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Abstract

We consider a system of coupled nonlinear Schrödinger equations with periodically varying dispersion

coefficient that arises in the context of fiber-optics communication. We use P.L. Lions’s Concentration

Compactness principle to show the existence of standing waves with prescribed L
2 norm in an averaged

equation that approximates the coupled system. We also use the Mountain Pass Lemma to prove the

existence of standing waves with prescribed frequencies.
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1 Introduction

Over the last years, certain nonlinear dispersive equations with nonlocal nonlinearity have arisen in the
context of optical communications and have become the subject of intense numerical and analytical
study [1, 10, 15, 20, 32]. In 1981, I. P. Kaminow [14] showed that single-mode optical fibers are not really
”single-mode” but actually bimodal due to the presence of birefringence. It can occur that the linear
birefringence makes a pulse split in two pieces, while nonlinear birefringence can prevent splitting. C. R.
Menyuk [19] showed that the evolution of two orthogonal pulse envelopes in birefringent optical fiber is
governed by the Coupled Nonlinear Schrödinger System (CNLSS)

i ut + uxx + |u|2 u+ β |v|2 u = 0 (1.1)

i vt + vxx + |v|2 v + β |u|2 v = 0 (1.2)

where x ∈ R, t ∈ R. u = u(x, t) and v = v(x, t) are complex unknown functions and β is a real positive
constant which depends on the anisotropy of the fiber. System (1.1), (1.2) is important for industrial
applications in fiber communication systems [12], and all-optical switching devices [13]. Another motiva-
tion for studying the CNLSS arises from the Hartree-Fock theory for a binary mixture of Bose-Einstein
condensates in two different hyperfine states, cf. [7].

In optical fiber devices a key goal is to transfer pulses over long distances. It is therefore important
to stabilize pulses and counteract the effects of loss and dispersion along the fiber. Approaches to these
problems rely mostly on techniques related to linear models. However, over the past two decades there
have been suggested different approaches which intend to make use of the nonlinear effects [6]. As a
model, we consider the Nonlinear Schrödinger (briefly NLS) equation

i ut + d(t)uxx + c(t) |u|2 u = 0 (1.3)

for the envelope function u = u(x, t) of the electromagnetic wave. t ∈ R is the distance along the fiber,
whereas the coordinate x ∈ R is the physical time. The initial condition u(x, t0) describes a signal that
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is given at all times x at a point t0 along the fiber. The dispersion and nonlinearity parameters c, d
respectively depend on properties of the fiber, and can be chosen to vary with t.

Varying the dispersion and nonlinearity parameters along the fiber is known as “dispersion manage-
ment”. The technique was introduced in the early eighties [16] and refined during the last decade [21],
emerging as a dominant technology for high bandwidth data transmission through optical fibers, see
[8, 9, 26] and references therein. In a dispersion managed fiber link, short segments of fiber with opposite
linear dispersion are joined together in a periodically repeated structure, forming a fiber whose linear
dispersion is effectively canceled out over each period of dispersion management. In such a system, the
characteristic length of local dispersion is much shorter than that of nonlinearity or average dispersion,
so that on the scale of a typical dispersion management segment, the effect of nonlinearity and average
dispersion can be made small relative to those of the local dispersion.

A basic problem for NLS type equations such as (1.3) is to prove that they support solitary wave
solutions. These are localized solutions that maintain their form and are expected play a important role
in the dynamics, see e.g. T.-P. Tsai [31]. In V. Zharnitsky et al. [32] solutions of this type were found for
an equation of NLS type whose solutions approximate those of (1.3). It is natural to ask whether similar
solutions exist for the coupled NLS system.

The Cauchy problem for the system (1.1)-(1.2) was first studied by E. S. P. Siqueira [27, 28] who showed
that, for initial data u0 ∈ H1(R) and v0 ∈ H1(R), the solution satisfies u ∈ C(R : H1(R)) ∩ C1(R :
H−1(R)) and v ∈ C(R : H1(R)) ∩ C1(R : H−1(R). The proof uses techniques developed in [3, 4]. This
CNLSS has been extensively studied for many authors, see [5, 14, 19] and references therein.

The starting point in this work is the nonautonomous CNLSS

i ut + d(t)uxx + ε |u|2 u+ ε β |v|2 u+ ε αuxx = 0 (1.4)

i vt + d(t) vxx + ε |v|2 v + ε β |u|2 v + ε α vxx = 0 (1.5)

where d(t) is a periodically varying group velocity dispersion with zero average, ε α is the average (or
residual) dispersion, and x and t correspond to the distance along the fiber and the retarded time
respectively. System (1.4), (1.5) will be approximated by the autonomous averaged CNLSS

i wt + ε αwxx + ε 〈Q1〉(w, z) = 0 (1.6)

i zt + ε α zxx + ε 〈Q2〉(w, z) = 0, (1.7)

with 〈Q1〉, 〈Q2〉 nonlocal cubic nonlinearities given in section 2. The averaged system is derived from
(1.4), (1.5) by a formal averaging argument we present in section 2. It is expected that, as ǫ → 0,
solutions of (1.6), (1.7) should approximate solutions of (1.4), (1.5) over a time interval of size O(ǫ−1)
(see [32] for the single NLS case). Extending results of [5] we can see that (1.6), (1.7) with initial data
(w(0), z(0)) = (w0, z0) ∈ H1(R) × H1(R) has a unique solution (w(t), z(t)) ∈ C(R, H1(R) × H1(R)),
assuming some mild regularity assumptions on d.

Following the general idea of seeking solitary waves, we are specifically interested in solutions of (1.6),
(1.7) of the form

w(x, t) = ei ω1 tϕ(x), z(x, t) = ei ω2 tψ(x) (1.8)

where ϕ, ψ ∈ H1(R), ϕ, ψ 6≡ 0 and ω1, ω2 ∈ R.

To state the main results, define the linear operators T (t) by requiring that T (t)u0 be the solution of
iut = d(t)uxx = 0, with u(0) = u0, and consider the functional 〈H〉 : H1(R) ×H1(R)) → R defined by

〈H〉(u, v) =

∫ 1

0

∫

R

[
α (|vx|2 + |vx|2 −

1

2
|T (t)u|4 − 1

2
|T (t)v|4 − β |T (t)u|2 |T (t)v|2

]
dx dt, (1.9)
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We then have the following.

Theorem 1.1 Let α > 0. Then for any λ1, λ2 > 0 (1.6), (1.7) has a solution of the form (1.8) that
minimizes 〈H〉 over all (u, v) ∈ H1(R) ×H1(R) satisfying ||u||L2(R) = λ1, ||v||L2(R) = λ2.

The proof of Theorem 1.1 is based on minimization, and the Concentration-Compactness Principle
and is given is section 4, where we also remark on the stability of the standing wave solutions. In Theo-
rem 1.1 the frequencies ω1, ω2 are a-priori unspecified. It is also possible to obtain standing waves with
prescribed frequencies.

Theorem 1.2 Let α > 0. Consider any pair of ω1, ω2 > 0. Then (1.6), (1.7) has a solution of the
form (1.8).

The proof of Theorem 1.2 is based on the Mountain Pass Lemma applied to a functional obtained
from the Hamiltonian of (1.6), (1.7) and is given is section 5.

The paper is organized as follows. In section 2 we formally derive the averaged system from a coupled
NLS system with variable dispersion. Section 3 states some basic preliminary results used in the the
subsequent proofs. In section 4 we formulate the constrained minimization problem for solutions of the
form (1.8) and prove Theorem 1.1. by showing the existence of minimizers. We also comment on stability
and the cases α = 0, α < 0. In section 5 we prove Theorem 1.2.

2 The averaged NLS system

From the point of view of modeling the starting point is the coupled nonlinear Schrödinger system
system(CNLSS)

i uτ +
1

ε
d
(τ
ε

)
uzz + c

(τ
ε

)
|u|2 u+ β |v|2 u+ αuzz = 0 (2.1)

i vτ +
1

ε
d
(τ
ε

)
vzz + c

(τ
ε

)
|v|2 v + β |u|2 v + α vzz = 0 (2.2)

u(x, 0) = u0(x) (2.3)

v(x, 0) = v0(x). (2.4)

with x ∈ R, t ∈ R, and u = u(x, t), v = v(x, t) complex unknown functions. The real functions d, c are
1−periodic, piecewise-continuous and have vanishing average over their period. The real parameter α is
the average dispersion coefficient. The parameter β is real, positive and models the anisotropy of the
fiber. ε is a real positive parameter, and we are interested in the case where ε is small; this implies that
the functions d, c have exhibit rapid, high amplitude oscillation.

Letting τ = ε σ, (2.1)-(2.2) become

i uσ + d(σ)uzz + ε c(σ) |u|2 u+ ε β |v|2 u+ ε αuzz = 0

i vσ + d(σ) vzz + ε c(σ) |v|2 v + ε β |u|2 v + ε α vzz = 0.

Furthermore, letting t = t(σ), t′(σ) = c(σ) and τ = x we put (2.1)-(2.2) in the form

i ut + d(t)uxx + ε |u|2 u+ ε β |v|2 u+ ε αuxx = 0 (2.5)

i vt + d(t) vxx + ε |v|2 v + ε β |u|2 v + ε α vxx = 0. (2.6)

of (1.1)-(1.2). Equivalently the system is written as

i Ut + d(t)Uxx + ε F (u, v)U + ε αUxx = 0 (2.7)
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where

U =

[
u
v

]
; F (u, v) =

[
|u|2 β |v|2
|v|2 β |u|2

]

Consider equation (2.7) with ε = 0. Using Stone’s theorem [23], we obtain U(x, t) = T (t)U0, where
T (t) is the fundamental solution of i Ut +d(t)Uxx = 0. This operator is easily computed using the Fourier
Transform F

T (t)U0(x) =
1√
2 π

∫

R

ei x ξϕ(ξ, t)FU(ξ, 0) dξ

where ϕ(ξ, t) = e− i ξ2
R

t

0
d(τ) dτ . Moreover, due to the periodicity of d(t), both ϕ(ξ, t) and T (t) are peri-

odic in t. The family of unitary operators T (t) is periodic T (t+ 1) = T (t) since the average of d over its
period vanishes. We observe that T (t) is an isometry on Hs(R) ×Hs(R) for all s ∈ R.

Using the solution of the linear system, we define the functions w, z by u(x, t) = T (t)w(x, t) and
v(x, t) = T (t)z(x, t) respectively.

Then, (2.5)-(2.6) imply

i wt + ε αwxx + εQ1(w, z, t) = 0 (2.8)

i zt + ε α zxx + εQ2(w, z, t) = 0 (2.9)

where

Q1(w, z, t) = T−1(t)
(
|T (t)w|2T (t)w + β |T (t)z|2T (t)w

)

Q2(w, z, t) = T−1(t)
(
|T (t)z|2T (t)z + β |T (t)w|2T (t)z

)
.

We now replace (2.5)-(2.6) by the averaged system

i wt + ε αwxx + ε 〈Q1〉(w, z) = 0 (2.10)

i zt + ε α zxx + ε 〈Q2〉(w, z) = 0 (2.11)

with

〈Q1〉(w, z) =

∫ 1

0

Q1(w, z, t) dt (2.12)

〈Q2〉(w, z) =

∫ 1

0

Q2(w, z, t) dt. (2.13)

System (2.10)-(2.11) is obtained by formally averaging the explicit time dependence in (2.8)-(2.9).
This is motivated by the intuitive idea that in the limit ε → 0, solutions of the averaged system should
approximate solutions of (2.8)-(2.9), as in the classical averaging method for ODEs. In the context of
the single NLS with time varying coefficients, the analogue of (2.10)-(2.11) was formally derived by [8],
[1]. Zharnitsky et al. [32] give a precise statement justifying the averaging step.

Rescaling time in(2.10) and (2.11) by changing t→ t/ε gives

i wt + αwxx + 〈Q1〉(w, z) = 0 (2.14)

i zt + α zxx + 〈Q2〉(w, z) = 0. (2.15)

The structure of (2.14)-(2.15) is very close to the structure of the coupled nonlinear Schrödinger sys-
tem and we can extend the theory of existence for the coupled nonlinear Schrödinger system to (2.14)-
(2.15) (See J. C. Ceballos et al. [5]) and references therein. In particular we similarly show that sys-
tem (2.14), (2.15) with initial data (w0, z0) ∈ H1(R) × H1(R) has a unique solution (w(t), z(t)) ∈
C(R, H1(R) ×H1(R)) ∩ C1(R, H−1(R) ×H−1(R)).
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Remark 2.1 Systems (2.5)-(2.6), (2.8)-(2.9), and the averaged system (2.14)-(2.15) are Hamiltonian.
For instance (2.14)-(2.15) can be formally written as Hamilton’s equations

wt = −i δ
δz∗

〈H〉, zt = −i δ

δw∗ 〈H〉, (2.16)

with Hamiltonian

〈H〉 =

∫ 1

0

∫

R

[
α |wx|2 + α |zx|2 −

1

2
|T (t)w|4 − 1

2
|T (t)z|4 − β |T (t)w|2 |T (t)z|2

]
dx dt, (2.17)

see e.g. [30] for this notation. We furthermore check that ||w||L2(R), ||z||L2(R) are conserved quantities.

Remark 2.2 For 〈T 〉 defined by

〈T 〉u =

∫ 1

0

T (t)u dt

we have, using the Fourier Transform of the function u as Fu is

F(〈T 〉u)(ξ) =

(∫ 1

0

ei ξ2
R

t

0
d(τ)dτdt

)
Fu(ξ). (2.18)

Indeed, using (2.7) with ε = 0, we have

F
(
e−i ∂2

x

R

t

0
d(τ)dτU

)
= ei ξ2

R

t

0
d(τ)dτFU.

Remark 2.3 Let
Θ(η) = e−i η2

R

t

0
d(τ)dτ .

Applying the Fourier transform we have

FQ1(w, z)(ξ) =

∫

η1−η2+η3=ξ

Θ(η2
1 − η2

2 + η2
3 − ξ2)Fw1(η1)Fw∗

2(η2)Fw3(η3) dη1 dη2 dη3

+ β

∫

µ1−µ2+η3=ξ

Θ(µ2
1 − µ2

2 + η2
3 − ξ2)Fz1(µ1)Fz∗2(µ2)Fw3(η3) dµ1 dµ2 dη3

and

FQ2(w, z)(ξ) =

∫

µ1−µ2+µ3=ξ

Θ(µ2
1 − µ2

2 + µ2
3 − ξ2)Fz1(µ1)Fz∗2(µ2)Fz3(µ3) dµ1 dµ2 dµ3

+ β

∫

η1−η2+µ3=ξ

Θ(η2
1 − η2

2 + µ2
3 − ξ2)Fw1(η1)Fw∗

2(η2)Fz3(µ3) dη1 dη2 dµ3.

Using the fact that T is an isometry in H1(R),

||Q1(w, z)||H1(R) ≤ c
(
||w1||H1(R) ||w2||H1(R) ||w3||H1(R) + β ||z1||H1(R) ||z2||H1(R) ||w3||H1(R)

)
,

and

||Q2(w, z)||H1(R) ≤ c
(
||z1||H1(R) ||z2||H1(R) ||z3||H1(R) + β ||w1||H1(R) ||w2||H1(R) ||z3||H1(R)

)
.

Hence,

||〈Q1〉(w, z)||H1(R) ≤ c
(
||w1||H1(R) ||w2||H1(R) ||w3||H1(R) + β ||z1||H1(R) ||z2||H1(R) ||w3||H1(R)

)
,

and

||〈Q2〉(w, z)||H1(R) ≤ c
(
||z1||H1(R) ||z2||H1(R) ||z3||H1(R) + β ||w1||H1(R) ||w2||H1(R) ||z3||H1(R)

)
.

Moreover

〈Q1〉∗(w, z) =< Q1 > (w∗, z∗), 〈Q2〉∗(w, z) =< Q1 > (w∗, z∗)
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3 Some preliminary results

We state some basic results that will be used in sections 4, 5. We start with a technical lemma that is
based on the Gagliardo-Nirenberg inequality.

Lemma 3.1 For all u ∈ H1(R) we have

||u||2L∞(R) ≤ 2 ||u||L2(R) ||ux||L2(R) (3.1)

||u||4L4(R) ≤ 2 ||u||3L2(R) ||ux||L2(R). (3.2)

Lemma 3.2 (See [3], page 185). Let 0 < α < 4/n. Let u ∈ H1(Rn). Then there exists c > 0 such that

∫

Rn

|u|α+2 dx ≤ c

(
sup

φ∈Rn

∫

{|x−φ|≤1}
|u(x)|2 dx

)α/2

||u||2H1(Rn). (3.3)

To prove Theorem 1.1 we solve a minimization problem in unbounded domains. The main technical
tool is Lemma 3.3 below. In general, the invariance of R

n by the non-compact groups of translations
and dilations creates possible loss of compactness: as an illustration of these difficulties, recall that the
Rellich-Kondrakov theorem [2] is no more valid in R

n. The consequence of this fact is that, except for
the special case of convex functionals, the standard convexity-compactness methods used in problems set
in bounded domains fail to treat problems in unbounded domains.

Lemma 3.3 (Lion’s Concentration-Compactness Principle. See [17], Lemma III, page 135). If λ > 0 and
{uk}k∈N is a bounded sequence of H1(R) with P (uk) ≡ ||uk||2L2(R) = λ, then there exists a subsequence

{ukj
}j∈N for which one of the following properties holds:

1) (compactness) There exists a sequence {xj}j∈N such that for every ε > 0 there exists 0 < R <∞ so
that

∫ xj+R

xj−R

|ukj
|2 dx ≥ λ− ε. (3.4)

2) (vanishing) For any 0 < R < +∞

lim
j→∞

sup
φ∈R

∫ φ+R

φ−R

|ukj
|2 dx = 0. (3.5)

3) (splitting) There exists 0 < γ < λ such that for every ε > 0 there exists j0 ≥ 0 and two sequences
{u′j}j∈N ⊆ H1(R) and {u′′j }j∈N ⊆ H1(R) with compact disjoint supports, such that for j ≥ j0

||u′j ||H1(R) + ||u′′j ||H1(R) ≤ 4 sup
j∈N

||ukj
||H1(R), (3.6)

||ukj
− u′j − u′′j ||L2(R) ≤ ε, (3.7)

∣∣∣∣
∫

R

|u′j|2 dx − γ

∣∣∣∣ ≤ ε (3.8)

∣∣∣∣
∫

R

|u′′j |2 dx+ γ − λ

∣∣∣∣ ≤ ε, (3.9)

∣∣∣∣
∣∣∣∣
∂u′j
∂x

∣∣∣∣
∣∣∣∣
L2(R)

+

∣∣∣∣
∣∣∣∣
∂u′′j
∂x

∣∣∣∣
∣∣∣∣
L2(R)

≤
∣∣∣∣
∣∣∣∣
∂ukj

∂x

∣∣∣∣
∣∣∣∣
L2(R)

+ ε (3.10)

Moreover dist(supp(uj), supp(u′′j )) > 2ε−1.
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Remark 3.3.1 In the case of splitting of Lemma 3.3 (i.e. case 3), V. Zharnitsky et al (see [32], Lemma
6.1) show that u′j , u

′′
j can be chosen to be of the form u′j(x) = ρ(x− xj)um(x), u′′j (x) = θ(x− xj)um(x),

where {xj}j∈N is a sequence of points in R, and the functions ρ, ϑ : R → [0, 1] are C∞, even and satisfy

(i) |ρ′(x)|, |ϑ′(x)| < ǫ, ∀x ∈ R,

(ii) ρ(x) = 1, if |x| < t1; ρ(x) = 0, if |x| ≥ t1 + 2ǫ−1,

ϑ(x) = 1, if |x| > t2; ϑ(x) = 0, if |x| ≤ t2 − 2ǫ−1,

where 0 < t1 < t2, t2 − t1 > 6ǫ−1. The above imply that suppρ ∩ suppϑ = ∅, dist(suppρ, suppϑ) > 2ǫ−1.
Moreover 1 − ρ(x− xj) − ϑ(x− xj) ≥ 0, ∀x, xj ∈ R.

The proof of Theorem 1.2 is based on the Mountain Pass Lemma below. Let E be a Banach space
and H : E −→ R a function which satisfies any of the following conditions:

(PS)a The Palais-Smale Compactness Condition at a value a ∈ R :

Every sequence {xj}j∈N in E, such that H(xj) −→ a and ||H′(xj)|| −→ 0, has a convergent subse-
quence.

(PS) The Palais-Smale Compactness Condition:

(PS)a holds for every a ∈ R.

(MP ) The Mountain Pass Condition:

There is an open neighborhood U of 0 and some x0 6= U such that max{H(0), H(x0)} < m ≡ inf{H(x) :
x ∈ ∂U}. Let A denote the family of all continuous paths g : [0, 1] −→ H joining 0 to x0, and put
c ≡ infg∈A H(g(t)). Clearly c ≥ m.

Lemma 3.4(Mountain Pass Lemma. See [24]). Let H : E −→ R be a C1 function satisfying (MP ).
Then there exists a sequence {xj}j∈N in E such that

H(xj) −→ c and ||H′(xj)|| −→ 0. (3.11)

If H also satisfies (PS)c with c as in (MP ), then c is a critical value: That is, for some xc in E, H(xc) = c
and H

′(xc) = 0T = (0, 0, . . . , 0).

We also state three results of V. Zharnitsky et al. [32] that are used to apply the above results to
nonlinearities that involve the operator T of Section 2. Consider the linear part of the coupled free
Schrödinger system

i ut + uxx = 0 (3.12)

i vt + vxx = 0, (3.13)

i.e. the two equations decouple and are the same. Consider (3.12). Let

εn(t) = sup
φ∈R

∫ φ+1

φ−1

|un(x, t)|2 dx. (3.14)

Recall that solutions exist in C(R, H1(R)), and that the L2 norm is conserved.

Lemma 3.5 Let un(x, 0)}n∈N be a sequence of vanishing initial data, i.e., εn(0) → 0 as n → ∞.
Consider corresponding solutions un = un(x, t) and assume that ||un||H1(R) ≤ c, and ||un||L2(R) = 1,
∀t ∈ R. Then {un(x, t)}n∈N is also vanishing and the following estimate holds:

εn(t) ≤ 2 εn(0) + 2
√
c εn(0) t, ∀t ∈ R. (3.15)
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Similar bounds hold for the solutions of iut + d(t)uxx = 0:

Lemma 3.6 Consider solutions un = un(x, t) of

i ut + d(t)uxx = 0 (3.16)

(3.17)

with d(t) piecewise smooth with a finite number of non-degenerate zeros. Assume vanishing initial data
(as in Lemma 3.5). Define εn(t) as in (3.14) and assume that ||un||H1(R) ≤ c, ||un||L2(R) = 1. Then
εn(t) satisfies (3.15).

Considering the splitting case of Lemma 3.3, we see that uj splits, up a small error, to functions u′j , u
′′
j

that have disjoint supports. The following lemma (see [32], Lemma 6.3) implies that products of T (t)u′j,
T (t)u′′j are also small.

Lemma 3.7 Let λ > 0. Let {uk}k∈N be a bounded sequence in H1(R) with ||uk||2L2(R) = λ, ∀k ∈ N

that splits in the sense of Lemma 3.3. Then ∀ǫ > 0 and corresponding subsequences {u′j}j∈N and {u′′j }j∈N

(as in Lemma 3.3) there exist disjoint sets S1, S2, S1 ∪ S2 = R and a constant C depending on λ only
such that

∫

S1

|T (t)u′j|2 ≤ Cǫ,

∫

S2

|T (t)u′′j |2 ≤ Cǫ, ∀t ∈ [0, 1]. (3.18)

4 Standing waves by constrained minimization

We seek solutions of (2.14), (2.15) of the standing wave form

w(x, t) = ei ω1 tϕ(x), z(x, t) = ei ω2 tψ(x) (4.1)

where ϕ, ψ ∈ H1(R), ϕ, ψ 6≡ 0 and ω1, ω2 ∈ R. Inserting (4.1) into (2.14), (2.15) we obtain the nonlinear
eigenvalue problem

−ω1 ϕ+ αϕxx + 〈Q1〉(ϕ, ψ) = 0 (4.2)

−ω2 ψ + αψxx + 〈Q2〉(ϕ, ψ) = 0. (4.3)

Consider the C1 functional 〈H〉 : H1(R) ×H1(R) → R defined by

〈H〉(w, z) =

∫ 1

0

∫

R

[
α |wx|2 + α |zx|2 −

1

2
|T (t)w|4 − 1

2
|T (t)z|4 − β |T (t)w|2 |T (t)z|2

]
dx dt. (4.4)

Let P (u) = ||u||2L2(R) and define the C1 functionals Pj : H1(R) ×H1(R) → R, j = 1, 2, by P1(w, z) =

P (w), P2(w, z) = P (z) respectively. Calculating the Fréchet derivatives of 〈H〉, P1, P2 we see that (4.2),
(4.3) are the Euler-Lagrange equations for the extrema of 〈H〉 in H1(R) × H1(R) with the constraints
Pj(w, z) = λj > 0, j = 1, 2. We shall seek solutions of (4.2), (4.3) by finding (w, z) ∈ H1(R) ×H1(R),
P (w) = λ1, P (z) = λ2 that attains

Pλ1,λ2 = inf{〈H〉(w, z) : (w, z) ∈ H1(R) ×H1(R), P (w) = λ1 and P (z) = λ2}. (4.5)

The solution of the constrained minimization problem depends on the sign of the parameter α. The case
α > 0 is examined in subsection 4.1. The cases α = 0, α < 0 are discussed in subsection 4.2.
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In the proof of Theorem 1.1 we will use some facts about related minimization problems for single
NLS equations. Define the C1 functional 〈H1〉 : H1(R) → R by

〈H1〉(w) =

∫ 1

0

∫

R

[
α |wx|2 −

1

2
|T (t)w|4

]
dx dt, α > 0, (4.6)

and let

Pλ = inf{〈H1〉(w) : w ∈ H1(R), P (w) = λ}. (4.7)

Also, for z ∈ H1(R) define the C1 functional 〈H1,z〉 : H1(R) → R by

〈H1,z〉(w) =

∫ 1

0

∫

R

[
α |wx|2 −

1

2
|T (t)w|4 − β |T (t)w|2 |T (t)z|2

]
dx dt, α, β > 0, (4.8)

and let

P 1
λ(z) = inf{〈H1,z〉(w) : w ∈ H1(R), P (w) = λ}. (4.9)

The general idea for proving Theorem 1.1 is to show that a minimizing sequence {(wm, zm)}m∈N for
〈H〉 with the above L2−norm constraints converges inH1(R)×H1(R). Our assumptions on {(wm, zm)}m∈N

are seen to imply that each of the sequences {wm, }m∈N, {zm, }m∈N satisfies the assumptions of Lemma
3.3. In Lemma 4.1.4 we consider all combinations of three scenarios of Lemma 3.3 for each sequence and
show that the only possibility is that both {wm, }m∈N, and {zm, }m∈N follow the compactness scenario.
Most of the effort in the proving this fact goes into ruling out the possibility that at least one of the
sequences undergoes splitting in the sense of Lemma 3.3. The see that this does not happen we note from
the definitions above that

〈H〉(wm, zm) = 〈H1,zm
〉(wm) + 〈H1〉(zm) = 〈H1,wm

〉(zm) + 〈H1〉(wm). (4.10)

In the case where, for instance, {wm, }m∈N splits, we consider the first equality and see that Lemma 4.1
below implies that there exists a w ∈ H1(R), P (w) = λ1, such that 〈H1,zm

〉(wm) > 〈H1,zm
〉(w). Lemmas

4.2-4.4 below imply that even though w will in general depend on zm, 〈H1,zm
〉(wm) − 〈H1,zm

〉(w) is
bounded away from zero by a positive constant that is independent of zm. It then easily follows that
{(wm, zm)}m∈N) is not minimizing. The proof of Theorem 1.1 is completed in Theorem 4.1.1, where we
show that a minimizing sequence must in fact converge in H1(R) ×H1(R).

In Lemma 4.1 below we show the existence of the minimizer for 〈H1,z〉. The proof is similar to the
proof of the existence of a minimizer for 〈H1〉 by Zharnitsky et al, see [32], and some details are omitted.
In particular, all estimates that involve the operator T are as in [32]. The proof is in Section 4.1. In
Lemmas 4.2-4.3 we show that under H1 boundedness conditions on the functions involved, the strict
subadditivity inequalities for 〈H1,z〉 can be made uniform in z. In Lemma 4.4 we show that a sequence
{wm, }m∈N that splits misses the infimum of 〈H1,z〉 (i.e. stays above it) by a quantity that is independent
of z. The proof is in Section 4.1 and uses Lemmas 4.2, 4.3, and the observation that some estimates from
part 7 of the proof of Lemma 4.1 are uniform in z.

Lemma 4.1 Let z ∈ H1(R), λ > 0. Then P 1
λ(z) < 0 and there exists w̃ ∈ H1(R), P (w̃) = λ, sat-

isfying 〈H1,z〉(w̃) = P 1
λ(z).

Lemma 4.2 Let θ > 1, λ > 0, M > 0, and z ∈ H1(R), with ||z||H1(R) ≤ M . Then there exists
K > 0, independent of z, for which

P 1
θλ(z) ≤ θP 1

λ(z) + θ(1 − θ)K.
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Proof. Let w̃ ∈ H1(R), P (w̃) = λ satisfy 〈H1,z〉(w̃) = P 1
λ(z) (such w̃ exists by Lemma 4.1). Let

θ > 1. Then

〈H1,z〉(
√
θw̃) =

∫ 1

0

∫

R

[
θα |w̃x|2 −

1

2
θ2|T (t)w̃|4 − β θ|T (t)w̃|2 |T (t)z|2

]
dx dt

= θ〈H1,z〉(w̃) + θ(1 − θ)

∫ 1

0

∫

R

|T (t)w̃|4 dx dt

= θP 1
λ(z) + θ(1 − θ)

∫ 1

0

∫

R

|T (t)w̃|4 dx dt. (4.11)

Therefore

P 1
θλ(z) ≤ θP 1

λ(z) + θ(1 − θ)

∫ 1

0

∫

R

|T (t)w̃|4dx dt. (4.12)

We want to show that the integral in (4.12) is bounded below by some K independent of z. Suppose on
the contrary that there exists a sequence {zn}n∈N ∈ H1(R), with ||zn||H1(R) ≤M , ∀n ∈ N, for which the
minimizers w̃n of 〈H1,zn

〉 over w ∈ H1(R), P (w) = λ satisfy

lim
n→∞

∫ 1

0

∫

R

|T (t)w̃n|4 dx dt = 0. (4.13)

By Lemma 3.1, the definition of T , and the boundedness of the sequence {zn}n∈N in H1(R) we have

||T (t)zn||2L4(R) ≤ C, ∀n ∈ N. (4.14)

Furthermore
∫ 1

0

∫

R

|T (t)w̃n|2 |T (t)zn|2 dx dt ≤
∫ 1

0

||T (t)w̃n||2L4(R)||T (t)zn||2L4(R)dt, (4.15)

hence

lim
n→∞

∫ 1

0

∫

R

|T (t)w̃n|2 |T (t)zn|2 dx dt = 0. (4.16)

Thus the negative terms of 〈H1,zn
〉(w̃n) vanish and for any ǫ > 0 there exists n0 > 0 such that

〈H1,zn
〉(w̃n) > −ǫ, ∀n > n0. On the other hand, for every z, w̃ ∈ H1(R), P (w̃) = λ,

P 1
λ(z) ≤

∫ 1

0

∫

R

[
θα |w̃x|2 −

1

2
θ2|T (t)w̃|4 − β θ|T (t)w̃|2 |T (t)z|2

]
dx dt (4.17)

≤
∫ 1

0

∫

R

[
θα |w̃x|2 −

1

2
θ2|T (t)w̃|4

]
dx dt = 〈H1〉(w̃) < Pλ, (4.18)

a contradiction, since by [32], Pλ < 0. �

Lemma 4.3 Let λ1, λ2 > 0, M > 0. Let z ∈ H1(R), with ||z||H1(R) ≤ M . Define γ by min{λ1, λ2} =
γmax{λ1, λ2} and let θ = 1 + γ. Then there exists K > 0, independent of z, for which

P 1
λ1+λ2

(z) ≤ P 1
λ1

(z) + P 1
λ2

(z) + θ(1 − θ)K.

Proof. The case λ1 = λ2 follows immediately by Lemma 4.2 with λ = λ1, θ = 2. Otherwise we
may assume without loss of generality that λ1 = γλ2 with γ < 1. Then, by Lemma 4.2

P 1
λ1+λ2

(z) = P 1
(1+γ) λ2

(z) ≤ (1 + γ)P 1
λ2

(z) + θ(1 − θ)K

= P 1
λ2

(z) + γP 1
γ−1λ1

(z) + θ(1 − θ)K ≤ P 1
λ2

(z) + P 1
λ1

(z) + θ(1 − θ)K. �
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Lemma 4.4 Let z ∈ H1(R), ||z||H1(R) ≤ M1, and λ > 0. Consider sequence {wj}j∈N in H1(R) that
satisfies P (wj) = λ, ||wj ||H1(R) ≤ M2, ∀j ∈ N and splits in the sense of Lemma 3.3. Then there ex-
ists a subsequence {wm}m∈N, and µ, m0 > 0, all independent of z, such that for m > m0 we have
〈H1,z〉(wm) ≥ Pλ(z) + µ.

Remark 4.4.1 µ will in general depend on the sequence {wj}j∈N (through θ, see the proof of Lemma
4.4 in Section 4.1).

4.1 Positive average dispersion

First, we prove the following.

Claim. Pλ > −∞.

In fact, using Lemma 3.1, the definition of T , the Hölder inequality and straightforward calculations,
we obtain

〈H〉(w, z) ≥
∫ 1

0

(
α ||wx||2L2(R) + α ||zx||L2(R) −

1

2
(β + 1) ||T (t)w||4L4(R) −

1

2
(β + 1) ||T (t)z||4L4(R)

)
dt

≥ α ||wx||2L2(R) + α ||zx||2L2(R) − (β + 1)λ
3/2
1 ||wx||L2(R) − (β + 1)λ

3/2
2 ||zx||L2(R)

= α

[
||wx||2L2(R) −

(β + 1)

α
λ

3/2
1 ||wx||L2(R)

]
+ α

[
||zx||2L2(R) −

(β + 1)

α
λ

3/2
2 ||zx||L2(R)

]

= α

(
||wx||L2(R) −

(β + 1)

2α
λ

3/2
1

)2

− (β + 1)2

4α
λ3

1

+ α

(
||zx||L2(R) −

(β + 1)

2α
λ

3/2
2

)2

− (β + 1)2

4α
λ3

2

≥ − (β + 1)2

2α
(λ3

1 + λ3
2) > −∞, ∀ w, z ∈ H1(R). (4.1.1)

Taking the infimum, the claim follows.

Lemma 4.1.1 The minimization problem (4.5) with α > 0 has negative infimum Pλ1,λ2 < 0.

Proof. Let w =
√
λ1v, z =

√
λ2v, with P (v) = 1. Let 〈H̃1〉(w) = 1

2 〈H〉(w, z). The minimization

problem for the functional 〈H̃1〉, subject to P (v) = λ, arises in the averaged equation for the single NLS,
considered in [32]. The existence of v, with P (v) = 1, and 〈H̃1〉(w) < 0 is shown in [32], Theorem B.1 (v
is a Gaussian). �

The main statement of this section, leading immediately to Theorem 1.1, is the following.

Theorem 4.1.2 (Existence). There exists a solution to the problem (4.5). Moreover, every minimizing
sequence has a subsequence which converges strongly in H1(R) ×H1(R).

Proof of Theorem 1.1. By the C1 regularity of 〈H〉 the minimizers of Theorem 4.1.2 satisfy (2.14),
(2.15). �

Remark 4.1.3 In the special case λ1 = λ2 = λ we have

Pλ,λ = 2P̃1 = 2〈H̃1〉(φ), where (4.1.2)
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〈H̃1〉(w) =

∫ 1

0

∫

R

[
α |wx|2 −

β + 1

2
|T (t)w|4

]
dx dt, Pλ = inf{〈H̃1〉(w) : w ∈ H1(R), P (w) = λ},

and φ =∈ H1(R) satisfies P (φ) = λ. An analogous result for (2.8), (2.2) with T = id (i.e. d ≡ 0) was
shown in [22]. The existence of φ follows from [32], since 〈H̃1〉 is 〈H1〉 with a different parameter in front of
the nonlinearity. To see (4.1.2), we observe that by the first line of (4.1.1) 〈H〉(w, z) ≥ 〈H̃1〉(w)+〈H̃1〉(z),
∀w, z ∈ H1(R). Taking a minimizing sequence for 〈H〉 we then have Pλ,λ ≥ 2P̃1. On the other hand,

Pλ,λ ≤ 〈H〉(φ, φ) = 2P̃1.

To prove Theorem 4.1.2 we first show strong convergence in L2(R) using Lemma 3.3. We shall use
the following lemma.

Lemma 4.1.4 In the constrained minimization problem (4.5) with positive average dispersion α > 0,
there exists a minimizing sequence {(wj , zj)}j∈N where the components {wj}j∈N, {zj}j∈N are neither
vanishing nor splitting in the sense of Lemma 3.3.

The lemma uses structural properties of the Hamiltonian and is proved below. We examine combina-
tions of the scenarios of Lemma 3.3 for each sequence and we conclude that both {wj}j∈N, and {zj}j∈N

follow the compactness scenario. In Theorem 4.1.2 we show that each sequence converges strongly in
L2(R), and that the limits are concentrated in a common interval. This implies strong convergence of
{(wj , zj}j∈N in L2(R)×L2(R), which is used to show convergence of the quartic term in the Hamiltonian.
These results, in combination with lower semicontinuity of the H1(R) ×H1(R)-norm, give the existence
of a minimizer.

Remark 4.1.5 By the second line of (4.1.1), we have that for any minimizing sequences of wk, zk,
the norms ||wk||H1(R) and ||zk||H1(R) are bounded by constants that depend on λ1, λ2.

Proof of the Theorem 4.1.2. Let {(wj , zj)}j∈N be a minimizing sequence for 〈H〉(w, z). By inequal-
ity (4.1.1), ||wj ||H1(R) and ||zj ||H1(R) must be bounded. From the Alaoglu’s Theorem (See [25], page 66),
there exists a weakly converging subsequences wjm

and zjm
so that

(wjm
, zjm

) ⇀ (w∗, z∗) weakly on H1(R) ×H1(R) (4.1.3)

for some (w∗, z∗) inH1(R)×H1(R). Applying Lemma 4.1.4, and Lemma 3.3, we have that the minimizing
sequences remains localized as m → ∞. That is, for any ε > 0 there exist R1, R2 > 0 and sequences
{xm}, {ym} so that

∫ xm+R1

xm−R1

|wm(x)|2 dx > λ1 − ε,

∫ ym+R2

ym−R2

|zm(x)|2 dx > λ2 − ε. (4.1.4)

The distance |xm − ym| will either remain bounded, ∀m ∈ N, or diverge. In the case where |xn − ym|
diverges, wm, zm are concentrated in finite intervals whose distance diverges. Then the normalized
sums um = Nm(wm + zm), Nm = (λ1 + λ2)/||wm + zm||L2(R), define a sequence {um}m∈N ∈ H1(R),
P (um) = λ1 + λ2, ∀m ∈ N, splits in the sense of Lemma 3.3, for we easily check that wm, zm correspond
to the pieces u′m, u′′m of Lemma 3.3. Applying Lemma 3.7, and Lemmas 3.1, 3.3, we have that, for any
ǫ > 0

∫ 1

0

∫

R

|T (t)w′
m|2 |T (t)w′′

m|2 dx dt

=

∫ 1

0

(∫

S1

|T (t)w′
m|2 |T (t)w′′

m|2 dx+

∫ 1

0

∫

S2

|T (t)w′
m|2 |T (t)w′′

m|2 dx
)
dt

≤ Cǫ1/2

∫ 1

0

(||T (t)w′′
m||2L∞(R) + ||T (t)w′

m||2L∞(R)) dt ≤ c1 ǫ
1/2, (4.1.5)

with C, c1 that depend on λ1, λ2. Thus the coupling term vanishes and the infimum Pλ1,λ2 of 〈H〉 is
attained by the nontrivial w, z that minimize 〈H1〉 over H1(R) functions with P (w) = λ1, P (z) = λ2
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respectively. Moreover Pλ1,λ2 = P 1
λ1

+P 1
λ2

. This value is also attained by arbitrary independent translates
wX(x) = w(x −X), zY (x) = w(x − Y ) of w, z respectively. Since T (t) is an isomorphism in L2(R), for
w, z 6= 0, there exist X , Y for which

−β
∫ 1

0

∫

R

|T (t)wX |2|T (t)zY |2 dx dt < 0. (4.1.6)

But then 〈H〉(wX , zY ) < Pλ1,λ2 , a contradiction.

Thus |xm − ym| remain bounded, ∀m ∈ N. Then we can translate both wm, and zm by x̃m so that
w̃m(x) = wm(x− x̃m), z̃m(x) = zm(x− x̃m) satisfy

∫ +R

−R

|w̃m(x)|2 dx > λ1 − ε,

∫ +R

−R

|z̃m(x)|2 dx > λ2 − ε. (4.1.7)

The fact that for any Rj > 0, the embedding H1(R) →֒ L2([−Rj , Rj ]) is compact (see [3], page 21)
implies that H1(R) ×H1(R) →֒ L2([−Rj , Rj ]) × L2([−Rj , Rj ]) is also compact. It then follows that

∫ R1

−R1

|w∗(x)|2 dx = lim
m→∞

∫ R1

− R1

|w̃m(x)|2 dx (4.1.8)

∫ R2

−R2

|z∗(x)|2 dx = lim
m→∞

∫ R2

−R2

|z̃m(x)|2 dx. (4.1.9)

Using (4.1.8), (4.1.9) in (4.1.4) we then have that for any ε > 0

∫

R

|w∗(x)|2 dx > λ1 − ε,

∫

R

|z∗(x)|2 dx > λ2 − ε

and therefore ||w∗||2L2(R) = λ1, ||z∗||2L2(R) = λ2. This implies convergence of the L2(R) × L2(R) norm,

which together with weak convergence in L2(R)×L2(R) yields strong convergence of {(w̃m, z̃m)}m∈N in
L2(R) × L2(R).

Claim. ||(w̃m, z̃m) − (w∗, z∗)||H1(R)×H1(R) → 0.

In fact, using Lemma 3.1 and the fact that w̃m and w∗ are bounded in H1(R) we obtain

||w̃m − w∗||4L4(R) ≤ 2 ||w̃m − w∗||3L2(R) ||∂xw̃m − ∂xw
∗||L2(R) ≤ c ||w̃m − w∗||3L2(R)

and taking the limit we have that ||w̃m − w∗||4L4(R) −→ 0. In a similar way ||z̃m − z∗||4L4(R) −→ 0.

Applying the same argument to T (t)w̃m − T (t)w∗ we obtain T (t)w̃m −→ T (t)w∗ and hence

||T (t)w̃m||4L4([0, 1]×R) −→ ||T (t)w∗||4L4([0, 1]×R).

In a similar way we obtain that T (t)z̃m −→ T (t)z∗ and hence ||T (t)z̃m||4L4([0, 1]×R) → ||T (t)z∗||4L4([0, 1]×R).

Using (4.1.7), and the fact that the Sobolev norm || · ||H1(R)×H1(R) is weakly lower semi-continuous(See
[3], page 19), it follows that ||(w∗, z∗||H1(R)×H1(R) ≤ limm→∞ inf ||(w̃m, z̃m)||H1(R)×H1(R) Moreover, using
the convergence of the L2(R) × L2(R) norm of (w̃m, z̃m) to the L2(R) × L2(R) norm of (w∗, z∗) we con-
clude that P (w∗

x) ≤ inf limm→∞ P (∂xw̃m) and P (z∗x) ≤ inf limm→∞ P (∂xz̃m). Therefore 〈H〉(w∗, z∗) ≤
limm→∞〈H〉(w̃m, z̃m), which can only happen if 〈H〉(w∗, z∗) = limm→∞〈H〉(w̃m, z̃m). Since the negative
terms of 〈H〉 converge to their values at (w∗, z∗) we have that the L2(R × L2(R) norm of (∂xw̃m, ∂xz̃m)
converges to the L2(R×L2(R) of (w∗, z∗). Combining with the weak convergence, we have that (w̃m, z̃m)
converges to (w∗, z∗) strongly in H1(R) ×H1(R). �
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Proof of Lemma 4.1.4. Vanishing does not occur. We first consider the case where both sequences
{(wj}j∈N, {zj}j∈N vanish in the sense of Lemma 3.3. Then the nonpositive terms of 〈H〉 must vanish:
by Lemma 3.2

∫ 1

0

∫

R

|T (t)wj |4 dx dt ≤
∫ 1

0

(
C||T (t)||2H1(R) sup

φ∈R

∫ φ+1

φ−1

|T (t)wj |2dx
)
dt −→ 0

by the assumption that {wj}j∈N is vanishing, and Lemma 3.6. Similarly,

∫ 1

0

∫

R

|T (t)wj |2|T (t)wj |2 dx dt ≤
∫ 1

0

(∫

R

|T (t)wj |4 dx
∫

R

|T (t)wj |2 dx
) 1

2

dt −→ 0.

Thus P(λ1,λ2) ≥ 0, contradicting Lemma 4.1.1.

Consider the case where only {zj}j∈N is vanishing. Then nonpositive terms involving zj vanish by
the above and Pλ1,λ2 ≥ P 1

λ1
, since |∂xzm| ≥ 0. Using appropriate test functions for zm that vanish in the

sense of Lemma 3.3 we see that Pλ1,λ2 = P 1
λ1

. Let w satisfy 〈H1〉(w) = P 1
λ1

. But then setting z =
√

λ2√
λ1
w,

i.e. P (z) = λ2, we have 〈H〉(w, z) < P 1
λ1

= Pλ1,λ2 , a contradiction. The argument for the case where
only {wj}j∈N is vanishing is identical.

Splitting does not occur. Consider the scenario where at least one component of the minimizing se-
quence {(wn, zn)}n∈N splits. By (4.1.1), ||wn||H1(R), ||zn||H1(R) are bounded, ∀n ∈ N. We may assume
that the one that splits is {wn)}n∈N. Using the definitions of 〈H〉, 〈H1,z〉, 〈H1〉, and Lemma 4.4, we can
choose a subsequence {wm}m∈N, µ, m0, all independent of {zn)}n∈N, so that for m > m0 we have

〈H〉(wm, zm) = 〈H1,zm
〉(wm) + 〈H1〉(zm) ≥ Pλ1(zm) + µ+ 〈H1〉(zm) (4.1.10)

with µ > 0, independent of zn (µ will in general depend on {wn)}n∈N). Letting w̃m ∈ H1(R), P (w̃m) = λ1,
satisfy 〈H1,zm

〉(w̃m) = Pλ1(zm) we therefore have

〈H〉(wm, zm) ≥ 〈H1,zm
〉(w̃m) + µ+ 〈H1〉(zn) ≥ Pλ1,λ2 + µ, ∀m > m0, (4.1.11)

a contradiction with the assumption that {(wn, zn)}n∈N is a minimizing sequence. The argument for the
case where {zn)}n∈N is assumed to split is similar, use instead 〈H〉(wn, zn) = 〈H1,wn

〉(zn)+〈H1〉(wn). �

Proof of Lemma 4.1. We outline the steps.

1. Claim. Pλ(z) > −∞.

Let w, z ∈ H1(R), P (w) = λ. By Lemma 3.1

∫

R

|T (t)w|4dx dt ≤ 2||T (t)w||L2(R)||∂x(T (t)w)||L2(R) ≤ 2λ3/2||∂xw||L2(R), (4.1.12)

and
∫

R

|T (t)w|2|T (t)z|2dx dt ≤ ||T (t)w||2L4(R)|T (t)z|2L4(R) ≤ 2C(z)λ3/4||∂xw||1/2
L2(R), (4.1.13)

where C(z) is a function of ||z||H1(R). Therefore

P 1
λ(z) ≥ ||∂xw||2L2(R) − λ3/2||∂xw||L2(R) − 2βλ3/4C(z)||∂xw||1/2

L2(R) (4.1.14)

which is bounded below by a constant that depends on λ, and ||z||H1(R).

2. Claim. Pλ(z) < 0.
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Let w, z ∈ H1(R). Then 〈H1,z〉(w) ≤ 〈H1〉(w) ≤ Pλ. But Pλ < 0 by [32].

3. Claim. Let z ∈ H1(R). Let λ, θ > 0. Then Pθλ(z) < θPλ(z).

Let θ > 1, w ∈ H1(R). Then

〈H1,z〉(
√
θw) =

∫ 1

0

∫

R

[
θα |wx|2 −

1

2
θ2|T (t)w|4 − β θ|T (t)w|2 |T (t)z|2

]
dx dt (4.1.15)

= θ〈H1,z〉(w) + θ(1 − θ)

∫ 1

0

∫

R

|T (t)w|4dx dt. (4.1.16)

Let {wn}n∈N ∈ H1(R), P (wn) = λ, be a minimizing sequence for 〈H1,z〉. We check that
∫

R
|T (t)wn|4dx

is bounded away form zero: otherwise, by (4.1.13) both negative terms of 〈H1,z〉 vanish and we have
a contradiction with P 1

λ(z) < 0. Then (4.1.15) implies that there exists a k > 0 such that P 1
θλ(z) ≤

θP 1
λ(z) + k < θP 1

λ(z).

4. Claim. Let z ∈ H1(R). Then Pλ1+λ2(z) < Pλ1 (z) + Pλ2(z)

This follows immediately from 3, see [32] (the argument also appears in the proof of Lemma 4.3).

5. Claim: Let {wn}n∈N ∈ H1(R), P (wn) = λ, be a minimizing sequence for 〈H1,z〉. Then ||wn||H1(R) ≤
M , ∀n ∈ N. The constant M is a function of λ, and ||z||H1(R).

This follows immediately from (4.1.14).

6. By Claim 5 the minimizing sequence satisfies the hypothesis of Lemma 3.3. We eliminate the vanishing
scenario by combining Lemmas 3.2, 3.6 to show that if {wn}n∈N vanishes in the sense of Lemma 3.3 then
the negative terms of 〈H1,z〉 vanish and we contradict the fact that P 1

λ (z) < 0.

7. We consider the splitting scenario: ∀ǫ > 0 there exist an m0 > 0 , and a subsequence {wm}m∈N

such that m > m0 implies that wm = w′
m + w′′

m + hm, with w′
m, w′′

m as in Lemma 3.3. We then have

〈H1,z〉(wm) = 〈H1,z〉(w′
m) + 〈H1,z〉(w′′

m) +Rm, (4.1.17)

where Rm = R1
m +R2

m +R2
m, and

R1
m =

∫ 1

0

∫

R

(2αRe[(∂xw
′
m)∗∂xw

′′
m] − 2(Re[(T (t)w′

m)∗(T (t)w′′
m)])2 − |T (t)w′

m|2|T (t)w′′
m|2

−(|T (t)w′
m|2 + |T (t)w′′

m|2 + 2β|T (t)z|2)Re[(T (t)w′
m)∗(T (t)w′′

m)]) dx dt, (4.1.18)

R2
m =

∫ 1

0

∫

R

(2αRe[(∂xwm)∗∂xhm]) dx dt, (4.1.19)

R3
m =

∫ 1

0

∫

R

(−2(Re[(T (t)w′
m)∗(T (t)hm)])2 − 2(Re[(T (t)w′′

m)∗(T (t)hm)])2) dx dt

∫ 1

0

∫

R

(−(|T (t)w′
m|2 + |T (t)w′′

m|2)|T (t)hm|2 − 1

2
|T (t)hm|4) dx dt

∫ 1

0

∫

R

(−(|T (t)w′
m|2 + |T (t)w′′

m|2)Re[(T (t)(w′
m + w′′

m))∗(T (t)hm)]) dx dt

∫ 1

0

∫

R

(−(Re[(T (t)w′
m)∗(T (t)w′′

m)] + Re[(T (t)(w′
m + w′′

m))∗T (t)hm])|T (t)hm|2) dx dt
∫ 1

0

∫

R

(−β|T (t)z|2||T (t)hm|2 − 2β(Re[(T (t)(w′
m + w′′

m))∗T (t)hm])|T (t)z|2) dx dt. (4.1.20)
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To estimate R1
m we first observe that (∂xw

′
m)∗∂xw

′′
m vanishes by Lemma 3.3. The remaining terms

involve products of T (t)w′
m, and T (t)w′′

m and are bounded using Lemma 3.7 (as in (4.1.5)). Estimating
the other terms in a similar way we find R1

m ≤ C1ǫ
1/2 (assuming ǫ ≤ 1), where C1 depends on ||z||H1(R),

and ||wm||H1(R).

R3
m contains terms proportional to T (t)hm or its modulus. These can be estimated using Lemma 3.1

and the fact that, by Lemma 3.3, ||hm||L2(R) ≤ ǫ, and ||∂xhm||L2(R) ≤ 5||wm||H1(R). For instance, on line
3 of (4.1.20), by Lemmas 3.1, 3.3,

∫

R

||T (t)w′
m|2 + |T (t)w′′

m|2||Re[(T (t)(w′
m + w′′

m))∗(T (t)hm)]| dx

≤ 4(||T (t)w′
m|2|L∞(R) + ||T (t)w′′

m|2|L∞(R))

∫

R

|T (t)(w′
m + w′′

m)||T (t)hm| dx

≤ c3||T (t)hm||L2(R) ≤ c3 ǫ, ∀t ∈ [0, 1], (4.1.21)

where c3 depends on ||wm||H1(R). Other terms are estimated similarly, and we see that R1
m ≤ C3ǫ (as-

suming ǫ ≤ 1), where C3 depends on ||z||H1(R), and ||wm||H1(R).

The integrand in R2
m is proportional to ∂xhm. This is not necessarily small, however it can be

written as small plus nonegative: using Remark 3.3.1 we may write hm = (1 − ρm + ϑm)um, where
ρm(x) = ρ(x− xm), ϑm(x) = ϑ(x− xm). Then

R2
m =

∫ 1

0

∫

R

(−Re[(∂xwm)∗(∂xρm + ∂xϑm)um]) dx dt +

∫ 1

0

∫

R

(1 − ρm + ϑm)|∂xum|2) dx dt. (4.1.22)

Using the bounds on ∂xρm, ∂xϑm from Remark 3.3.1, the first integral, denoted by R̃2
m, is estimated as

|R̃2
m| ≤

∫

R

|Re[(∂xwm)∗(∂xρm + ∂xϑm)um]| dx

≤ ||∂xum||L2(R)||(∂xρm + ∂xϑm)um||L2(R)

≤ ||∂xum||L2(R)||∂xρm + ∂xϑm)||L∞(R)||um||L2(R) ≤ C̃2ǫ, . (4.1.23)

with C̃2 depending on ||wm||H1(R). The second integral in (4.1.22) is nonegative.

Also, by Lemma 3.3, P (w′
m) = λ1 + β′

m, P (w′′
m) = λ2 + β′′

m, with λ1 + λ2 = λ, |β′
m|, |β′′

m| < ǫ. Letting

w̃′
m =

√
λ1√

λ1 + β′
m

w′
m, w̃′′

m =

√
λ2√

λ2 + β′′
m

w′′
m, (4.1.24)

r′m = 〈H1,z〉(w′
m) − 〈H1,z〉(w̃′

m), r′′m = 〈H1,z〉(w′′
m) − 〈H1,z〉(w̃′′

m) (4.1.25)

we easily check that |r′m|, |r′′m| ≤ Cǫ, with C depending on ||z||H1(R), ||wm||H1(R).

Collecting the above we have

〈H1,z〉(wm) ≥ 〈H1,z〉(w̃′
m) + 〈H1,z〉(w̃′′

m) + R̃m, with (4.1.26)

R̃m = R1
m + R̃2

m +R3
m + r′m + r′′m, |R̃m| ≤ C̃ǫ1/2, (4.1.27)

where using also the boundedness of ||wm||H1(R) (Claim 6), C̃ depends on λ, and ||z||H1(R). Taking ǫ
sufficiently small and using strict subadditivity (Claim 5), (4.1.26), (4.1.27) imply 〈H1,z〉(wm) > Pλ(z),
a contradiction.
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8. Once the vanishing and splitting scenarios are eliminated strong convergence in H1(R) up to transla-
tions follows as in [32]. �

Proof of Lemma 4.4. By the splitting assumption we have that ∀ǫ > 0 there exist an m̃ > 0 , and
a subsequence {wm}m∈N such that m > m̃ implies that wm = w′

m +w′′
m +hm, with w′

m, w′′
m as in Lemma

3.3. Then 〈H1,z〉(wm) ≥ 〈H1,z〉(w′
m) + 〈H1,z〉(w′′

m) + R̃m, with R̃m as in (4.1.27). Bounding R̃m as in

Lemma 4.1 we additionally check that R̃m ≤ C̃ǫ1/2, where C̃ only depends only on M1, M2. By Lemma
4.3 we then have

〈H1,z〉(wm) ≥ P 1
λ(z) + θ(1 − θ)K + R̃m,

with K independent of z. By Lemmas 3.3, 4.3 θ is determined by the sequence {wj}j∈N. The statement
follows by setting µ = 1

2θ(1 − θ)K, and choosing ǫ (sufficiently small) and a corresponding subsequence
of {wj}j∈N. �

We add some remarks on the stability of standing wave solutions. Let M(λ1,λ2) by the set of (u, v)
that minimize 〈H〉 over (w, z) ∈ H1(R) × H1(R), with P (w) = λ1, P (z) = λ2. Let (τa,yφ)(x) =
eiaφ(x − y), a, y ∈ R, and for U ∈ H1(R) × H1(R). Also let τ(U) be the set of all (τa1,yu1, τa2,yu2),
with a1, a2, y ∈ R, u1, u2 ∈ H1(R). Note that U ∈ M(λ1,λ2) implies that τ(U) ∈ M(λ1,λ2). For
(x1, x2) ∈ H1(R)×H1(R), U ⊂ H1(R)×H1(R) we say that x is ǫ−close to U is there exists (y1, y2) ∈ U
such that ||x1 − y1||H1(R + ||x2 − y2||H1(R < ǫ.

A solution of the form (1.8) of (1.6), (1.7) is orbitally stable if ∀ǫ > 0 there exists a neighborhood
Uǫ of (φ, ψ) ∈ H1(R) × H1(R) so that any (w(t), z(t)) satisfying (1.6), (1.7) with initial condition
(w(0), z(0)) ∈ Uǫ, remains ǫ−close to τ((φ, ψ)), ∀t ∈ R.

Proposition 4.1.6 Let x = (ϕ, ψ) ∈Mλ1,λ2 , and assume that τ(x) = M(λ1,λ2). Then the corresponding
standing wave solution of (1.6), (1.7) is orbitally stable.

Proof. The statement follows from the continuity of the solutions (w(t), z(t)) of (2.14), (2.15), the
conservation of 〈H〉, P1, P2, see Remark 2.1, and the argument of Ohta, see [22], p. 937. �

Since the validity of assumption τ(x) = M(λ1,λ2) is not known, Theorem 1.1 only implies a weaker
stability statement below, using essentially the argument of [22], p. 937 (we omit the proof). In partic-
ular, given x ∈ M(λ1,λ2), let x ∈ M(λ1,λ2),c(x) be the set of y ∈ M(λ1,λ2) that can be connected to x by
a continuous path γ : [0, 1] → H1(R) ×H1(R) satisfying P1(γ(t)) = λ1, P2(γ(t)) = λ2, ∀t ∈ [0, 1]. Note
that τ(x) ⊂M(λ1,λ2),c(x). Then we have the following.

Proposition 4.1.7 Let x = (ϕ, ψ) ∈ M(λ1,λ2). Then ∀ǫ > 0 there exists a neighborhood Uδ of
x ∈ H1(R)×H1(R) such that any (u(t), v(t)) satisfying (1.6), (1.7) with initial condition (u(0), v(0)) ∈ Uǫ

remains ǫ−close to M(λ1,λ2),c(x), ∀t ∈ R.

4.2 Nonpositive average dispersion

In the case α = 0 we can use Strichartz-type estimates to bound the Hamiltonian from below in
L2(R) × L2(R). However, we do not have an H1 bound of minimizing sequences (i.e. as in Remark
4.1.5) and we may have loss of compactness due to loss of control of derivatives. For the single NLS
equation this problem was analyzed successfully in [15], where it was shown that vanishing and splitting
of the minimizing sequence is not possible in neither Fourier nor physical space and that we are back to
the classical situation where Sobolev’s embedding theorem can be applied. Similar ideas seem to apply
for the system as well, however the arguments are more lengthy and technical and we will not pursue
this case here.

For the case α < 0, the minimization problem can not have a globally minimizing ground state solu-
tion since Pλ = −∞. We show that any critical points that may exist can not be local minima.
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Theorem 4.3.1. Let (w, z) be a critical point of the constrained averaged variational principle (4.5)
with negative average dispersion. Then, for any ε > 0, there exists (φ, ψ) ∈ H1(R) ×H1(R), such that
||φ||2L2(R) = λ1, ||ψ||2L2(R) = λ2, ||w − φ||H1(R) < ε, ||z − ψ||H1(R) < ε and 〈H〉(w, z) > 〈H〉(φ, ψ).

Proof. If (w, z) is a critical point of the constrained averaged principle (4.5) with α < 0 then by
Lemma 3.1, (w, z) ∈ H1(R) ×H1(R), otherwise 〈H〉 would be unbounded.

On the other hand, we perturb (w, z) with an arbitrary small high frequency radiation at the tails,
which will produce a smaller change in H1(R) ×H1(R) but yet an even small change in L2(R) × L2(R)
and L4([0, 1] : L4(R)) × L4([0, 1] : L4(R)). Let ρ ∈ D(R) with supp ρ ⊆ [− 1

2 ,
1
2 ], 0 ≤ ρ ≤ 1 and an > 0

is specifically large and will be chosen later. We define φn = 1
n2 e

in(x−an)ρan
(x) with ρan

(x) = ρ(x− an).
Then φn ∈ D(R), suppφn ⊆ supp ρan

(x) ⊆
[
an − 1

2 , an + 1
2

]
. Let wn = w + φn and zn = z + φn. Using

that |wn|2 = wn · wn = (w + φn)(w + φn) = |w|2 + |φn|2 + 2Re (wφn) we have the following estimates

||wn||2L2(R) = ||w||2L2(R) + ||φn||2L2(R) + 2Re

∫

R

w φn dx

≈ ||w||2L2(R) + O
(

1

n4

)
+ O

(
1

n2+qn

)

≈ λ1 + ϕ(n) (4.2.1)

where ϕ(n) ≈ O
(

1
n4

)
, |w| < 1/nqn for x ∈ supp ρan

.

||∂xwn||2L2(R) = ||wx||2L2(R) + ||∂xφn||2L2(R) + 2Re

∫

R

∂xw ∂xφn dx

≤ ||wx||2L2(R) +
cρ
n2

− 2Re

∫

R

w ∂xxφn dx

≈ ||wx||2L2(R) +
cρ
n2

+ O
(

1

nqn

)
(4.2.2)

since ∂xφn = ei n (x−an)

n2 (i n ρan
(x) + ∂xρan

(x)) . Moreover,

||Twn||4L4([0, 1]: L4(R)) = ||Tw||4L4([0, 1]: L4(R)) +R

where

|R| ≤ ||Tφn||4L4([0, 1]: L4(R)) + 4

∫ 1

0

∫

R

|Tw|3 |Tφn| dx dt

+ 6

∫ 1

0

∫

R

|Tw|2 |Tφn|2 dx dt+ 4

∫ 1

0

∫

R

|Tw| |Tφn|3 dx dt.

We estimate these integrals using Lemma 3.6 and they turn out to be small. In a similar way we obtain the
same estimates for zn. From (4.2.1), by scaling the sequences with

√
λj + ϕ(n), we obtain new sequences

w′
n and z′n respectively satisfying the constraint ||w′

n||2L2(R) = λ1, ||z′n||2L2(R) = λ2, and satisfying the

following 〈H〉(w′
n, z

′
n) < 〈H〉(w, z) with ||w′

n − w||H1(R) → 0 and ||z′n − z||H1(R) → 0 as n→ ∞. �

5 Standing waves with prescribed frequencies

In this section we find solutions of the nonlinear eigenvalue problem (4.2), (4.3) with ω1, ω2 > 0. It will
be assumed that α > 0.
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Consider the C1 functional H : H1(R) ×H1(R) −→ R, H ∈ C1 defined by

H(ϕ, ψ) =

∫

R

(ω1 |ϕ|2 + ω2 |ψ|2 + α |ϕx|2 + α |ψx|2 ) dx

−
∫ 1

0

∫

R

[
1

2
|T (t)ϕ|4 +

1

2
|T (t)ψ|4 + β |T (t)ϕ|2 |T (t)ψ|2

]
dx dt, (5.1)

for (ϕ, ψ) ∈ H1(R) × H1(R). Calculating the Fréchet derivative of H we see that critical points of H

must satisfy (4.2), (4.3).

We will find critical points of H by applying the Mountain Pass Lemma.

Consider the norm H

||(ϕ, ψ)||2H =

∫

R

(ω1 |ϕ|2 + ω2 |ψ|2 + α |ϕx|2 + α |ψx|2 ) dx (5.2)

for (ϕ, ψ) ∈ H1(R, R
2).

Let E = H1(R, R
2), and U = Bρ(0). Let

||(ϕ, ψ)||E = ||(ϕ, ψ)||H1(R) =

∫

R

( |ϕ|2 + |ψ|2 + |ϕx|2 + |ψx|2 ) dx. (5.3)

Note that the norms || · ||H and || · ||E are equivalent. Also note that

H(ϕ, ψ) = ||(ϕ, ψ)||2
H
−
∫ 1

0

∫

R

[
1

2
|T (t)ϕ|4 +

1

2
|T (t)ψ|4 + β |T (t)ϕ|2 |T (t)ψ|2

]
dx dt. (5.4)

Proof Of Theorem 1.2. We have

β

∫ 1

0

∫

R

|T (t)ϕ|2|T (t)ψ|2dx dt ≤ β

2

∫ 1

0

(
||T (t)ϕ||4L4(R) + ||T (t)ψ||4L4(R)

)
dt.

Then

−
∫ 1

0

∫

R

[
1

2
|T (t)ϕ|4 +

1

2
|T (t)ψ|4 + β |T (t)ϕ|2 |T (t)ψ|2

]
dx dt

≥ − (β + 1)

2

∫ 1

0

(
||T (t)ϕ||4L4(R) + ||T (t)ψ||4L4(R)

)
dt.

Using Lemma 3.1

−
∫ 1

0

∫

R

[
1

2
|T (t)ϕ|4 +

1

2
|T (t)ψ|4 + β |T (t)ϕ|2 |T (t)ψ|2

]
dx dt ≥ − (β + 1) ||(ϕ, ψ)||3E .

Then in (5.4) we have

H(ϕ, ψ) ≥ ||(ϕ, ψ)||2H − (β + 1) ||(ϕ, ψ)||3E . (5.5)

By the equivalence of the norms || · ||E , || · ||H

H(ϕ, ψ) ≥ 1

c2
||(ϕ, ψ)||2E − (β + 1) ||(ϕ, ψ)||3E =

1

c2
||(ϕ, ψ)||2E (1 − c2 (β + 1) ||(ϕ, ψ)||E) .

Let ||(ϕ, ψ)||E = ρ and c = c2 (β + 1), then the graph ρ2

c (1 − c ρ) is strictly positive for ρ ∈
(
0, 1

c

)
(
1 − c ρ > 0 ⇐⇒ ρ < 1

c

)
. Take ρ = 2

3 c . Hence, for (ϕ, ψ) ∈ ∂Bρ, i. e., ||(ϕ, ψ)||E = ρ, we have

H(ϕ, ψ) ≥ 1

c

(
2

3 c

)2 (
1 − c

2

3 c

)
=

4

27 c3
= a > 0.
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Moreover, H(0, 0) = 0. Hence, the functional H has a strict local minimum at 0 in the function space
E = H1(R, R

2).

Claim. We have

H(θ ϕ0, θ ψ0) −→ −∞ as θ −→ +∞. (5.6)

In fact,

H(θ ϕ0, θ ψ0) = ||(θ ϕ0, θ ψ0)||2H −
∫ 1

0

∫

R

[
1

2
θ4 |T (t)ϕ0|4 +

1

2
θ4 |T (t)ψ0|4 + β θ4 |T (t)ϕ0|2 |T (t)ψ0|2

]
dx dt

= θ2 ||(ϕ0, ψ0)||2H − θ4
∫ 1

0

∫

R

[
1

2
|T (t)ϕ0|4 +

1

2
|T (t)ψ0|4 + β |T (t)ϕ0|2 |T (t)ψ0|2

]
dx dt.

Then

H(θ ϕ0, θ ψ0)

θ2
= ||(ϕ0, ψ0)||2H − θ2

∫ 1

0

∫

R

[
1

2
|T (t)ϕ0|4 +

1

2
|T (t)ψ0|4 + β |T (t)ϕ0|2 |T (t)ψ0|2

]
dx dt. (5.7)

Choose (ϕ0, ψ0) ∈ E fixed, we obtain in (5.7)

lim
θ→+∞

H(θ ϕ0, θ ψ0)

θ2
= −∞.

The claim follows.

Therefore, H(ϕ, ψ) satisfies the conditions of the Mountain Pass Lemma. Hence, applying the Mountain
Pass Lemma we obtain a subsequence {(ϕj , ψj)}j∈N in H1(R) ×H1(R) with the following properties:

H(ϕj , ψj) −→ c and ||H′(ϕj , ψj)|| −→ 0 as j −→ +∞ (5.8)

where c is a positive constant.

Claim. Any sequence {(ϕj , ψj)}j∈N in H1(R) ×H1(R) satisfying (5.8) must be bounded.

In fact, suppose that {(ϕj , ψj)}j∈N satisfies (5.8), but ||(ϕj , ψj)|| −→ ∞ as j → ∞ where || · || can
be either || · ||H or || · ||H1(R)×H1(R). It follows that

H(ϕj , ψj)

||(ϕj , ψj)||2
−→ 0 as n→ ∞ (5.9)

and also

H
′(ϕj , ψj) · (ϕj , ψj)

||(ϕj , ψj)||2
−→ 0 as n→ ∞. (5.10)

On the other hand

H(ϕj , ψj) =

∫

R

(ω1 |ϕj |2 + ω2 |ψj |2 + α |ϕjx
|2 + α |ψjx

|2 ) dx

− 1

2

∫ 1

0

∫

R

[
|T (t)ϕj |4 + |T (t)ψj|4 + 2 β |T (t)ϕj |2 |T (t)ψj |2

]
dx dt,

for (ϕj , ψj) ∈ H1(R) ×H1(R), and

H
′(ϕj , ψj) · (ϕj , ψj) = 2

∫

R

(ω1 |ϕj |2 + ω2 |ψj |2 + α |ϕjx
|2 + α |ψjx

|2 ) dx

− 2

∫ 1

0

∫

R

[
|T (t)ϕj |4 + |T (t)ψj |4 + 2 β |T (t)ϕj |2 |T (t)ψj |2

]
dx dt
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for (ϕj , ψj) ∈ H1(R) ×H1(R).

Moreover,

2 H(ϕj , ψj) − H
′(ϕj , ψj) · (ϕj , ψj) =

∫ 1

0

∫

R

[
|T (t)ϕj |4 + |T (t)ψj |4 + 2 β |T (t)ϕj |2 |T (t)ψj |2

]
dx dt.

Using (5.9) and (5.10) we have

0 = lim
j→∞

∫ 1

0

∫
R

[
|T (t)ϕj |4 + |T (t)ψj |4 + 2 β |T (t)ϕj |2 |T (t)ψj |2

]
dx dt

||(ϕj , ψj)||2
.

Moreover

H
′(ϕj , ψj) · (ϕj , ψj) = 2 ||(ϕj , ψj)||2H − 2

∫ 1

0

∫

R

[
|T (t)ϕj |4 + |T (t)ψj |4 + 2 β |T (t)ϕj |2 |T (t)ψj |2

]
dx dt.

Dividing by ||(ϕj , ψj)||2 and letting j → ∞ gives 0 = 2 − 0 = 2, which is a contradiction. Thus
{(ϕj , ψj)}j∈N must be bounded. The claim follows.

Thus, there exists a subsequence, still denoted by {(ϕj , ψj)}j∈N such that

ϕj ⇀ ϕ weakly on H1(R)

ψj ⇀ ψ weakly on H1(R).

Claim. (ϕ, ψ) is nontrivial.

In fact, since ||H′(ϕj , ψj)|| −→ 0 and {(ϕj , ψj)} is bounded, then H
′(ϕj , ψj) · (ϕj , ψj) −→ 0. Hence,

2 H(ϕj, ψj) − H
′(ϕj , ψj) · (ϕj , ψj)

=

∫ 1

0

∫

R

[ |T (t)ϕj |4 + |T (t)ψj |4 + 2 β |T (t)ϕj|2|T (t)ψj |2 ] dx dt −→ 0.

Using the Palais-Smale condition we have that the sequence cannot be vanishing.

Indeed,

c

2
<

∫

R

[ |T (t)ϕj |4 + |T (t)ψj |4 + 2 β |T (t)ϕj |2|T (t)ψj |2 ] dx dt

≤ (β + 1)

∫

R

[ |T (t)ϕj |4 + |T (t)ψj |4 ] dx dt

< (β + 1)
(
||T (tj)ϕj ||2L∞(R) ||ϕj ||2L2(R) + ||T (tj)ϕj ||2L∞(R) ||ϕj ||2L2(R)

)

for some tj ∈ [0, 1] given that j is sufficiently large and therefore

||T (tj)ϕj ||L∞(R) >
c1
2
> 0 and ||T (tj)ψj ||L∞(R) >

c1
2
> 0.

Therefore, by rearranging the sequence (ϕj , ψj) so that the maxima are assumed at x = 0, we obtain
that the weak limit (ϕ, ψ) is nontrivial.

Finally, we show that H
′(ϕ, ψ) · (u, v) = 0 for any (u, v) ∈ H1(R) ×H1(R).
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In fact, we show that the expression

H
′(ϕ, ψ) · (u, v) − H

′(ϕn, ψn) · (u, v)

=

∫

R

[ω1 · 2Re((ϕ− ϕn)u) + ω2 · 2Re((ψ − ψn)v) + α · 2Re((ϕ− ϕn)x ux) + α · 2Re((ψ − ψn)x vx)] dx

− 2

∫ 1

0

∫

R

[
|T (t)ϕ|2 · Re(T (t)ϕ · T (t)u) − |T (t)ϕn|2 ·Re(T (t)ϕn · T (t)u)

]
dx dt

− 2

∫ 1

0

∫

R

[
|T (t)ψ|2 ·Re(T (t)ψ · T (t)v) − |T (t)ψn|2 ·Re(T (t)ψn · T (t)v)

]
dx dt

− 2 β

∫ 1

0

∫

R

[
|T (t)ϕ|2 · Re(T (t)ψ · T (t)v) − |T (t)ϕn|2 · Re(T (t)ψn · T (t)v)

]
dx dt

− 2 β

∫ 1

0

∫

R

[
|T (t)ψ|2 ·Re(T (t)ϕ · T (t)u) − |T (t)ψn|2 ·Re(T (t)ϕn · T (t)u)

]
dx dt (5.11)

converges to zero as n → ∞. The first integral on the right-hand side in (5.11) tends to zero, because
ϕ− ϕn ⇀ 0 and ψ − ψn ⇀ 0 in H1(R) respectively. The other integrals are estimated as follows.

Claim. We have

|T (t)ϕ|2 · Re(T (t)ϕT (t)u) − |T (t)ϕn|2 · Re(T (t)ϕn T (t)u)

≤ |T (t)u| |T (t)(ϕ− ϕn)|
[
|T (t)ϕ|2 + ( |T (t)ϕ| + |T (t)ϕn| ) |T (t)ϕn|

]
. (5.12)

In fact,

|T (t)ϕ|2 ·Re(T (t)ϕT (t)u) − |T (t)ϕn|2 · Re(T (t)ϕn T (t)u)

= |T (t)ϕ|2 · Re(T (t)(ϕ− ϕn)T (t)u+ T (t)ϕn T (t)u) − |T (t)ϕn|2 · Re(T (t)ϕn T (t)u)

= |T (t)ϕ|2 (Re(T (t)(ϕ− ϕn)T (t)u+Re(T (t)ϕn T (t)u)) − |T (t)ϕn|2 · Re(T (t)ϕn T (t)u)

= |T (t)ϕ|2Re(T (t)(ϕ− ϕn)T (t)u) +Re((|T (t)ϕ|2 − |T (t)ϕn|2)T (t)ϕn T (t)u)

= |T (t)ϕ|2Re(T (t)(ϕ− ϕn)T (t)u) +Re((|T (t)ϕ| − |T (t)ϕn|) (|T (t)ϕ| + |T (t)ϕn|)T (t)ϕn T (t)u)

≤ |T (t)ϕ|2 |T (t)(ϕ− ϕn)| |T (t)u| + | |T (t)ϕ| − |T (t)ϕn| | (|T (t)ϕ| + |T (t)ϕn|) |T (t)ϕn| |T (t)u|
≤ |T (t)ϕ|2 |T (t)(ϕ− ϕn)| |T (t)u| + |T (t)ϕ− T (t)ϕn | (|T (t)ϕ| + |T (t)ϕn|) |T (t)ϕn| |T (t)u|
= |T (t)ϕ|2 |T (t)(ϕ− ϕn)| |T (t)u| + |T (t)(ϕ− ϕn)| (|T (t)ϕ| + |T (t)ϕn|) |T (t)ϕn| |T (t)u|
= |T (t)u| |T (t)(ϕ− ϕn)|

(
|T (t)ϕ|2 + (|T (t)ϕ| + |T (t)ϕn|) |T (t)ϕn|

)
.

In a similar way we obtain

|T (t)ϕ|2 ·Re(T (t)ψ · T (t)v) − |T (t)ϕn|2 ·Re(T (t)ψn · T (t)v)

≤ |T (t)v| |T (t)ϕ|2 |T (t)(ψ − ψn)| + |T (t)v| |T (t)ψ| |T (t)(ϕ− ϕn)| ( |T (t)ϕ| + |T (t)ϕn| ). (5.13)

Hence in (5.11) we have

H
′(ϕ, ψ) · (u, v) − H

′(ϕn, ψn) · (u, v)

≤ 2

∫ 1

0

∫

R

[
|T (t)u| |T (t)(ϕ− ϕn)|

(
|T (t)ϕ|2 + ( |T (t)ϕ| + |T (t)ϕn| ) |T (t)ϕn|

) ]
dx dt (5.14)

−2

∫ 1

0

∫

R

[
|T (t)v| |T (t)(ψ − ψn)|

(
|T (t)ψ|2 + ( |T (t)ψ| + |T (t)ψn| ) |T (t)ψn|

) ]
dx dt

−2 β

∫ 1

0

∫

R

[
|T (t)v| |T (t)ϕ|2 |T (t)(ψ − ψn)| + |T (t)v| |T (t)ψ| |T (t)(ϕ− ϕn)| ( |T (t)ϕ| + |T (t)ϕn| )

]
dx dt

−2 β

∫ 1

0

∫

R

[
|T (t)u| |T (t)ψ|2 |T (t)(ϕ− ϕn)| + |T (t)v| |T (t)ϕ| |T (t)(ψ − ψn)| ( |T (t)ψ| + |T (t)ψn| )

]
dx dt.

22



We estimate the first integral on the right-hand side in (5.14). We take a sufficiently large interval
K = [−R, R], so that |u(x)| < ε (respectively |v(x)| < ε), for all x ∈ K. Thus, using Lemma 3.6 and the
boundedness of ϕ, ϕn (respectively ψ, ψn) in H1(R) we obtain the bound

∣∣∣∣∣

∫ 1

0

∫

R\K

[
|T (t)u| |T (t)(ϕ− ϕn)|

(
|T (t)ϕ|2 + ( |T (t)ϕ| + |T (t)ϕn| ) |T (t)ϕn|

) ]
dx dt

∣∣∣∣∣ ≤ c ε

that is uniform in time. To estimate on the remaining interval K = [−R, R], using H1([−R, R])
c→֒

C0([−R, R]) we have that the sequences converges strongly ϕn → ϕ for x ∈ K (respectively ψn → ψ for
x ∈ K). Therefore, we can show that

sup
x∈K, t∈[0, 1]

|T (t)(ϕ− ϕn)| < ε

(
respectively, sup

x∈K, t∈[0, 1]

|T (t)(ψ − ψn)| < ε

)

provided n is sufficiently large.

In fact, we take a large set Kε = [R− 1/ε, R+ 1/ε], then choosing n so large that

sup
x∈Kε

|ϕ− ϕn| < ε,

(
respectively, sup

x∈Kε

|ψ − ψn| < ε

)

we can apply Theorem 3.1 to show the localization does not occur.

Now, we can estimate the integral on the remaining interval
∫

K

[
|T (t)u| |T (t)(ϕ− ϕn)|

(
|T (t)ϕ|2 + ( |T (t)ϕ| + |T (t)ϕn| ) |T (t)ϕn|

) ]
dx ≤ C sup

x∈K
|T (ϕ− ϕn)|

≤ C ε,

where C does not depend on n. The other terms in (5.14) are estimated in a similar way. �
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