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Abstract
We study analytically and numerically a bistable reaction–diffusion equation
on an arbitrary finite network. We prove that stable fixed points (multi-fronts)
exist for any configuration as long as the diffusion is small. We also study fold
bifurcations leading to depinning and give a simple depinning criterion. These
results are confirmed by using continuation techniques from bifurcation theory
and by solving the time dependent problem near the threshold. A qualitative
comparison principle is proved and verified for time dependent solutions, and
for some related models.

Keywords: propagation in networks, reaction–diffusion, pinning condition

(Some figures may appear in colour only in the online journal)

1. Introduction

Discrete reaction–diffusion equations arise in many different fields. For example they can
describe the propagation of a nerve impulse in a neuron [1] or the motion of a dislocation [2]. The
solutions of these equations are typically fronts connecting two regions of constant value, say 0
and 1. Front pinning and propagation has been studied by many authors for a one dimensional
network for a bistable cubic reaction term. An important result obtained by Keener [3] is that
when the Laplacian is weak, any arbitrary configuration of 0s and 1s leads to a stable static
solution. The study was extended by Erneux and Nicolis [4] who explicitly calculated these fronts
and gave a pinning criterion. For material science applications and in the presence of an external
forcing, Carpio and Bonilla [5] gave pinning conditions and estimated the front speed. For a two
dimensional regular lattice, front propagation was studied by Hoffman and Mallet-Paret [6].

The present article considers arbitrary but finite networks, where to our knowledge there
are no works. We address specifically this problem and study analytically and numerically
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static fronts and how they destabilize in an arbitrary finite network (graph). The reaction term
we use is the bistable cubic nonlinearity and the diffusion term is the standard
graph Laplacian of the network (see e.g. [7]). Throughout the article, we refer to this equation
as the Zeldovich model. We introduce and motivate the bistable reaction–diffusion system by
considering how an epidemic front propagates on a network. To describe how the front moves
on the network, we extend the standard Kermack–McKendrick model (see e.g. [8] for a recent
application) to a network and show how it reduces to a discrete Fisher equation. In contrast to
the one node model, the network Kermack–McKendrick model is not commonly used to
describe the spread of an epidemic. The Fisher model only describes the propagation phase.
The related Zeldovich model we propose is also new but its cubic bistable nonlinearity has a
local excitation threshold, which may be a desirable feature for both geographic networks,
where the epidemic spreads from one location to another, and agent-based networks, where
the disease spreads from one individual to another.

A first result is the existence of static stable fronts for small diffusivity. The argument
combines the implicit function theorem (as in the anticontinuous limit used for other lattice
problems, see [9]) with small diffusivity asymptotics for the front amplitudes. The proof also
uses a suitable definition for the interface between the active and quiescent sites. The state-
ment is analogous to Keener’s result for the integer lattice [3]. We also show that for large
diffusivity the only static solutions are spatially homogeneous.

The existence of these fronts depends on the diffusivity, the nonlinearity, and the local
excitation threshold parameters of the model. We focus on the dependence of the static fronts
on the diffusivity using numerical continuation techniques. The continuation exhibits the fold
structure seen in one dimensional studies [4]. For general networks the depinning diffusivity
threshold depends on the front configuration, and a static configuration that becomes unstable
can be pinned elsewhere. We compute numerically the depinning thresholds for different
static solutions and show that they can be predicted accurately by a simple heuristic
expression derived for small diffusivity. By solving the time dependent problem, we verify
these findings and see how the connectivity of the network affects the propagation of the
fronts above the threshold.

We also obtain qualitative comparison results between different solutions of the Zel-
dovich equation, showing in particular that ‘large’ fronts involving large regions of 1s
dominate ‘small’ fronts. Our study also contains comparison results showing that the Fisher
equation describes faster front propagation than both the Zeldovich and Kermack–McKen-
drick equations. These results are also verified numerically. We see also that the Fisher and
Kermack–McKendrick fronts propagate at comparable speeds and are much faster that the
Zeldovich fronts. Finally we present numerical results for larger local excitation threshold
parameters, showing that the static fronts become wider and travel much faster across the
network when they destabilize.

The article is organized as follows. In section 2 we introduce the Zeldovich (bistable)
equation and discuss the other models. Section 3 studies the fixed points of the Zeldovich
equation, presenting theoretical and numerical continuation results, as well as a depinning
criterion. Section 4 describes comparison results between the Zeldovich solutions and
between the Zeldovich, Fisher, and Kermack–McKendrick solutions. Section 5 presents
numerical results of the evolution problem; there we validate the pinning thershold for
different fronts and compare the dynamics of large and small fronts. We also show that fronts
become wider as the nonlinearity threshold increases and we compute the pinning threshold.
Conclusions are given in section 6. Longer proofs of statements in sections 4 and 5 are in
appendices A and B respectively.

J. Phys. A: Math. Theor. 48 (2015) 075102 J-G Caputo et al

2



2. Reaction–diffusion models on a network

Here we introduce the different models of reaction–diffusion on a network that we will
consider. We use as an application the propagation of an epidemic. One of the main models to
describe the time evolution of the outbreak of an epidemic is the Kermack–McKendrick
model [10]

α= −S SI, (1)t

α β= −I SI I, (2)t

β=R I, (3)t

where S I R, , are respectively the number of people susceptible to be infected, the number of
infected and the number of recovered in a total constant population N and where the t
subscript represents the time derivative. We have of course + + =S I R N. The dynamics of
the model is that >I 0t (respectively <I 0t ) if β α>S (respectively β α<S ). Roughly
speaking, assuming that I (0) is near zero, and β α>S (0) , the infected population I(t)
increases, reaches a maximum value and decreases to zero. The main questions are, what is
the maximum value of I, what is the time to reach it, how large is the integral of I etc.

First, we rescale the variables by N, = = =s S N i I N r R N, , . This yields the system

α= −s Nsi, (4)t

α β= −i Nsi i, (5)t

β=r i. (6)t

Following Murray [11] we introduce now the possibility of spatial dispersion with a
Laplacian term. The system for s and i can be written as

ϵΔ γ
ϵΔ γ β

= −
= + −

s s si

i i si i

,
, (7)

t

t

where γ α= N. This model will describe the outbreak of the epidemic, its spreading, and
eventual demise as i peaks and starts decreasing.

To concentrate on the dynamics leading to the maximum of the outbreak, we eliminate
the β term. Then, to study the dynamics of a front, we can assume + =s i 1 so that we we get
the Fisher equation

ϵΔ γ= + −i i i i(1 ) . (8)t

This equation has two homogeneous solutions =i* 0, 1 and the former is unstable. The
model does not have a threshold as opposed to the Kermack–McKendrick. To re-introduce
this important feature, we modify the nonlinearity into the cubic (Zeldovich) so that we get

ϵΔ γ= + − −u u u u u a(1 ) ( ). (9)t

For this, there are only two stable homogeneous solutions =u* 0, 1. As discussed in the
introduction, this equation has many physical applications; it is then an important physical
model.

Up to this level, we considered three different models in a continuum space. Now we
assume that the propagation occurs on a network. For this, as in [12], we replace the usual
continuum Laplacian Δ by the graph Laplacian. As an example, consider the propagation of
an epidemic from city to city, in the network of the six major cities of Mexico, shown in
figure 1. The model is then
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ϵΔ γ= + − −u u u u u a(1 ) ( ), (10)t

where =u u u u( , ,..., )T
1 2 6 is the vector representing the nodes (cities). The links correspond

to the main roads connecting these cities.
For this particular example, the graph Laplacian Δ is

Δ ≡

−
−

−
−

−
−

3 1 1 0 1 0
1 2 1 0 0 0
1 1 4 1 1 0
0 0 1 2 1 0
1 0 1 1 4 1
0 0 0 0 1 1

. (11)

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟

In the following, we study the three different models, the Zeldovich (9), Fisher (8) and
Kermack–McKendrick (7) on a network.

Note that the graph Laplacian Δ is a non-negative symmetric matrix [7]. We use this
property below. In physical units the parameter ϵ is

ϵ = D

h
, (12)

2

where D is a diffusion coefficient and h is a typical distance between cities. The typical time
for the diffusion is then

ϵ
= =t

h

D

1
. (13)

2

At this time we assumed the same diffusion coefficient (weight) for all the links of the
network. If a node is closer or farther from its neighbors one could modify the coefficients in
Δ. With this generalization, we would still have a positive symmetric graph Laplacian.

Let τ be the triangle ∈ + ⩽s i s i{( , ) [0,1] , 1}.2 We have the following result.

Lemma 2.1. The unit cube [0,1]N is invariant under the evolution of the Zeldovich (9) and
Fisher (8) equations in R .N The product of the triangles τ N is invariant under the Kermack–
McKendrick (7) system with in R .N2

This means that the models are consistent, the solutions remain physical (⩾0 and ⩽1).
The lemma follows from propositions 4.1 and 4.4 in section 4 below (these do not use any of

Figure 1. Graph of the six main cities in Mexico numbered from 1 to 6: Guadalajara,
Zacatecas, Queretaro, Pachuca, Mexico City, Puebla. The links represent the main
roads connecting these cities. The colors represent a front starting from node 1,
propagating across the network.
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the results of section 3). It is also easy to show that the corresponding vector fields point
inwards at the boundaries.

3. Fixed points of the Zeldovich model

We want to describe a situation where only some nodes are excited; in the epidemic context, it
means that some nodes are infected and the rest are susceptible. Only the Zeldovich model (9)
has such stable fixed points; these are generalized static ‘fronts’ where some nodes are close
to one and the rest close to zero. Therefore, in this section, we concentrate on the fixed points
of the Zeldovich model (9). We will clarify the situation for the Fisher model (8) below and
show why it is less interesting. For definiteness, throughout this section, we consider the six
node graph from figure 1; it is clear that the results can be extended to an arbitrary finite
graph.

In the following, and throughout the article we use x to denote the field. The fixed point
equation we solve is

ϵ = = …F x x x x( , ) 0, [ , , ] , (14)n
T

1

where

ϵ ϵ Δ= +F x x f x( , ) ( ) ( ), with (15)k k k

γ= − − = …( )f x x x x a k n( ) 1 ( ), 1, , , (16)k k k k

Δ is the graph Laplacian of (11), and < <a0 1, γ = 1. We will examine how the fixed points
depend on the coupling parameter ϵ ⩾ 0.

For ϵ = 0, and every partition of the set of nodes into three subsets S0, Sa, S1 we have a
solution of =F x( , 0) 0 of the form xj = 0, if ∈j S ,0 =x aj , if ∈j S ,a xj = 1, if ∈j S .1

Clearly, these are the only solutions of =F x( , 0) 0. An inspection of the Jacobian reveals
that when Sa is empty, these solutions are stable. On the other hand if Sa is nonempty these
solutions are unstable. The number of unstable direction is the number of sites in Sa. The
solutions where Sa is empty are generalizations of the fronts that exist for the one dimensional
case, they are the main subject of interest of the article.

3.1. Homogeneous fixed points

Let us now consider the case ϵ > 0. The homogeneous fixed points can be analyzed for
arbitrary ϵ. For that consider the system linearized around the fixed point x*

ϵΔ= + ( )v Df x v* , (17)t
⎡
⎣⎢

⎤
⎦⎥

where the Jacobian matrix has elements

δ γ= + − −( )( )Df x a x x a* 2(1 ) 3 . (18)k m k k, * *2

When the fixed points are homogeneous, DN has a very simple form, it can be written

γ γ γ= − = − = −Df aI Df a I Df a a I, ( 1) , (1 )

respectively for = … = … = …x x i a a* [0, , 0] * [1, , 1] , * [ , , ] ,T T T where I is the ×N N

identity. The matrix Df is then cI for some real constant c, and σ ϵΔ + Df x( ( *)) is σ ϵΔ + c( ) .
To study the stability it is then convenient to use the basis of orthogonal eigenvectors of the
symmetric matrix Δ [7]
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Δ ω= −V V ,k
k

k2

where the eigenfrequencies ωk verify

ω ω ω= ⩽ ⩽ ⋯ ⩽0 .n1 2

We write

α α α= + ⋯ +i V V V . (19)n
n

1
1

2
2

Plugging the above expression into (18) we get the evolution of the amplitude

α ϵω α= − + a˙ (20)k k k
2⎡⎣ ⎤⎦

for the fixed point = …x* [0, , 0] .T Clearly it is stable for any ϵ. In a similar way we can

show that = …x* [1, , 1]T is always stable. The fixed point = …x a a* [ , , ]T is always
unstable since we have an eigenvalue ϵω γ− + − >a a(1 ) 0.1

2

3.2. Non homogeneous fixed points

For the non-homogeneous fixed points the analysis is not so simple. Let us first consider the
case ϵ > 0 but small. The implicit value theorem implies that each solution x0 of =F x( , 0) 0
can be continued uniquely, that is, it belongs to a unique smooth one-parameter family of

ϵx ( ) satisfying ϵ ϵ =F x( ( ), ) 0, =x x(0) ,0 provided that ϵ∣ ∣ is sufficiently small, see e.g. [13].
The solution ϵx ( ) of the local branch passing from x (0) has the same stability as x (0), for ϵ∣ ∣
sufficiently small. This follows from the fact that all the solutions x (0) are hyperbolic.

The numerical solutions below were obtained using the minpack implementation of
Powell’s hybrid Newton method [14]. We start from ϵ = 0, solving (14) using Newton’s
method and step in ϵ. After some ϵ, we continue stepping but use the pseudo-arc as a
parameter [15] because we anticipate a fold. The linear stability of a solution ϵx ( )0 is
computed readily by examining the eigenvalues of ϵD F x( , )1 at ϵx ( ),0 ϵ ,0 i.e.

ϵ ϵΔ δ γ= + + − −( )( )D F x a x x a( , ) 2(1 ) 3 . (21)
n m n m n m n n1 , , ,

2

We see numerically that all solutions of ϵ =F x( , ) 0 with ϵ > 0 satisfy ∈x (0, 1),j for
all ∈ …j {1, , 6}. This is also shown in corollary 3.4 below. As we increase the value of ϵ
along a branch of solutions continued from an ϵ = 0 solution x0, the linear stability remains
unchanged, until some ϵ0, depending on the branch, where we see a fold. The branch is then
continued by decreasing ϵ, until we reach a different solution x̃ (0) of the ϵ = 0 problem.
After the fold the number of stable and stable eigenvalues changes. We observe that when
x (0) is stable, the branch changes stability at the fold, and x̃ (0) is unstable. For example,
setting a = 0.1, we see that the unstable ϵ = 0 solution [1, 1, 1, 0, 0.1, 0]T is connected to the
stable ϵ = 0 solution [1, 1, 1, 0, 0, 0]T by a branch that has a fold at ϵ = 0.001 310 357 64.
In figure 2 we show the value of the component x5 at different values of ϵ of the fixed point.
The other components start, and finish at the same values.

A similar behavior was observed for all the examples examined, except the spatially
homogeneous solutions …c [1, , 1]T with c = 1, a, or 0. From relation (16) one can see that
these exist for all ϵ. Based on our numerical observations we conjecture that all −3 36

inhomogeneous fixed points of the ϵ = 0 problem (we exclude the spatially homogeneous
solutions) belong to branches undergoing a fold bifurcation at some positive value of ϵ, i.e.
we have −(3 3) 26 branches with folds, connecting pairs of ϵ = 0 solutions. This conjecture
can be checked numerically by continuing all ϵ = 0 fixed points. From the theoretical point of
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view we can also show that non-spatially homogeneous fixed points cannot exist for arbi-
trarily large ϵ. We have

Proposition 3.1. There is an ϵ > 0,c such that all ϵx( , ), ∈x I ,N ϵ ϵ> c that satisfy
ϵ =F x( , ) 0 are of the form = …x c [1, , 1]T , with c = 0, a, or 1.

The proof is given in appendix A. The dynamical importance of ϵc will be discussed
further in the next section. The general idea is that for ϵ ϵ> c all initial conditions
(≠ …a [1, , 1]T ) should go to one of the two fixed points …c [1, , 1] ,T c = 1, 0, as → ∞t .

An interesting problem is the computation of ϵ .c One idea is to continue all branches
starting at ϵ = 0 solutions and find the largest value ϵ0 of a fold. This computation would give
a lower estimate of ϵ ,c since we can not at present rule out the possibility of fixed points not
belonging to these branches. Also it is of interest to see whether we can have a family of fixed
points ϵx ( ) that are stable for ϵ arbitrarily close to ϵc, e.g. a continuous branch having a fold
with change of stability at ϵ .c To obtain a first estimation of ϵc we have examined numerically
all branches starting from stable ϵ = 0 solutions for a fixed value of a. There are −2 26 such
branches (we exclude …c [1, , 1]T , with c = 1, 0). These are solutions x (0) with = ∅S .a In
all (non-spatially homogeneous) cases these solutions are connected to an unstable solution
x̃ (0) of the ϵ = 0 problem, with ≠ ∅S .a For a = 0.1, the largest value of the fold coupling ϵ0

is ϵ = 0.002 998 352 240 , and is observed for the branch connecting the ϵ = 0 solutions
[0, 0, 0, 0, 0, 1]T and [0, 0, 0, 0, 0.1, 1] .T

Note that the ϵ = 0 solution [0, 0, 0, 0, 0, 1]T has only one neighbor. This is read from
the Laplacian (11). It is reasonable to expect that the solutions that are the last to exist have
the least neighbors. We see from (11) that all other ϵ = 0 solutions with ∣ ∣ =S 01 have more
that two neighbors, and it is observed that the corresponding branches undergo folds at
smaller values of ϵ. For example the branch starting from [0, 0, 0, 1, 0, 0]T , with two
neighbors by (11), undergoes a fold at ϵ = 0.002 813 136 77,0 while the branch starting from
[0, 0, 0, 0, 1, 0]T , with four neighbors, undergoes a fold at ϵ = 0.002 529 277 87.0 The

Figure 2. Component x5 versus ϵ for a branch connecting the ϵ = 0 fixed points
[1, 1, 1, 0, 0.1, 0]T and [1, 1, 1, 0, 0, 0] .T
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notion of neighbors can be extended to (∣ ∣ =S 0a ) ϵ = 0 solutions with ∣ ∣ >S 1.1 In such cases
we can look for the number of external connections to the set S1, i.e. the number of points
having distance one from S1. We see that more sites in S1 generally imply lower ϵ0 in the
corresponding branch. For example the branch starting from [1, 1, 1, 1, 1, 0]T , where S1 has
one external connection, undergoes a fold at ϵ = 0.002 506 944 32.0 This is lower that the
value of the fold value ϵ0 of the branch starting from [0, 0, 0, 1, 0, 0]T above, with two
neighbors but fewer peaks. Comparing the values of ϵ0 for the branches corresponding to
[0, 0, 0, 0, 0, 1]T and [1, 1, 1, 1, 1, 0] ,T we also see that complementary ϵ = 0 solutions
x (0), ′x (0) (with ∣ ∣ =S 0a ), i.e. ones with S x( (0)),1 ′S x( (0))1 that are disjoint and whose
union is the set of all nodes, generally have corresponding branches with different fold values.

The ϵ = 0 solutions not considered in the above enumeration are expected to correspond
to branches of solutions that are linearly unstable. Thus, even if we find a static solution such
that ϵ ϵ> = 0.002 998 352 240 0 , we expect that for ϵ ϵ> ,0 almost all initial conditions of the
time dependent system (9) go to either …c [1, , 1]T , c = 1, 0, as → ∞t .

3.3. The pinning criterion

In this section we establish a pinning criterion using the asymptotics from the previous
section. To better understand how ϵ0 depends on the type of front and node connectivity, we
develop a simple argument that assumes ϵ0 is small, and that all sites except one that we call
nc have values ϵ+ O1 ( ), or ϵO ( ), see section 3.3 below. This is consistent with what we see
numerically, namely that the node that is destabilized first has value approximately a 2, see
e.g. figure 2. Other sites have values that are much lower. The argument is as follows. Call x
the value of the node nc that will first destabilize. Then the equation at nc for x is

ϵ ϵ− + + − − =N Kx O x x x a( ( )) (1 )( ) 0,

where N is the number of neighbors of nc that are at 1 and K is the connectivity of nc. This
yields

ϵ = − −
−

x x x a

Kx N

(1 )( )
. (22)

From the continuation study of the static solutions we have seen that for

ϵ ϵ= ≈x a, 2.0

Combining this observation with (22) yields the estimate for

ϵ = −
−

a a

N Ka4

2

2
. (23)0

2

Table 1. Critical ϵ for the ‘generalized front’ to destabilize for different initial
conditions.

Connectivity Node Branch ϵ0 ϵ0 Expression (23)
From time evolution Continuation

1 6 [0, 0, 0, 0, 0, 1]T × −3.0 10 3 × −2.998 10 3 × −2.97 10 3

2 2 [0, 1, 0, 0, 0, 0]T × −2.7 10 3 × −2.547 10 3 × −2.79 10 3

4 3 [0, 0, 1, 0, 0, 0]T × −2.54 10 3 × −2.528 10 3 × −2.63 10 3

2 1 2 3 [1, 1, 1, 0, 0, 0]T × −1.31 10 3 × −1.310 10 3 × −1.32 10 3
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This means that for ϵ ϵ< 0 the specific front is stationary while it travels for ϵ ϵ> .0 This
estimate is reported in table 1, together with the ϵ0 found numerically. For a relatively small,
e.g. for a = 0.1 used here, we see excellent agreement.

3.4. Asymptotics of the fixed points

In what follows we show some general results on the profile of the fixed points of (9) for
ϵ > 0, and small. We estimate the decay of the fixed point profiles away from the sites where
the solution is near unity; we also see that we can obtain small ϵ asymptotics for ϵx ( ) at all
sites. For instance, we show that the amplitude ϵx ( )n of the equilibrium at the site n is

ϵ+ ( )x O(0) ,n
dn

where dn is the distance of site n from the analogue of the ‘interface’ of the ϵ = 0
configuration, see lemma A.1. Roughly speaking, the interface or ‘front’ of an ϵ = 0
configuration, defined more precisely below, consists of the sites where the solution jumps
from zero to unity. The small ϵ asymptotic gives us information on the decay of the ϵx ( )n as
we move away form the sites that are near unity. For sites with value near unity it also tells us
that are further away from the interface have values that are much closer to unity.

Proposition 3.3 can be also used to compare small ϵ solutions continued from different
x (0), see corollary 3.6 below.

The proof of proposition 3.3 is based on small ϵ‐ expansions

∑ϵ ϵ=
=

∞

x a( ) ,n

m

n m
m

0

,

valid for all sites n. The idea is to insert these expression into (16) and examine the
coefficients of the series. We first obtain a less precise, intermediate statement, lemma A.1,
using induction on the distance from the ‘interface’ between ones and zeros of the ϵ = 0
solutions. proposition 3.3 uses the same strategy, and lemma A.1.

The precise statements use the following definitions and notation. Let nnbd( ) denote the
sites adjacent to the site n. Let = ∣ ∣c nnbd( ) .n Let R ndist( , ) denote the distance between the
set of sites R, and a node n.

Definition 3.2. Given a nontrivial solution x (0) of the ϵ = 0 equation F = 0, denote by S1,
Sa, S0 the sets of indices n where xn = 1, a, 0 respectively. Also let ∪=S S S .A a1 The interface
I of the front is the set of nodes ∈n S1 having at least one neighbor ∪∈j S Sa 0.

Then we have:

Proposition 3.3. Let x (0) be a nontrivial solution of equations (14), (16) with ϵ = 0, and let
ϵx ( ), ϵ ϵ∈ [0, ]0 denote the unique branch of solutions of F = 0, ϵ > 0, that continue x (0) for

ϵ ⩾ 0. Consider the sets S1, Sa, S0, and I corresponding to x (0) as defined above, with Si, I
nonempty. Then for ϵ > 0 sufficiently small we have that (i) ∈n S ,0 = ⩾S n mdist( , ) 1A

imply

ϵ ϵ ϵ= + >+( )x a O a( ) , with 0, (24)n n m
m m

n m,
1

,

J. Phys. A: Math. Theor. 48 (2015) 075102 J-G Caputo et al

9



and (ii) ∈n S ,1 = ⩾I n mdist( , ) 0 imply

ϵ ϵ ϵ= + + <+
+ +

+( )x a O a( ) 1 , with 0, (25)n n m
m m

n m, 1
1 2

, 1

The proof is given in appendix A. An immediate consequence is:

Corollary 3.4. Let x (0) be a nontrivial solution equation (16) with ϵ = 0, and let ϵx ( ),
ϵ ϵ∈ [0, ]0 denote the unique branch of solutions of (16), ϵ > 0, that continue x (0) for ϵ ⩾ 0.
Then for ϵ > 0 and sufficiently small we have ϵ ∈x ( ) (0, 1),n for all sites n.

Proof. For sites ∈n Sa we have ϵ ϵ= + ∈x a O( ) ( ) (0, 1)n for ϵ sufficiently small. For
other sites the statement follows form proposition 3.3. □

Remark 3.5. The above asymptotic appears to be related to the estimate of ϵ0 in (23), and
the assumption that the all sites ≠n nc have values ϵ+ O1 ( ), and ϵO ( ). Indeed most sites

≠n nc are seen to be ϵO ( ) from their ϵ = 0 values at ϵ .0 Note however that the site nc also has
the value 0 (or α) at ϵ = 0, and comes near a 2 as ϵ approaches ϵ0. The use of the small ϵ‐
asymptotic in justifying (23) is then not clear.

Another consequence of proposition 3.3 is that for ϵ > 0 sufficiently small there exist
pairs of static solutions x, y of the Zeldovich equation satisfying <x y ,n n ∀ ∈ …n N{1, , }.
The construction is as follows:

Corollary 3.6. Let ϵx ( ), ϵy ( ), ϵ sufficiently small, be continuations of the ϵ = 0 fixed points
=x x (0), =y y (0) of the Zeldovich equation satisfying

= = ∅ ⊂α αi S x S y ii S x S y( ) ( ) ( ) , ( ) ( ) ( ), (26)1 1

∪< ∀ ∈iii I x n I y n n S x S y( ) dist( ( ), ) dist( ( ), ), ( ) ( ), (27)1 1

∪> ∀ ∈( ) ( )iv S x n S y n n S x S y( ) dist ( ), dist ( ), , ( ) ( ). (28)1 1 0 0

Then for all ϵ > 0 sufficiently small we have ϵ ϵ<x y( ) ( ),n n ∀ ∈ …n N{1, , }.

This means that the order that exists between fronts for ϵ = 0 will remain for ϵ > 0.

Proof. We consider the three cases ∪∈n S x S y( ) ( ),0 1 ∪S x S y( ) ( ),1 1 and ∪S x S y( ) ( ).0 0

By (ii) ∪ = ∅S x S y( ) ( ) .1 0 For ∪∈n S x S y( ) ( )0 1 we have

ϵ ϵ ϵ ϵ= − > =y O x O( ) 1 ( ) ( ) ( ),n n

for ϵ > 0 small.
For ∪∈n S x S y( ) ( ),1 1 proposition 3.3 yields

ϵ ϵ ϵ

ϵ ϵ ϵ

= − +

= − +

+
+ +

+
+ +

( )
( )

x a O

y a O

( ) 1 ,

( ) 1 ,

n n m
m m

n n m
m m

, 1
1 2

, ˜ 1
˜ 2 ˜ 2
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with a ,n m, ≠+a 0,n m, ˜ 1 and

= = >m I x n m I y n m mdist( ( ), ), ˜ dist( ( ), ), ˜ .

Therefore ϵ ϵ>y x( ) ( )n n for ϵ > 0 small enough.
For ∪∈n S x S y( ) ( ),0 0 proposition 3.3 yields

ϵ ϵ ϵ

ϵ ϵ ϵ

= +

= +

μ
μ μ

μ
μ μ

+

+

( )
( )

x a O

y a O

( ) ,

( ) ,

n n

n n

,
1

, ˜
˜ ˜ 1

with μa ,n, ≠μ+a 0,n, ˜ 1 and

μ μ μ μ= = >I x n I y ndist( ( ), ), ˜ dist( ( ), ), ˜ .

Again ϵ ϵ>y x( ) ( )n n for ϵ > 0 small enough. □

4. Ordering of different front solutions

In this section, we will compare the time dependent solutions of the Zeldovich equation, the
Fisher and the Kermack–McKendrick models. We first consider the time dependent solutions
of the Zeldovich equation (9), and establish qualitative comparison (or monotonicity) results
for different solutions of the Zeldovich model, see proposition 4.1. An application is corollary
4.2, a stability statement for some of the static solutions discussed in corollary 3.6 of the
previous section. Another goal is to compare the Zeldovich model with the original Kermack–
McKendrick system, and the intermediate Fisher system. We show that the Fisher model
describes a faster propagation of the front than both the Zeldovich and Kermack–McKendrick
models, see propositions 4.3, 4.4 respectively. In the next section we show some numerical
examples.

The comparison statements below use a notion of ‘partial order’ between configurations.
In particular <u n (respectively ⩽u v), with u, ∈v [0,1] ,N will mean <u vn n (respectively

⩽u vn n), ∀ ∈ …n N{1, , }. We also let = …0 [0, , 0] ,T = … ∈1 [1, , 1] [0,1] .T N A ‘larger’
configuration thus describes a state where the front is more advanced at all sites.

Proposition 4.1. Let >T 0, x, →y T: [0, ] [0,1]N be two solutions of (either) the Zeldovich
(9) (or the Fisher (8)) equation, with initial conditions satisfying < < ⩽x y0 1(0) (0) . Then

<x t y t( ) ( ), ∀ ∈t T[0, ].

This means that the ‘larger’ fronts, ie the ones that involve more nodes, will always move
ahead of the ‘smaller’ fronts.

Since both vectors 0, 1 are static solutions of the Zeldovich and Fisher equations,
lemma 2.1 is a special case of proposition 4.1.

Corollary 4.2. Let >T 0. Let x, ∈y [0,1]N be two static solutions of the Zeldovich equation
satisfying <x y, and let →u T: [0, ] [0,1]N be a solution of the Zeldovich equation with
initial condition u (0) satisfying < <x u y(0) . Then < <x u t y( ) , ∀ ∈t T[0, ].

This result states that the order of the fronts will remain during the propagation. This is
connected to the existence of pairs of static solutions of the Zeldovich equation satisfying

<x y (corollary 3.6). It allows to predict the dynamics of complicated fronts using the one of
simpler ones.
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We now compare solutions of the Fisher and Zeldovich equations.

Proposition 4.3. Let >T 0. Let xF, →x T T: [0, ] [0, ]Z
N be solutions of the Fisher (8), and

Zeldovich (9) equations respectively, with corresponding initial conditions satisfying
< ⩽ ⩽x x0 1(0) (0) .Z F Then ⩽x t x t( ) ( ),Z F ∀ ∈t T(0, ].

Proposition 4.4. Let >T 0. Let →x T: [0, ] [0,1]F
N be a solution of the Fisher

equation (8), and let τ→s i T( , ): [0, ] N satisfy the Kermack–McKendrick system (7).
Suppose also that the corresponding initial conditions satisfy <i x(0) (0).F Then

⩽i t x t( ) ( ),F ∀ ∈t T[0, ].

The above comparison statements follow from analogous statements for discrete time
approximations of the solutions of the three equations. The approximations we use are
obtained by the first-order explicit Euler method. We give proofs in appendix B.

5. Numerical results on front propagation

In the first part of this section we solve numerically the Zeldovich system (9) for initial
conditions that are near the computed static solutions. We confirm the results of section 3 on
thresholds, and examine the evolution of the front-like initial conditions for couplings that are
above the threshold. In the second part we verify some of the predictions of the comparison
results of section 4. One main observation is that the propagation of the Fisher, and Kermack–
McKendrick models is much faster than the ones seen in the Zeldovich models. A third part
examines the propagation of Zeldovich fronts for larger values of the local excitation
threshold a. We can then observe very rapid front propagation. In all simulations below we
use the variable step 5–6 dopri5 solver of Hairer et al [16] in double precision with a relative
tolerance of 10−10.

5.1. Time evolution of the Zeldovich fronts

Branches of static solutions ϵx ( ) are labeled by the corresponding ϵ → 0 limit x (0), obtained
by decreasing ϵ. The value of ϵ at the fold is ϵ x( (0))0 (or simply ϵ0 when the branch in
question is clear). In addition to the numerical and theoretical ϵ0 values from section 3, we
here obtain a third estimate of ϵ0 by integrating (9) starting with ϵ ϵ< 0 and increasing ϵ
slowly on each run. The typical behavior is the following. For small ϵ we always find a static
solution. As ϵ is increased past a threshold ϵ ,0 the solution destabilizes and gives rise to the
homogeneous flat state [1 ,..., 1] .T This estimated ϵ0 is between the largest ϵ leading to
convergence to a similar static front, and the smallest ϵ0 leading to a trajectory that diverges
from the front. The three estimates of ϵ0 are given in table 1 for some examples, and confirm
the results expected from section 3.

We now present some examples of the evolution slightly above the ϵ0 for different
configurations. We examine how the connectivity of a node influences the destabilization of a
front centered at that node.

In the first example we consider the evolution from an initial condition near a static front
localized at node 6 which (with connectivity 1). The front belongs to the branch of
[0, 0, 0, 0, 0, 1] ,T which is expected to be last to be destabilized. We use ϵ = × −3.0 10 ,3

slightly above the computed threshold ϵ = × −2.998 10 ,0
3 and the initial condition
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× × × × ×− − − − −1.536 10 , 8.680 10 , 1.537 10 , 1.578 10 , 5.350 10 , 0.997 . (29)
T3 5 3 3 2⎡⎣ ⎤⎦

Notice how it decays very rapidly from the node 5 to the nodes 1 and 4 then node 3. The
evolution is shown in figure 3, we see that the wave goes successively from 5, 4, 3, 1 and 2.

In the second example we consider an initial condition near the static solutions of the
branch [0, 1, 0, 0, 0, 0] .T We use ϵ = × −2.6875 10 ,3 which is slightly above computed
ϵ = × −2.547 100

3 for the branch, and the initial condition

Figure 3. Time evolution of the different nodes for an initial front solution centered on
node 6, of connectivity 1, with ϵ = × −3.0 10 3 and the initial condition (29).

Figure 4. Time evolution of the different nodes for an initial front solution centered on
node 2, of connectivity 2, ϵ = × −2.6875 10 3 and the initial condition in (30).
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× × × × ×− − − − −5.088 10 , 0.994, 4.298 10 , 1.165 10 , 2.35 10 , 6.132 10 . (30)
T2 2 3 3 5⎡⎣ ⎤⎦

The value = × −x 5.088 101
2 is very close to a 2 which is the value observed by the

continuation method for ϵ ϵ= .c The evolution is shown in figure 4. The solution destabilizes
following the fixed point so x1 and x3 remain close to a 2 for a long time before going to 1.
We see that the wave follows the connectivity as it propagates from node 1 (3) to node 3 (4).
Then node 5 (4) destabilizes and finally node 4. Node 6 is just destabilizing for t = 900. There
are then different time scales in the dynamics depending on the connectivity.

We also note that ϵ is greater than the threshold ϵ = × −2.5 100
3 for the branch

[1, 1, 1, 1, 1, 0]T (see section 3), this means that the front will not stop at node 5, it will also
destabilize node 6.

We now consider an initial condition centered on node 3, near static solutions of the
branch [0, 0, 1, 0, 0, 0] .T We use ϵ = × −2.54 10 ,3 which is slightly above the computed
threshold ϵ = × −2.528 100

3 for the branch, and the initial condition

× × × × ×− − − − −4.946 10 , 5.404 10 , 0.989, 4.785 10 , 4.206 10 , 1.054 10 . (31)
T2 2 2 2 3⎡⎣ ⎤⎦

The evolution given in figure 5 shows that the front centered on node 3 of connectivity 4
destabilizes in the same way as the one centered on node 2 except that now nodes 2, 1, 5 and
4 have values around a 2 for a long time. Node 6 will destabilize after a long time. As in the
previous example ϵ is greater than the threshold ϵ = × −2.5 100

3 for the branch
[1, 1, 1, 1, 1, 0] .T

We now study initial conditions near static solutions of the branch [1, 1, 1, 0, 0, 0] ,T see
figure 6. We use ϵ = × −1.32 10 ,3 slightly above the critical ϵ = × −1.3103 100

3 (see
section 4), and the initial condition

× × ×− − −0.999, 0.99999, 0.997, 1.610 10 , 4.980 10 , 6.485 10 . (32)
T2 2 4⎡⎣ ⎤⎦

The evolution is shown in figure 6. Node 5 is the first to destabilize, followed by node 4. We
also see that node 6 remains at its level because ϵ is smaller than the threshold ϵ0 for the static
front of the type [1, 1, 1, 1, 1, 0] .T

Figure 5. Time evolution of the different nodes for an initial front solution centered on
node 3, of connectivity 4, ϵ = × −2.54 10 3 and the initial condition in (31).
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One can estimate the time for x5 to grow, using the normal form displayed in figure 2 as a
function of δ ϵ ϵ= − .c It gives

δ= +x x˙ ,5 5
2

so that

δ δ= ( )x t t( ) tan , (33)5

which grows as δ1 . We have

ϵ ϵ δ δ= × = × = =− − −1.3 10 , 1.4 10 , 10 , 1 100.c
3 3 4

From figure 6 one sees that the typical time of destabilization of x5 is about 100 so the
estimate is correct.

These results confirm that generalized static fronts exist for small ϵ and disappear for
ϵ ϵ> c; they are summarized in table 1. The above examples also suggest a qualitative picture
of the propagation of fronts, where one can use the analytic expression (23) for ϵ0 to guess the
order in which the different nodes are excited. It appears that given a configuration of excited
sites, the next site is the one in the neighborhood of the configuration that has the largest
number of connections with the configuration connections. In the case where we have more
than one such sites, the one that has the fewest connections, see e.g. the example of figure 3.
This rule is consistent with the calculation of the smallest ϵ0 values from (23) among the
possible nc in the vicinity of a configuration. This rule does not include all possibilities, but it
points to a possible connection between the ϵ0 for the various branches, and the propagation
of the front. An estimation of δ ϵ ϵ= − 0 leads to an approximate time for the site nc to be
excited, using (33).

5.2. Comparison between different solutions and front propagation models

To illustrate the comparison of two initial conditions under the Zeldovich evolution, we show
solutions from initial conditions [1, 1, 1, 0, 0, 0]T and [1, 1, 0, 0, 0, 0]T respectively. We

Figure 6. Time evolution of the different nodes for an initial front solution of the type
[1, 1, 1, 0, 0, 0] ,T with ϵ = × −1.32 10 3 and the initial condition (32).
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use ϵ = × −1.4 10 .3 The time evolution is indicated figure 7 where the nodes 4 and 5 are
shown. The trajectories increase faster for the first initial condition than for the second.

To illustrate the comparison between trajectories of the Fisher and Zeldovich equations
we use the initial condition [1, 1, 0, 0, 0, 0] ,T with ϵ = × −1.4 10 .3 It is presented in figure 8.
Note that the scale in time is much shorter than in figure 7, here for t = 20 the front has
invaded the graph. Therefore the Fisher solution will always be larger than the Zeldovich one.
Also the profile is different since there are no fixed points other than the flat 1 homogeneous
state.

We also consider the evolution of the Kermack–McKendrick model (7). When the decay
term β for the infected component i is zero, the evolution of i is identical to the one of the
Fisher model (8). This is because (7) conserves +s i. For example taking as initial condition

Figure 7. Time evolution of nodes 4 and 5 for the initial fronts [1, 1, 1, 0, 0, 0]T in
continuous line (red online) and [1, 1, 0, 0, 0, 0]T in dashed line.

Figure 8. Time evolution of the initial front [1, 1, 0, 0, 0, 0]T .
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= =s i[0, 0, 1, 1, 1, 1] , [1, 1, 0, 0, 0, 0]T T

yields exactly the same dynamics for i as the one of figure 8. On the other hand, if we choose
+ <s i 1 and still the same initial i, then the trajectories of (7) are below the ones of (8).

Nevertheless the characteristic time for the orbits of (7) to reach saturation is the same as for
(8). When β > 0 is small, the infected component reaches a maximum in this characteristic
time and then decays over a time scale β1 figure 9 shows the evolution of the infected
component for β = 0.01 and ϵ = × −1.35 10 3. To see propagation on the network, β should
be smaller than the diffusion time ϵ1 .

The comparisons between the Zeldovich models on the one hand, and the Fisher, and the
Kermack–McKendrick models show that the latter two lead to a much faster propagation.
This makes the comparison between the Fisher, and Kermack–McKendrick models a more
interesting result.

The examples above suggest also that the order in which the different nodes become
excited in the three models is the same. This order seems to depend only on the geometry of
the graph. It may be possible to use different (possibly branch or site dependent) parameters ϵ,
γ, and a for the Zeldovich and Fisher systems to make the propagation speeds comparable.

5.3. Influence of the parameter a

To conclude this numerical section, we consider how the fixed points of the Zeldovich
equation and its dynamical solutions depend on the parameter a. To illustrate how a changes
the fixed point and it’s subsequent destabilization, we consider the front centered on node 6 of
the type [0, 0, 0, 0, 0, 1] .T For a = 0.3 and ϵ = × −1.25 10 3 we obtain the static front

× −0.104, 5.477 10 , 0.107, 0.124, 0.295, 0.852 . (34)
T2⎡⎣ ⎤⎦

Compared to the one for a = 0.1 in (29), this front is much broader. Here we see that ≈x a5

and x x,3 4 and x1 are close to a 2.

Figure 9. Time evolution of the infected component i for the initial front
= =s i[0, 0, 1, 1, 1, 1] , [1, 1, 0, 0, 0, 0]T T for the Kermack–McKendrick model

(7) with β = 0.01.
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The time evolution of the initial condition (34) is presented in figure 10. Note the large
velocity with which the front ‘invades’ the network. For a = 0.1, in figure 3 we had a well
separated dynamics of node 5 which destabilized first. Here we cannot distinguish the evo-
lution of node 5 from the one of the other nodes. Since the front is much wider, it averages out
the network and propagates much faster.

Because the front becomes very wide, the formula (23) will underestimate the critical ϵ.
Table 2 shows ϵ0 for =a 0.1, 0.2 and 0.3 obtained for the static solution centered on node 6.
As expected (23) underestimates ϵ0 as a increases. It gives the right order of magnitude for
a = 0.2 but is clearly wrong for a = 0.3.

6. Conclusion

We studied analytically and numerically a bistable reaction diffusion on an arbitrary finite
network. We show that stable static fronts exist everywhere on the network for small dif-
fusivity. We give the asymptotics of these fixed points and derive from them a simple
depinning criterion which is validated both by continuation techniques and by solving the
time dependent problem. The justification of the depinning criterion is an open problem, and
may be related to the small value of the local excitation parameter a. The numerical simu-
lations suggest that the moving front ‘feels’ the different static configurations, as it travels
across the network.

Figure 10. Time evolution for the initial condition × −[0.1036, 5.477 10 ,2

0.107, 0.124, 0.294, 0.851]T for ϵ = × −1.3 10 1 close to the critical value
ϵ = × −1.25 100

1 for the Zeldovich equation. The parameter a = 0.3.

Table 2. Critical ϵ for the ‘generalized front’ centered on node 6 to destabilize for
different values of a.

a ϵ0 Expression (23)

0.1 × −3.0 10 3 × −2.8 10 3

0.2 × −1.6 10 2 × −1.28 10 2

0.3 × −1.2 10 1 × −3.48 10 2
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We also compare different solutions of the Zeldovich model and show how ‘large’ fronts
dominate ‘small’ fronts in the dynamics. A particularly interesting outcome of corollary (4.2),
is that one can predict how complicated fronts will move by following simpler ones.

The time dependent solutions of the Fisher and Kermack–McKendrick original models
are compared to the ones of the Zeldovich; they have a much shorter time scale and no
threshold. This effect might be expected from the instability of the origin in the Fisher and
Kermack–McKendrick models. This seems to reduce their interest as opposed to the Zel-
dovich model. On the other hand, all three models describe qualitatively similar front
expansion scenarios above the Zeldovich threshold. The behavior of the Zeldovich model
below the highest branch threshold may reflect some pinning phenomena related to epi-
demics. Finally we investigate numerically larger local excitation thresholds and show that
fronts become wider and travel much faster across the network.
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Appendix A. Proof of propositions 3.3 and 3.1

The proof of proposition 3.3 uses the following intermediate result.

Lemma A.1. Let x (0) be a nontrivial solution equation F = 0 with ϵ = 0, and let ϵx ( ),
ϵ ϵ∈ [0, ]0 denote the unique branch of solutions of F = 0, ϵ > 0, that continue x (0) for
ϵ ⩾ 0. Consider the sets S1, Sa, S0, and I corresponding to x (0) as defined above, with S1, I
nonempty. Then for ϵ > 0 sufficiently small we have that (i) ∈n S ,0 ⩾ ⩾S n mdist( , ) 1A

imply

ϵ ϵ= ( )x O( ) , (A.1)n
m

and (ii) ∈n S ,1 ⩾ ⩾I n mdist( , ) 0 imply

ϵ ϵ= + +( )x O( ) 1 . (A.2)n
m 1

Proof. We use the analytic version of the implicit value theorem, which allows us to write
ϵx ( )n as a convergent power series in ϵ, for ϵ sufficiently near the origin. Thus we write
ϵ ϵ= ∑ =

∞x a( ) ,n m n m
m

0 , for all sites n, see e.g. [13]. (Since the network is finite it is sufficient
to use the Cr version for r sufficiently large.)

We then already have ϵ ϵ=x O( ) ( ),n ∀ ∈n S ,0 and ϵ ϵ= +x O( ) 1 ( ),n ∀ ∈n S .1
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To show (i) let n satisfy ⩾S ndist( , ) 2.A We have

∑ϵ Δ ϵ ϵ ϵ

ϵ

= − + +

=

∈
( )( )

( )

x c a O x

O

( )

, (A.3)

n n n

j n

j,1
2

nbd( )

2

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

since ∈j nnbd( ) implies ∈j S ,0 hence ϵ=x O ( ).j

Also

ϵ ϵ− − = − + ( )( )x x a x aa O1 ( ) . (A.4)n n n n,1
2

By (A.3), (A.4), and F = 0 we must then have =a 0.n,1

We use induction: suppose that if ⩾ ⩾S n mdist( , ) 2,A then ϵ=x O ( ).n
m

Then for n satisfying ⩾ +S n mdist( , ) 1A we have

∑ϵ Δ ϵ ϵ ϵ

ϵ

= − + +

=

+

∈

+

( )( )

( )

x c a O x

O

( )

, (A.5)

n n n m
m m

j n

j

m

,
1

nbd( )

1

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

since ∈j nbd(n) implies ⩾S n mdist( , ) ,A hence ϵ=x O ( )j
m by the inductive hypothesis. On

the other hand

ϵ ϵ− − = − + +( )( )x x a x aa O1 ( ) . (A.6)n n n n m
m m

,
1

By (A.5), (A.6), and F = 0 we must then have =a 0,n m, and therefore ϵ= +x O ( ),n
m 1 as

required.
To see (ii) let ∈n S1 satisfy =I ndist( , ) 1, so that all ∈j nnbd( ) satisfy =x (0) 1.j Also

ϵ= +x O1 ( ).n Then

∑

∑

ϵ Δ ϵ ϵ ϵ

ϵ ϵ ϵ ϵ

ϵ

= − + + +

= − − + + +

=

∈

∈

( )( )

( )

( )

x c a O x

c c a c a O

O

( ) 1

. (A.7)

n n n

j n

j

n n n n

j n

j

,1
2

nbd( )

,1

nbd( )

,1
2

2

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

On the other hand

ϵ ϵ− − = − − + ( )( )x x a x a a O1 ( ) ( 1) . (A.8)n n n n,1
2

By (A.7), (A.8), and F = 0 we must have =a 0,n,1 and therefore ϵ=x O ( ).n
2

For the inductive step, assume that if ∈n S1 satisfies ⩾I n mdist( , ) , then
ϵ= + +x O1 ( ).n

m 1 Consider then a site n satisfying ⩾ +I n mdist( , ) 1, then
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∑

∑

ϵ Δ ϵ ϵ ϵ

ϵ ϵ ϵ ϵ

ϵ

= − + + +

= − − + + +

=

+
+ +

∈

+
+

∈

+ +

+

( )( )

( )

( )

x c a O x

c c a c a O

O

( ) 1

, (A.9)

n n n m
m m

j n

j

n n n m
m

n

j n

j m
m m

m

, 1
1 2

nbd( )

, 1
1

nbd( )

,
1 2

2

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

using the fact that ∈j nnbd( ) implies ⩾I j mdist( , ) , hence ϵ= + +x O1 ( )j
m 1 by the

inductive hypothesis. On the other hand

ϵ ϵ− − = − − ++
+ +( )( )x x a x a a O1 ( ) ( 1) . (A.10)n n n n m

m m
, 1

1 2

By (A.9), (A.10), F = 0 implies =+a 0,n m, 1 and therefore ϵ= + +x O1 ( ),n
m 2 as required. □

We now prove proposition 3.3.

Proof. The starting point is again the expression ϵ ϵ= ∑ =
∞x a( ) .n m n m

m
0 , To see (i) first

consider sites n satisfying =S ndist( , ) 1.A Letting J1 be the set of sites ∩∈j n Snbd( ) ,A and
= ⧹J n Jnbd( ) ,2 1 we have

∩ ∩= + >J n S n Snbd( ) nbd( ) 0.a1 1

Then

∑ ∑

∩ ∩

ϵ Δ ϵ ϵ ϵ

ϵ ϵ

= − + +

= + +

>

∈ ∈

( )( )

x c O x x

n S n S a O

( ( )) ( )

nbd( ) nbd( )

0 (A.11)

n n

j J

j

j J

j

a1
2

1 2

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

for ϵ > 0 sufficiently small. On the other hand

ϵ ϵ− − = − + ( )( )x x x a a a O1 ( ) . (A.12)n n n n,1
2

By (A.11), (A.12), F = 0, we need >a 0.n,1

We proceed inductively, assuming that if ∈n S0 satisfies = ⩾S n mdist( , ) 1,A then
ϵ ϵ ϵ= + +x a O( ) ( ),n n m

m m
,

1 with >a 0.n m, Consider then a site n satisfying
= +S n mdist( , ) 1.A Let Jm be the set of sites ∈j nnbd( ) satisfying =S n mdist( , ) .A Clearly

∣ ∣ >J 0.m Also let = ⧹+J n Jnbd( ) .m m1 By lemma A.1, ϵ ϵ= +x O( ) ( ).n
m 1 Then

∑ ∑

∑

ϵ Δ ϵ ϵ ϵ ϵ

ϵ ϵ

= − + + +

= +

>

+
+ +

∈ ∈

∈

+ +

+

( )( )

( )

x c a O x x

a O

( ( ))

0 (A.13)

n n n m
m m

j J

j

j J

j

j J

j m
m m

, 1
1 2

,
1 2

m m

m

1

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥

for ϵ > 0 small, since >a 0,j m, ∀ ∈j J ,m by the inductive hypothesis. On the other hand

ϵ ϵ− − = − ++
+ +( )( )x x x a aa O1 ( ) . (A.14)n n n n m

m m
, 1

1 2

By (A.13), (A.14), and F = 0, we therefore need >+a 0.n m, 1
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To see (ii) consider a site ∩∈n S I1 , so that =I ndist( , ) 0. Then
ϵ ϵ ϵ= + +x a O( ) 1 ( ),n n,1

2 and

∑ ∑

∩ ∩

ϵ Δ ϵ ϵ ϵ

ϵ ϵ

= − + + +

= − + + +

∩ ∩

α

∈ ∈

( )( )

x c O x

c n S n S a O

( ( )) [ (1 ( ))

nbd( ) nbd( ) . (A.15)

n n

j n S

j

j n S x

n

nbd( ) nbd( )

1
2

a j1

⎤⎦

⎤⎦

Suppose ∩μ = ∣ ∣ ⩾αn Snbd( ) 1, then ∩ μ∣ ∣ ⩽ −n S cnbd( ) ,n1 and (A.15) yield

ϵ Δ ϵ ϵ μ μ ϵ

μϵ ϵ

⩽ − + − + +

= − + +

<

( )
( )

( )x c c a O

a O

( ( )) ( )

( 1 )

0, (A.16)

n n n
2

2

for ϵ > 0 sufficiently small. If μ = 0, ∈n I implies ∩∣ ∣ <n S cnbd( ) ,n1 so that (A.15)
implies

ϵ Δ ϵ ϵ ϵ

ϵ ϵ

⩽ − + − +

= − +

<

( )
( )
( )x c c O

O

( ( )) ( 1

0, (A.17)

n n n
2

2

for ϵ > 0 sufficiently small. Combining (A.16) and (A.17) with

α ϵ ϵ− − = − − + ( )( )x x x a a O1 ( ) (1 ) , (A.18)n n n n,1
2

we see that to satisfy F = 0 with ϵ > 0, sufficiently small we must have − >a 0n,1 .
For the inductive step, assume that ∈n S1, =I n mdist( , ) imply ϵ =x ( )n

ϵ ϵ+ ++
+ +a O1 ( )n m

m m
, 1

1 2 with <+a 0.n m, 1 Then let ∈n S ,1 = +I n mdist( , ) 1. Let Jm
be the set of sites ∈j nnbd( ) satisfying =I n mdist( , ) , let +Jm 1 be the set of sites ∈j nnbd( )
satisfying ⩾ +I n mdist( , ) 1.

By lemma A.1 we have ϵ ϵ= + +x O( ) 1 ( ).n
m 2 Then

∑ ∑

∑

∑

ϵ Δ ϵ ϵ ϵ

ϵ ϵ ϵ

ϵ ϵ

= − + + +

= − + + + − +

= +

<

+

∈ ∈

∈
+

+ +

∈
+

+ +

+

( )( )

( )

( )

( )

x c O x x

c J a c J O

a O

( ( )) 1

0 (A.19)

n n
m

j J

j

j J

j

n m

j J

j m
m

n m
m

j J

j m
m m

2

, 1
1 2

, 1
2 3

m m

m

m

1

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎤⎦

for ϵ > 0 sufficiently small, since <+a 0,j m, 1 ∀ ∈j Jm by the inductive hypothesis. On the
other hand

ϵ ϵ− − = − − ++
+ +( )( )x x x a a a O1 ( ) (1 ) . (A.20)n n n n m

m m
, 2

2 3

By (A.19) and (A.20) to satisfy F = 0 we must have − >+a 0n m, 2 , as required. □

We now prove proposition 3.1.
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Proof. To study large ϵ solutions of ϵ =F x( , ) 0 we will equivalently examine μ → +0
solutions μ =F x˜ ( , ) 0, where

μ Δ μ= +F x x f x˜ ( , ) ( ) ( ), (A.21)n n n

= …n N1, , .
Then ϵ =F x( , ) 0, ϵ > 0, is equivalent to μ =F x˜ ( , ) 0, with μ ϵ= − .1

Consider a a sequence ϵ ∈ ×∈
++x I R{( , )} ,n n n

N
Z satisfying ϵ → ∞,n and

ϵ =F x( , ) 0,n n ∀ ∈ +n Z . Such sequences clearly exist. Moreover μx( , ),n n with μ ϵ= −( ) ,n n
1

satisfy μ =F x˜( , ) 0,n n ∀ ∈n Z .N The sequence of solutions μ >x{( , )}n n n n0 of =F̃ 0 belongs to

= ×+I I [0, 1]N N1 for some >n 0,0 and by the compactness of +I N 1 has a convergent
subsequence in +I ,N 1 denoted again as μ ∈ +x{( , )} .n n n Z Let μx( *, *) be the limit of this

subsequence. By the assumption ϵ → ∞,n we have that μ =* 0. Also, →+ +F R R˜ : N N1 1 is
continuous and therefore μ →F x F x˜( , ) ˜( *, 0)n n as μ →x x( , ) ( *, 0).n n Therefore =F x˜( *, 0) 0.
Since Δ=F x x˜ ( , 0) we have ∩∈x V I* ,N where = … ∈ ∈V c cR R{ [1, , 1] : }T N , i.e. the
kernel of Δ.

We show that x* can only be one of the …c [1, , 1]T , with c = 0, a, or 1. Let P the
orthogonal projection of RN onto V. Also let = −W I P, where I the identity in R .N We apply
P and −I P to =F̃ 0, and write = +x v w, with ∈v V , ∈w W . This decomposition is
unique. Using the facts that Δ and P commute, and that Δ =v 0, =F̃ 0 becomes

+ =Pf v w( ) 0, (A.22)

Δ μ+ − + =w I P f v w( ) ( ) 0. (A.23)

Fix any ∩∈v V I .N We use the implicit function theorem to continue the solution
μ =w( , ) (0, 0) of (A.23) to a solution with μ ≠ 0. Then for μ∣ ∣ sufficiently small there exists

a one-parameter family of solutions μ μ μ=w h v( , ) ( ( ; ), ) of (A.23), where h v( · ; ) is
continuous in μ, with μ μ=h v O( ; ) ( ) as μ → 0 (uniformly in v). The implicit function
theorem also implies that these solutions are the only solutions of (A.23) in a sufficiently
small neighborhood of μ =w( , ) (0, 0) in ×W R. Similar considerations show that the
function h is continuous in v, ∩∀ ∈ ∈v v V I N .

Thus all solutions of μF x˜ ( , ), with = +x v w, ∈v V , ∈w W , and →w 0, μ → 0, must
be of the form μ= +x v h v( , ), with v a solution of

μ μ= + =g v Pf v h v( , ) ( ( ; )) 0, (A.24)

by (A.22).
Suppose that we have a sequence of solutions μ ∈ +v{( , )}n n n Z of μ =g v( , ) 0 with

∩∈v V I N , and μ → 0.n By compactness this sequence has a convergent subsequence.
Denote its limit by v( *, 0). By the continuity of h, and therefore of g, v* must satisfy

= =g v Pf v( *, 0) ( *) 0, hence = = …v v c* [1, , 1] ,r r
T =r 1, 2, 3 with =c 01 , =c a,2

=c 1.3 Applying the implicit function theorem again we check that each of the solutions vr,
=r 1, 2, 3, of =g v( , 0) 0 is continued to a unique branch of solutions of μ =g v( , ) 0, with

μv( , ). Each of these three branches contains all possible solutions of g = 0 sufficiently near
the respective v( , 0),r =r 1, 2, 3. By uniqueness these three local branches are subsets of the
three trivial branches μv( , ),r =r 1, 2, 3, μ > 0, of solutions of =F̃ 0. □
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Appendix B. Proof of comparison statements of section 4 (4.1, 4.3 and 4.4)

Consider a general ODE =z F z˙ ( ) in RK with initial condition z (0), and the corresponding
solution z in the interval T[0, ]. Fix a positive integer >M 1, and let Δ =t T M. Let zM be an
array of +M 1 vectors Δ ∈z m t R( ) ,M K ∈ …m M{0, , }, defined iteratively by

=z z(0) (0),M

Δ Δ Δ Δ+ = + ∈ …( )z m t z m t F z m t t m M(( 1) ) ( ) ( ) , 0, , . (B.1)M M M

(The dependence of Δt on M is not explicit in this notation.) Thus zM is the numerical
trajectory obtained by the first order, explicit Euler method with constant time-step Δ =t T M
over an interval T[0, ]. We recall a standard convergence result for the Euler method (see
e.g. [17]):

Lemma B.1. Consider the ODE =z F z˙ ( ) in RK with initial condition z (0), and assume that
the solution z(t), ∈t T[0, ], exists and is unique. Assume also that F is C1 in R .K For every
integer >M 1 let zM be as in (B.1) with fixed time-step Δ =t T M over the interval T[0, ].
Then

Δ Δ− =
→∞ ∈ …

z m t z m tlim max ( ) ( ) 0, (B.2)
M m M

M

{0, , }

where ∣∣ ∣∣· denotes the norm in RK .

In the following lemma we compare two Euler approximates of either the Zeldovich or
the Fisher equations. We see that they preserve the order of the initial conditions.

Lemma B.2. Let >T 0, and let >M 1 be an integer. Let xM, yM be the Euler
approximations with time-step Δ =t T M over the interval T[0, ] of two trajectories of
either the Zeldovich (9) or the Fisher (8) equations. Assume that <x y(0) (0),M M with x (0),M

y (0)M in [0,1] .N Then Δ Δ<x m t y m t( ) ( ),M M ∀ ∈ …m M{1, , }, provided M is sufficiently
large.

The lemma also implies that the Euler approximations of the Zeldovich and Fisher
equations with initial conditions in [0,1]N stay in [0,1] ,N provided the time-step is small
enough.

The proof below shows that this step size does not depend on the initial conditions, it
only depends on Δ, i.e. the graph, and the functions

α= − = − −f x x x f x x x x( ) (1 ) , ( ) (1 ) ( ) (B.3)F Z

in the equations.

Proof. Consider the first step of the iteration for the Zeldovich equation, starting with two
initial conditions <x y(0) (0)M M in [0,1] .N

We have

Δ Δ

Δ ϵΔ

− = −

+ − + −( ) ( ) ( )
y t x t y x

t y x f y f x

( ) ( ) (0) (0)

(0) (0) (0) (0) .

M M M M

M M
Z

M
Z

M⎡⎣ ⎤⎦
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Examining the components of the Δy t( ),M Δx t( )M we have that for every ∈ …k N{1, , },

Δ Δ Δ ϵ− ⩾ + − + ′ −( )( )( )y t x t t n f x y x( ) ( ) 1 ˜ (0) (0) , (B.4)k
M

k
M

k Z k k
M

k
M⎡⎣ ⎤⎦

where ∈x̃ [0, 1]k , and Δ− =nk k k, .
To maintain the Δ Δ−y t x t( ) ( )k

M
k
M positive it suffices that

Δ ϵ+ − + ′ >
∈

t n f x1 min ( ) 0, (B.5)
x

Zmax
[0,1]

⎛
⎝⎜

⎞
⎠⎟

with = ∈ …n nmax .k N kmax {1, , } This can be achieved for M sufficiently large, and independent

of y (0),M x (0).M

Applying this argument to the case where either =x 0(0) ,M or =y 1(0) ,M both static
solutions of the Zeldovich equation, we then have Δ Δ⩽ < <x t y t0 1( ) ( ) ,M M which also
implies x (0),M ∈y (0) [0,1] .M N We can iterate the argument for all remaining steps, with the
same step size T M. The Fisher case is treated similarly. □

Similarly we compare Euler approximates of the Zeldovich and Fisher equations. We see
that the Fisher approximations propagate faster. The proof also shows that s t i t( ( ), ( )) remains
in τ N for all times.

Lemma B.3. Let >T 0, and let >M 1 be an integer. Let xZ
M, xF

M be the Euler
approximations with time-step Δ =t T M over the interval T[0, ] of the Zeldovich (9) and
Fisher (8) equations respectively. Assume that ⩽x x(0) (0),Z

M
F
M with x (0),Z

M x (0)F
M in

[0,1] .N Then Δ Δ<x m t x m t( ) ( ),Z
M F ∀ ∈ …m M{1, , }, provided M is sufficiently large.

Proof. The argument is similar to the one used for lemma B.2 above and some details are
omitted. Consider the first step of the iteration for the Zeldovich and Fisher equations, starting
with respective initial conditions <x x(0) (0)Z

M
F
M in [0,1] ,N and let fZ, fF denote the

Zeldovich and Fisher nonlinearities respectively. We have

Δ Δ

Δ ϵΔ

− = −

+ − + −( ) ( ) ( )
x t x t x x

t x x f x f x

( ) ( ) (0) (0)

(0) (0) (0) (0) .

F
M

Z
M

F
M

Z
M

F
M

Z
M

F F
M

Z Z
M⎡⎣ ⎤⎦

From

− = −

+ −

( ) ( ) ( ) (
( ) ( )

f x f x f x f x

f x f x

(0) (0) (0) (0)

(0) (0) , (B.6)

F F
M

Z Z
M

F F
M

F Z
M

F Z
M

Z Z
M

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

and

α α− ⩾ − − ∈ ∀ ∈x x x x x x(1 ) (1 ) ( ), (0, 1), [0, 1],

the second expression in (B.6) is a positive vector. Collecting the analogues of the (B.4) for
the components of Δ Δ−x t x t( ) ( )F

M
Z
M we then have

Δ Δ Δ ϵ− ⩾ + − + ′ −
∈

( )x t x t t n f x x x( ) ( ) 1 min ( ) (0) (0) .F
M

Z
M

x
F F

M
Z
M

max
[0,1]

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

We can then take M sufficiently large and independent of the initial conditions so that
Δ Δ⩽ < ⩽x t x t0 1( ) ( ) ,F

M
Z
M and repeat the argument for all steps. □
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Lemma B.4. Let >T 0, and let >M 1 be an integer. Let xM, and s i( , )M M be the Euler
approximations with time-step Δ =t T M over the interval T[0, ] of the Fisher (8) and
Kermack–McKendrick (7) equations respectively. Assume that ⩽i x(0) (0),M M with x (0)M in
[0,1] ,N τ∈s i( (0), (0)) .M M N Then Δ Δ<i m t x m t( ) ( ),M M ∀ ∈ …m M{1, , }, provided M is
sufficiently large. For such M we also have Δ Δ τ∈s m t i m t( ( ), ( )) ,M M N ∀ ∈ …m M{1, , }.

Proof. The argument is similar to the one used for lemmas B.2, and some details are
omitted. Consider the first step of the iteration for the Kermack–McKendrick and Fisher
equations, starting with respective initial conditions x (0)F

M in [0,1] ,N τ∈s i( (0), (0)) .M M N

We have at each site k

Δ Δ

Δ ϵ Δ

γ

− = −

+ −

+ − − +

( )( )
( )

x t i t x i

t x i

x x i s i

( ) ( ) (0) (0)

[ (0) (0)

(0) 1 (0) (0) (0) (0)]. (B.7)

k
M

k
M

k
M

k
M

M M

k

k
M

k
M

k k k
M

By + ⩽s i(0) (0) 1,n
M

n
M we therefore have

− − ⩾ − − −

+ ′ −

( ) ( ) ( )
( )( )

x x i s x x i i

f x x i

(0) 1 (0) (0) (0) (0) 1 (0) (0) 1 (0)

˜ (0) (0) (B.8)

k
M

k
M

k k k
M

k
M

k k
M

F k k
M

k
M

for x̃k in ⊂i x[ (0), (0)] [0, 1].k
M

k
M Then we have

Δ Δ Δ ϵ− ⩾ + − + ′ −
∈

( )i t x t t n f x x i( ) ( ) 1 min ( ) (0) (0) , (B.9)M M

x
F

M M
max

[0,1]

⎡
⎣⎢

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦⎥

and therefore Δ Δ<i t x t( ) ( )M M for M sufficiently large and independent of the initial
conditions.

A similar argument is used to show that Δs t( ),M Δ >i t( ) 0M for M sufficiently large and
independent of the initial conditions, and we omit the details.

By lemma B.2 similarly have Δ ∈x t( ) [0,1]M N for M sufficiently large and independent
of the initial conditions. Finally adding the Euler formulas for Δs t( ),M Δi t( ),M and using
Δ =1 0, we have

Δ Δ

Δ ϵ γ

Δ ϵ

− + = − +

+ − + +

⩾ − − +

(
( ) (

( )
(( )

s t i t s i

t s i i

t d s i

1 1

1

1

( ) ( ) (0) (0)

(0) (0) (0)

1 (0) (0) , (B.10)

M M M M

M M M

M M
max

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

which is positive for M sufficiently large and independent of the initial conditions. We can
then iterate the argument for the remaining steps. □

The fact that the convergence of the approximate solutions xM of the Euler method to the
trajectory x in lemma B.2 preserves the partial order follows from the following.

Let = =
∞g g{ } { }M

M M 1, denote a sequence of arrays (of increasing size +M 1)
= …g g g( , , )M M

M
M

0 of vectors ∈g Rm
M K , = …m M1, , . Let →g g{ }M denote that

− =
→∞ ∈ …

g g m T Mlim max ( ( )) 0, (B.11)
M m M

m
M

{0, , }

where →g T R: [0, ] K , and ∣∣ ∣∣· is the norm in RK .
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Lemma B.5. Consider sequences g{ }M , h{ }M as above satisfying that for all M sufficiently
large we have that <g h ,m

M
m
M ∀ ∈ …m M{0, , }. Suppose also that there exist continuous

functions g, →h T R: [0, ] K for which →g g{ }M , and →h h{ }M respectively. Then
⩽g t h t( ) ( ), ∀ ∈t T[0, ].

Proof. The statement follows from continuity of −h g in T[0, ], since it is easy to see that
− >h t g t( ) ( ) 00 0 for some ∈t T(0, ]0 and the convergence leads to acontradiction. □

We now prove proposition 4.1.

Proof. Combining the comparison of approximate solutions produced by the Euler method
lemma B.2, with the approximation lemmas B.1, B.5 we have that <x y(0) (0) implies

⩽x t y t( ) ( ), ∀ ∈t T[0, ]. To show the strict inequality we use the fact that the evolution can
be also defined uniquely also backwards in time. Thus ⩽x t y t( ) ( ), for some ∈t T(0, ] leads
to a contradiction. □

Propositions 4.3 and 4.4 follow in the same way, but we can not apply the backwards
evolution argument, and do not have strict inequality.
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