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The equations governing nonlinear light beam propagation in nematic liquid crystals form a

ð2þ 1Þ-dimensional system consisting of a nonlinear Schr€odinger-type equation for the electric

¯eld of the wavepacket and an elliptic equation for the reorientational response of the medium.
The latter is \nonlocal" in the sense that it is much wider than the size of the beam. Due to these

nonlocal, nonlinear features, there are no known general solutions of the nematic equations;

hence, approximate methods have been found convenient to analyze nonlinear beam propa-

gation in such media, particularly the approximation of solitary waves as mechanical particles
moving in a potential. We review the use of dynamical equations to analyze solitary wave

propagation in nematic liquid crystals through a number of examples involving their trajectory

control, including comparisons with experimental results from the literature. Finally, we make a

few general remarks on the existence and stability of optically self-localized solutions of the
nematic equations.

Keywords: Nematic liquid crystals; nematicons; solitary waves; variational approximations.

1. Introduction

Nematic liquid crystals (NLC) form an ideal medium for the manipulation and

control of light. There are a number of reasons for this, including their easily

controllable optical properties, for instance, refractive index, and their \huge"
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reorientational nonlinearity, several orders of magnitude greater than the electronic

response of optical glasses.1,2 In particular, the large nonlinearity allows optical

spatial solitary waves, termed nematicons,3,4 to be generated at low powers by a

balance between di®raction and the nonlinear (self-focusing) response of NLC.

At the most basic level, the nondimensional equations governing the propagation

of an extraordinarily-polarized light beam in a birefringent (uniaxial) NLC bulk is

the coupled system3

i
@u

@z
þ 1

2
r2uþ 2�u ¼ 0; ð1Þ

�r2�� 2q� ¼ �2juj2: ð2Þ
Here, u is the (slowly varying) envelope of the electric ¯eld of the light beam and � is

the medium response to it, the extra rotation of the NLC main molecular axes from

the initial orientation �0, with �0 the angle of the beam wave-vector k with respect

to the optic axis n of the medium. The Laplacian r2 is in the ðx; yÞ plane transverse
to the down-cell direction z, i.e., the propagation direction. The parameter q is

proportional to the square of the external electric ¯eld applied along x to pre-orient

the molecular director n in ðx; zÞ, i.e., when n is initially set at �0 ¼ 0 along z, as, e.g.,

in Refs. 3–7. Note that, q ¼ 0 when there is no external electric ¯eld, as in \bias-free"

con¯gurations with n arranged with �0 6¼ �=2 and �0 6¼ 0 in the principal plane

ðy; zÞ.2,8–11 The parameter � measures the elastic response of the NLC and is large,

typically � ¼ Oð100Þ, in most experimental conditions.12,13 The electric ¯eld equa-

tion (1) is a nonlinear Schr€odinger (NLS) type equation and the NLC response

equation (2) is a linear elliptic equation. The solution of the elliptic equation depends

on u in the whole domain, implying that the medium responds \nonlocally." In

principle, it could be solved through the use of a Green's function so that � would be

given by an integral of juj, but as the Green's function kernel is the modi¯ed Bessel

function K0, this is not useful.

The system (1) and (2) supports optical solitary wave solutions, nematicons,3 but

there are no known general analytical solutions for it, even in ð1þ 1ÞD, except

isolated solutions for ¯xed parameter values.14 While numerical methods can always

be used to solve them, they tend to provide limited insight into the physics behind

nematicons, their behavior and interactions. In this regard, it was realized that since

solitons under interaction behave as particles,15 hence their name, their propagation

can be asymptotically modeled as mechanical particles moving in a potential well.16

This approximation is useful for studying optical solitary waves in various nonlinear

media,17 including nematic liquid crystals.18–21 Furthermore, it gives results in ex-

cellent agreement with experiments on nematicons in nonuniform samples.10,11,22 In

these comparisons beam propagation is modeled by the motion of a particle, whose

\mass" is the beam power, in a potential induced by the change in the background

director orientation (i.e., refractive index) of the nematic liquid crystal. A general

review of such mechanical analogies for optical solitary waves can be found in Ref. 23.
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This paper is an overview and compilation of recent work on using mechanical

analogies when modeling optical solitary wave propagation in reorientational ne-

matic liquid crystals. The equations governing beam propagation in nonlocal non-

linear NLC are introduced and set into suitable forms for a mechanical analysis.

Some examples are discussed to prove their utility for analyzing experimental results,

emphasizing their power and capacity for accurate predictions. It is also shown that,

under the mechanical approximation, the propagation of interacting nematicons

with angular momentum is governed by equations similar to those for gravitating

masses, albeit with a more involved potential than Newtonian. The ¯nal two sections

present theoretical considerations on existence and stability of NLC solitary waves in

the presence of and due to nonlocality and saturation of the nonlinear response.

2. Optical Spatial Solitary Waves in NLC: Nematicons

The nondimensional equations (1) and (2) govern nonlinear light propagation in

nematic liquid crystals in the perturbative regime (i.e., small nonlinear changes in

orientation, consistent with the milliwatt powers typically employed in experi-

ments). In the local limit � ! 0 these equations reduce to the NLS equation

i
@u

@z
þ 1

2
r2uþ 2

q
juj2u ¼ 0: ð3Þ

In ð1þ 1Þ dimensions this equation is completely integrable via the method of inverse

scattering,15,24 so in principle its solution is known in general. In ð2þ 1Þ dimensions,

which is the usual experimental regime, beam type initial conditions yield either

catastrophic collapse in ¯nite z if the beam power is above a critical level, or decay to

di®ractive radiation below this critical value.25 However, the normal regime for

nematicons is the nonlocal limit with � ¼ Oð100Þ,12,13 so that the width of the me-

dium response is much larger than the size of the optical forcing.26–29 This nonlocal

response stabilizes ð2þ 1Þ-dimensional beams3,4,6,7,30,31 as the NLS-type propagation

equation (1) is coupled to the NLC response (2). The elliptic nature of the latter

means that its solution depends on the entire domain (NLC cell), the mathematical

equivalent of the physical concept of a nonlocal response. As the system (1) and (2) is

coupled, to date no general solutions have been obtained for it, in particular, no

nematicon solutions. In this regard, although a soliton is a particular type of solitary

wave, the terms solitary wave and soliton are not strictly interchangeable, because

solitons are governed by a nonlinear dispersive wave equation which is exactly in-

tegrable15,24 and therefore, interact \cleanly" without modi¯cations, whereas generic

solitary waves can change shape on collision. The only known solitary wave solutions

of (1) and (2) are isolated solutions for ¯xed parameter values.14

Let us seek nematicon solutions of the NLC equations (1) and (2) in ð1þ 1Þ
dimensions, by setting

u ¼ fðxÞei�z; � ¼ gðxÞ; ð4Þ

Mechanical analogies for nonlinear light beams in nonlocal nematic liquid crystals
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where f is real. The system then reduces to

d2f

dx2
þ 4gf � 2�f ¼ 0;

d2g

dx2
þ 2

�
f2 � 2q

�
g ¼ 0: ð5Þ

Isolated nematicons in ð1þ 1ÞD can be found by noting that, for g ¼ f=
ffiffiffiffiffi
2�

p
and

� ¼ q=�, these two equations become identical, with solution14

u ¼ 3q

2
ffiffiffiffiffi
2�

p sech2
ffiffiffiffiffiffi
q

2�

r
x

� �
eiqz=�; � ¼ 3q

4�
sech2

ffiffiffiffiffiffi
q

2�

r
x

� �
: ð6Þ

This exact solution is unexpected as it has the sech2 pro¯le of the Korteweg–de Vries

(KdV) solitons,15 rather than the sech pro¯le of NLS solitons. Unfortunately, in the

nonlocal regime with � large, this nematicon has a small amplitude and is of limited

use. In addition, it has ¯xed amplitude and width and is expressed in terms of the

parameters of the NLC system (1) and (2). So it is not a general solitary wave

solution of arbitrary amplitude, with the latter determining the width.

This derivation of an isolated, exact nematicon solution ��� by forcing the electric

¯eld and director equations to be the same ��� can be extended to ð2þ 1ÞD by

seeking nematicons of Eqs. (1) and (2) of the form

u ¼ fðrÞei�z and � ¼ 1

2
ffiffiffiffiffi
2�

p fðrÞ þ �

2
; ð7Þ

with r2 ¼ x2 þ y2 the polar distance. We note that, in order to obtain an exact

solution, the director reorientation � does not vanish as r ! 1, in contrast to ð1þ 1Þ
dimensions. The electric ¯eld and director equations then become the ordinary dif-

ferential equation

frr þ
fr
r
þ 2ffiffiffiffiffi

2�
p f2 ¼ 0: ð8Þ

This is the well-known Lane–Emden equation of the second kind for a cylindrically

symmetric self-gravitating °uid of index two governed by Newtonian gravitation.32

It can also be reduced to Abel's equation33 via a change of variables. We can in-

troduce t ¼ ln r,

fðrÞ ¼ � ln r

r2
ð9Þ

and �0 ¼ �ð�Þ, to obtain Abel's equation for the variable �

�
d�

d�
� 4�þ 4�þ 2ffiffiffiffiffi

2�
p �2 ¼ 0: ð10Þ

This classical di®erential equation has been recently solved,34,35 so that, in principle,

there is an (isolated) nematicon solution in ð2þ 1ÞD. However, the exact solution of

Abel's equation is highly involved and of little practical utility, as discussed in

Refs. 34 and 35 with more details in Ref. 14. There is therefore a lack of solitary wave

solutions on which to base the mathematical modeling of nematicons, particularly in
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nonhomogeneous samples. In the absence of exact solutions, most of the study of

nematicons and other nonlinear beams in NLC has been through numerical solu-

tions,3,4 with much of the analytical modeling based on approximations, such as

variational methods.4,23,36 One alternative to these numerical and variational

methods is to treat nematicons as mechanical particles in a potential. These me-

chanical approximations date back to the beginnings of soliton theory16 and have

proven to be valuable, particularly for solitary waves in modulated media.37–39 Their

application in nematic liquid crystals will now be illustrated.

An alternative approach, based on ideas from Hamiltonian mechanics and leading

to abstract existence results for solitary waves and information on their stability and

power thresholds, will be discussed in Sec. 5. These theoretical results can comple-

ment the approximate methods and provide additional insights.

3. Nematicons in a Potential

To introduce the ideas and approximations behind treating evolving nematicons as

mechanical particles in a potential well, we shall consider the simple case of a

nematicon undergoing refraction/bending in a sample with a nonhomogeneous di-

rector orientation, the latter supplying the equivalent of a mechanical potential.

Two limiting cases will be considered, the director orientation varying either in a

direction cross-wise to the one down the cell (z) or in the down-cell direction z,

respectively.

Let us examine the propagation of a linearly polarized light beam with wave-

number k in a bias-free cell containing nematic liquid crystals perfectly oriented

along n. The direction down the cell is Z, the input wavevector k is parallel to Z and

the polarization of the electric ¯eld of the beam EY is along Y , with X completing

the coordinate triad. We set  to be the total (linear and nonlinear) orientation

angle the NLC director n makes with Z. In the paraxial, slowly varying envelope

approximation, the electric ¯eld EY is governed by the nonlinear Schr€odinger-type

equation3

2ikne

@EY

@Z
þ 2ikne�ð Þ @EY

@Y
þr2EY þ k2ðn2

?cos2 þ n2
jjsin

2 

� n2
?cos2 �0 � n2

jjsin
2 �0ÞEY ¼ 0 ð11Þ

with the medium response governed by the elliptic equation

Kr2 þ 1

4
�0��jEY j2 sin 2 ¼ 0: ð12Þ

Here, the Laplacian r2 is in the plane ðX;Y Þ orthogonal to the propagation di-

rection Z; the refractive indices njj and n? are the eigenvalues for light polarized

parallel and perpendicular to the optic axis n, respectively; the optical anisotropy is

�� ¼ n2
jj � n2

? > 0; �0 is the initial orientation of n in the plane ðY ;ZÞ with respect

to Z at rest, in the absence of the beam; the refractive index ne determining the

Mechanical analogies for nonlinear light beams in nonlocal nematic liquid crystals
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phase velocity of extraordinary waves is

n2
eð Þ ¼

n2
?n

2
jj

n2
jjcos

2 þ n2
?sin2 

: ð13Þ

The coe±cient � is related to the birefringent walk-o® angle � of extraordinary

waves with the Poynting vector and wave vector in the plane ðY ;ZÞ, with

� ¼ tan �. It is given by

�ð Þ ¼ �� sin 2 

��þ 2n2
? þ�� cos 2 

: ð14Þ

In the medium response equation (12), the single elastic constant approximation has

been introduced, so that the elastic constants for molecular splay, bend and twist

are assumed equal and given by K.40

The nematic equations (11) and (12) are highly nonlinear and coupled, so they are

di±cult to analyze analytically. However, in most experiments in purely dielectric

NLC (without dopants), milliwatt power beams are typically employed and thermal

e®ects can be neglected3,4 (for the interplay between thermal and reorientational

e®ects in dye-doped NLC see Refs. 9, 41–43). In this limit, the optically induced

reorientation � is small compared with the rest angle �0. To allow for a variation of

the background orientation �0 in y and z, we set �0 ¼ ��0 þ �b, where ��0 denotes the

mean of the background distribution. We further assume that the total variation of

the background angle and its rate of change are small, j�j; j�bj � ��0. The total di-

rector angle in the presence of the light beam is then  ¼ ��0 þ �b þ �, and the ne-

matic equations (11) and (12) can be simpli¯ed using Taylor series for the

trigonometric functions. As well as linearizing the trigonometric functions, the

equations can be nondimensionalized in the space variables X, Y and Z and electric

¯eld u with

X ¼ Wx; Y ¼ Wy; Z ¼ Bz; EY ¼ Au: ð15Þ
Suitable scalings are

W ¼ 	

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�� sin 2��0

p ; B ¼ 2ne	

��� sin 2��0
; A2 ¼ 2P0

��W 2
b

; � ¼ 1

2
�0cne ð16Þ

for a Gaussian input beam of power P0, width Wb and wavelength 	 ¼ 2�=k.12 With

these dimensionless variables, the nematic equations (11) and (12) become

i
@u

@z
þ i
��ð��0 þ �bÞ

@u

@y
þ 1

2
r2uþ 2 �b þ �ð Þu ¼ 0; ð17Þ

�r2� ¼ �2juj2; ð18Þ
and the nondimensional elasticity � and the walk-o® factor 
� are given by


� ¼ 2neffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�� sin 2��0

p and � ¼ 8K

�0��A2W 2 sin 2��0
: ð19Þ

G. Assanto, P. Panayotaros & N. F. Smyth
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While the low-power assumption simpli¯es the model, the low-power nematic

equations (17) and (18) are still nonlinear, coupled and ð2þ 1Þ-dimensional. For

these reasons they have no known analytical solitary wave solutions, with the ex-

ception of isolated solutions for ¯xed parameter values in a homogeneous medium

(that is with �b ¼ 0).14 However, a detailed knowledge of a nematicon pro¯le is not

needed if only its trajectory is required,10,11,19,22,44 because the medium is highly

nonlocal,3 with � ¼ Oð100Þ.10,12,13,22 The NLC then forms a wide potential well

which largely traps any radiation shed by a nematicon as it evolves, so that it reaches

a steady state on a very long z scale. Since a typical NLC cell is of length �1mm, the

trajectory of a nematicon in an experiment is little a®ected by shed di®ractive ra-

diation. This deduction will be veri¯ed in detail below, when mechanical equations

for nematicon trajectories in a nonuniform sample are obtained.

Let us now derive mechanical equations for the trajectory of a nematicon prop-

agating through a sample with nonuniform background orientation. The simplest

approach is a Lagrangian formulation of Eqs. (17) and (18), noting that N€other's

theorem relates conservation equations to a Lagrangian formulation. The system

(17) and (18) has the Lagrangian

L ¼ iðu�uz � uu�
zÞ þ i
��ð��0 þ �bÞðu�uy � uu�

yÞ � jruj2 þ 4ð�b þ �Þjuj2 � �jr�j2;
ð20Þ

where the � superscript denotes the complex conjugate and subscripts denote deri-

vatives. We make no assumptions on the beam pro¯le and the NLC response, and

take the general forms for the electric ¯eld u and the all-optical reorientation � to be

u ¼ afeð�Þei�þiV ðy��Þ and � ¼ �fdð
Þ; ð21Þ
where

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ ðy� �Þ2

p
w

; 
 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ ðy� �Þ2

p
�

: ð22Þ

Here, fe and fd are the unknown pro¯les of the electric ¯eld and director distribution,

respectively. In these solutions, V and � play the role of the velocity and position of

the nematicon as a mechanical equivalent. Substituting the pro¯les (21) into the

Lagrangian (22) and averaging by integrating in x and y from �1 to 1 gives the

averaged Lagrangian15

L ¼ �2S2ð�0 � V �0Þa2w2 � S22a
2 � S2ðV 2 þ 2VF1 � 4F Þa2w2

þ �a2w2Sm � 4�S42�
2; ð23Þ

where primes denote di®erentiation with respect to z. Here, F and F1, determining

the beam trajectory, are expressed by

Fð�Þ ¼

Z 1

�1

Z 1

�1
�bf

2
e dxdyZ 1

�1

Z 1

�1
f 2
e dxdy

; ð24Þ

Mechanical analogies for nonlinear light beams in nonlocal nematic liquid crystals
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F1ð�Þ ¼

Z 1

�1

Z 1

�1

��ð��0 þ �bÞf 2

e dxdyZ 1

�1

Z 1

�1
f 2
e dxdy

: ð25Þ

Finally, the integrals S2, Sm, S22 and S42 appearing in Eq. (23) are

S2 ¼
Z 1

0

�f 2
e ð�Þd�; S22 ¼

Z 1

0

�f 02
e ð�Þd�; Sm ¼

Z 1

0

fdðw�=�Þf 2
e ð�Þd�;

S42 ¼
1

4

Z 1

0

�
d

d�
fdð�Þ

� �
2

d�:

ð26Þ

Despite the fact that these integrals cannot be explicitly determined without

knowing the pro¯les fe and fd, it will be found that their values are not needed.

The mechanical equations for the nematicon in the nonuniform medium are found

as variational equations of the averaged Lagrangian (23). As we are only interested

in the trajectory, we take variations with respect to � and V and obtain the modu-

lation equations

d

dz
a2w2V ¼ 2

dF

d�
� V

dF1

d�

� �
a2w2; ð27Þ

d�

dz
¼ V þ F1; ð28Þ

which determine the trajectory. Equation (27) is Newton's second law for the beam,

equivalent to the equation for a mechanical particle with mass a2w2 and velocity V

acted on by a force F ¼ ð2F � VF1Þa2w2. However, unlike Newtonian mechanics, the

force depends explicitly on the \mass" and velocity of the particle (beam),18,20,45 and

is signi¯cant when the interaction of nematicons is considered, see Sec. 4. Since the

momentum equation (27) contains the beam power a2w2, in principle we need to

know the beam pro¯le. However, due to the large nonlocality �, the beam sheds little

radiation as it evolves and its power is conserved to an excellent approximation.

Hence, (27) becomes

dV

dz
¼ 2

dF

d�
� V

dF1

d�
: ð29Þ

The integrals F and F1 in Eq. (29) still contain the unknown electric ¯eld pro¯le

fe. However, ��0 is a constant and, in addition, �b is slowly varying relative to the

width of the beam, typically � 0b � 0:002 rad/
m10,22; so, a typical length scale for the

variation of the background orientation is 500
m, while the typical beam size is a

few 
m. With these slowly varying assumptions, the trajectory integrals F and F1

can be approximated by

F ð�Þ � �bð�Þ;
F1ð�Þ � 
��ð��0 þ �bð�ÞÞ ¼ 
��ð��0Þ þ 
��

0ð��0Þ�bð�Þ þ � � �
ð30Þ

G. Assanto, P. Panayotaros & N. F. Smyth
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The trajectory equations (28) and (29) then reduce to the simple form

dV

dz
¼ ð2� V 
��

0ð��0ÞÞ� 0bð�Þ; ð31Þ
d�

dz
¼ V þ 
��ð��0Þ þ 
��

0ð��0Þ�bð�Þ: ð32Þ

Let us now compare solutions of the mechanical equations (31) and (32) with

recent experimental results.10 In these measurements, a linear variation in the

background director orientation was imposed across the NLC sample in the y di-

rection. We take the angles at the two ends of the sample to be �i at y ¼ 0 and �L at

y ¼ L for a cell of (dimensionless) width L, so that

�� ¼ 1

2
ð�i þ �LÞ; �bðyÞ ¼

�L � �i
L

yþ 1

2
ð�i � �LÞ: ð33Þ

For such a linear variation, the momentum equations (28) and (29) have the exact

solution

� ¼ �0 þ
1þ 
 2

��
0ð��0Þ�ð��0Þ


 2
��

02ð��0Þ� 0b

� �
e
��

0ð��0Þ� 0
bz � 2þ 
 2

��
0ð��0Þ�ð��0Þ


 2
��

02ð��0Þ� 0b
þ 1


 2
��

02ð��0Þ� 0b
e�
��0ð��0Þ� 0

bz ð34Þ

as � 0b is a constant, where �0 is the input position of the beam.

Representative comparisons between the predictions of the mechanical equations

(31) and (32) (with solution (34)) and experimental results from10 are shown in

Fig. 1. Clearly, the mechanical equations yield trajectories in near perfect agreement

with the measured ones. References 10 and 22 provide more extensive comparisons

Fig. 1. Nematicon trajectories in an NLC sample nonuniform in the transverse Y direction. The back-

ground angle varies linearly from �0 ¼ 90� at Y ¼ 0
m to �0 ¼ 0� at Y ¼ 600
m. Experimental data:

symbols; dynamical equations: lines. The input beam is a 2mW Gaussian beam of waist 3
m and
wavelength 1.064
m. Results from Ref. 10.

Mechanical analogies for nonlinear light beams in nonlocal nematic liquid crystals
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between solutions of (31) and (32), experimental data and numerical solutions of the

full nematic equations, with excellent matches in all cases. These comparisons il-

lustrate the power of the mechanical analogy for nematicon evolution. The me-

chanical equations (31) and (32), which are forms of Newton's second law, are a gross

simpli¯cation of the full nematic set (11) and (12). At variance with numerical

solutions of the full nematic equations, which require signi¯cant computational

power,22 the mechanical equations (31) and (32) model, in a highly condensed form,

the interaction/evolution of the beam with/in the varying background orientation, a

type of insight hardly obtainable from numerical data.

The power of mechanical analogies will be further illustrated by extending the

analysis above to nematicon bending in the presence of a background orientation

modulated along Z.11

The sample and beam set-up are as in the previous example of Y -dependent

director orientation. We now take the director angle at the beginning of the cell to be

�0ð0Þ and the extra Z-dependent orientation change down the sample length to be

�bðZÞ. We assume again that the all-optical reorientation � is much smaller than the

imposed background. The nematic equations (11) and (12) become

2ikne

@EY

@Z
þ 2ikne�ð�0ð0Þ þ �bÞ

@EY

@Y
þr2EY þ k2n2

?½cos2ð�0ð0Þ þ �bÞ
� cos2�0ð0Þ�EY þ k2n2

jj ½sin2ð�0ð0Þ þ �bÞ � sin2�0ð0Þ�EY

þ k2�� sin 2ð�0ð0Þ þ �bÞ�EY ¼ 0; ð35Þ

Kr2�þ 1

4
�0��jEY j2 sin 2ð�0ð0Þ þ �bÞ ¼ 0 ð36Þ

on expanding the trigonometric functions in Taylor series for j�j � j�0ð0Þ þ �bj. As

the angular variation only depends on the time-like variable Z, the electric ¯eld

equation (35) can be further simpli¯ed using the phase transformation

EY ¼ ~EY � exp
ik

2ne

Z Z

0

½n2
?ðcos2ð�0ð0Þ þ �bðZÞÞ � cos2�0ð0ÞÞ

�

þ n2
jj ðsin2ð�0ð0Þ þ �bðZÞÞ � sin2�0ð0ÞÞ�dZ

�
: ð37Þ

After this, the dimensional nematic equations become

2ikne

@ ~EY

@Z
þ 2ikne�ð�0ð0Þ þ �bÞ

@ ~EY

@Y
þr2 ~EY þ k2�� sin 2ð�0ð0Þ þ �bÞ� ~EY ¼ 0;

ð38Þ

Kr2�þ 1

4
�0��j ~EY j2 sin 2ð�0ð0Þ þ �bðZÞÞ ¼ 0: ð39Þ

As for the Y -dependent variation, it is easiest for subsequent analysis that the ne-

matic equations are set in nondimensional form using the scalings W for the

G. Assanto, P. Panayotaros & N. F. Smyth
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transverse directions, D for the longitudinal direction and E for the electric ¯eld:

X ¼ Wx; Y ¼ Wy; Z ¼ Dz; ~EY ¼ Eu: ð40Þ

Suitable scalings are, as before,

W ¼ 	

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�� sin 2�0ð0Þ

p ; D ¼ 2ne	

��� sin 2�0ð0Þ
; E2 ¼ 2P0

��W 2
b

: ð41Þ

Hence, the ¯nal nondimensional form of the nematic equations with the imposed

Z-modulated orientation is

i
@u

@z
þ i
��ð�0ð0Þ þ �bðzÞÞ

@u

@y
þ 1

2
r2uþ 2

sin 2ð�0ð0Þ þ �bðzÞÞ
sin 2�0ð0Þ

�u ¼ 0; ð42Þ

�r2�þ 2
sin 2ð�0ð0Þ þ �bðzÞÞ

sin 2�0ð0Þ
juj2 ¼ 0; ð43Þ

with the Laplacian r2 in the transverse variables ðx; yÞ. The walko® parameter 
�
and the dimensionless elasticity � are


� ¼ 2neffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�� sin 2�0ð0Þ

p and � ¼ 8K

�0��E2W2 sin 2�0ð0Þ
: ð44Þ

There is no need to additionally assume that the extra imposed variation �bðzÞ is

small, as was done for the y-dependent case, because the mechanical equations

derived below can be solved regardless.

Similar to the Y variation, mechanical equations for the trajectory can be derived

from the Lagrangian formulation of Eqs. (42) and (43). The pertinent Lagrangian is

L ¼ iðu�uz � uu �
zÞ þ i
��ð�0ð0Þ þ �bðzÞÞðu�uy � uu�

yÞ

� jruj2 þ 4
sin 2ð�0ð0Þ þ �bðzÞÞ

sin 2�0ð0Þ
�juj2 � �jr�j2: ð45Þ

To obtain the mechanical equations for the beam, this Lagrangian is averaged using

the forms (21) with no assumptions on the actual beam and director distribution

pro¯les. The averaged Lagrangian is found as

L ¼ �2S2ð�0 � V �0Þa2w2 � S22a
2 � S2½V 2 þ 2V 
��ð�0ð0Þ þ �bðzÞÞ�a2w2

þ 4
sin 2ð�0ð0Þ þ �bðzÞÞ

sin 2�0ð0Þ
�a2w2Sm � 4�S42�

2; ð46Þ

where the integrals Si and Si;j are given by (26). Taking variations of the averaged

Lagrangian (46) with respect to V and � we obtain the mechanical equations,

equivalent to Newton's second law, as

dV

dz
¼ 0; ð47Þ

Mechanical analogies for nonlinear light beams in nonlocal nematic liquid crystals
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d�

dz
¼ V þ 
��ð�0ð0Þ þ �bðzÞÞ; ð48Þ

which determine the beam trajectory. Since z is a time-like variable, there is no

change in the velocity of the beam (no refraction). As for the previous example, we

assumed that the beam power is constant, so that a2w2 can be factored out of the

primitive form of Eq. (47), d=dzða2w2V Þ ¼ 0.

Considering the experimental report in Ref. 11 with a linear variation �bðzÞ on

½0;Ln� and �bðLnÞ ¼ �r, we have

�bðzÞ ¼ mz; m ¼ �r � �0ð0Þ
Ln

: ð49Þ

With this background modulation, the position equation (48) has the solution

� ¼ �0 þ Vz� 
�
2m

ln
��þ 2n2

? þ�� cos 2ð�0ð0Þ þmzÞ
��þ 2n2

? þ�� cos 2�0ð0Þ
: ð50Þ

Figure 2 shows comparisons, similar to Fig. 1, of the measured nematicon tra-

jectories of Ref. 11 and the predictions of the mechanical equations (47) and (48): the

agreement is excellent, as above. The experimental results show that the nematicon

trajectory is nearly independent of the beam power, as predicted by the mechanical

equations. This observation validates the assumed conservation of beam power down

the cell, which allowed us to neglect the variation of a2w2, leading to the velocity

equation (47).

Fig. 2. (Color online) Nematicon trajectories in an NLC sample with orientation modulated in the

propagation direction Z. The background angle varies linearly from �0 ¼ 45� at Z ¼ 0
m to �0 ¼ �45� at
Z ¼ 1000
m. Experimental data: symbols; dynamical equations: green line. The input beam is of waist
3
m and wavelength 1:064
m, with the powers as indicated. Results from Ref. 11.
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4. Kepler Nematicons

The previous examples on modeling nematicon propagation in nonuniform NLC

using simple mechanical analogies can be extended to more complicated cases, such

as those involving the interaction of nematicons. We consider NLC homogeneously

oriented at �0 relative to the down-cell direction z and, for mathematical simplicity,

also assume that this background orientation is due to a voltage applied across the

cell, with the low-frequency electric ¯eld across x as the polarization of the input

beams. We model the incoherent interaction of two extraordinarily co-polarized

beams (of possibly di®erent wavelengths) launched into the cell along z and self-

con¯ned through reorientation in the principal plane ðx; zÞ. The nondimensional

equations governing the propagation and interaction of these two beams are then46

i
@u

@z
þ 1

2
r2uþ 2u� ¼ 0; ð51Þ

i
@v

@z
þ 1

2
r2vþ 2v� ¼ 0; ð52Þ
�r2�� 2q� ¼ �2juj2 � 2jvj2: ð53Þ

Here, u and v are the complex valued envelopes of the electric ¯elds of the beams and

� is the optically induced reorientation above the background �0, with q proportional

to the square of the electric ¯eld of the voltage imposing �0. If the beams have distinct

colors, the coe±cients of the Laplacians r2u and r2v are di®erent. However, for the

experimental case of near-infrared and visible beams as in Ref. 46, these coe±cients

di®er by no more than a few percent and can be taken equal.

We construct a particle model for the interaction of the two beams, mediated by

the medium nonlocality, which allows the beams to interact even if physically non-

overlapping. As in the previous section, these mechanical equations are most easily

derived from a Lagrangian formulation. The two-color nematicon equations

(51)–(53) have the Lagrangian

L ¼ iðu�uz � uu�
zÞ � jruj2 þ 4�juj2 þ iðv�vz � vv �

zÞ
� jrvj2 þ 4�jvj2 � �jr�j2 � 2q�2: ð54Þ

It was noted in Sec. 2 that there are no known general nematicon solutions for a

single beam propagating in a uniform cell. So, we take the general pro¯les

u ¼ aufu
�u
wu

� �
ei�uþiUuðx��uÞþiVuðy��uÞ; v ¼ avfv

�v
wv

� �
ei�vþiUvðx��vÞþiVvðy��vÞ;

� ¼ �ugu
�u
�u

� �
þ �vgv

�v
�v

� � ð55Þ

for the beams and the NLC response. Here,

�u ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� �uÞ2 þ ðy� �uÞ2

q
; �v ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� �vÞ2 þ ðy� �vÞ2

q
: ð56Þ

Mechanical analogies for nonlinear light beams in nonlocal nematic liquid crystals
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The u beam has position ð�u; �uÞ and velocity ðUu;VuÞ and the v beam has position

ð�v; �vÞ and velocity ðUv;VvÞ. The two beams have angular momentum and, owing to

their attractive interaction through the NLC, they can orbit about each other.18,47–49

At this point, the high nonlocality allows us to deduce that the beams shed

di®ractive radiation on a very long z scale as they evolve.19 Therefore, the

mechanical equations governing them, essentially momentum equations, can be

found from the (averaged) Lagrangian without modeling the beams' amplitude and

width evolutions as the respective total powers a2
uw

2
u and a 2

vw
2
v are essentially

conserved.

We substitute the pro¯les (55) into the Lagrangian (54) and average by inte-

grating in x and y from �1 to 1 to result in an averaged Lagrangian L.15 This

averaging process yields various integrals of the beam pro¯les. While in the previous

Sec. 3 these integrals did not arise in the resulting variational (mechanical) equa-

tions, here some of them encode the interaction potential between the beams. These

involve products of the individual beam pro¯les and come from the terms �juj2,
�jvj2, jr�j2 and �2 in the Lagrangian (54). For these integrals, assumptions about

the beam pro¯les are required and, consistent with the basic hypothesis that dif-

fractive losses can be neglected, we consider that they retain their input Gaussian

pro¯les, i.e.,

fuðrÞ ¼ fvðrÞ ¼ e�r2 : ð57Þ

With the assumption (57), the interaction integrals in the averaged Lagrangian

are
Z 1

�1

Z 1

�1
�juj2dxdy ¼ �ua

2
uw

2
uI12u þ

�va
2
u�

2
vw

2
u

2ðw2
u þ 2� 2

vÞ
e��2=ðw

2
uþ2� 2

vÞ;

Z 1

�1

Z 1

�1
�jvj2dxdy ¼ �va

2
vw

2
vI12v þ

�ua
2
v�

2
uw

2
v

2ðw2
v þ 2� 2

uÞ
e��2=ðw

2
vþ2� 2

uÞ;

Z 1

�1

Z 1

�1
jr�j2dxdy ¼ Idpu�

2
u þ Idpv�

2
v þ

2�u�v�
3
u�

3
v

ð� 2
u þ � 2

vÞ2
1� �2

� 2
u þ � 2

v

� �
e��2=ð�

2
uþ� 2

vÞ;

Z 1

�1

Z 1

�1
�2dxdy ¼ Idu2�

2
u�

2
u þ Id2v�

2
v�

2
v þ

�u�v�
2
u�

2
v

� 2
u þ � 2

v

e��2=ð�
2
uþ� 2

vÞ:

ð58Þ
The separation � between the beams is given by

�2 ¼ ð�u � �vÞ2 þ ð�u � �vÞ2: ð59Þ

\eqno{\rm (59)}\eqno{\rm (61)}Taking variations of the averaged Lagrangian (61) with respect to the velocities

ðUu;VuÞ, ðUv;VvÞ and positions ð�u; �uÞ, ð�v; �vÞ results in the mechanical equations

for the two interacting nematicons. To emphasize this connection with mechanics

and Newtonian gravitation, we introduce the vector positions of the two nematicons
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»u ¼ ð�u; �uÞ and »v ¼ ð�v; �vÞ, their vector velocities Vu ¼ ðUu;VuÞ and Vv ¼
ðUv;VvÞ and their relative displacement ½ by

½ ¼ »u � »v: ð64Þ
Similarly, we can de¯ne the \masses" Mu and Mv (beam powers) by

Mu ¼ 2I2ua
2
uw

2
u; Mv ¼ 2I2va

2
vw

2
v: ð65Þ

Taking variations of the averaged Lagrangian (61) with respect to �u, �v, �u, �v, Uu,

Uv, Vu and Vv results in the modulation equations

d

dz
MuVu ¼ � @P

@�u
;
@P
@�u

� �
;

d

dz
MvVv ¼ � @P

@�v
;
@P
@�v

� �
ð66Þ

and

d»u
dz

¼ Vu;
d»v
dz

¼ Vv ð67Þ

for the two trajectories. It is apparent that these are just Newton's second law cast in

terms of equivalent mechanical variables for the nematicons.

These mechanical equations for two interacting nematicons have a close con-

nection with those for the two-body problem from Newtonian gravitation. This can

be seen by transforming them into the standard center-of-mass form for the New-

tonian Kepler problem. The \center of mass" of the nematicons can be de¯ned as

R ¼ Mu»u þMv»v
Mu þMv

: ð68Þ

In this center-of-mass system, the distance from the origin � is de¯ned in (59) and the

polar angle is �. Therefore, the system of the two nematicons conserves the angular

momentum Lm, with

Lm ¼ �2
d�

dz
: ð69Þ

In the center-of-mass coordinates, the mechanical equations (66) and (67) become

d2R

dz2
¼ 0 and

d2�

dz2
� L2

m�
�3 ¼ �Mu þMv

MuMv

@P
@�

: ð70Þ

Here, MuMv=ðMu þMvÞ is the \reduced mass" of the system. These are just the

standard equations for the Newtonian two-body Kepler problem50 with the two

interacting nematicons resembling two gravitational masses. The equivalent poten-

tial (63) has a region of attraction and a minimum, so that there exists a stable orbit

for the two nematicons. However, there are fundamental di®erences between the

interaction of two nematicons and of two masses under Newtonian gravitation.

Newton's law of gravitation has the force proportional to the product of the two

masses, and potential P ¼ �GMuMv=�. In contrast, the beam parameters and ��� in

particular ��� the \masses" (65) are tied in to the mechanical momentum equations
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(66) in a nontrivial manner through the potential P (63), so that the interaction of

the nematicons depends in a complicated manner on their parameters (masses),

unlike on just the reduced mass as in Newtonian gravitation. Finally, most obviously,

the nematicon potential (63) is not the inverse separation potential of Newtonian

gravitation, and has both regions of attraction and of repulsion. So, while the in-

teraction of the two nematicons has great similarity to the interaction of two

gravitating masses, the actual details are much more involved and the analogy is not

complete.

The analogy between interacting nematicons and gravitating masses can be taken

further. Among the many exact solutions for gravitating masses, including more than

two masses,51 a classical example is the Lagrange solution for three gravitating

masses, for which the con¯guration is an equilateral triangle. This can be extended to

three interacting nematicons, see Ref. 45 for full details. However, due to the form of

the nematic potential pinpointed above as compared with the gravitational poten-

tial, the equivalent three-nematicon solution does not form an equilateral triangle,

but a triangle whose side lengths depend on the individual nematicon powers and the

speci¯c parameters in the nematic equations (1) and (2). In addition to the two-body

and Lagrange solutions, additional exact gravitation solutions include \¯gure-8"

solutions, as well, but their extension to nematicons is an open question. This is

harder because, while the masses in the ¯gure-8 gravitation solution do not collide,

this cannot be guaranteed for the nematicon equivalent, due to the more involved

potential. Nevertheless, in the light beam case, this is not a reason for the solution to

be invalid.

The predictions of the mechanical system (66) and (67) can be compared with

numerical solutions of the nematic equations (51)–(53). The latter are solved using a

pseudo-spectral method based on the original work in Ref. 52 and extended in Ref. 53

to enhance its stability. The spatial derivatives in ðx; yÞ are evaluated using the Fast

Fourier Transform and the beam is propagated in z using the fourth-order Runge–

Kutta scheme.

Note that the potential (63) depends on the beam amplitudes and widths au; av
and wu;wv and the director (distribution) amplitudes and widths �u; �v and �u; �v.

Consistent with the assumption used to derive the mechanical equations (66) and

(67), the beam amplitudes and widths can be taken to retain their input values.

However, the amplitudes and widths of the director reorientation are not indepen-

dent, but determined by the beam through Eq. (53); hence, the director response, or

to be more precise an approximation to it, is needed and will be obtained using a

variational approximation. As in experiments, we take the input to be Gaussian, so

both beam and director response are Gaussian. Hence,

fuðrÞ ¼ fvðrÞ ¼ guðrÞ ¼ gvðrÞ ¼ e�r2 : ð71Þ

With these pro¯les, the integrals (60) are
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I2u ¼ 1

4
; I12u ¼ � 2

u

2ðw2
u þ 2� 2

uÞ
; Idpu ¼ 1

2
; Idu2 ¼

1

4
ð72Þ

with symmetric expressions for I2v, I12v, Idpv and Idv2. The values of I2pu and I2pv will

not be needed in the following. With these assumptions, the director reorientation for

an input beam can be determined from the averaged Lagrangian (61), say for the u

beam, by taking av ¼ 0, �v ¼ 0, �v ¼ �v ¼ 0 and Uv ¼ Vv ¼ 0. The director distri-

bution for the v beam can be found by symmetry. The averaged Lagrangian required

to determine the initial director distributions is then

L ¼ �2I2ua
2
uw

2
u�

0
u � I2pua

2
u þ

2�ua
2
uw

2
u�

2
u

w2
u þ 2� 2

u

� 1

2
��2

u �
1

2
q�2

u�
2
u: ð73Þ

Taking variations of this averaged Lagrangian (73) with respect to �u and �u gives

the input director parameters for the Gaussian pro¯les (71)

�u ¼ 4a2
uw

2
u

qðw2
u þ 2� 2

uÞ2
; ð74Þ

� 2
u ¼ 1

4q
½qw2

u þ ðq2w4
u þ 16�qw2

uÞ1=2� ð75Þ

with the v pro¯le found by symmetry. With these expressions for the director

parameters the potential (63) can be determined from the input beam, and the

mechanical equations (66) and (67) for the interaction of the two nematicons can be

solved. These equations are integrated numerically.

Figure 3 shows comparisons for the nematicon trajectory as given by full nu-

merical solutions of the nematic equations (51)–(53) and solutions of the mechanical

equations (66) and (67). The comparisons are for the ðx; yÞ beam coordinates ð�u; �uÞ
and ð�v; �vÞ and the radial positions r2u ¼ � 2u þ �2u and r2v ¼ � 2v þ �2v. The nonlocality

� was chosen as 500, which is of the order of experimental values.12 For these initial

conditions, the nematicon system has an overall total linear momentum: the two

beams' mean trajectory moves according to this mean momentum, while the indi-

vidual beams oscillate about this mean trajectory and each other. They form a bound

state due to the nonlocality,3,6,18,49 interacting and attracting even at a distance. The

agreement between the numerical and mechanical approximation solutions is ex-

cellent initially, with di®erences becoming apparent after z ¼ 50, and signi¯cant

after z ¼ 150. After this propagation length, the amplitudes of the oscillations of the

beams about the mean are in quite good agreement, but there is a period di®erence

which grows with z. A reason for this is the basic mechanical approximation that the

beams retain their power and do not signi¯cantly radiate. Figure 4 shows the beams

at z ¼ 0 and at z ¼ 300 for the same parameters as in Fig. 3. Clearly, as the beams

evolve, each generates a new, small amplitude beam at the position of the beam in

the other mode. Such beams are referred to as shadow beams and are well known to

Mechanical analogies for nonlinear light beams in nonlocal nematic liquid crystals
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result from beam interaction.54 The powers of these shadow beams are spilled from

the main beam, breaking the main hypothesis (beam power conservation) of the

mechanical approximation. Hence, deviations of the solutions of the mechanical

equations from numerical solutions stem from the generation of shadow beams and

their evolution. It may be possible to include these shadow beams in the mechanical

beam pro¯le assumption (55), but it will lead to much more involved mechanical

equations. This extension may not be possible as the shadow beams start with zero

amplitude and are cleft from the main beams; it is not (yet) clear how to break up an

initial beam into main and shadow beams in a consistent way.

Figure 5 shows a comparison similar to Fig. 3, but for no overall linear momen-

tum. The beams exhibit no average overall motion, oscillating about ðx; yÞ ¼ ð0; 0Þ.
The symmetry of the initial condition implies that u and v have the same radial

displacements r2u ¼ � 2u þ �2u and r2v ¼ � 2v þ �2v, which is why in Fig. 5(a) there are

only single curves for these variables for the numerical and mechanical solutions of
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Fig. 3. (Color online) Trajectory comparisons between numerical solutions of system (51)–(53) and

solutions of mechanical equations (66) and (67). Numerical solution for u: red (solid) line; numerical
solution for v: green (dashed) line; mechanical solution for u: blue (dotted) line; mechanical solution for v:

black (dashed-dot) line. (a) radial positions r2u ¼ � 2u þ �2u, r
2
v ¼ � 2v þ �2v, (b) x positions �u, �v, (c) y

positions �u, �v. Here the initial beam parameters are au ¼ av ¼ 3:0, wu ¼ wv ¼ 4:5, �u ¼ 10:0, �v ¼ �10:0,
�u ¼ �v ¼ 0, Uu ¼ Vu ¼ 0:05, Uv ¼ Vv ¼ 0:03. The NLC parameters are � ¼ 500 and q ¼ 2.
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both u and v. The same comments for the comparisons in Fig. 3 apply. There is

excellent agreement up to about z ¼ 100, with signi¯cant disagreement after

z ¼ 200. Again, the agreement for the amplitude of the position oscillations about

the mean is quite good, but there is a growing period di®erence. The overall match

between numerical and mechanical solutions is better than for those displayed in

Fig. 3, as the numerical solutions for u and v in Fig. 6 show that the shadow beams

have much lower amplitude in Fig. 6 than in Fig. 4. Hence, less power is drawn from

the main beams to create the shadow beams and, consequently, the main assumption

of the mechanical approximation has greater validity. These two examples illustrate

advantages and drawbacks of the mechanical approximation discussed in this paper.

It is apparent that the mechanical equations of Sec. 3 for nonuniform samples give

better results than those of the present section for interacting nematicons. At vari-

ance with the nonuniform orientation case, in fact, in the problem of interacting

nematicons the formation of shadow beams had to be considered, together with the

Gaussian assumption on beam pro¯les in order to enable solutions of the mechanical

equations to be found. Since the beams will not remain Gaussian as they evolve,

assumptions on their pro¯les reduce the accuracy of the mechanical approximation.
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Fig. 4. Numerical solutions of the nematic system (51)–(53). (a) juj at z ¼ 0; (b) jvj at z ¼ 0; (c) juj at
z ¼ 300; (d) jvj at z ¼ 300. Here, the initial beam parameters are au ¼ av ¼ 3:0, wu ¼ wv ¼ 4:5, �u ¼ 10:0,
�v ¼ �10:0, �u ¼ �v ¼ 0, Uu ¼ Vu ¼ 0:05, Uv ¼ Vv ¼ 0:03. The NLC parameters are � ¼ 500 and q ¼ 2.
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5. Energy Minimizing Nematicons and the Regularizing

E®ect of Nonlocality

Another connection between mechanics and nematicons comes from combining the

Hamiltonian mechanics of systems with symmetries and qualitative methods from

mathematical analysis. In recent years this approach has been developed extensively

for the study of nonlinear waves, see, e.g., Refs. 55–57. In this section we apply these

Hamiltonian methods to understand the regularizing e®ect of nonlocality on solitary

wave solutions of the nematic equations (1) and (2), and to address the existence and

the stability of nematicons. The next section will discuss nematicon power thresholds

and their small amplitude behavior, before ¯nally extending the results to a model

that includes saturation of the nonlinearity.

One of the motivations behind these qualitative methods is the question of the

existence and multiplicity of solitary wave solutions of nonlinear, dispersive wave

equations which lack explicit solutions. For instance, we take the nematic equations
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Fig. 5. (Color online) Trajectory comparisons between numerical solutions of the nematic system (51)–

(53) and solutions of the mechanical equations (66) and (67). Numerical solution for u: red (solid) line;
numerical solution for v: green (dashed) line; mechanical solution for u: blue (dotted) line; mechanical

solution for v: black (dashed-dot) line. (a) radial positions r2u ¼ � 2u þ �2u, r
2
v ¼ � 2v þ �2v, (b) x positions �u,

�v, (c) y positions �u, �v. Here the initial beam parameters are au ¼ av ¼ 3:0, wu ¼ wv ¼ 4:5, �u ¼ 10:0,
�v ¼ �10:0, �u ¼ �v ¼ 0, Uu ¼ Vu ¼ 0:05, Uv ¼ Vv ¼ �0:05. The NLC parameters are � ¼ 500 and q ¼ 2.
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(1) and (2) and seek radial solutions of the form u ¼ fðrÞei�z and � ¼ gðrÞ, with f

real. Then f and g must satisfy the system of ordinary di®erential equations

��f þ 1

2

d2f

dr2
þ 1

r

df

dr

� �
þ 2fg ¼ 0; ð76Þ

�
d2g

dr2
þ 1

r

dg

dr

� �
� 2qg ¼ �2f2: ð77Þ

We also require di®erentiability at the origin (i.e., f 0ð0Þ ¼ g0ð0Þ ¼ 0) and decay at

in¯nity (i.e., fðrÞ and gðrÞ both! 0 as r ! 1). The existence of such f and g would

show the existence of radially symmetric nematicons. Showing that such solutions

exist is, however, nontrivial and has led to rather elaborate theoretical studies. While

the more restrictive form assumed for a radial electrical ¯eld u and director response

� in (7) led to only one (nondecaying) solution, the approximate methods discussed

in Secs. 3 and 4 suggest the existence of more than one decaying solution, e.g.,

solutions that correspond to experimentally observed nematicons of various powers.

In what follows we present results on the existence of radial solutions based on

energy minimization arguments that bypass the analysis of the radial equations (76)

and (77).
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Fig. 6. Numerical solutions of nematic system (51)–(53). (a) juj at z ¼ 0; (b) jvj at z ¼ 0; (c) juj at
z ¼ 300; (d) jvj at z ¼ 300. The initial beam parameters are au ¼ av ¼ 3:0, wu ¼ wv ¼ 4:5, �u ¼ 10:0,

�v ¼ �10:0, �u ¼ �v ¼ 0, Uu ¼ Vu ¼ 0:05, Uv ¼ Vv ¼ �0:05. The NLC parameters are � ¼ 500 and q ¼ 2.
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A related question is the stability of nematicons, that is whether a solitary wave

solution uðx; y; zÞ and �ðx; y; zÞ obtained from an initial pro¯le that is a small per-

turbation of a steady nematicon, e.g., the radial pro¯le discussed above, remains

close to that pro¯le for all z > 0. Unstable solutions depart from the vicinity of the

initial pro¯le, resulting in signi¯cant distortion. A well known unstable pro¯le is the

Townes' solitary wave of cubic Kerr media,56,58 for which a singularity can occur

upon a ¯nite propagation distance z. We show below that nonlocality in NLC pre-

vents such extreme instability for the nematic equations (1) and (2), as pointed out

in Ref. 6. In addition, the proof of the existence of nematicon solutions through

energy minimization does give partial results on stability.

5.1. Hamiltonian structure of the nematic equations

Let us ¯rst describe the Hamiltonian structure of the nematic equations (1) and (2).

We ¯rst solve the medium equation, expressing � in terms of juj2 in Fourier space,

and obtain

�ðx; yÞ ¼ 2

�

Z
R2

K0ðm
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� �Þ2 þ ðy� �Þ2

q
Þjuð�; �Þj2d�d�; ð78Þ

where K0 is the modi¯ed Bessel function59 and m ¼ ffiffiffiffiffiffiffiffiffiffi
2q=�

p
. The Bessel function

K0ðrÞ, de¯ned for r > 0, is positive and strictly decreasing; it satis¯es

K0ðrÞ ¼
1

2�
ð�log rþ ðlog 2� 
ÞÞ þOðr2Þ as r ! 0 ð79Þ

and

K0ðrÞ ¼
1

2
ffiffiffiffiffiffiffiffi
2�r

p e�rð1þOðr�1ÞÞ as r ! 1; ð80Þ

with 
 the Euler–Mascheroni constant.59 We note that the logarithmic singularity at

the origin is integrable on the plane.

Denoting the convolution of two functions f and g on the plane as

ðf � gÞðx1;x2Þ ¼
Z
R2

fðx1 � y1;x2 � y2Þgðy1; y2Þdy1dy2 ð81Þ

and writing the nematic response as � ¼ Gðjuj2Þ ¼ 2
� K0;m � juj2;K0;mðrÞ ¼ K0ðmrÞ,

with G de¯ned as in the medium response solution (78), the electric ¯eld equation (1)

becomes

iuz þ
1

2
r2uþ 2Gðjuj2Þu ¼ 0: ð82Þ

Equation (82) can be written as Hamilton's equation

uz ¼ �i
�H

�u� ; with H ¼
Z
R2

1

2
jruj2 � juj2Gðjuj2Þ

� �
; ð83Þ

where H is the Hamiltonian or energy of Eq. (82).56,57,60 The variational derivatives
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�H
�u� and

�H
�u are de¯ned implicitly by the expansion ofHðuþ u1Þ, assuming that u1 is a

small perturbation of u, as

Hðuþ u1Þ ¼ HðuÞ þ
Z
R2

�H

�u� u
�
1 þ

Z
R2

�H

�u
u1 þOðu 2

1Þ ð84Þ

and the superscript � denotes the complex conjugate. To obtain this expression we

separated the part of Hðuþ u1Þ that is linear in u1 and u �
1 and then identi¯ed the

structure above, in analogy to the Taylor expansion of a scalar function in Rn, e.g.,

hðxþ yÞ ¼ hðxÞ þ rhðxÞ � yþOðy2Þ. The Hamiltonian formulation of the electric

¯eld equation Eq. (82) of the electric ¯eld equation implies the conservation of H.

Another conserved quantity is the power P , de¯ned as

P ðuÞ ¼
Z
R2

juj2: ð85Þ

The conservation ofP is related byN€other's theorem to the fact that the Hamiltonian is

invariant under the global phase change uðx; yÞ ! ei�uðx; yÞ, with � independent of

ðx; yÞ. Other conserved quantities and symmetries of the electric ¯eld equation (82) are

discussed in Refs. 56 and 57.

NLS-type equations of the form (82), with Gðjuj2Þ ¼ F � juj2 the convolution of

juj2 with a radially dependent kernel F , have been considered in several contexts and

are usually referred to as nonlinearities of Hartree type, see, e.g., models with kernels

that avoid the singularity of the Bessel function K0 at the origin.61,62 The Hamil-

tonian structure requires the symmetry of the operator G, and this is guaranteed if F

is radial. The Hamiltonian in these models can be also directly derived from a

Lagrangian similar to the ones used in Secs. 3 and 4. The connection between the two

functionals, Hamiltonians and Lagrangians, is well known in mechanics and ¯eld

theory. Nevertheless, their uses are quite di®erent in this paper.

5.2. Energy conservation and the regularizing e®ect of nonlocality

We can use the conservations of energy and power to demonstrate the regularizing

e®ect of the nonlocality of the nematic response.6 The main results are implicit in the

work of Ginibre and Velo,63 who studied Hartee-type NLS equations with a general

class of kernels. Their theory, in fact, includes the ð2þ 1ÞD nematic equations (1)

and (2).64 The general idea is to use conservation of energy and show that
R
R2 jruj2

remains bounded. We observe that the (focusing) sign combination in the electric

¯eld equation (83) allows both the quadratic and quartic terms of H to increase

without bound, but keeping their di®erence constant. Thus, to exploit conservation

of energy we ¯rst need to somehow connect the quadratic and quartic parts and

correlate their rates of growth.

Note that if
R
R2 jruj2 remains bounded, then

Z
R2

ðjuðx; yÞj2 þ jruðx; yÞj2Þdxdy
� �1=2

ð86Þ

Mechanical analogies for nonlinear light beams in nonlocal nematic liquid crystals
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remains bounded as well. The latter is referred to as theH1 norm of u. We can de¯ne

the space H1 of functions as the set of di®erentiable functions (and their suitable

limits) of ¯nite H1 norm.65 The H1 norm of u is also given by

Z
R2

ð1þ k 2
1 þ k2

2Þjûðk1; k2Þj2dk1dk2
� �1=2

; ð87Þ

where ûðk1; k2Þ is the Fourier transform of u.55 The fact that the H1 norm remains

bounded provides a worst case scenario for the decay of the Fourier transform of

solutions, valid for all z. Most importantly in nonlinear optics, singularity formation

for solutions of the ð2þ 1ÞD cubic NLS equation is accompanied by the divergence of

the H1 norm in ¯nite z.58 Therefore, the control of this quantity is important and

preliminary for more precise results on the behavior of solutions of the nematic

equations.

To ascertain the role of nonlocality on solutions of the ð2þ 1ÞD nematic equations

we can exploit an argument by Turytsin.66 First, we note that, the quartic part of the

energy
R
R2 Gðjuj2Þjuj2 can be bounded as

Z
R2

ðK0;m � juj2ÞðxÞjuðxÞj2d2x 	 sup
x2R2

jðK0;m � juj2ÞðxÞj
� �Z

R2

juðxÞj2d2x; ð88Þ

with x ¼ ½x; y�. The integral on the right-hand side is the optical power P ðuÞ, a
constant of motion. To estimate the integral on the left-hand side and check that it is

indeed ¯nite, we observe that

Z
R2

K0;mðjx� x0jÞ jx� x0j
jx� x0jjuðx

0Þj2d2x0
����

���� 	 max
x02R2

jx� x0jK0;mðjx� x0jÞ
� �

�
Z
R2

juðx0Þj2
jx� x0j d

2x0: ð89Þ

The quantity in parentheses on the right-hand side is ¯nite by the asymptotic results

(79) and (80) for the Bessel function K0 at the origin and at in¯nity, respectively. To

bound the integral on the right-hand side, we point out that the singularity at x0 ¼ x

is integrable on the plane. The integral is then ¯nite if u is di®erentiable and has a

su±ciently rapid decay. To estimate this, we start by using that

Z
R2

ruðxÞ � u
�ðxÞðx� x0Þ
jx� x0j d2x ¼ �

Z
R2

uðxÞ � r � u
�ðxÞðx� x0Þ
jx� x0j d2x ð90Þ

on integrating by parts. Then

2

Z
R2

ruðxÞ � u
�ðxÞðx� x0Þ
jx� x0j d2x ¼ �

Z
R2

juðxÞj2 � r ðx� x0Þ
jx� x0j d

2x

¼ �
Z
R2

juðxÞj2
jx� x0j d

2x: ð91Þ
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Thus the second integral of Eq. (89) satis¯es

Z
R2

juðxÞj2
jx� x0j d

2x 	 2

Z
R2

jruðxÞjjuðxÞjd2x 	 2

Z
R2

jruðxÞj2d2x
� �1=2

�
Z
R2

juðxÞj2d2x
� �1=2

; ð92Þ

by means of the inequalities
R
fg� 	 ðR jfj2Þ1=2ðR jgj2Þ1=2 (Cauchy–Schwartz in-

equality) and jR fj 	 R jfj. The second integral is
ffiffiffiffiffiffiffiffiffiffiffi
PðuÞp

, a constant. Collecting the

bounds (88), (89) and (92) we see that the quartic part of the energy satis¯es

Z
R2

ðK0;m � juj2ÞðxÞjuðxÞj2d2x 	 2MP 3=2ðuÞ
Z
R2

jruðxÞj2d2x
� �1=2

: ð93Þ

This estimate involves the quantities appearing in the H1 norm (which allows us to

extend it to all H1 functions by taking limits of the smooth and rapidly decaying

functions, as assumed in the previous steps). Combining (93) with (83), we obtain

H 
 1

2

Z
R2

jruj2 � 4

�
MP 2ðuÞ

Z
R2

jruj2
� �1=2

: ð94Þ

Since the optical power P ðuÞ is constant, if
R
R2 jruj2 diverges, then H must also

diverge, contradicting the conservation of energy. Therefore,
R
R2 jruj2 must remain

bounded for all z. While a variant of this argument was used in Ref. 61 for kernels with

an absolutely integrable Fourier transform, e.g., for Gaussians (but not for K̂0), it will

not work for the ð2þ 1ÞDNLS equation for a Kerr medium (cubic nonlinearity). Note

that, the nonlinear part of the energy for power and Hartree nonlinearities can be

estimated in a general way using the Gagliardo–Nirenberg inequalities,63,67 which

bound integrals of powers of a function u by the product of an integral of some power

of juj and an integral of some power of jruj.55,65 For the Hamiltonian of the cubic NLS

equation in Kerr media (focusing case) we have

H� ¼
Z
R2

ðjruj2 � juj4Þ ð95Þ

and also the Gagliardo–Nirenberg inequality

Z
R2

juj4 	 C2;2

Z
R2

juj2
� �� Z

R2

jruj2
� ��

; ð96Þ

with � ¼ � ¼ 2 and C2;2 a positive constant. The exponents � and � are determined

uniquely by a scaling argument. Then

H�ðuÞ 

Z
R2

jruj2 � C2;2P ðuÞ
Z
R2

jruj2: ð97Þ

Mechanical analogies for nonlinear light beams in nonlocal nematic liquid crystals
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For P ðuÞ < 1=C2;2, the divergence of
R
R2 jruj2 leads to an unbounded growth of the

left-hand side of (97), contradicting energy conservation. Therefore, a small power

leads to a bound on
R
R2 jruj2. This argument does not work for PðuÞ 
 1=C2;2, where

in fact
R
R2 jruj2 can diverge over a ¯nite distance z.56–58 The regularizing e®ect of

nonlocality is therefore related to the slower growth of the quartic energy inR
R2 jruj2, as seen by comparing (93) to (97).

6. Energy Minimizing Nematicons and Power Thresholds

Another application of the Hamiltonian structure of the nematic equations (1) and

(2) is a result on the existence of solutions uðx; y; zÞ ¼  ðx; yÞei�z that minimize the

energy (Hamiltonian H) over all functions in the space H1 (see comments below) of

constant power P . We argue that these solutions should correspond to experimen-

tally observed nematicons.

Substituting the solitary wave form uðx; y; zÞ ¼  ðx; yÞei�z in the electric ¯eld

equation (82) leads to

� ¼ � 1

2
� � 2 Gðj j2Þ: ð98Þ

By the Hamiltonian formulation (83) and (84) this is also equivalent to

�
�P

�u� ð Þ ¼
�H

�u� ð Þ; ð99Þ

i.e., we have the variational derivatives of P and H evaluated at u ¼  . Thus,  is a

critical point of the Hamiltonian H over functions of constant power P with the

frequency � playing the role of a Lagrange multiplier. It was proven in Ref. 64 that

there exist a real number c0 > 0 and a complex valued function  c on the plane

that minimizes the Hamiltonian HðvÞ over all complex valued functions v on the

plane satisfying P ðvÞ ¼ c, c > c0, and belonging to H1. Even though the appearance

of the function space H1 is just a technical part of the proof, this a large set of

functions, including ��� for instance ��� all di®erentiable u with ¯nite H1 norm.

According to (86) this is a mild condition on decay at in¯nity, slightly stronger than

requiring ¯nite power. Moreover, the regularization arguments above for the nematic

equations imply that initial conditions in H1 remain in H1 for all z and have a

bounded H1 norm. This set of functions is therefore a natural choice for examining

detailed features of the nematic equations.

A second result is that a minimum  c of the energy H over H1 functions of

constant power P ¼ c is, up to translation and global phase changes, a smooth,

radial, real and positive solution of (98), that also decays monotonically to zero at

in¯nity,64 as for experimentally observed nematicons. The minima of H at ¯xed

power are also expected to be stable, and thus observable. This is because an initial

pro¯le near  c that becomes signi¯cantly distorted, i.e., leaves the vicinity of  c, can

only have higher energy H and so contradict the conservation of H.64 These
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properties of radial symmetry, monotonic decay to zero and stability suggest that an

energy minimizer  c corresponds to an experimentally observed (or observable)

nematicon. Two open questions of physical relevance are (i) whether radial functions

of minimal energy at ¯xed power are unique and (ii) whether other local minima ofH

(i.e., con¯gurations of higher energy) exist at ¯xed power. Multiple local minima

would imply the existence of other possible stable nematicon solutions.

We now turn our attention to the fact that the existence of energy minimizing

nematicons at a ¯xed power was shown for powers above a certain threshold 	0.

Physically, this suggests that nematicons cannot be observed for arbitrarily small

powers. The analysis in Ref. 64 led to theoretical predictions for this minimum

power. The main observation towards the power threshold is that the existence ofH1

functions minimising H at a given power P ¼ 	 requires the existence of con¯g-

urations with negative values of H. Intuitively, this is needed to rule out the possi-

bility of making the energy decrease to zero by considering a sequence of pro¯les with

decreasing and vanishing amplitude (and constant power). Such a sequence of con-

¯gurations would lead to a vanishing energy without converging, i.e., without

reaching a speci¯c pro¯le that minimizes the energy. Requiring pro¯les of negative

energy H at power P ¼ 	 yields a condition 	 > 	0. We can estimate the threshold

power 	0 by using trial functions: we can consider a radial trial function vðrÞ ¼ afðrsÞ
(in H1) and vary the parameters a and s > 0 to make HðvÞ < 0, keeping the power

P ðvÞ constant. We compute

H ¼ 	ðA � B	Þ; A ¼ 1

2

I22
4s2I2

; B ¼ 1

2�

I4ðsÞ
I 2
2

; ð100Þ

where

I2 ¼
Z 1

0

rf2ðrÞdr; I22 ¼
Z 1

0

rðf 0ðrÞÞ2dr; ð101Þ

I4ðsÞ ¼
Z 1

0

Z 1

0

Iðsr1; sr2Þr1r2f2ðr1Þf2ðr2Þdr1dr2; ð102Þ

Iðsr1; sr2Þ ¼ 2

Z �

0

K0ðsmðr21 þ r22 � 2r1r2 cos �Þ1=2Þd�: ð103Þ

Fixing s, the integrals I2 and I22 are positive constants and, by the positivity of the

Bessel function K0, I4ðsÞ is also a positive constant. Using the results (100), we have

that HðvÞ < 0 if

	 >
A
B ¼ �

2

I2I22
s2I4ðsÞ

: ð104Þ

The quantity A=B can be computed numerically and used as an approximation for

the minimum power needed to support a nematicon. This is reasonable, provided

vðrÞ ¼ afðr=sÞ, with a real, is a good approximation to the exact nematicon pro¯le.

At the same time, we may be able to ¯nd f and s leading to a smaller A=B. The

Mechanical analogies for nonlinear light beams in nonlocal nematic liquid crystals
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question is then whether this ratio can be made arbitrarily close to zero by choosing a

suitable sequence of trial functions that would entail the existence of nematicons

with arbitrarily small powers. It was shown in Ref. 64 that A=B can be made in-

dependent of the choice of trial function, as follows from the inequality

s2I4ðsÞ 	 CI2I22; ð105Þ
valid for all f 2 H1 and real s, i.e., with C independent of f and s. Through (104),

the inequality (105) implies that for

	 > 	0 ¼
�

2C
ð106Þ

the energy H of H1 radial solutions of power P ¼ 	 can attain negative values.

The latter implies the existence of an energy minimizing nematicon.

From a physical point of view, the minimum power result Eq. (106) is an inter-

esting theoretical prediction of the threshold for the formation of nematicons.

Mathematically the power bound (106) is a su±cient condition for the existence of

energy minimizing nematicons. On the other hand, all initial pro¯les (in H1) of

su±ciently small power must eventually di®ract as z ! 1,64 implying that we

cannot have nematicons of arbitrarily small powers. A similar di®raction result for

small powers is also valid for the standard NLS model of a Kerr medium in ð2þ 1Þ
dimensions.25

The result on di®raction for small optical powers also has implications for the

numerical computation of nematicons. A commonly used technique to ¯nd nemati-

con solutions uses energy minimization at ¯xed power, considering suitable dis-

cretizations of the Hamiltonian H and the power P for functions de¯ned on a ¯nite

computational grid.64 The discrete analogue of the power constraint P ¼ c is a sphere

of radius c in a ¯nite dimensional space. The discretization of H, restricted to this

sphere, always has a minimum for any c > 0, at variance with the theoretical con-

tinuous result of eventual decay for small enough power. Such numerical solutions

are spurious and are, in essence, a ¯nite domain e®ect, i.e., not due to the dis-

cretization. For instance, power thresholds for discrete analogues of solitary waves

and decay for small power are also known for the discrete cubic NLS equation on an

in¯nite two dimensional lattice.68,69

We stress that these threshold and small power decay results refer to equations

de¯ned on the in¯nite plane. The implications for a realistic experimental, i.e., ¯nite,

geometry, are that an initially localized beam of su±ciently small power will start

di®racting, as predicted by the in¯nite domain model.70

Finally, the dimensionality of the model also plays a role. We expect that the

ð1þ 1Þ-dimensional nematic systemdoes not have a power threshold for solitarywaves.

Thus, ð1þ 1ÞD models are useful approximations, but may miss small power e®ects.
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6.1. Extensions to saturable model

As discussed in the previous sections, the nematic system (1) and (2) is an approx-

imation to a full system with a saturable nonlinearity that can be traced back to the

coupled Maxwell–Oseen–Frank model for light beams propagating in nematic liquid

crystals.40 A saturating nonlinear response is quite intuitive, considering that the

molecular director can ��� at the most ��� align with the polarization of the electric

¯eld of the light beam. However, fewer studies have dealt with the combination of

saturation and nonlocality in NLC. We look here at the model

i@zuþ 1

2
r2uþ u sinð2�Þ ¼ 0 ð107Þ

for the electric ¯eld of the beam and

�r2�� q sinð2�Þ ¼ �2juj2 cosð2�Þ ð108Þ
for the optically induced rotation � of the molecular director.71 Here, � is the non-

dimensional elasticity of the nematic medium and q is a positive constant propor-

tional to the square of the external electric ¯eld which pre-sets the NLC molecules in

the principal plane ðx; zÞ.3,5
The nematic equations (1) and (2) are obtained from the more general equations

(107) and (108) on assuming that the light induced rotation � is small and Taylor

expanding sin � and cos � to ¯rst order. We note that, in the local limit � ¼ 0, the

director equation (108) yields tan 2� ¼ 2juj2=q, so that the electric ¯eld equation

(107) becomes

i@zuþ 1

2
r2uþ 2juj2uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2 þ 4juj4
p ¼ 0; ð109Þ

which is a saturable NLS equation.25 This suggests an additional regularizing

mechanism of the nematic equations (107) and (108) in ð2þ 1Þ dimensions,5 as

saturation prevents catastrophic collapse upon self-focusing.25

A more precise way to verify this is indeed the case stems from the fact that the

energy

Hs ¼
1

4

Z
R2

ðjruj2 þ �jr�j2 � 2juj2 sinð2�Þ þ qð1� cosð2�ÞÞÞ ð110Þ

is conserved under the evolution governed by the nematic equations (107) and (108),

withHs the Hamiltonian. In particular, we can cast the system (107) and (108) in the

form

uz ¼ �i
�Hs

�u� ;
�Hs

��
¼ 0 ð111Þ

withHs ¼ Hsðu;u�; �Þ. This is a generalization of the Hamiltonian structure, leading

automatically to the conservation of (the energy) Hs. The power PðuÞ, de¯ned as in

Mechanical analogies for nonlinear light beams in nonlocal nematic liquid crystals
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(85), is also conserved. From the Hamiltonian (110) we have

Hs 

1

4

Z
R2

ðjruj2 � juj2 sin �Þ; ð112Þ

i.e., on omitting the positive terms of Hs (which are ¯nite71),
Z
R2

juj2 sin � 	
Z
R2

juj2jsin �j 	 P ðuÞ: ð113Þ

Therefore,

Hs 

1

4

Z
R2

jruj2 � 1

4
P ðuÞ

� �
: ð114Þ

By the conservation of the power P , if
R
R2 jruj2 diverges, then Hs must also diverge,

contradicting conservation of energy. We thus have a much simpler variant of the

argument used above to control the H1 norm of the nematicon solution of the

simpli¯ed nematic equations (1) and (2). In the present saturable model, the part of

the Hamiltonian leading to the nonlinear coupling of u and � has a much milder

growth in u and is controlled by the power. This is a manifestation of the saturation

of the nonlinearity at larger angles �.

The analysis of the director equation (108) shows that there is a unique solution

� ¼ Gðjuj2Þ.71 An interesting result is that � is positive everywhere and also satis¯es

an upper bound �ðxÞ 	 �max for all x ¼ ðx; yÞ on the plane, i.e., the angle saturates.

In the simpli¯ed nematicon model (1) and (2), a positive � follows from the

Green's function solution (78) and the positivity of the Bessel function kernel K0.

The positivity of � in the saturable model (107) and (108) makes the director

equations of the two models consistent at small angles. The saturation result for

(108) is an indication of the physical consistency of the saturable system at larger

angles, as saturation is expected by the con¯guration of the ¯eld-dipole (director)

interaction.3,5 It also improves the director equation (2), for which the linearity of

� ¼ 2
� K0;m � juj2 implies that � can be arbitrarily large.

By minimizing the Hamiltonian Hsðv; �Þ over con¯gurations of v and � of ¯xed

power PðvÞ ¼ c (v and � are assumed to be H1 functions), the existence of a solitary

wave solution uðx; y; zÞ ¼ vðx; yÞei�z of the saturable nematic equations (107) and

(108) can be proven. Provided its power is above a threshold, this energy minimizing

solitary wave can be shown to exist, to be stable and to exhibit a positive radial

pro¯le that decays monotonically to zero (up to phase changes and position trans-

lations).71 Moreover, initial pro¯les of small enough power eventually di®ract.

Therefore, the saturable nematic model has a stable \saturable nematicon" solution

with the qualitative properties of the nematicon described by the linearized equa-

tions (1) and (2) and by experimental measurements.3

Finally, the saturable equations (107) and (108) con¯rm and extend the results on

existence and basic properties of nematicons based on the simpli¯ed equations (1)
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and (2), adding the bene¯cial e®ect of saturation of the director orientation for large

¯elds and regularizing the solution. The two models are expected to give similar

results for small and intermediate power levels, i.e., below and immediately above the

threshold for nematicon formation; they should diverge for higher excitations.

Nevertheless, higher powers are likely to introduce physical e®ects not modeled by

Hamiltonian systems.

7. Conclusions

While nonlinear optics often appears far removed from classical mechanics,

Lagrangian and Hamiltonian ideas and techniques well known in areas ranging in

length scale from astronomy to micromanipulation can be exploited to analyze beam

self-localization in nonlinear, nonlocal optical media such as nematic liquid crystals.

This is because optical solitary waves in these materials behave in many aspects as

particles.16 In this Review we have exploited the analogy of nematicons with me-

chanical particles in a potential to bypass the lack of known exact nematicon solu-

tions of the nematic equations. Mechanical counterpart equations to those describing

nematicons have been employed, resorting to momentum conservation to model and

describe single solitary waves evolving in nonuniform NLC samples with transverse

or longitudinal modulation of the background orientation, as well as two or three

interacting nematicons in homogeneous samples. In most cases, the agreement be-

tween the mechanical model, experimental observations and the results of realistic

numerical integration was found to be excellent, despite assumptions on lossless

material and propagation, as well as other simplifying approximations. Moreover, we

have shown that analogies with Hamiltonian mechanics for systems with symmetries

lead to arguments on the existence, uniqueness and stability of nematicon solutions,

emphasizing the regularization a®orded by nonlocality and saturation of the NLC

nonlinear response and showing important implications for the link between the

actual solutions of the (continuous) nematic equations and their discrete version in

numerical schemes. The latter can yield spurious results if not used with caution, as

should be more widely appreciated. Finally, the existence of a power threshold for

nematicons, their eventual di®raction for low excitations and their observability for

various input powers are among the bene¯cial results stemming from the combina-

tion of Hamiltonian mechanics and related mathematical methods. While mathe-

matical modeling of nematicons in nonlinear, nonlocal and saturable nematic liquid

crystals has achieved substantial progress using these mechanical analogies, further

work needs to be carried out to model more involved interactions and/or the in-

terplay of various nonlinear responses in NLC, including, e.g., symmetry breaking

and bistability,72,73 interplay/competition of thermo-optic and reorientational phe-

nomena,9,41–43,74 coexistence of electronic and reorientational responses acting on

di®erent time scales,75–77 reorientation in the presence of geometric phases,78,79

synergy of optical gain and scattering in doped NLC80–82 and more.
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