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Diagrams in classical and semiclassical perturbation
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We describe a diagrammatic method for the Poincare—Birkhoff normal forms al-
gorithm of classical mechanics, and indicate the use of the diagrams with an ex-
ample from hydrodynamics. We also present a generalization of the diagrammatic
method to quantum mechanics. The quantum diagrams can be used in the semi-
classical version of normal forms developed by Graffi, Paul, and others. © 7998
American Institute of Physics. [S0022-2488(98)02503-1]

I. INTRODUCTION

The dynamics of a Hamiltonian system near an elliptic fixed point is one of the basic problems
of classical physics, arising in the stability of motion in mechanics, in weakly nonlinear waves in
fluids, plasmas, and other media, and in many other situations. A powerful tool to analyze such
dynamical systems is the Poincare—Birkhoff normal forms method of eliminating nonresonant
terms in the Hamiltonian via canonical transformations (see, e.g., Ref. 1). Normal forms also
appear in generalizations of the Bohr—Sommerfeld quantization condition to near-integrable sys-
tems. A recent approach to this question, developed by in Refs. 2—4 and others, led to a theory of
semi-classical Poincare—Birkhoff normal forms that can be applied to many problems of quantum
perturbation theory.

In most recent applications of classical normal forms, canonical transformations are con-
structed by the so-called Lie series method (see, e.g., Refs. 5-7). An analog of the Lie series is
also used in semiclassical normal forms to construct unitary transformations (see, e.g., Refs. 3 and
8). A computational issue in using Lie series and its semiclassical analog is the efficient evaluation
of repeated Poisson brackets (see, e.g., Ref. 9). In this note we point out that these operations have
an elementary diagrammatic interpretation and that using the diagrams speeds up the calculations
significantly. We indicate the use of the diagrams with an example of a normal form for an
infinite-dimensional Hamiltonian system arising in hydrodynamics. We also show that diagrams
and the.operations between them have a natural ‘‘quantization,”” and that in the #—0 limit we
obtain the classical diagrams. Quantum diagrams can be applied to semi-classical normal forms
calculations, very much along the lines of the classical case.

Il. CLASSICAL DIAGRAMS

The classical diagrammatic method consists of a correspondence between diagrams and func-
tions on the phase space M, and a rule for assigning a new graph to the Poisson bracket of two
graphs.

The classical phase space M will be R?>¢ with the canonical symplectic structure and corre-
sponding Poisson bracket. Given a harmonic oscillator Hamiltonian with frequencies w
=[w,,...,w,] we define the complex variables a;,a} by

P I i
—%), af=3(n\/a-q,-—£%). (2.1)

The map a(q,p) embeds M canonically to C*? with the Poisson bracket J given by
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We may also consider infinite-dimensional analogs of the above phase space, e.g., with the index
i running over Z". What follows applies to the infinite-dimensional case as well. Observables will
be assumed to be real analytic (i.e., polynomials in a; .a_;“ for the purposes of formal calculations),
vanishing at the origin. We now describe the diagrammatic rules.

(1) The set of graphs will be the set D of simply connected directed trees with indices at each
leg (branch). (Legs will meet at vertices.) Legs connecting two vertices will be referred to as
internal legs, while legs with a free end will be referred to as external legs. The one-vertex trees
obtained by cutting the internal legs of a multi-vertex tree 7 will be called the one-vertex subtrees
of ¢. External legs will carry one index. Internal legs will carry two indices, one for each vertex
being connected, so that the one-vertex subtrees will be in D.

(2) To describe the correspondence between trees and polynomials, we start with one-vertex
trees. We assign to each homogeneous polynomial term

2 le._.x Aok axl axraJ\l ay

n " m
Kl""'xn'Ll ..... km

a vertex with n +m legs (branches), one leg corresponding to each of the a and ay¥ . Oneach leg
there will be an arrow, pointing into the vertex for legs representing the ay¥ and outwards from the
vertex for legs representing the a, . Also, each leg will carry the index of the a, or afj it

represents. The dots in the vertices represent the coefficients @ , A np» €tc., and the summation
over the indices. The dots in the vertices should be represented by different symbols, e.g., boxes,
triangles letters, so that we can distinguish between graphs with the same number of in-going and
out-going legs but different coefficients.

(3) A multi-vertex tree represents a homogeneous polynomial in the variables indexed by the
external legs of the tree. The out-going and in-going arrows represent the a,, and afj, respec-

tively. The coefficient of this polynomial will be the product of the coefficients of all the one-
vertex subtrees of the multi-vertex tree, summed over all the indices appearing in external legs and
contracted over the pairs of indices representing legs that connect vertices. Also, the polynomial
represented by multi-vertex tree may be alternatively represented by a one-vertex tree with an
appropriate coefficient.

Proposition 2.1: With the above conventions, the Poisson bracket {f.g} of two trees f,g
e D is the sum of the graphs obtained by joining an out-going arrow of f to an in-going arrow of
g and the trees obtained by joining an in-going arrow of f to an out-going arrow of g. The trees
obtained this way will also have signs: (—i) for trees obtained by joining an out-going arrow of
f to an in-going arrow of g, and (+1i) for trees formed by joining an in-going arrow of f to an
out-going arrow of g.

Proof: Let

— o oL.g®
F= 2 I‘.l___.. ac"raca a,
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and F' same as F with the I, n, and m primed. Using the bilinearity and the derivation property
of the bracket we have
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with f. =a. if a<n, fe,=af otherwise, and similarly for fcﬂ. From {a,.,af}=—id,,

a..a\}=1{a* ,a¥}=0, and the correspondence between trees and polynomials we obtain the rule.
PELON PRI p poly
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FIG. 1. The quartic water wave Hamiltonian.

The rules are essentially the same if we use the variables (¢,,p,) or the well-known action-
angle variables. Also, the diagrammatic notation can be compressed by considering diagrams
without arrows or indices. One can calculate Poisson brackets with such trees and add arrows and
indices afterwards.

lll. AN APPLICATION TO FLUID MECHANICS

We indicate the use of diagrams with a normal form calculation for a Hamiltonian model of
waves on the surface of a fluid layer surrounding a gravitating sphere. A detailed description of the
model can be found in Ref. 10.

The canonical variables are the wave amplitude g and the surface hydrodynamic potential p,
both functions on the two-sphere. The Hamiltonian is the total energy of the system. We denote
the ith spherical harmonic coefficient of ¢,p by g;,p;, respectively. The index i runs over the
pairs (/,m) with [ a positive integer, m= —1[,—[+1,...,[. Using the frequencies of the linearized
problem we also define the complex variables a; and a* as in (2.1). The Poisson bracket is (after
a change of coordinates) as in (2.2). The Hamiltonian H can be written as H=H,+ eH,+ €’ H,
+ -+, with H,, homogeneous polynomials of degree m+2 in a,,a and € a small dimensionless
parameter. Physically, € is the ratio of the typical wave amplitude over the thickness of the fluid
layer. The other dimensionless parameter of the problem, the ratio B8 of depth over radius, is set
here to O(1). Graphically H is as in Fig. 1.

The normal form calculation consists of eliminating the cubic and part of the quartic
terms of H by canonical transformations. It is convenient to use the multi-index notation

Zztah gt apyhi- (af)tae  with [k| =k thyt o, [Rl=K,+Ey+ e, and write H,,

_E|K|+|;|=,,,+2A|”:‘|_|;|z z*. Following the Lie series method (in the version of Ref. 6), we seek a
function S, for which exp €Adg H has no cubic terms. We are led to the ‘*homological equation’

{8,,Hy}+H,;=0, which is solved by

S, = A:& k
Kk+x=3 Z'fﬂ (k k )

i.e., the resonance condition is 3;w;(k;—k;)=0. In Ref. 10 we have shown that when the reso-
nance condition is satisfied for some k,k, the corresponding A = must vanish, and thus eH| is
formally eliminated. Next we eliminate the nonresonant terms of Hz, the quamc terms of
exp eAdS H. We have that H2 H,+3{S,.H,}. Wrmng S, as in Fig. 2, we obtain Ha graphi-
cally. We have shown that the resonant part of H2 (denoted by Hz} can only consist of terms
corresponding to diagrams with two out-going and two in-going legs. H, is represented in Fig. 3.
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FIG. 2. The function §,.

The normal form Hamiltonian H,+ H, has several interesting properties. We can easily iden-
tify families of periodic and quasiperiodic orbits (the former representing traveling and standing
waves) and finite-dimensional invariant manifolds. Also finite-dimensional truncations of Hy
+H,, restricted to axisymmetric solutions, are completely integrable.

IV. SEMI-CLASSICAL DIAGRAMS

The rules for classical graphs have an interesting quantization that we now describe. As with
the classical graphs, the natural application of the quantum diagrams is in semiclassical normal
forms algorithm, for which we refer to Ref. 3.
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FIG. 3. The quartic part of the normal form Hamiltonian.
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FIG. 4. Commutator of two quantum diagrams.

To describe the quantum diagrams, it is sufficient to consider the associative algebra W
generated by the vectors (a}") *4;, i,j=12..d, that also satisfy the commutation relations

[a;, (af)"]=—ihéy, [a;, a;1=[(af)", (a})"]=0, Vi,j=12..4d, (4.1)

with [f.g]=fg—gf, f.g € W. Informally, the (a}’)",a; are the ‘‘creation—annihilation’” opera-
tors.

The graphical rules assign graphs to elements (polynomials) of W and also to the commutator
of two graphs. Without loss of generality, we will assign graphs only to elements w of W that are
Wick-ordered, i.e., with the (aj) " preceding the a; in each monomial of w. The rules are as
follows:

(1) The.set of graphs we consider will now be denoted by D,. An element of D, will be a
directed tree with indices, constructed recursively in the following way: we take k one-vertex
elements #; of D (as in Sec. II) and start by joining s, out-going (in-going) legs of 7; to s
in-going(out-going) legs of r,. Denote this by #,Ut,. At the ith step we join s; out-going (in-
going) legs of the ¢;U---Ut; to s; in-going(out-going) legs of ;,, until i=k— 1. The s; are
arbitrary. The external legs will carry one index, while internal legs will carry two indices, one for
each vertex being joined. Note that DCD,,.

(2) We first discuss one-vertex trees. To a Wick-ordered homogeneous polynomial

£V (g¥ VG -4

P e SO Ay I"‘l‘-“n-’\!-"‘\m(aM) (al\m) axl ax"

we assign a vertex with n+m indexed legs with arrows, one out-going (in-going) leg for each

ay (af). [This rule follows the classical one verbatim, with the d;,(aj)" playing the role of the

i

a;.ajf, respectively.]

The rule for assigning polynomials to multi-vertex graphs is similar to the one for the classical

_graphs. A multi-vertex tree represents a homogeneous polynomial in the variables indexed by the

external legs of the tree. The out-going and in-going arrows represent the a,, and aj , respec-
1

tively. The coefficient of this polynomial will be the product of the coefficients of all the one-
vertex subirees of the multi-vertex tree, summed over all the indices appearing in external legs and
contracted over the pairs of indices representing legs that connect vertices. Note that now multi-
vertex graphs can be multiply connected. An example is in Fig. 4.

Proposition 4.1: The commutator [ F,G] of two graphs F,G is the sum of all graphs obtained
by joining n in-going arrows of F to n out-going arrows of G and n out-going arrows of F to n
in-going arrows of G, where n=1,2,3,... . The graphs will be multiplied by signs and powers of :
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(—ik)" for graphs obtained by joining n out-going legs from F to n in-going of G, and —
(—ik)" for graphs obtained by joining n in-going legs from F to n out-going from G.
Proof: We consider the commutator of two operators

r_ Hoya gk yas A
F=20 Aqyipny e (@5) (@) Mol

and

: NN Fy - H oy A N
=2 BJ\],,...A;.AI...._}\v(ail) "'(a‘{; iy, iy

v

We first Wick-order FG by passing the a, o the right of the (.a=E ) in a systematic way. We order

the pairs of the subindices (i,j) of the a,r.(a )‘ lexlcographlcally, ie, (I,H=<(1,2)<--

<(p,?). Also we use the multi-index y= (t,j) and for y=(a,b) let I(y) a, J(y)=b. Also
Fo={G.))|i=1,.,u,j=1,..,v}. Define L,-jFG to be FG with a, and (a}\ )" interchanged, and
f i

R,;,-ﬁé to be FG with d,. and (af )~ replaced by [é,c,,{a,\j} 1. We write
I J I

ﬁ'é=L|‘]ﬁé+R|‘|F"G=L].2L|‘|ﬁ'é+R].2L|‘]ﬁé+R|‘]ﬁ‘:"’ N

i.e., apply L; ; repeatedly, in the order induced by the (i,j), each time producing a commutator,
and so that at most one commutator appears in each term. The procedure terminates after w steps
and we have FG=5,FG with

where I')=I"; and f =L, if 'yl—max{'ye[' 1 R, otherwise, and T\=T(y;)= {rel|7
<7,}. We repeat the procedure to terms of S, F G that are not Wick-ordered, so as to have at most
two commutators. We get SZFG and similarly FG= M FG="-- =8, FG=--- with

6= 3 BN ya. 0 e, )]

el Yn-1€Tn—1 \ Ya€ln "r,eTy, Tiry T,

xR, Il L.FG,

rleT;

where T,={yelo[I(N>1(y,- ) J(N#I(¥p-1)....J (¥}, T,=T(y,)={rel,|7<7y,} and
R?},:LTP if y,=max{yel,}, R},p otherwise.
Then note that, first in S, FG we encounter all the possible products of commutators

[éx a— ) ] [é N ) ] with o, <0y<---<o, and p;#{py,....p;-1}, J=1,...n, each

such product appearing once as a summand of §, FG. Moreover, in S,,HFG all these terms are
Wick-ordered and therefore, from the diagrammatic interpretation at § ,,+1F G, we have all the
diagrams with m out-going legs of F joined to m in-going legs of G, with m=12,...n, plus FG
Wick-ordered.

Applying the algorithm to GF we similarly obtain the dlagrams with m in-going legs of F
Jomed to m out-going legs of G with m=1,2,....n, plus FG Wick-ordered. Considering FG

—~GF, we have the proposition.
il

Remark 3.1: Comparing the last rule with its classical analog we have, graphically, the clas-
sical limit (see, e.g., Ref. 11)
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lim - [.£1= /.8
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In discussing the quantum graphs, quantization, i.e., the map from functions on the phase
space to operators in a Hilbert space (see Ref. 11), enters only indirectly, through the commutation
relations. In applying the graphs to the semi-classical normal form algorithm of Ref. 2, it is
assumed that the quantization step is already taken and that the Hamiltonian operator has been
Wick-ordered. Thus we only deal with Wick-ordered operators.

In conclusion, we have presented simple diagrammatic rules for classical and semi-classical
normal forms. The rules highlight the combinatorial nature of the computations and can also be

implemented in the computer.
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