this fact are seen in the
following subsections.

To see what quartic monomials of H4 can be eliminated, note
that by (3.8), a quarticmonomialM inH4 is eliminated by a quartic
monomial SM in (3.7) that satisfies

[H2, SM] + M = 0. (3.11)

We see that to eliminateM = Γ̃k1k2k3k4bk1,d1bk2,d2bk3,d3bk4,d4 inH4,
with bkj,dj = akj,dj , or a

∗

kj,dj
, we must choose

SM =
iΓ̃k1k2k3k4
4
i

σ(ki)ωki

bk1bk2bk3bk4 , (3.12)

where σ(ki) = 1 if bki,di = aki,di , −1 if bki,di = aki,di . Quartic
monomials for which

4
j=1 σ(kj)ωkj = 0 (and Γ̃k1k2k3k4 ≠ 0) are

called resonant. The resonant monomials cannot be eliminated by
the above procedure.

While all non-resonant monomials can be eliminated by a
symplectic transform defined in some ball of radius ρ around
the origin, the size of ρ is controlled by S, and the coefficients
of the monomials (3.12), see e.g. [29,30]. In Sections 3.2, 3.3 we
eliminate non-resonant quartic monomials using terms SM whose
coefficients that are below certain bounds. These bounds can be
then used to estimate ρ. This will be pursued in further work.

The approximation of solutions of the FPU system with
Hamiltonian H by solutions of the system with the Hamiltonian
H̄ of (3.10), i.e. the normal form system, is heuristic at this point.



F. Martínez-Farías, P. Panayotaros / Physica D ( ) – 9

Fig. 10. Example of gap between low frequency modes I− and high frequency I+

modes (taken from Example 1).

The rough idea is that for small enough initial conditions i.e. within
a ball of radius ρ around the origin, the term O(6) in (3.9) is a small
perturbation of the normal form system, so that the solutions of the
normal form system are ϵ−near the solutions of the full system,
for times of order ϵ−1. Such a result generally holds as ρ ∼ ϵ

vanishes, see e.g. [29,30]. A more precise quantitative statement of
this type, relatingρ, ϵ with theparameters of each lattice, is outside
the scope of this paper, but again the bounds on the coefficients of
the monomials (3.12) in Sections 3.2, 3.3 are a first step towards
such a theory. We comment further on these issues in the next
subsections, and in Section 5.

3.2. Invariant subspaces: cases with frequency gap

We now apply the Birkhoff normal form procedure to eliminate
certain quartic monomials of H4 by assuming a gap between the
frequencies of the quadratic term H2. This scenario is indicated in
Fig. 10, and ismotivated by Example 1 of the previous section. Since
this gap is seen in a 1-D example, we will assume here that we
are studying a 1-D lattice. We will need only the subindex l for the
variables al,1, and we let al = al,1, l ∈ {2, . . . ,N}.

We separate the modes into two sets I− and I+ that are
below and above the gap respectively. We will make the following
assumptions on the frequencies: consider disjoint sets I−, I+

satisfying I− ∪ I+ = {2, . . . ,N}, so that letting

ωc = max
j∈I−

(ωj), Ωc = min
j∈I+

(ωj), (3.13)

we have ωc < Ωc . Also let

G = Ωc − ωc, ∆ = max
i,j∈I+

|ωi − ωj|, i, j ∈ I+, (3.14)

and assume

Ωc − ∆ ≥ O(1), G ≥ O(1), G − ∆ ≥ O(1). (3.15)

The notationO(1) assumes that there is a small parameter in the
problem. A possible small parameter here is the smallest frequency
ω2 of the chain (alternatively the inverse of the size of the chain
N−1), so that O(1) means independent of ω2 (or N−1).

This notion becomes well defined when the chains of Exam-
ples 1–3 are extended to arbitrary size from both sides, with near-
est neighbor interactions in the extensions. O(1) quantities are the
ones that are expected to approach a nonzero constant in the limit.

We now show the existence of a quartic normal form with an
invariant subspace.

Table 2
Monomials in the equations of motion and their origin in the Hamiltonian.

Case Monomial in ȧk ,
k ∈ Ik1 , k2, k3 ∈ I+

Monomial in quartic
Hamiltonian

(1) ak1ak2ak3 ak1ak2ak3a
∗

k4
(2) ak1ak2a

∗

k3
ak1ak2a

∗

k3
a∗

k
(3) ak1a

∗

k2
a∗

k3
ak1a

∗

k2
a∗

k3
a∗

k
(4) ak1ak2a

∗

k3
ak1ak2a

∗

ka
∗

k3
(5) ak1a

∗

k2
a∗

k3
ak1a

∗

k2
a∗

ka
∗

k3
(6) ak1a

∗

k3
a∗

k2
ak1a

∗

ka
∗

k3
a∗

k2

Table 3
Frequency sums for quartic monomials of degree 3 in the variables ak , a∗

k , k ∈ I− ,
and degree 1 in the variables ak , a∗

k , k ∈ I+ . (Numbers are those of Table 1.)

Case Frequency sum denominator

(1) Ωl1 + Ωl2 + Ωl3 − ω̃l4 ≥ Ωc + G ≥ O(1)
(2) Ωl1 + Ωl2 − Ωl3 − ω̃l4 = 0 ≥ G + ∆ ≥ O(1)
(3) Ωl1 − Ωl2 − Ωl3 − ω̃l4 ≥ G − ∆ ≥ O(1)
(4) Ωl1 + Ωl2 − ω̃l3 − Ωl4 ≥ G − ∆ ≥ O(1)
(5) |Ωl1 − Ωl2 − ω̃l3 − Ωl4 | ≥ G − ∆ ≥ O(1)
(6) |Ωl1 − ω̃l2 − Ωl3 − Ωl4 | ≥ G − ∆ ≥ O(1)

Proposition 2. We can define a symplectic change of coordinates to
new variables a = f (ã), a = ã+ cubic terms, a = (a2, . . . , aN) (new
variables), ã = (ã2, . . . , ãN) (original variables), that is generated
by a function S as in (3.7) that is the sum of monomials SM of the
form (3.12) with

4
i=1 σ(kj)ωki ≥ O(1), and that satisfies that

(i) the subspace V+ defined by aj = 0, ∀j ∈ I−, is invariant under
the Hamiltonian flow of the quartic normal form H̄ of (3.10), and

(ii) the quartic Hamiltonian H̄(a), restricted to V+, is invariant under
the action aj → ajeiφ , for all j ∈ I+, φ ∈ R.

Proof. To show (i), we consider Hamilton’s equations for ȧk, k ∈

I−. We have

ȧk = −iωkak − i
k4
4

 N
k1,k2,k3=2

Γ̃k1k2k3k


4ak1ak2ak3

+ 6ak1ak2a
∗

k3 + 4ak1a
∗

k2a
∗

k3


+

N
k1,k2,k4=2

Γ̃k1k2kk4


6ak1ak2a

∗

k4 + 4ak1a
∗

k2a
∗

k4


+

N
k1,k3,k4=2

Γ̃k1kk3k44ak1a
∗

k3a
∗

k4

+ 4
N

k2,k3,k4=2

Γ̃kk2k3k4a
∗

k2a
∗

k3a
∗

k4


. (3.16)

To have a solution ak(t) = 0, for all t , k ∈ I−, it is sufficient
to eliminate monomials bk1bk2bk3 with bkj = akj or bkj = a∗

kj
and k1, k2, k3 ∈ I+. These monomials come from the monomials
of H shown in Table 2. By (3.13), (3.14), these monomials have
frequency sum denominators that are of O(1). This is shown in
Table 3, where we use the notation Ωl = ωl, if l ∈ I+, and ω̃l = ωl,
if l ∈ I−.

Part (ii) follows from the fact that we can eliminate from H
all monomials al1al2al3a

∗

l4
, al1al2al3al4 , with l1, l2, l3, l4 ∈ I+, and

their complex conjugates. The absolute value of the frequency
denominator for the monomial al1al2al3a

∗

l4
, l1, l2, l3, l4 ∈ I+, and

its complex conjugate, is by (3.15)

Ωl1 + Ωl2 + Ωl3 − Ωl4 ≥ 2Ωc − ∆ ≥ O(1). (3.17)
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Fig. 11. (a) Dispersion relation of Example 2 and decomposition into low, medium, and high modes, I− , Im , I+ respectively. (b) Ek with k ∈ {2, . . . , 103} and
k2, k3, k4 ∈ {104, . . . , 113}.

Similarly the absolute value of the denominator for al1al2al3al4 ,
l1, l2, l3, l4 ∈ I+, and its complex conjugate, is by (3.15)

Ωl1 + Ωl2 + Ωl3 + Ωl4 ≥ 4Ωc ≥ O(1). (3.18)

Therefore H̄ , restricted to V+, and denoted by H̄+, is by

H̄+(a) =


l∈I+

ωlala∗

l +
3k4
2


l1,l2,l3,l4∈I+

Γ̃l1 l2 l3 l4al1al2a
∗

l3a
∗

l4 . (3.19)

By (3.19) we have H̄+(aeiφ) = H̄+(a), for all a ∈ V+, φ ∈ R. �

The symmetry under ‘‘global phase’’ change in Proposition 2
(ii) implies that the Hamiltonian flow of H̄+ has the additional
constant of motion P+ =


l∈I+

|al|2.
Let O denote the set of points on such an orbit of the

Hamiltonian flow of H̄ in V+. If the modes of I+ are spatially
localized in the sense of Section 2, the set f1(O), see the notation of
Section 3.1, will also be a spatially localized set, provided that f1 is
sufficiently close to the identity (localization can be measured by
distance from the span of the modes of I+). We would also need
to check that O is close to an orbit of the full system of (3.9) for a
long time. Following the comments on the theory of normal forms
in Section 3.1, both assumptions are satisfied as O is sufficiently
close to the origin. Thus localization is seen (at least) in the limit of
small amplitude oscillations.

It is a problem for further work to give an estimate of the
neighborhood of the origin where O is a good approximation of a
spatially localized solution of the FPU system. Proposition 2, (2.14),
and (2.19) imply that the coefficients of the monomials S are of
O(1), i.e. independent of the size of the lattice. This fact can be used
to give a rough estimate of S, see Section 5.

3.3. Invariant subspaces: cases without frequency gaps

In the examples where the gap separating low and high
frequency modes becomes smaller (Examples 2, 3), or is absent
(Example 4), the bounds on the frequency sums of Table 3
leading to part (i) of Proposition 2 are not possible. For instance,
in Example 3 we have a gap around l = 97, but its size G is
comparable to the width ∆ of the high frequency modes above it,
and the frequency sum denominators from cases (2)–(6) in Table 3
cannot be readily controlled. In Example 4 we see no frequency
gaps, and the argument leading to Proposition 2 seems irrelevant.

The observation of localized modes with small overlap in
Examples 2, 3 suggests that the numerators Γ̃k1k2k3k4 in (3.12)

can be small when we are close to some resonances, so that the
coefficient of SM remains small.

To examine this scenario we decompose the set of frequencies
in three sets of ‘‘low’’, ‘‘medium’’, and ‘‘high’’ frequency modes,
with respective index sets I−, Im, I+, see e.g. Fig. 11(a). The sets
I−, Im, I+ are mutually disjoint, with I− ∪Im ∪I+ = {2, . . . ,N}.
Also i ∈ I−, j ∈ Im implies i < j, and j ∈ Im, k ∈ I+ implies j < k.

Given such a decomposition we define Ek by

Ek = max
k2,k3,k4∈I+

 max
σ(j)=±1


Γ̃kk2k3k4

4
j=1

σ(kj)ωkj



 , k ∈ I− ∪ Im. (3.20)

We also define Ẽ as

Ẽ = max
k∈I−∪Im

{Ek}. (3.21)

In (3.20) note that the coefficients Γ̃kk2k3k4 are invariant under per-
mutations of the subindices. Also, maxσ(j)=±1 denotes maximum
over all combinations of the signs σ(j) in the frequency sum.

The decomposition into low,medium, and highmodes is clearly
arbitrary. In Examples 2, 3 the dispersion relation (Figs. 5, 7(a)
respectively) shows a jump after the mode where it becomes
almost flat; this point is taken as the upper limit of I−. In
Example 4, the general idea is more speculative, and relies on the
existence of spatially localized modes in the highest frequencies,
see Fig. 9. We examine various choices of I−, Im, I+ so that the Ek,
and Ẽ remain under some value we choose. At the same time we
want the modes in I+ to have spatial localization in the sense of
Section 2.3.

Also, part (ii) of Proposition 2 requires some control of the
frequencies in I+, as in (3.17), (3.18). It will be sufficient to keep
Ωc > ∆, using Ωc , ∆ as in (3.13), (3.14) but with the present
definition of I+.

Example 2. For this example the choice of I−, Im and I+ is
suggested by the dispersion relation, see Fig. 11(a). We use I− =

{2, . . . , 98}, Im = {99, . . . , 103}, and I+ = {104, . . . , 113}.
Fig. 11(b) shows Ek as a function of k ∈ I− ∪ Im with k2, k3, k4 ∈

I+. The plot is divided into three regions, each one representing
k in I−, Im and I+ respectively. The first region shows the
interaction coefficients between modes in I− and modes in I+;
this interaction yields Ek ≤ 10−3 for all k ∈ I−. The second region
(the more narrow band) indicates the interaction between modes
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Fig. 12. (a) Dispersion relation of Example 3 and decomposition into low, medium, and high modes, I− , Im , I+ respectively. (b) Ek with k ∈ {2, . . . , 101} and
k2, k3, k4 ∈ {102, . . . , 113}. Ek is negligible for k ∈ I− , larger values are seen for k ∈ Im .

Fig. 13. (a) Dispersion relation of Example 4 and decomposition into low, medium, and high modes, I− , Im , I+ respectively. (b) Ek with k ∈ {2, . . . , 849} y k2, k3, k4 ∈

{850, . . . , 879}. Ek is negligible for k ∈ I− , larger values are seen for k ∈ Im .

in Im and modes in I+; this interaction yields Ek ≤ 10−8 for all
k ∈ Im. The third part of the plot is empty since we want k in
I− ∪ Im. Thus Ẽ < 10−3.

Example 3. For this example the criterion for selecting I−, Im
and I+ is also suggested by the dispersion relation, see Fig. 12(a).
We use I− = {2, . . . , 97}, Im = {98, . . . , 101}, and I+ =

{102, . . . , 113}. Fig. 12(b) shows Ek as a function of k ∈ I− ∪ Im
and k2, k3, k4 ∈ I+. The plot also is divided in three regions.

The first region indicates the size of the interaction between
modes in I− and modes in I+; this interaction yields Ek ≤ 10−3

for all k ∈ I−. The second region (the more narrow band) plots the
interaction betweenmodes in Im andmodes in I+; the interaction
yields Ek ≤ 10−1 for all k ∈ Im, i.e. the peak in Fig. 12 reflects a
larger interaction betweenmedium and highmodes. The third part
of the plot is empty since we want k in I− ∪ Im. Thus Ẽ ≤ 10−1.

Example 4. In this example it is not obvious how to divide the
modes of Fig. 13(a). One possibleway is to look for kwhich changes
Ek abruptly. For instance, consider k in the interval {2, . . . , 849},
and k2, k3, k4 ∈ {850, . . . , 879}. Fig. 13(b) shows that Ek remains
less than 10−1 when k ≤ 787, and starts to grow just passing
this value. This indicates that we have left I− and are in the range

of modes in Im. The interaction continues to increase, reaching
Ek = 100 when we consider k = 850. We then choose I− =

{2, . . . , 787}, Im = {788, . . . , 849}, and I+ = {850, . . . , 879},
and obtain Ẽ < 100.

We see below that the use of the sets I−, Im, I+ is a device to
pass from the frequency gap case to the case without gap, i.e. the
size of Ek, k ∈ I− is controlled by the frequency gap, while Ek,
k ∈ Im, also depends on the coefficients of mode interactions. In
what follows however, we use the decomposition into I−∪Im, and
I+ and there is no distinction between modes in I− or Im.

The invariant subspace statement for the quartic normal form
is as follows.

Proposition 3. There exists a symplectic change to new variables
a = f (ã), where a = ã + cubic terms (new variables), and
a = (a2,1, . . . , aN,D), ã = (ã1,1, . . . , ãN,D) (old variables), that is
generated by a function S as in (3.7) that is the sum of monomials SM

of the form (3.12), and with coefficients satisfying either

Γ̃k1k2k3k4
4

j=1
σ(kj)ωj

≤ Ẽ,
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or
4

j=1 σ(kj)ωj ≥ 2Ωc − ∆, Ωc , ∆ as in (3.13), (3.14), such that
(i) the subspace V+ defined by aj,d = 0, for all j ∈ I− ∪ Im, and

d ∈ {1, . . . ,D}, is invariant under the Hamiltonian flow of the
quartic normal form H̄ of (3.10), and

(ii) the quartic Hamiltonian H̄(a), restricted to V+, is invariant under
the action aj,d → aj,deiφ , for all j ∈ I+, d ∈ {1, . . . ,D}, and
φ ∈ R.

Proof. To see (i) we write the equations for ȧl,d, l ∈ I− ∪ Im, as

ȧl,d = −iωlal.d + M l
+

+ M l
−/m/+,

l ∈ I− ∪ I+, d ∈ {1, . . . ,D}, (3.22)

where M l
+

represents the sum of monomials of al,d, a∗

l,d with
subscript l only in I+, and M l

−/m/+ represents the remaining
terms. A monomial in M l

+
corresponds to a monomial of H4 with

coefficient Γ̃lk2k3k4 , l ∈ I− ∪ Im. By the assumption

Γ̃kk2k3k4
4
i

σ(ki)ωki

≤ Ek ≤ Ẽ,

all monomials of H4 leading to M l
+

can be removed using a
symplectic transformation with the properties of the statement.

For part (ii) we eliminate from H all monomials
al1,d1al2,d1al3,d2a

∗

l4,d2
, al1,d1al2,d1al3,d2al4,d2 , with l1, l2, l3, l4 ∈ I+,

d1, d2 ∈ {1, . . . ,D}, and their complex conjugates. The coeffi-
cient of themonomial SM needed to eliminate al1,d1al2,d1al3,d2a

∗

l4,d2
l1, l2, l3, l4 ∈ I+ (and its complex conjugate) is

Γ̃l1 l2 l3 l4
4

j=1
σ(kj)ωj

,

with

 4
j=1

σ(kj)ωj

 = Ωl1 + Ωl2 + Ωl3 − Ωl4 ≥ 2Ωc − ∆.

Similarly, the coefficient of the monomial SM needed to eliminate
al1,d1al2,d1al3,d2al4,d2 l1, l2, l3, l4 ∈ I+, d1, d2 ∈ {1, . . . ,D}, and its
complex conjugate, is

Γ̃l1 l2 l3 l4
4

j=1
σ(kj)ωj

, with

 4
j=1

σ(kj)ωj


= Ωl1 + Ωl2 + Ωl3 + Ωl4 ≥ 4Ωc ≥ 2Ωc − ∆.

Therefore H̄ , restricted to V+, and denoted by H̄+, is

H̄+(a) =

D
d=1


l∈I+

ωlal,da∗

l,d

+
3k4
2

D
d1,d2=1


l1,l2,l3,l4∈I+

Γ̃l1 l2 l3 l4

×


al1,d1al2,d1a

∗

l3,d2a
∗

l4,d2


, (3.23)

and has the desired global phase symmetry. �

The symmetry under global phase transform in Proposition 3(ii)
implies that the Hamiltonian flow of H̄+ has the additional
constant of motion

P =

D
d=1


k∈I+

|ak,d|2. (3.24)

In Section 5 we compute some periodic of orbits of H̄ in V+.
Spatial localization for these orbits is as discussed in Section 3.2.

In particular, spatial localization is obtained (at least) in the limit
of vanishing amplitudes, assuming that the modes in I+ are also
spatially localized. The number Ẽ can be used to estimate the size
of S, and we expect that smaller Ẽ implies that the normal form is
a good approximation for larger amplitudes.

4. Periodic orbits in the subspace V+ and their stability

In this section we compute some periodic solutions of the
Hamiltonian flow of H̄+ in V+. By Propositions 2, 3, these solutions
are automatically periodic orbits of the Hamiltonian flow of the
quartic normal form H̄ .

We will examine solutions of the Hamiltonian system of H̄+ of
the form a = e−iλtA, A ∈ V+ = CD|I+|, λ ∈ R. These periodic
solutions are often called (discrete) ‘‘breathers’’, see [6], while A is
referred to as the breather amplitude. Discrete breather solutions
have been studied extensively in the context of discrete nonlinear
Schrödinger equations, see [7].

The breather amplitudes A ∈ CD|I+|
≈ R2D|I+| are also critical

points of the Hamiltonian H̄+(A) on the hyperspheres Sc of radius√
c in R2D|I+|, i.e. Sc = {v ∈ V+ : P (v) = c}, see e.g. [31].

This implies that there exist at least two such A for each c > 0,
corresponding to the maximum and minimum of H̄+ on Sc . It is a
topological fact, see e.g. [17,18], thatwehave at leastD|I+| families
(circles) of such critical points A for each sphere Sc (note that A a
breather amplitude implies that eiφA also is a breather amplitude,
for any real φ).

To find the maxima (minima) of H̄+ on the hypersphere Sc
numerically we use the following: we integrate numerically the
gradient of H̄+ (−H̄+) in R2D|I+| from t = 0 to t = 1t using
an initial condition ũ(0) on Sc to obtain u(1t). We then rescale
to define ũ(1t) = [

√
c/

√
P (u(1t))]u(1t), and iterate the

integration and rescaling steps. (The integration step used a fourth
order Runge–Kutta method.) The gradient flow does not preserve
P , but the rescaled iterates ũ(n1t), n = 1, 2, . . . , remain on Sc . For
1t sufficiently small the iterates are expected to converge to local
maxima (minima) of H̄+ on Sc . These are critical points of H̄+ on
Sc and must therefore be amplitudes A of a breather solution.

To compute the frequency λ, we use the fact that by ak,d =

eiλtAk,d, k ∈ I+, and (3.23), A, λ satisfy

λAk,d = ωkAk,d

+
3k4
2

D
d1,d2=1

 
k1,k2,k4∈I+

Γ̃k1k2kk4Ak1,d1Ak2,d1A
∗

k4,d2

+


k1,k2,k3∈I+

Γ̃k1k2k3kAk1,d1Ak2,d1A
∗

k3,d2


,

∀k ∈ I+, d ∈ {1, . . . ,D}. (4.1)

Multiplying by A∗

k,d and summing over k ∈ I+, d ∈ {1, . . . ,D}, we
obtain λ in terms of the computed breather amplitude A.

In Fig. 14 we show the evolution of the value of H̄+ under this
gradient algorithm with rescaling for Example 2. Emax, Emin denote
the maximum and minimum respectively of H̄+(A) on Sc .

The system of equations (4.1), with P = c , can be also solved
numerically for A and λ using variants of Newton’s method. This
more general approach can be used for all critical points, not just
local extrema of H̄+(A) on Sc , see e.g. [32].

In Figs. 15–17 we show some results of the gradient algorithm
above for Examples 2, 3, and 4.

Figs. 15, 16 correspond to Examples 2, 3 respectively and show
the amplitudes for theminimizer of H̄+ on the hypersphere Sc . We
used c = 0.0022, 0.28 respectively, and see that in both cases the
amplitude is strongly concentrated at the lowestmode ofI+. In the
3-D example of Fig. 17 we see that the amplitude is spread among
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Fig. 14. Evolution of E (value of H̄+) under gradient flow with rescaling of H̄+ of Example 2, (a) gradient flow with rescaling of −H̄+ , (b) gradient flow with rescaling of
H̄+ . We used k2 = 1, k4 = 1, I+ = {99, . . . , 109}, P = 0.0022.

Fig. 15. Example 2: (a) |Ak|
2 vs. k ∈ I+ for breather amplitude A computed by gradient (descent) method with rescaling, k2 = 1, k4 = 1, P = 0.0022. The amplitude is

concentrated in the lowest mode. (b) Real part of ak(t) vs. time t , k ∈ I+ , a(t) numerical solution of Hamilton’s equations for H̄+ , using as initial condition the breather
amplitude A computed in (a).

Fig. 16. Example 3: (a) |Ak|
2 vs. k ∈ I+ for breather amplitude A computed by gradient (descent) method with rescaling, k2 = 1, k4 = 1, P = 0.28. The amplitude is

concentrated in the lowest mode. (b) Real part of ak(t) vs. time t , k ∈ I+ , a(t) numerical solution of Hamilton’s equations for H̄+ in V+ , using as initial condition the breather
amplitude A computed in (a).

several modes. (Ak,d depends on the component index d, we only
show d = 1.)

To verify that the amplitudes A computed by the gradient
algorithm are indeed amplitudes of breather solutions, we
integrate numerically Hamilton’s equations for each H̄+ using a

fourth order Runge–Kutta method. Figs. 15–17(b) indicate that the
amplitudes of the modes of I+ oscillate with constant amplitude.

The solutions computed are continuations of the normal mode
solutions of the k4 = 0 (i.e. linear) problem. This is verified
numerically by computing the solutions with smaller values of k4.
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Fig. 17. Example 4: (a) Distribution of the amplitudes |Ak,1|
2 vs. k ∈ I+ , for the breather amplitude A computed by the gradient (descent) method with rescaling, k2 = 1,

k4 = 1, P = 85.50. (b) Real part of ak(t) vs. time t , k ∈ I+ , a(t) numerical solution of Hamilton’s equations for H̄+ in V+ , using as initial condition the breather amplitude
A computed in (a).

Fig. 18. Amplitudes of breather of Fig. 17, k2 = 1, k4 = 1, P = 85.50. Size of
radius at site i is proportional to |qi|, where q is obtained from ak,d = Ak,d , Ak,d the
computed breather amplitude, via (2.17), (2.12). Amplitudes are concentrated in a
small number of sites.

(Equivalently, we can fix k4 and decrease the hypersphere radius
√
c .) By (2.18), theminimum andmaximum energies of the k4 = 0

system are attained for the lowest and higher frequency modes of
I+ respectively. The concentration of the amplitude in the lower
modes is seen in Fig. 15(a), is due to the fact that we are using
the descent algorithm for relatively small values of c. In Example 4,
vanishing k4 makes the amplitude concentrate in the lowestmode.
The calculation of Fig. 17 used a relatively large value of c.

By the closing remarks of Subsections 3.1–3.2, spatial localiza-
tion of the solutions of Figs. 15, 16 is due to the spatial localization
of the all the modes of I+, assuming sufficiently small amplitudes.
Specifically, by Section 3.2, the lowest modes of I+ for the exam-
ples of Figs. 15, 16 are l = 104, 102 respectively. Spatial localization
for these modes is quantified in Section 2.3, see Examples 2, 3. For
the 3-D example, Fig. 18, we used the computed breather ampli-
tudes Ak,d to obtain the amplitudes of the oscillation in the original
displacement variables q, i.e. q is obtained from ak,l = Ak,d, and
(2.17), (2.12). Following the comments of Sections 3.1–3.3, this vi-
sualization of the spatial shape of the nonlinear normal mode is
only guaranteed to be a good approximation in the limit where k4
or c vanishes. Fig. 17 is nevertheless indicative of the spatial dis-
tribution of the amplitudes seen in breather amplitudes obtained
for smaller k4. The amplitude is always seen to be concentrated in
a small subset of the lattice sites, with some shifts of the positions

of largest amplitudes as k4 is decreased. Our study has included
the computation of breathers that maximize the energy, with sim-
ilar results. In the 3-D case, a breather obtained with k4 = 0.2,
c = 85.5, has amplitudes that are concentrated near themaximum
of the highest frequency linearmode, shown in Fig. 9(b). Thus local-
ization seems evenmore robust for themaximumenergy breather.

To study the linear stability of the computed breather solutions
in the subspace V+ we use the change of variables

ak,d(t) = e−iλtbk,d(t), k ∈ I+, d ∈ {1, . . . ,D}, (4.2)
and Hamilton’s equations for H̄+ to obtain
ḃk,d = i(λ − ωk)bk,d

− i
3k4
2

D
d1,d2=1

 
k1,k2,k4∈I+

Γ̃k1k2kk4bk1,d1bk2,d1b
∗

k4,d2

+


k1,k2,k3∈I+

Γ̃k1k2k3kbk1,d1bk2,d1b
∗

k3,d2


. (4.3)

By (4.1), the vector A of the Ak,d, i.e. the breather amplitude, is a
fixed point of (4.3).

The reduction of the stability analysis of a breather orbit to the
linear stability analysis of its amplitude is a standard approach for
NLS equations, see e.g. [7]. Letting
bk,d = Ak,d + vk,d, k ∈ I+, d ∈ {1, . . . ,D}, (4.4)
we have
v̇k,d = i(λ − ωk)vk,d

− i
3k4
2

D
d1,d2=1

 
k1,k2,k4∈I+

Γ̃k1k2kk4(vk1,d1Ak2,d1A
∗

k4,d2

+ Ak1,d1vk2,d1A
∗

k4,d2 + Ak1,d1Ak2,d1v
∗

k4,d2)

+


k1,k2,k3∈I+

Γ̃k1k2k3k(vk1,d1Ak2,d1A
∗

k3,d2

+ Ak1,d1vk2,d1A
∗

k3,d2 + Ak1,d1Ak2,d1v
∗

k3,d2)


+ O(2), (4.5)

where O(2) means quadratic and higher order terms in vk,d and
v∗

k,d. Letting
Ak,d = Qk,d + iPk,d, vk,d = qk,d + ipk,d,

k ∈ I+, d ∈ {1, . . . ,D}, (4.6)
(4.5) can be also written as
q̇
ṗ


=


O I
−I O

 
A B
B C

 
q
p


, (4.7)
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Fig. 19. Eigenvalues in the complex plane for two examples of the matrix (4.7): (a) Example 2, breather of Fig. 15. k2 = 1, k4 = 1, and P = 0.0022, (b) Example 4, breather
of Fig. 17. k2 = 1, k4 = 1, and P = 85.50.

with k, l ∈ I+, and q = [q1,1, . . . , qN,D]
T , p = [p1,1, . . . , pN,D]

T .
The matrices A, B and C are symmetric so that the matrix of the
linear system (4.7) is Hamiltonian. They are given by

Akl = (λ − ωk)δkl − 3k4
D

d1,d2=1


s1,s2∈I+

Γ̃kls1s2

× (3Qs1,d1Qs2,d2 + Ps1,d1Ps2,d2),

Bkl = 3k4
D

d1,d2=1


s1,s2∈I+

Γ̃kls1s2(3Qs2,d2Ps1,d1 − Qs1,d1Ps2,d2),

Ckl = (λ − ωk)δkl − 3k4
D

d1,d2=1


s1,s2∈I+

Γ̃kls1s2(Qs1,d1Qs2,d2

+ 3Ps1,d1Ps2,d2). (4.8)

The eigenvalues of the matrix of (4.7) obtained for the
computed breathers of Examples 2–4 are seen to be imaginary, see
e.g. Fig. 19. This confirms that the computed breathers are linearly
stable in the subspace V+. Numerical computations used the GLS
libraries [26].

Linear stability in the invariant subspaces V+ does not imply
linear stability for the flow of the quartic normal formHamiltonian
H̄ in the whole phase CN . This question is left for further
work. Numerical integration of the FPU elastic network system,
using as initial conditions the approximate solutions computed
here, suggests that most of the amplitude remains in the higher
frequency modes over time scales of at least 103τmax, where τmax
is the smallest period of the linear system, using in all cases k4 ∈

[0, 1]. These results required higher order numerical integrators,
and additional checks and will be presented elsewhere.

5. Discussion

We used Birkhoff normal forms to compute approximate
periodic orbits of inhomogeneous FPU-type systems. These
periodic orbits are also spatially localized at small amplitudes. We
have verified that the presence of agglomeration regions leads to
spatially localized linear normal mode in three 1-D examples, and
we have also seen indications of linear spatial localization in a
3-D model with the geometry of a protein. Thus a linear mode
analysis is a reasonable first step for examining spatial localization
at the weakly nonlinear regime. The second hypothesis, that
certain possible near-resonant interactions between high and
medium frequency modes are controlled by the small size of the
corresponding interaction coefficients is verified by checking that
the ratios Ek, Ẽ of Proposition 3 are at most unity for the examples
considered. The ratios are smaller for the 1-D examples, where

localization in the high frequency modes is also more pronounced.
The results for the 3-D example suggest that the weakly nonlinear
localization idea is plausible, that it should be corroborated with
further studies. Further examples will be presented in future work.

Our work can be extended in several directions. It would be
desirable to have theoretical results on the spectrum and the
spatial properties of the linear modes, this seems possible in 1-D
examples.

Technical issues related to Birkhoff normal forms will be
addressed in futurework. An estimate of the radius of convergence
ρ of the normal form will give us a quantitative estimate of the
maximum amplitude of the oscillations we are considering. To
estimate ρ we can use more detailed bounds on the size of the
coefficients of (3.12), e.g. a count of the terms in different size
ranges instead of the bounds Ek, Ẽ of Proposition 3. Normal form
ideas to find asymptotic invariants, see [16], could be useful in the
question of stability of the solutions considered. Related numerical
results will be presented elsewhere.

The Lyapunov center theorem may be directly applicable to
some low frequency modes, but seems problematic for high
frequency modes, where we see many nearby frequencies. The
application of this theory would rely on the numerically computed
spectrum, e.g. [8,12] apply the theorem to homogeneous FPU
lattices where the frequencies are known exactly.

The present study can be further extended by numerical
methods that look for periodic orbits directly. The method of [4]
is a Galerkin truncation of the Fourier method, which is in
principle applicable for arbitrary amplitudes, see e.g. [33] for recent
extensions and more references.

Related high order finite difference methods for Hamiltonian
systemswith continuation from the origin are described in [34,35].
This approach seems closer to what we would like to accomplish
in this work. In particular, it would be desirable to continue small
amplitude localized periodic orbits to higher amplitudes.

There is also some additional intuition inherent in the quartic
model and in the work of [4] that we do not seem to capture.
The idea that we can have localization at regions with more
connections is verified numerically at the linear level in our study,
and use this fact as the basis for studying the weakly nonlinear
problem. Nevertheless, additional ‘‘stiffness’’ in these regions due
to the quartic terms may make localization even more robust. We
do not have a theoretical scheme at present that could use this idea
and relied instead on linear localization,which is tacitly assumed to
bemore tractable, at least for some examples.We note that there is
a large literature where nonlinear localization effects are modeled
by on-site anharmonic potentials, see e.g. [36] and references.

Another issue is the applicability of the normal form argument
we used in the presence of cubic terms. The existence of invariant
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subspaces of modes of nearby frequencies in the quartic normal
form can be shown in many contexts, see e.g. [37,38] but requires
the elimination of cubic terms. Thus there is a question of how the
results onhigh frequencymodes could dependon additional terms.
A related question is what terms would be physically interesting,
given a more realistic model, see also the discussion of Section 2.1.
Some problems of this type could be addressed first in 1-Dmodels.
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